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Abstract

We consider the problem of valuation of interest rate derivatives in the post-crisis
setup. We develop a multiple-curve model, set in the HJM framework and driven by
a Lévy process. We proceed with joint calibration to OTM swaptions and co-terminal
ATM swaptions of different tenors, the calibration to OTM swaptions guaranteeing that
the model correctly captures volatility smile effects and the calibration to co-terminal
ATM swaptions ensuring an appropriate term structure of the volatility in the model.
To account for counterparty risk and funding issues, we use the calibrated multiple-
curve model as an underlying model for CVA computation. We follow a reduced-form
methodology through which the problem of pricing the counterparty risk and funding
costs can be reduced to a pre-default Markovian BSDE, or an equivalent semi-linear
PDE. As an illustration we study the case of a basis swap and a related swaption, for
which we compute the counterparty risk and funding adjustments.

Keywords: interest rate derivative, multiple-curve term structure model, Lévy process,
credit valuation adjustment (CVA), funding.

1 Introduction

As a consequence of the crisis various new phenomena appeared in the fixed income mar-
kets. A variety of spreads have developed, notably Libor-OIS swap spreads and basis swap
spreads, an issue known as multiple-curves (see, among others, Kijima, Tanaka, and Wong
(2009), Kenyon (2010), Henrard (2007, 2010), Bianchetti (2010), Mercurio (2010b, 2010a),
Fujii, Shimada, and Takahashi (2011, 2010), Moreni and Pallavicini (2014) and Bianchetti

∗The research of S. Crépey benefited from the support of the “Chair Markets in Transition” under the
aegis of Louis Bachelier laboratory, a joint initiative of École Polytechnique, Université d’Évry Val d’Essonne
and Fédération Bancaire Française
†Z. Grbac acknowledges the financial support from the DFG Research Center MATHEON, Project E13.
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and Morini (2013)). In addition, counterparty risk and funding costs have become major
issues in OTC derivative transactions. To account for these, credit/debt valuation adjust-
ments CVA/DVA and different kinds of funding valuation adjustment have been introduced
(see Brigo, Morini, and Pallavicini (2013) and Crépey, Bielecki, and Brigo (2014), respec-
tively in a more financial and mathematical perspective, for recent references in book form).
We refer to an aggregate adjustment as a TVA, which stands for total valuation adjust-
ment, reserving the term CVA for a strict credit valuation adjustment. In the literature,
the acronym CVA is often used also in a broader sense, which then corresponds to our TVA
(this is the reason why the name CVA was also preferred in the title and the abstract of
the paper, however in the rest of the paper we consistently use the terms TVA and CVA in
the sense explained above).

From a risk-management perspective, this new paradigm has created a need for multiple-
curve interest rate models allowing for practical TVA computations, for which, in particular,
a short rate process rt and a parsimonious Markov structure are required. A few suitable
models which come to mind are the HJM multiple-curve model of Fujii and Takahashi
(2011) and the “parsimonious” (in reference to the above Markov requirement) models of
Moreni and Pallavicini (2014, 2013). Moreni and Pallavicini (2014) are the first to apply
the HJM reconstruction formula, normally used to compute zero coupon bond prices, to
define the FRA rates. Our model construction in this paper is similar in spirit. However,
none of the mentioned papers studies the application to TVA computation. Moreover, a
powerful modeling ingredient is the use of Lévy drivers, as opposed to Brownian drivers in
the three mentioned papers. Specifically, we devise a HJM multiple-curve model driven by
a two-dimensional Lévy process, with a built-in HJM fit to the initial Libor and OIS term
structures and with a two-dimensional Markov structure. Lévy drivers were already used
with the same motivation in Crépey, Grbac, and Nguyen (2012), but the Libor rates were
defined in terms of the so-called Libor bonds reflecting the credit and liquidity risk of the
Libor contributing banks. The main motivation was to explain in an economically satisfying
way the spreads between the Libor and the OIS rates. Since Libor bonds are not traded
assets, we choose in this paper to follow Mercurio (2010a) in modeling the Libor FRA rates
(see the defining equation (9) below). The Libor FRA rates are directly observable up to
the maturity of one year and for longer maturities they can be bootstrapped from Libor
swap rates. The model of Mercurio (2010a) is developed in a standard Libor market model
setup, which is less suitable for TVA computations, as it does not allow for low-dimensional
Markovian representations. By contrast, in the HJM framework of this paper, we can access
the short rate process rt, which is needed for discounting in TVA computations.

The paper is organized as follows. In Sect. 2 we present the Lévy HJM multiple-curve
model. Pricing formulas for the most common interest rate derivatives such as swaps and
basis swaps, caplets and swaptions are provided in Sect. 3. Sect. 4 deals with the calibration
of the model to OTM swaptions guaranteeing that the model correctly captures volatility
smile effects (in strike) and to co-terminal ATM swaptions ensuring an appropriate term
structure of the volatility in the model. This is important in view of the targeted application
to TVA computations on multiple-curve products, which is the topic of Sect. 5, where we
use the calibrated multiple-curve model as an underlying model for TVA computation on a
basis swap and a related swaption.
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2 Multiple-Curve Model

In this section we develop a Lévy driven HJM multiple-curve model for the Libor FRA
rates, which are the underlying rates for most interest rate derivatives, and the OIS bond
prices implied by the overnight indexed swaps (OIS), which are used for discounting.

2.1 Driving Process

Let a filtered probability space (Ω,FT ,F, IP), where T is a finite time horizon and IP is
a risk-neutral pricing measure, be fixed. The filtration F = (Ft)t∈[0,T ] satisfies the usual

conditions. The driving process Y = (Yt)0≤t≤T is assumed to be an F adapted, Rn valued
Lévy process (see Cont and Tankov (2003) and Sato (1999)). The characteristic function of
Yt is given by the Lévy-Khintchine formula, in which u denotes a row-vector in Rn:

IE[eiuYt ] = exp

(
t

(
iub− 1

2
ucu> +

∫
Rn

(
eiux − 1− iuh(x)

)
F (dx)

))
, (1)

where b ∈ Rn, c is a symmetric, nonnegative definite real-valued n dimensional matrix and
F is a Lévy measure on Rn, i.e. F ({0}) = 0 and

∫
Rn(|x|2 ∧ 1)F (dx) < ∞. The function

h : Rn → Rn is a suitable truncation function. We assume that there exist constants
K1,K2, ε > 0 such that∫

|x|>1
exp(ux)F (dx) <∞ , u ∈ [−(1 + ε)K1, (1 + ε)K2]n. (2)

As is well-known, condition (2) holds if and only if IE[exp(uYt)] <∞ for all 0 ≤ t ≤ T and
u ∈ [−(1 + ε)K1, (1 + ε)K2]n (cf. Theorem 25.3 in Sato (1999)). Moreover, (2) ensures that
h(x) = x can be chosen as truncation function. Hence, Y is a special semimartingale, with
the canonical representation

Yt = bt+
√
cWt +

∫ t

0

∫
Rn

x(µ− ν)(ds, dx), t ∈ [0, T ], (3)

where µ is the random measure of the jumps of Y , ν is the IP compensator of µ given by
ν(ds, dx) = F (dx)ds,

√
c is a measurable version of a square-root of the matrix c and W is a

IP standard Brownian motion. The cumulant generating function associated with the Lévy
process Y is denoted by ψ. For any row-vector z ∈ Cn such that <z ∈ [−(1 + ε)K1, (1 +
ε)K2]n, we have

ψ(z) = zb+
1

2
zcz> +

∫
Rn

(ezx − 1− zx)F (dx). (4)

Consequently, (1) can be written as:

IE[eiuYt ] = exp (tψ(iu)) . (5)

2.2 Multiple-Curve Dynamics

In this section we present the multiple-curve model for the OIS bond prices and the Libor
FRA rates. The dynamics of the OIS bond prices (Bt(T ))0≤t≤T≤T are modeled in a HJM
fashion as follows (see e.g. Eberlein and Raible (1999)):

Bt(T ) =
B0(T )

B0(t)
exp

(∫ t

0
(A(s, t)−A(s, T ))ds+

∫ t

0
(Σ(s, t)− Σ(s, T ))dYs

)
, (6)
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where A(s, T ) and Σ(s, T ) are deterministic, real-valued, respectively Rn valued, functions
defined on the set {(s, T ) ∈ [0, T ]×[0, T ] : 0 ≤ s ≤ T}, with paths continuously differentiable
in the second variable. We assume a bounded, positive initial term structure (B0(T ))0≤T≤T
and volatility structure Σ(s, T ) = (Σi(s, T ))i=1,...,n such that 0 ≤ Σi(s, T ) ≤ K

2 for every
0 ≤ s ≤ T ≤ T and i ∈ {1, 2, . . . , n}, where K := min{K1,K2} for the constants K1,K2 from
(2). Moreover, A(s, T ) = ψ(−Σ(s, T )), for every 0 ≤ s ≤ T , which is a classical Lévy HJM
drift condition guaranteeing absence of arbitrage between OIS bonds. The OIS discount

factor process β = (βt)0≤t≤T defined by βt = exp
(
−
∫ t

0 rsds
)

, where r represents the short

rate process, can be written as

βt = B0(t) exp

(
−
∫ t

0
A(s, t)ds−

∫ t

0
Σ(s, t)dYs

)
, (7)

so that

Bt(T ) = B0(T ) exp

(∫ t

0
(rs −A(s, T ))ds−

∫ t

0
Σ(s, T )dYs

)
. (8)

Now we define the Libor FRA rates and specify their dynamics. More precisely, we
introduce the following quantities:

Ft(T, S) = (S − T )IESt [LT (T, S)] , (9)

where 0 ≤ t ≤ T ≤ S. Here LT (T, S) denotes a T spot Libor rate fixed at time T for the time
interval [T, S] and IESt denotes the Ft conditional expectation with respect to the S forward
martingale measure IPS (see (10)), where F = (Ft)0∈[0,T ] is the reference filtration. These

quantities are exactly the (S−T )× Libor FRA rates, as defined in Mercurio (2010a). Defined
using IESt [LT (T, S)] in (9), FRA rates are by their very definition martingales under S
forward martingale measures, consistent with model-free arbitrage requirements. Modeling
(S−T )× FRA rates instead of the FRA rates themselves (“interest charge instead of interest
rate”) gives rise to slightly simpler formulas in our setup. By a slight abuse of terminology,
we will refer also to Ft(T, S) as the FRA rate. The definition of Ft(T, S) implies the two
following modeling requirements:

(i) Ft(T, S) ≥ 0, for every t

(ii) F·(T, S) is a IPS martingale, where the IPS forward martingale measure is characterized
in terms of IP by

dIPS

dIP

∣∣∣
Ft

=
βtBt(S)

B0(S)
, 0 ≤ t ≤ S. (10)

Both requirements are direct consequences of (9) if the Libor rate LT (T, S) is nonnegative,
which is implied by market observations. We model Ft(T, S), for all 0 ≤ t ≤ T ≤ S, as

Ft(T, S) = F0(T, S) exp

(∫ t

0
α(s, T, S)ds+

∫ t

0
ς(s, T, S)dYs

)
, (11)

where α(s, T, S) is a drift term and ς(s, T, S) a volatility structure. We assume that
α(s, T, S) and ς(s, T, S) are deterministic, real-valued, respectively Rn valued, functions
defined on the set {(s, T, S) ∈ [0, T ] × [0, T ] × [0, T ] : 0 ≤ s ≤ T ≤ S} and such that
the above integrals are well-defined. We assume a bounded, positive initial term struc-
ture (F0(T, S))0≤T≤S≤T and volatility structure ς(s, T, S) = (ς i(s, T, S))i=1,...,n such that
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0 ≤ ς i(s, T, S) ≤ K
2 , for every 0 ≤ s ≤ T ≤ S and i ∈ {1, . . . , n}. With this specification,

requirement (i) is satisfied automatically and (ii) holds if the following drift condition is
satisfied

α(s, T, S) = −ς(s, T, S)bSs −
1

2
ς(s, T, S) csς(s, T, S)> (12)

−
∫
Rd

(
eς(s,T,S)x − 1− ς(s, T, S)x

)
FSs (dx)

= −ψSs (ς(s, T, S)) = ψ(−Σ(s, S))− ψ(ς(s, T, S)− Σ(s, S)),

where (bSs , cs, F
S
s ) is the time-dependent Lévy triplet and ψSs the corresponding cumulant

generating function of Y under the forward measure IPS . This result is well-known for
Lévy driven term structure models (see for example Eberlein and Özkan (2005)). The last
equality results from the following connection between the cumulant generating functions
ψS and ψ of Y under the measures IPS and IP :

ψSs (z) = ψ(z − Σ(s, S))− ψ(−Σ(s, S)), (13)

for any z ∈ Rn such that the above expressions are well-defined, which in turn follows by
definition of the cumulant generating function and equations (8) and (10).

Remark 2.1 Note that the following generalization of (11) can also be considered, which
produces an equally tractable model:

Ft(T, S) + ∆(T, S) = (F0(T, S) + ∆(T, S)) exp

(∫ t

0
α(s, T, S)ds+

∫ t

0
ς(s, T, S)dYs

)
,

where ∆(T, S) ∈ R, for 0 ≤ T ≤ S, are constant shifts. This model is known as a shifted
model. The use of shifts allows one to recover a single-curve model as a special case of
the multiple-curve model by setting ∆(T, S) = 1, for all 0 ≤ T ≤ S, and ς(s, T, S) =

Σ(s, S)−Σ(s, T ) in the above specification. Then Ft(T, S) = Bt(T )
Bt(S)−1, which is the classical

relation from the single-curve model. Note, however, that in the shifted model the FRA
rates can become negative with positive probability. More generally, the shifts can also be
used to increase the flexibility of the model, which we found unnecessary in our case where
sufficient flexibility is already ensured by maturity-dependent volatility specification for the
FRA rate (cf. Sections 3.4 and 4). For different kinds of shifts used in the multiple-curve
term structure literature see Mercurio (2010a) or Moreni and Pallavicini (2014).

3 Pricing of Interest Rate Derivatives

In this section we give an overview of the most common interest rate derivatives and pro-
vide pricing formulas in the Lévy multiple-curve model. Note that these are “clean prices”,
ignoring counterparty risk and assuming that funding is ensured at the OIS rate. Counter-
party risk and funding valuation adjustments are computed separately, as will be explained
in Sect. 5.

3.1 Interest Rate Derivatives With Linear Payoffs

For interest rate derivatives with linear payoffs, the prices can be easily expressed in terms
of Ft(T, S), as we show below.
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A fixed-for-floating interest rate swap is a financial contract between two parties to
exchange a stream of fixed interest payments for a stream of floating payments linked to
the Libor rates, based on a specified notional amount N . We assume, as standard, that the
Libor rate is set in advance and the payments are made in arrears. The swap is initiated
at time T0 ≥ 0. Denote by T1 < · · · < Tn, where T1 > T0, a collection of the payment dates
and by K the fixed rate. Then the time-t value of the swap, where t ≤ T0, for the receiver
of the floating rate is given by:

P swt = N
n∑
k=1

δk−1Bt(Tk)IE
Tk
t [LTk−1

(Tk−1, Tk)−K]

= N
n∑
k=1

Bt(Tk) (Ft(Tk−1, Tk)− δk−1K) , (14)

where IETk is the expectation with respect to the forward measure IPTk and δk−1 = Tk−Tk−1.
The swap rate Ksw

t is given by

Ksw
t =

∑n
k=1Bt(Tk)Ft(Tk−1, Tk)∑n

k=1 δk−1Bt(Tk)
. (15)

Remark 3.1 The Libor-OIS swap spread mentioned in the introduction is by definition
the difference between the swap rate (15) of the Libor-indexed interest rate swap and the
OIS rate, where the latter is given by the classical formula:

Kois
t =

Bt(T0)−Bt(Tn)∑n
k=1 δk−1Bt(Tk)

. (16)

See Filipović and Trolle (2013) for details. Thus, the Libor-OIS swap spread is given, for
0 ≤ t ≤ T0, by

Ksw
t −Kois

t =

∑n
k=1Bt(Tk)Ft(Tk−1, Tk)−Bt(T0) +Bt(Tn)∑n

k=1 δk−1Bt(Tk)
. (17)

A basis swap is an interest rate swap where two streams of floating payments linked
to the Libor rates of different tenors are exchanged. Both rates are set in advance and paid
in arrears. We consider a basis swap with two tenor structures denoted by T 1 = {T 1

0 <
. . . < T 1

n1
} and T 2 = {T 2

0 < . . . < T 2
n2
}, where T 1

0 = T 2
0 ≥ 0, T 1

n1
= T 2

n2
, and T 1 ⊂ T 2.

The notional amount is denoted by N and the swap is initiated at time T 1
0 , where the first

payments are due at T 1
1 and T 2

1 . Basis swaps appeared in the markets due to the multi-curve
discrepancy. A basis swap would have zero value at all times in a single-curve setup (see
Section 4.4 in Crépey et al. (2012)). However, in a multiple-curve setup, the value of the
basis swap is not zero and markets actually quote positive basis swap spreads, which, when
added to the smaller tenor leg, give zero value to the product. More precisely, on the smaller
tenor leg the floating interest rate LT 2

j−1
(T 2
j−1, T

2
j ) at T 2

j is replaced by LT 2
j−1

(T 2
j−1, T

2
j )+K,

for every j = 1, . . . , n2, where K is the basis swap spread. The time-t value of the basis
swap with spread K, for t ≤ T 1

0 , is given by:

P bswt = N

(
n1∑
i=1

δ1
i−1Bt(T

1
i )IE

T 1
i
t [LT 1

i−1
(T 1
i−1, T

1
i )]

−
n2∑
j=1

δ2
j−1Bt(T

2
j )IE

T 2
j

t [LT 2
j−1

(T 2
j−1, T

2
j )+K]

 . (18)
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Thus,

P bswt = N

 n1∑
i=1

Bt(T
1
i )Ft(T

1
i−1, T

1
i )−

n2∑
j=1

Bt(T
2
j )
(
Ft(T

2
j−1, T

2
j ) + δ2

j−1K
) . (19)

The value of the basis swap after the initiation, i.e. the value at time t, for T 1
0 ≤ t < T 1

n1
,

is given by

P bswt = N

(
Bt(T

1
it)FT 1

it−1
(T 1
it−1, T

1
it) +

n1∑
i=it+1

Bt(T
1
i )Ft(T

1
i−1, T

1
i ) (20)

−Bt(T 2
jt)(FT 2

jt−1
(T 2
jt−1, T

2
jt)+δ

2
jt−1K) −

n2∑
j=jt+1

Bt(T
2
j )
(
Ft(T

2
j−1, T

2
j ) + δ2

j−1K
) ,

where T 1
it

, respectively T 2
jt

, denotes the smallest T 1
i , respectively T 2

j , which is strictly greater
than t.

The fair basis swap spread at time t, denoted by Kbsw
t , is the spread K such that the

value of the basis swap at time time is equal to zero, i.e. it is given by

Kbsw
t =

∑n1
i=1Bt(T

1
i )Ft(T

1
i−1, T

1
i )−

∑n2
j=1Bt(T

2
j )Ft(T

2
j−1, T

2
j )∑n2

j=1 δ
2
j−1Bt(T

2
j )

. (21)

3.2 Caplets

Let us now consider a caplet with strike K and maturity T on the spot Libor rate for the
period [T, T + δ], settled in arrears at time T + δ. Since

LT (T, T + δ) = IET+δ
T [LT (T, T + δ)] = δ−1FT (T, T + δ),

the time-t price of the caplet is given, for t ≤ T , by

P cplt = δ Bt(T + δ)IET+δ
t

[
(LT (T, T + δ)−K)+]

= Bt(T + δ)IET+δ
t

[
(FT (T, T + δ)− δK)+] .

In particular,

P cpl0 = B0(T + δ)IET+δ
[(
eX −K

)+ ]
,

where K := δK and

X := logFT (T, T +δ) = logF0(T, T +δ)+

∫ T

0
α(s, T, T +δ)ds+

∫ T

0
ς(s, T, T +δ)dYs. (22)

Denoting by ψ (resp. ψT+δ) the cumulant generating function of the process Y under the
measure IP (resp. IPT+δ), the moment generating function of the random variable X under
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the measure IPT+δ is given, for any z ∈ R such that the expectation below exists, by

MT+δ
X (z) = IET+δ

[
ezX

]
= exp

(
z

(
logF0(T, T + δ) +

∫ T

0
α(s, T, T + δ)ds

))
× exp

(∫ T

0
ψT+δ
s (zς(s, T, T + δ))ds

)
= exp

(
z

(
logF0(T, T + δ) +

∫ T

0
α(s, T, T + δ)ds

))
(23)

× exp

(
−
∫ T

0
ψ(−Σ(s, T + δ))ds

)
× exp

(∫ T

0
ψ (zς(s, T, T + δ)− Σ(s, T + δ)) ds

)
,

by Lemma 3.1 in Eberlein and Raible (1999) and (13). The payoff function of the caplet

g(x) = (ex −K)+,

has the (generalized) Fourier transform

ĝ(z) =

∫
R
eizxg(x)dx =

K
1+iz

iz(1 + iz)
,

for z ∈ C such that =z > 1.

Proposition 3.2 Assume a positive constant K̃ < K
2 is such that Σ(s, T ) ≤ K̃ and ς(s, T, S) ≤

K̃, componentwise and for all 0 ≤ s ≤ T ≤ S ≤ T . For any R ∈ (1, K−K̃
K̃

),

P cpl0 =
B0(T + δ)

2π

∫
R
ĝ(iR− v)MT+δ

X (R+ iv)dv

=
B0(T + δ)

2π

∫
R

K
1−iv−R

MT+δ
X (R+ iv)

(R+ iv)(R+ iv − 1)
dv. (24)

Proof. The result follows by Theorem 2.2 in Eberlein, Glau, and Papapantoleon (2010).
We only have to check that MT+δ

X (R + iv) is finite, which follows from |Rς i(s, T, T + δ) −
Σi(s, T + δ)| < K, for R ∈ (1, K−K̃

K̃
) and every i = 1, . . . , n. 2

3.3 Swaptions

In this section we consider a swaption, which is an option to enter an interest rate swap
with swap rate K and maturity Tn at a pre-specified date T = T0 ≥ 0. The underlying
swap is defined in Sect. 3 and we consider the notional amount N = 1. The swaption can
be seen as a sequence of fixed payments δj−1 (Ksw

T −K)+, j = 1, . . . , n, received at dates
T1, . . . , Tn, where Ksw

T denotes the swap rate of the underlying swap at time T . Thus, the
value at time t ≤ T of the swaption is given by

P swnt = Bt(T )
n∑
j=1

δj−1IETt
[
BT (Tj) (Ksw

T −K)+] .
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In particular,

P swn0 = B0(T )IET

 n∑
j=1

δj−1BT (Tj) (Ksw
T −K)+


= B0(T )IET

 n∑
j=1

BT (Tj)FT (Tj−1, Tj)−
n∑
j=1

δj−1BT (Tj)K

+ , (25)

by (15). To proceed with the computation of the above expectation, we shall impose certain
assumptions on the volatility structures Σ(t, T ) and ς(t, T, S). First, we assume that

∂

∂T
Σ(t, T ) = σ1(t)σ2(T ), (26)

where σ1 : [0, T ] → Rn and σ2 : [0, T ] → R. This separable volatility assumption implies
that

Σ(t, T )− Σ(t, S) = Σ1(t)Σ2(T, S), (27)

where Σ1 : [0, T ]→ Rn and Σ2 : [0, T ]× [0, T ]→ R. For the volatilities ς(t, T, S), we assume
similarly

ς(t, T, S) = ς1(t)ς2(T, S), (28)

where ς1 : [0, T ]→ Rn and ς2 : [0, T ]× [0, T ]→ R. Let

Z = (Z1, Z2) =

(∫ T

0
Σ1(t)dYt,

∫ T

0
ς1(t)dYt

)
.

Recalling (6), we obtain for each j

BT (Tj) =
B0(Tj)

B0(T )
exp

(∫ T

0
(A(s, T )−A(s, Tj))ds+

∫ T

0
(Σ(s, T )− Σ(s, Tj))dYs

)
(29)

= cj,0ec
jZ1

. (30)

Similarly, recalling (11), it follows for each j

FT (Tj−1, Tj) = F0(Tj−1, Tj) exp

(∫ T

0
α(s, Tj−1, Tj)ds+

∫ T

0
ς(s, Tj−1, Tj)dYs

)
(31)

= c̄j,0ec̄
jZ2

, (32)

where

cj,0 =
B0(Tj)

B0(T )
exp

(∫ T

0
(A(s, T )−A(s, Tj))ds

)
,

cj = Σ2(T, Tj),

c̄j,0 = F0(Tj−1, Tj) exp

(∫ T

0
α(s, Tj−1, Tj)ds

)
,

c̄j = ς2(Tj−1, Tj)
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are deterministic constants. Therefore, (25) reduces to

P swn0 = B0(T )IET

 n∑
j=1

cj,0ec
jZ1

c̄j,0ec̄
jZ2 −

n∑
j=1

cj,0δj−1Ke
cjZ1

+ , (33)

which can be computed using the Fourier transform method (cf. Theorem 3.2 in Eberlein,
Glau, and Papapantoleon (2010)). The value of the expectation depends only on the distri-
bution of the random vector Z under the measure IPT , with moment generating function,
for any z ∈ R2 such that the expectation below is finite, given by:

MT
Z (z) = IET

[
ez1Z

1+z2Z2
]

= IET
[
e
∫ T
0 z1Σ1(s)dYs+

∫ T
0 z2ς1(s)dYs

]
= exp

(∫ T

0
ψTs (z1Σ1(s) + z2ς

1(s))ds

)
(34)

= exp

(
−
∫ T

0
ψ (−Σ(s, T )) ds

)
exp

(∫ T

0
ψ
(
(z1Σ1(s) + z2ς

1(s))− Σ(s, T )
)
ds

)
,

by Lemma 3.1 in Eberlein and Raible (1999) and (13). Let

f(x) = f(x1, x2) :=

 n∑
j=1

cj,0c̄j,0ec
jx1+c̄jx2 −

n∑
j=1

cj,0δj−1Ke
cjx1

+

,

with (generalized) Fourier transform

f̂(z) =

∫
R2

eizxf(x)dx, (35)

for any row-vector z ∈ C2 such that the above integral is finite (see Remark 3.4 and Hubalek
and Kallsen (2005), Hurd and Zhou (2010) for more details on the computation of f̂). The
following result follows directly from Eberlein, Glau, and Papapantoleon (2010, Theorem
3.2) applied to (33).

Proposition 3.3 The time-0 price of the swaption is given by

P swn0 =
B0(T )

(2π)2

∫
R2

MT
Z (R+ iu)f̂(iR− u)du, (36)

for any row-vector R ∈ R2 such that MT
Z (R+ iu) exists and the function g(x) := e−Rxf(x)

satisfies the prerequisites of Theorem 3.2 in Eberlein, Glau, and Papapantoleon (2010).

Remark 3.4 As opposed to the caplet Fourier formula (24), which can be readily imple-
mented using one-dimensional FFT, the corresponding swaption Fourier formula (36) is
not so practical. First, computing f̂ in (35) involves integrating an oscillating function in
dimension two. Since f̂ itself is also highly oscillatory we end up with a significant compu-
tational burden in calculating the two-dimensional integral in (36). However, swaptions can
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instead be efficiently valued numerically based on (33), rewritten in the notation introduced
above as:

P swn0 = B0(T )

 n∑
j=1

cj,0c̄j,0IET
[
ec

jZ1+c̄jZ2
1{f̃(Z)≥0}

]

−
n∑
j=1

cj,0δj−1KIET
[
ec

jZ1
1{f̃(Z)≥0}

] .

(37)

Here the function f̃ is given by

f̃(x1, x2) =

n∑
j=1

cj,0c̄j,0ec
jx1+c̄jx2 −

n∑
j=1

cj,0δj−1Ke
cjx1 .

Using (34) the expectations in (37) can be calculated using the standard methodology of
Duffie, Pan, and Singleton (2000) after having replaced f̃ with a linear approximation in the
domain of integration {f̃ ≥ 0}. This method, known as the linear boundary approximation,
is described in Singleton and Umantsev (2002).

3.4 Lévy Hull-White Specification

In the sequel we focus on the case where Y = (Y 1, Y 2) is a two-dimensional Lévy process.
We choose Vasicek volatility structures for Bt(T ) and Ft(T, S), namely

Σ(s, T ) =
(
σ
a

(
1− e−a(T−s)) , 0) (38)

ς(s, T, S) =
(
σ
ae

as
(
e−aT − e−aS

)
, σ
∗(T,S)
a∗ ea

∗s
(
e−a

∗T − e−a∗S
))
, (39)

where σ, σ∗(T, S) > 0 and a, a∗ 6= 0 are real constants (see Remark 2.1). Note that the
first component of the volatility ς(s, T, S) is exactly of the form Σ1(s, S) − Σ1(s, T ), thus
offering an easy connection to the single-curve case discussed in Remark 2.1. Denote by
ft(T ) = −∂T log(Bt(T )) the instantaneous continuously compounded forward rate, so that
rt = ft(t). The OIS bond price can be written in exponential-affine form as

Bt(T ) = exp(m(t, T ) + n(t, T )rt), (40)

where

m(t, T ) = log

(
B0(T )

B0(t)

)
− n(t, T )

[
f0(t) + ψ1

(σ
a

(
e−at − 1

))]
−
∫ t

0

[
ψ1
(σ
a

(
e−a(T−s) − 1

))
− ψ1

(σ
a

(
e−a(t−s) − 1

))]
ds

and

n(t, T ) = −eat
∫ T

t
e−audu =

1

a

(
e−a(T−t) − 1

)
.

The short rate r is given by the following Lévy Hull–White extended Vasicek model (cf.
Eberlein and Raible (1999), equation (4.11), and Example 3.5 of Crépey et al. (2012)):

drt = a(ρ(t)− rt)dt+ σdY 1
t ,
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i.e.

rt = e−at
(
r0 + a

∫ t

0
easρ(s)ds+ σ

∫ t

0
easdY 1

s

)
with

ρ(t) = f0(t) +
1

a

∂

∂t
f0(t) + ψ1

(σ
a

(
e−at − 1

))
− (ψ1)′

(σ
a

(
e−at − 1

)) σ
a
e−at. (41)

Similarly, the FRA rate given in (11) can be written as

Ft(T, S) = F0(T, S) exp

(∫ t

0
α(s, T, S)ds+

σ

a

(
e−aT − e−aS

) ∫ t

0
easdY 1

s

+
σ∗(T, S)

a∗

(
e−a

∗T − e−a∗S
)∫ t

0
ea
∗sdY 2

s

)
= exp (m(t, T, S) + n(t, T, S)rt + n∗(t, T, S)qt) , (42)

where

m(t, T, S) = log(F0(T, S)) +

∫ t

0
α(s, T, S)ds− n(t, T, S)

(
f0(t) + ψ1

(σ
a

(
e−at − 1

)))
n(t, T, S) = n(t, T )− n(t, S)

n∗(t, T, S) =
σ∗(T, S)

a∗

(
e−a

∗(T−t) − e−a∗(S−t)
)

and

qt = e−a
∗t

∫ t

0
ea
∗sdY 2

s ,

i.e.
dqt = −a∗qtdt+ dY 2

t , q0 = 0.

Remark 3.5 The volatilities (38) and (39) satisfy separability conditions similar to (27)
and (28), namely

Σ(t, T )− Σ(t, S) =
σ

a
(e−aS − e−aT )

(
eat, 0

)
ς(t, T, S) =

σ

a
(e−aT − e−aS)

(
eat, 0

)
+
σ∗(T, S)

a∗
(e−a

∗T − e−a∗S)
(

0, ea
∗t
)
.

The condition on Σ(t, T ) is exactly of the form (27) and the condition on ς(t, T, S) is slightly
more general than (28), namely

ς(t, T, S) =
(
ς1,1(t)ς2,1(T, S), ς1,2(t)ς2,2(T, S)

)
,

where ς1,1, ς1,2 : [0, T ] → R and ς2,1, ς2,2 : [0, T ] × [0, T ] → R are deterministic functions.
Along the lines of the computations done in Sect. 3.3, the above assumptions enable us
to express all quantities needed to price a swaption in terms of the random vector Z̃ =

(Z̃1, Z̃2) =
(∫ T

0 easdY 1
t ,
∫ T

0 ea
∗sdY 2

t

)
. We obtain the following counterpart of (33):

P swn0 = B0(T )IET

 n∑
j=1

cj,0e(cj+c̄j,1)Z1
c̄j,0ec̄

j,2Z2 −
n∑
j=1

cj,0δj−1Ke
cjZ1

+ , (43)
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where

cj,0 =
B0(Tj)

B0(T )
exp

(∫ T

0
(A(s, T )−A(s, Tj))ds

)
,

cj =
σ

a

(
e−aTj − e−aT

)
,

c̄j,0 = F0(Tj−1, Tj) exp

(∫ T

0
α(s, Tj−1, Tj)ds

)
,

c̄j,1 =
σ

a

(
e−aTj−1 − e−aTj

)
,

c̄j,2 =
σ∗(Tj−1, Tj)

a∗

(
e−a

∗Tj−1 − e−a∗Tj
)

are deterministic constants. The relevant function f in an analog of Proposition 3.3 is given
by

f(x) = f(x1, x2) :=

 n∑
j=1

cj,0e(cj+c̄j,1)x1 c̄j,0ec̄
j,2x2 −

n∑
j=1

cj,0δj−1Ke
cjx1

+

and the moment generating function of Z̃ under the measure IPT , denoted by MT
Z̃

(z), is
given by

MT
Z̃

(z) = IET
[
ez1Z̃

1+z2Z̃2
]

= exp

(
−
∫ T

0
ψ
(σ
a

(e−a(T−s) − 1), 0
)
ds

)
(44)

× exp

(∫ T

0
ψ
(
z1e

as − σ

a
(1− e−a(T−s)), z2e

a∗s
)
ds

)
,

for any z ∈ R2 such that the expectation above is finite. For numerical purposes, the linear
boundary approximation method is preferred for the same reason as explained in Remark
3.4.

Remark 3.6 Under the present assumptions, we can reformulate the expression for the
time-0 value of the caplet in Proposition 3.2 in terms of the factor process (r, q) as

P cpl0 = B0(T + δ)IET+δ

[(
em(T,T,T+δ)+n(T,T,T+δ)rT +n∗(T,T,T+δ)qT −K

)+
]
,

where we have used (42). Similarly, the time-0 value of the swaption can be expressed as

P swn0 = B0(T )IET

 n∑
j=1

em(T,Tj)+n(T,Tj)rT em(T,Tj−1,Tj)+n(T,Tj−1,Tj)rT +n∗(T,Tj−1,Tj)qT

−
n∑
j=1

δj−1Ke
m(T,Tj)+n(T,Tj)rT

+
= B0(T )IET

 n∑
j=1

αj,0eα
j,1rT +αj,2qT −

n∑
j=1

βj,0eβ
j,1rT

+ ,
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where we have used (40) and (42). Here αj,0 = em(T,Tj)+m(T,Tj−1,Tj), αj,1 = n(T, Tj) +
n(T, Tj−1, Tj), α

j,2 = n∗(T, Tj−1, Tj), β
j,0 = em(T,Tj)δj−1K and βj,1 = n(T, Tj). One can

now proceed as in Proposition 3.3 and obtain a Fourier pricing formula alternative to (36).

3.5 Markovian Perspective

The above Lévy Hull-White model produces the following two-dimensional factor process
(rt, qt) driven by two (F,P) Lévy processes Y 1 and Y 2:

drt = a(ρ(t)− rt)dt+ σ1dY
1
t , r0 = const.

dqt = −a∗qtdt+ dY 2
t , q0 = 0.

In view of (40) and (42), the price Bt(T ) of the OIS bond (resp. the FRA rate Ft(T, S)) can
be written as an exponential-affine function of rt (resp. of rt, qt). To price linear payoffs, one
simply has to insert the above representations for Bt(T ) and Ft(T, S) into corresponding
equations for each product. Consequently, all these prices can be represented by explicit
formulas of the form

Pt = P (t,Xt), t ∈ [0, T ], (45)

where P is a deterministic function and Xt is a relevant Markovian factor process. For
instance, in the case of the basis swap on which TVA computations will be performed in
Sect. 5.2, equation (20) yields Xt = (rt, qt, r

1
t , q

1
t , r

2
t , q

2
t ), where

r1
t = rTit−1 , q

1
t = qTit−1 , r

2
t = rTjt−1 , q

2
t = qTjt−1 , (46)

which is a six-dimensional Markovian factor process. The path-dependence which is reflected
by the last four factors in Xt is due to the fact that both legs of the basis swap deliver
payments in arrears.

Remark 3.7 Going back to the general setup of Sect. 2.2 and under the separable volatility
assumptions (26) and (28) from Sect. 3.3, similar two-factor Markovian representations of
Pt can be obtained as well, in terms of the Markovian short rate process rt and of a second
Markovian factor given as Z2

t :=
∫ t

0 ς
1(s)dYs.

Remark 3.8 Deterministic OIS rates could also be considered without major inconsistency
in the model since, for lack of liquid OIS option data, the OIS volatility parameters cannot
be identified from the market anyway (see Sect. 4.3 regarding the way we fix them in the
numerical implementation). Deterministic OIS rates are obtained by letting σ be zero in
(38)-(39), which results in a one-factor Markov multiple-curve model qt driven by Y 2 (note
that Y 1 plays no role when σ is zero). The computations of the next sections were done
also for this one-factor specification and we found very little difference in the results, except
of course for the short rate process in the upper graph of Figure 5, which collapses to the
process mean function (black curve in this graph).

4 Model Calibration

Recalling that a TVA can be viewed as a long-term option on the underlying contracts, both
smile and term structure volatility effects matter for TVA computations. Furthermore, in
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view of the targeted application to TVA computations on multiple-curve products in Sect. 5,
it is important to achieve calibration to instruments of both 3m and 6m underlying tenors
(by far the most liquid tenors). Calibration to both tenors is limited by the instruments
traded in the market, but Bloomberg provides indicative or extrapolated quotes for the
full swaption cube for both 3m and 6m tenors constructed in an arbitrage-free manner
described in Levin and Zhang (2014) (see also Kienitz (2013)). We therefore fit the model
to actual and indicative quotes. Specifically, we calibrate the two-dimensional Lévy model
from Sect. 3.4 to EUR market Bloomberg data of January 4, 2011: Eonia, 3m Euribor and
6m Euribor initial term structures on the one hand, 3m and 6m tenor swaptions on the
other hand. In the first step, we calibrate the non-maturity/tenor dependent parameters to
the swaption smile for the 9y× 1y swaption with a 3m tenor underlying. This also gives us
the values of σ∗(9, 9.25), σ∗(9.25, 9.5), σ∗(9.5, 9.75) and σ∗(9.75, 10). In the second step, we
use at-the-money swaptions on 3m and 6m tenor swaps all terminating at exactly 10 years,
but with maturities from 1 to 9 years. This co-terminal procedure is chosen with a view
towards the TVA application in Sect. 5, where a basis swap with a 10 year terminal date,
and then a swaption on it, are considered.

Note that market quotes typically reflect prices of fully collateralized transactions,
which can be considered as clean prices (see Sect. 3.3 in Crépey et al. (2013)). The clean
price of the previous section is thus the relevant notion of valuation at the stage of model
calibration.

4.1 Choice of the Driving Process

We consider a two-dimensional Lévy process Y = (Y 1, Y 2) with independent components

Y i
t = Lit +

N i
t∑

j=1

J ij , i = 1, 2, (47)

where:

• Li is a finite moment log stable process (FMLS), i.e. a Lévy αi-stable process with
tail index αi ∈ (0, 2], location parameter zero and the maximum negative skewness
parameter βi = −1,

• the sum is a Merton-like jump component, i.e. N i is a Poisson process with intensity
λi and the J ij , j ∈ N, are independent copies of the random variable J i ∼ N(µ̄i, σ̄

2
i ).

FMLS processes have been introduced for option pricing in Carr and Wu (2003). Briefly,
they are a limiting case in the class of α-stable Lévy processes with the maximum negative
skewness, which ensures finite positive exponential moments of all orders, i.e.

IE[exp(uLit)] <∞, for all u > 0, (48)

a property that more commonly used Lévy drivers such as CGMY, NIG or VG do not
possess. The process Y i satisfies condition (2) with K1 = K2 = ∞ if αi = 2 and K1 = 0
and K2 =∞ if αi < 2. The cumulant generating function of Y i is

ψi(zi) = −zαi
i sec(παi/2) + λi(exp(µ̄izi +

1

2
σ̄2
i z

2
i )− 1), (49)
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for zi ∈ R such that K1 ≤ zi ≤ K2 (regarding the cumulant generating function of the
FMLS component, see Carr and Wu (2003, equation (7))). In the sequel we use α1 = 2 and
α2 ∈ (0, 2) combined with the Vasicek volatility structures of Sect. 3.4. In other words, we
set L1 ∼

√
2W , where W is a standard Bownian motion, and L2 an FMLS process with

index α2 < 2. Thanks to (48), we do not have to set a priori any upper limit on the value of
the volatility ς(s, T, S), which we have found to be an advantage in the calibration procedure
when moving across the term structure, i.e. across different values of T, S. More precisely,
the cumulant generating function ψ1(z1) of Y 1 exists for any z1 ∈ R and the cumulant
generating function ψ2(z2) of Y 2 exists for any z2 ≥ 0. Thus, inspection of formula (13)
reveals that, due to the independence of Y 1 and Y 2, the cumulant generating function ψTs (z)
of the process Y under the forward measure IPT exists and is given by

ψTs (z1, z2) = ψ1(z1 − Σ1(s, T )) + ψ2(z2)− ψ1(−Σ1(s, T )),

for any z = (z1, z2) ∈ R2
+. Hence, no upper limits are needed neither for the values

of ς(s, T, S), nor of Σ(s, T ). The Brownian choice for the OIS-driving component above is
made for pragmatic reasons, only in order to simplify and speed up the numerical procedures
used in the calibration, and at no cost given the lack of liquid market data for nonlinear
derivatives written on the OIS rate.

4.2 Initial Term Structures

The initial term structures of the Eonia, 3m Euribor and 6m Euribor markets (and therefore
also the initial values of 3m-6m basis swaps in view of (19)) are fitted automatically in the
HJM setup. More precisely, Bloomberg provides zero coupon discount bond prices Bi

0(T )
and yields Ri0(T ) = − ln(Bi

0(T ))/T for any tenor i = d, 3m and 6m (where“d” stands
for “one day” in reference to the OIS market) and for any maturity T , constructed in a
manner described in Akkara (2012). For i = 3m, resp. 6m, in principle we only need a
term structure of the F0(T, T + δi), where δi = 1

4 , resp. 1
2 , which can be extracted from the

following formula based on Bloomberg synthetic 3m and 6m discount bond prices Bi
0(T ik):

F0(T ik−1, T
i
k) =

Bi
0(T ik−1)

Bi
0(T ik)

− 1. (50)

A common problem with a direct computation based on (50) is that a smooth Ri(T ) curve
does not necessarily result in a smooth FRA curve (see for example Hagan and West (2006)).
A procedure yielding regular FRA curves is preferred since it typically gives rise to a more
stable calibration. To bypass this problem, before applying (50), we fit the data using the
least squares method to the following Nelson-Siegel-Svensson parametrization, for i = d,
3m and 6m:

Ri0(T ) = βi0 + βi1

(
1− e−Tλi1
Tλi1

)
+ βi2

(
1− e−Tλi1
Tλi1

− e−Tλi1
)

+ βi3

(
1− e−Tλi2
Tλi2

− e−Tλi2
)
. (51)

The results are plotted in Figure 1, which corresponds to the following parameters:

βi0 βi1 βi2 βi3 λi1 λi2
Eonia 1.042× 10−5 0.00319198 0.095675 0.02100 0.07264 0.08429

3m Euribor 7.8542× 10−4 0.004575 0.2384 0.096819 0.0012073 0.10283
6m Euribor 0.007656 6.4046× 10−5 0.04434 0.092094 0.006675 0.10531
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Figure 1: Initial term structures. Left: Zero coupon rates. Right: Discrete forward rates.

4.3 Calibration to OTM Swaptions

Next, we fix the following parameters in (38), (39) and (49):

σ = 0.008/
√

2, a = 0.05, a∗ = 0, α1 = 2, λ1 = 0, µ̄1 = 0, σ̄1 = 0. (52)

As discussed in Sect. 4.1, the OIS curve is driven by a Brownian motion (α1 = 2). The
diffusion coefficient of this process is fixed at σ

√
2 = 0.008. Preliminary experiments re-

vealed that a∗ does not have such effect in the end, apart from some (moderate) impact on
the term structure of the swaption skew. Since we only calibrate the swaption skew at a
single maturity, we set a∗ equal to zero for simplicity. Indeed, this assumption along with a
Brownian driven OIS curve imply the following formula for the moment generating function
in (44):

MT
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2a3
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a − e−2aT (σ+az1eaT )
2

2a

a2


× exp

(
Tψ2(z2)

)
, (53)

with ψ2 as in (49). Thanks to this formula, a swaption smile with 9 strikes can be calcu-
lated in a small fraction of a second and the full calibration procedure can be performed
in a few minutes in Matlab. Note that the parameters in (52) were chosen to yield an
implied volatility of 12% for the at-the-money-caplet written on the OIS discrete forward
rate ( 1

B2.5(3)−1)/0.5. This implied volatility corresponds roughly to the implied volatility of
the 3-year Euribor caplet, pre-crisis, when the OIS discrete forward rate levels were within
a few basis points of the Euribor rate.

Regarding the remaining parameters, in the EUR swaption markets actual quotes are
available for swap lengths of 2 years or more with 6m tenor underlyings, and 1 year or
less with 3m tenor underlyings. We therefore calibrate the model to the 9y×1y swaption
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Figure 2: Market versus calibrated swaption implied volatilities.
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smile with a 3m tenor underlying, using the linear boundary approximation method de-
scribed in Remark 3.4 for pricing the swaption. This swaption has 4 payments and we
simplify our calibration by setting the four parameters relating to those payments equal,
i.e. σ∗(9, 9.25) = · · · = σ∗(9.75, 10). The following parameters are then obtained by least
squares minimization to swaption market implied volatilities from January 4th 2011:

α2 = 1.1117, λ2 = 0.0544, µ̄2 = 12.3518, σ̄2 = 1.1078 σ∗(9, 9.25) = 0.1259.

A value of α2 slightly above 1 corresponds to an infinite activity and variation, real valued
process L2. In order to illustrate the model capabilities we also calibrate to 3 other dates. As
can be seen in Figure 2, the model fits very well to the observed market quotes throughout
the entire crisis period.

4.4 Calibration to Coterminal ATM Swaptions

We proceed using the parameters found in the previous subsection and calibrate the re-
maining volatility parameters σ∗(T, S) from a subset of 3m and 6m tenor at-the-money
swaptions, priced by the linear boundary approximation method of Remark 3.4.

We first consider ∆× (10−∆) at-the-money swaptions with ∆ = 1y, 2y,. . . , 9y. These
are available written on both 3m and 6m Euribor, but as stated in the previous section
not all the quotes can be considered actual market quotes1. We find the corresponding

1In this case only 9y×1y is quoted for a 3m tenor, while the remaining maturities and swap lengths are
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σ∗(T, S) parameters sequentially, starting with the 9y×1y swaption written on 6m rates
which contains two floating payments L9(9, 9.5) and L9.5(9.5, 10). We assume σ∗(9, 9.5) =
σ∗(9.5, 10) and this common value is then found by calibrating to the at-the-money volatility
of the 9y×1y swaption. Next, we move backward and calibrate to the 8y×2y swaption. We
use the value of σ∗(9, 9.5) already determined and calibrate σ∗(8, 8.5) and σ∗(8.5, 9) by again
assuming them equal. We continue in this manner down to the 1y×9y swaption, obtaining
the values of σ∗(T, T+0.5) = σ∗(T+0.5, T+1) for T =1y, 2y,. . . ,9y. The short end volatility
is extrapolated as σ∗(0.5, 1) = σ∗(1, 1.5). For swaptions written on 3m rates, we have four
payments per year, hence four parameters to determine for each swaption. We reduce this to
one parameter by assuming σ∗(T, T+0.25) = σ∗(T+0.25, T+0.5) = σ∗(T+0.5, T+0.75) =
σ∗(T + 0.75, T + 1) for each T =1y, 2y, . . ., 8y. The parameters are then determined
sequentially, analogously to the 6m case. Note that the procedure is started at the 8y× 2y
swaption since we have already determined the parameters related to the 9y× 1y swaption
smile in Sect. 4.3. The short end volatilities are again extrapolated as σ∗(0.25, 0.5) =
σ∗(0.5, 0.75) = σ∗(0.75, 1) = σ∗(1, 1.25). The calibrated values of σ∗(T, S) are plotted in
the left panel of Figure 3 and the resulting market and model implied volatilities of the ∆×
(10−∆) swaptions can be seen in the right panel. Note here that Bloomberg constructs the
indicative market quotes of 3m tenor volatility to be slightly higher than the corresponding
6m tenor volatility. Figure 4 further shows that the linear boundary approximation method
we use for swaption valuation is sufficiently accurate, comparing with implied volatilities
obtained by an extensive Monte Carlo simulation using m = 108 realizations. The level
of the errors, although slightly larger for longer swap lengths (consistent with findings in
Schrager and Pelsser (2006)), is economically insignificant. Other numerical experiments
(not shown) verify that the approximation works equally well for other model parameters
and swaption strikes, maturities and swap lengths. The computation time for estimating

Figure 3: Left: Calibrated values of σ∗(T, S). Right: Implied volatility of the ∆× (10−∆)
co-terminal at-the-money swaptions
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each expectation in formula (37) after applying the linear boundary approximation (see
Remark 3.4) is roughly the one needed for valuing a caplet, which could be time-consuming.

quoted for 6m tenor only.
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Figure 4: Errors due to the approximation in (37) calculated with calibrated parameters.
The error is calculated as 104× (MC impld vol - linear boundary approx impld vol). Left:
Implied volatility error in basis points of the 9y×1y swaption. Right: Implied volatility
error in basis points of the 1y×9y swaption.
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However, since we basically calibrate one σ∗(T, S) parameter per swaption, our swaption
calibration is quite fast.

5 Counterparty Risk and Funding Adjustments

In this section we follow the reduced-form methodology of Crépey (2012) (see also Pallavicini
et al. (2012)), already used for the case of a single-curve interest rate model in Crépey
et al. (2013), through which counterparty risk and funding adjustments are obtained as the
solution to a related backward stochastic differential equation (BSDE). As illustration we
study the case of a basis swap and a related swaption.

5.1 TVA Equations

Different interdependent valuation adjustments can be computed on top of the clean price
P in order to account for counterparty risk and funding constraints: credit/debt valua-
tion adjustment CVA/DVA and liquidity funding valuation adjustment LVA, as well as
replacement cost RC, with TVA for total valuation adjustment in aggregate, i.e.

TVA = CVA + DVA + LVA + RC. (54)

Each of these dependent terms has received a lot of attention in the recent literature. We
refer to Sect. 1-3 of Crépey et al. (2013) and the references therein for details. Here we
only recall that the TVA can be viewed as the price of an option on the “clean” value of
the contract P at the first-to-default time τ of a party. This option also pays dividends,
which correspond to the funding benefit (in excess over the OIS rate rt). Specifically, the
TVA equation reads as the following backward stochastic differential equation (BSDE):

Θt = Et

(∫ T

t
gs(Θs)ds

)
, t ∈ [0, T ], (55)
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where Θt, Pt and gt represent the TVA process, the clean price process and the counterparty
risk and funding coefficient, respectively. The overall (selling) price of the contract for the
bank (cost of the corresponding hedge, including the counterparty risk and funding features)
is

Π = P −Θ. (56)

The coefficient gt in (55) is given, for every real ϑ (representing the TVA Θt that one is
looking for in the probabilistic interpretation), by:

gt(ϑ) + rtϑ =−γct (1− ρct)(Qt − Γt)
−︸ ︷︷ ︸

CVA coeff.

+ γbt (1− ρbt)(Qt − Γt)
+︸ ︷︷ ︸

DVA coeff.

+ btΓ
+
t − b̄tΓ

−
t + λt(Pt − ϑ− Γt)

+ − λ̃t(Pt − ϑ− Γt)
−︸ ︷︷ ︸

LVA coeff.

+ γt (Pt − ϑ−Qt)︸ ︷︷ ︸
RC coeff.

,

(57)

where:

• γbt , γct and γt are the default intensities of the bank, of its counterparty and their
first-to-default intensity (in models where the bank and the counterparty can default
together, γt can be less than γbt + γct ),

• ρbt and ρct are the recovery rates of the bank and the counterparty to each other,

• Qt is the value of the contract according to the scheme used by the liquidator in case
t = τ < T , e.g. Qt = Pt (used henceforth unless otherwise stated) or Qt = Pt −Θt,

• Γt = Γ+
t − Γ−t , where Γ+

t (resp. Γ−t ) is the value of the collateral posted by the
bank to the counterparty (resp. by the counterparty to the bank), e.g. Γt = 0 (used
henceforth unless otherwise stated) or Γt = Qt,

• bt and b̄t are the spreads over the short rate rt for the remuneration of the collateral
Γ+
t and Γ−t posted by the bank and the counterparty to each other,

• λt (resp. λ̃t) is the liquidity funding spread over the short rate rt corresponding to
the remuneration of the external funding loan (resp. debt) of the bank. By liquidity
funding spreads we mean that these are free from credit risk, i.e.

λ̃t = λ̄t − γbt (1− rb), (58)

where λ̄t is the funding borrowing spread (all inclusive) of the bank and rb stands for
a recovery rate of the bank to its unsecured funder. In the case of λt there is no credit
risk involved anyway since the funder of the bank is assumed risk-free.

The data Qt,Γt, bt and b̄t are specified in a contract, called a credit support annex (CSA),
meant to mitigate counterparty risk.

Remark 5.1 The above presentation reflects a pre-default reduced-form modeling ap-
proach, under the immersion hypothesis between the reference filtration F and a full model
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filtration G given as F progressively enlarged by the default times of the parties. From the
financial point of view, the immersion hypothesis is a “moderate dependence” assumption
between the counterparty risk and the underlying exposure, which can be accepted in the
case of counterparty risk on interest rate derivatives. See Crépey and Song (2014) for fur-
ther developments in this regard. Note that we write F̃ and F there instead of, respectively,
F and G here. Since, in the present paper, we only work with pre-default values, we likewise
denote here by Et, Θt and gt what is denoted by Ẽt, Θ̃t and g̃t there.

In the numerical implementation which follows we set the above parameters equal to
the following constants:

γb = 5%, γc = 7%, γ = 10%

ρb = ρc = 40%

b = b̄ = λ = λ̃ = 1.5%.

(59)

In view of the Markovian perspective of Sect. 3.5, we have gt(ϑ) = ĝ(t,Xt, ϑ), for a suitable
deterministic function ĝ. Thus, (55) is rewritten as the following TVA Markovian BSDE:

Θ(t,Xt) =Et

(∫ T

t
ĝ(s,Xs,Θ(s,Xs))ds

)
, t ∈ [0, T ]. (60)

Due to the specific choice of numerical parameters λ = λ̃ above, the coefficients of the
(Pt − ϑ− Γt)

± terms coincide in (57), so that this is the case of a “linear TVA” where the
coefficient g depends linearly on ϑ. This will allow us to validate the results of the numerical
BSDE scheme (61) for (60) by a standard Monte Carlo procedure.

5.2 Basis Swap

We illustrate numerically the above methodology on a basis swap with notional N = 100
and maturity T = 10y, in the calibrated model of Sect. 4. The formula (21) yields the time-
0 basis swap spread Kbsw

0 = 15bps, which is added to the 3m leg so that the basis swap
is incepted at par. The first step (“forwardation”) is to simulate, forward in time by an
Euler scheme, a stochastic grid with n (fixed to 100 below) uniform time steps and m (set
equal to 104 or 105) scenarios for the processes rt and qt and for the corresponding values
Pt of the basis swap, based on Pt = P (t,Xt), with Xt = (rt, qt, r

1
t , q

1
t , r

2
t , q

2
t ) (cf. (46)).

We use the standard algorithm in Glasserman (2003) to simulate the compound Poisson
component of Y 2 and the method of Janicki and Weron (1993) for simulation of the FMLS
component. The simulation of the rates Ft(T, S) can be done without any discretization
error since a∗ = 0. The results are plotted in Figure 5. Note that qt, showed here for
completeness, is a fudge factor without immediate financial meaning, so that the “large”
values of qt compared with rt are not a real issue. The second step is to compute the TVA
process, backward in time, by nonlinear regression on the time-space grid generated in the
first step. We thus approximate Θt(ω) in (60) by Θ̂j

i on the corresponding time-space grid,
where the time-index i runs from 1 to n and the space-index j runs from 1 to m. Denoting
by Θ̂i = (Θ̂j

i )1≤j≤m the vector of TVA values on the space grid at time i, we have Θ̂n = 0
and then, for every i = n− 1, · · · , 0 and j = 1, · · · ,m

Θ̂j
i = Êji

(
Θ̂i+1 + ĝi+1

(
X̂i+1, Θ̂i+1

)
h
)
, (61)
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Figure 5: Clean valuation of the basis swap. Top panels: Processes rt and qt. Bottom panel:
Clean price process Pt = P (t,Xt) of the basis swap where Xt = (rt, qt, r

1
t , q

1
t , r

2
t , q

2
t ). Each

panel shows twenty paths simulated with n = 100 time points, along with the process mean
and 2.5 / 97.5 percentiles computed as a function of time over m = 104 simulated paths.
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for the time-step h = T
n = 0.1y. Here Êji is the conditional expectation given X̂i = X̂j

i ,

where X̂j
i is the jth simulated value of X at the time step i. We use a d nearest neighbor

average non-parametric regression estimate (see e.g. Hastie, Tibshirani, and Friedman
(2009)) with d = 1, which was found the most efficient. This means that a conditional
expectation of the form E(Y |X = x) is estimated by an empirical average of the three
realizations of Y associated with the three realizations of X closest to x in the Euclidean
norm. In view of (45) and (46), this regression should in principle be performed against
the “full” factor process Xt = (rt, qt, r

1
t , q

1
t , r

2
t , q

2
t ), where the last four components reflect

the path-dependence of payments in arrears. However, as already noted in the single-curve
setup of Crépey et al. (2013), these extra factors have a limited impact in practice. To
illustrate this, Figure 6 shows the TVA processes obtained by regression for m = 104 (top)
and 105 (bottom) against rt and qt only (left) and against the whole vector Xt (right). Note
that one should really target m = 104 because in the industry practice one typically cannot
afford much more on such applications, where not a single product, but the whole OTC
derivative book of the bank, has to be dealt with. Table 1 displays the time-0 value of the
TVA and its CVA, DVA, LVA and RC components, where the components are obtained by
substituting for ϑ, in the respective term of (57), the TVA process Θt computed in the first
place (see Subsect. 5.2 in Crépey et al. (2013) for the details of this procedure). The sum
of the CVA, DVA, LVA and RC, which in theory equals the TVA, is shown in column 8.
Therefore, columns 3, 8 and 9 yield three different estimates for Θ0. Table 2 displays the
relative differences between these estimates, as well as the Monte Carlo confidence interval
in a comparable scale in the last column. As will also be the case with the basis swaption
below (see Table 5), the TVA repriced by the sum of its components seems to be more
accurate than the regressed TVA, an observation consistent with the better performance
of Longstaff and Schwartz as compared with Tsitsiklis and Van Roy in American Monte
Carlo methods (see e.g. Chapter 10 in Crépey (2013)). The expected exposure profiles (see
Crépey et al. (2013) for the details about such representations) corresponding to the TVA
decompositions of columns 4 to 7 in Table 1 are shown in Figure 7 for the regression against
(r, q) with m = 104 paths. We only show the results in this case since the profiles in all the
other three cases of Table 1 were found to be visually indistinguishable from the former.

m Regr Regr TVA CVA DVA LVA RC Sum MC TVA

104 r,q -0.1224 -0.1777 0.0191 -0.0422 0.0780 -0.1227
-0.1217

PD -0.1246 -0.1777 0.0191 -0.0420 0.0790 -0.1216

105 r,q -0.1256 -0.1817 0.0205 -0.0427 0.0792 -0.1246
-0.1239

PD -0.1252 -0.1817 0.0205 -0.0427 0.0793 -0.1246

Table 1: Time-0 TVA and its decomposition (all in e) computed by regression for m = 104

or 105 against rt and qt only (rows “r,q”) or against the whole vector Xt accounting for
path-dependence due to the payments in arrears (rows “PD”). Column 3: Time-0 regressed
TVA. Columns 4 to 7: TVA decomposition into time-0 CVA, DVA, LVA and RC repriced
individually by plugging Θt for ϑ in the respective term of (57). Column 8: Sum of the
four components. Column 9: Monte Carlo TVA.

Next, to compare alternative CSA specifications, we repeat the above numerical im-
plementation in each of the following five cases, with λ̄ set equal to 4.5% everywhere (and
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Figure 6: TVA process Θt of the basis swap. All graphs show twenty paths of the TVA
process at n = 100 time points, along with the process mean and 2.5 / 97.5 percentiles as a
function of time. Top graphs: m = 104 simulated paths. Bottom graphs: m = 105 simulated
paths. Left graphs: “Reduced” regression against (rt, qt). Right graphs: “Full” regression
against Xt = (rt, qt, r

1
t , q

1
t , r

2
t , q

2
t ).

m Regr Sum/TVA TVA/MC Sum/MC CI//|MC|

104 r,q 0.25% 0.58% 0.82%
2.88%

PD -2.41% 2.38% -0.08%

105 r,q -0.80% 1.37% 0.56%
1.25%

PD -0.48% 1.05% 0.56%

Table 2: Time-0 TVA relative errors corresponding to the results of Table 1. “A/B” rep-

resents the relative difference (A−B)
B . “CI//|MC|” in the last column refers to the half-size

of the 95%-Monte Carlo confidence interval divided by the absolute value of the standard
Monte Carlo estimate of the time-0 TVA.



26

Figure 7: Expected exposures of the TVA components of the basis swap. Top panels: CVA
(left) and DVA (right) exposures. Bottom panels: LVA (left) and RC (right) exposures.

the other parameters as in (59)):

1. (rb, ρb, ρc) = (100, 40, 40)%, Q = P, Γ = 0
2 (rb, ρb, ρc) = (100, 40, 40)%, Q = P, Γ = Q = P
3. (rb, ρb, ρc) = (40, 40, 40)%, Q = P, Γ = 0
4. (rb, ρb, ρc) = (100, 100, 40)%, Q = P, Γ = 0
5. (rb, ρb, ρc) = (100, 100, 40)%, Q = Π, Γ = 0

(62)

(same cases as in Crépey, Gerboud, Grbac, and Ngor (2013), for comparison purposes).
Note that in case 3, we have by (58):

λ̃ = 4.5%− 0.6× 0.5× 10% = 1.5% = λ,

so this is the linear TVA case considered above. Table 3 shows an analog of the first row of
Table 1 (time-0 TVA and its decomposition for m = 104 and regression against (r, q) in each
of the five cases). Moving from case 1 to 2, there are no CVA and DVA anymore and the
dominant effect is the cancelation of the previously highly negative, costly CVA, resulting
in a higher TVA, hence a lower (selling) price for the bank. Moving from 1 to 3, a funding
benefit at own default is acknowledged by the bank, resulting in a higher TVA, hence a
lower selling price for the bank. Moving from 1 to 4, the beneficial DVA at own default
is ignored by the bank, being considered as fake benefit, which results in a lower TVA,
but negligibly so, since the DVA was very small anyway. The related LVA numbers are
very close because the parameter ρb, which changes between these two cases, has no direct
impact on the LVA and the indirect impact through the change of the TVA in the second
row of (57) is limited (as the parameters λ and λ̃ are not so large). Finally, 5 represents a
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(slightly artificial) case of a bank in a “dominant” position, able to enforce the value of the
contract Π from its own perspective (see (56)) for the CSA close-out valuation process Q.
Hence, a zero RC for the bank follows in this case.

Case Regr TVA CVA DVA LVA RC Sum Sum/TVA

1 -0.1823 -0.1777 0.0191 -0.1427 0.1183 -0.1829 0.33%

2 -0.0311 0 0 -0.0510 0.0200 -0.0311 0.00%

3 -0.1224 -0.1777 0.0191 -0.0422 0.0780 -0.1227 0.24%

4 -0.1939 -0.1777 0 -0.1412 0.1241 -0.1948 0.46%

5 -0.2743 -0.1427 0 -0.1324 0 -0.2751 0.29%

Table 3: Time-0 TVA and its decomposition (all in e) computed by regression for m =
104 against rt and qt. Column 2: Time-0 regressed TVA Θ0. Columns 3 to 6: TVA
decomposition into time-0 CVA, DVA, LVA and RC repriced individually by plugging Θt

for ϑ in the respective term of (57). Column 7: Sum of the four components. Column 8:
Relative difference between columns 7 and 2.

5.3 Basis Swaption

Figures 8–10 and Tables 4–6 are the analogs of Figures 5-7 and Tables 1-3 for a swaption
with maturity 5 years on the above basis swap, with the remaining lifetime of 5 years at that
time point (swaption with payoff (P bsw5y )+, where P bsw5y is given by (20) with K = Kbsw

0 and
t = 5y). Note that no explicit formulas for Pt were used in these computations. Instead,
Pt is computed by simulation/regression on the same stochastic grid as the TVA, backward
starting from t = 5y = tν , where ν = n

2 , based on the following dynamic programming

recursion (compare with (61)): P̂ν = (P bsw5y )+ at grid points at time tν , and then for every
i = ν − 1, · · · , 0 and j = 1, · · · ,m,

P̂ ji = Êji
(

(1− r̂i+1h)P̂i+1

)
, (63)

where r̂i+1 is the simulated value of r at the time step (i+ 1). The time-0 price of the basis
swaption is P0 = 1.02 e (by Monte Carlo with m = 105 paths) and the time-0 TVA is
quite large (depending on the CSA specification) compared with this. As visible in Table 5,
the nonlinear regression TVA estimates (time-0 TVA computed by regression or repriced
as the sum of its four components) are mainly outside the corresponding Monte Carlo
confidence intervals, especially for m = 105, but this is not surprising since these estimates
entail space-regression biases when compared with a standard Monte Carlo estimate (but
of course the latter is no longer available in nonlinear cases). Observe from Table 6 that
since the basis swaption is always in-the-money for the bank, there is no DVA in this case,
thus CSA specifications 1 and 4 are equivalent here.
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Figure 8: Clean price process Pt = P (t,Xt) of the basis swaption computed by regression
on the simulated factors grid.

Figure 9: TVA process Θt of the basis swaption.
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m Regr Regr TVA CVA DVA LVA RC Sum MC TVA

104 r,q -0.2235 -0.2133 0 -0.0672 0.0596 -0.2209 -0.2194
PD -0.2255 -0.2144 0 -0.0676 0.0600 -0.2220 -0.2207

105 r,q -0.2228 -0.2124 0 -0.0669 0.0593 -0.2200 -0.2185
PD -0.2230 -0.2125 0 -0.0670 0.0594 -0.2201 -0.2187

Table 4: Basis swaption: Time-0 TVA and its decomposition.

m Regr Sum/TVA TVA/MC Sum/MC CI//|MC|

104 r,q -1.16% 1.87% 0.68% 0.43%
PD -1.55% 2.17% 0.59% 0.43%

105 r,q -1.26% 1.97% 0.69% 0.14%
PD -1.30% 1.97% 0.64% 0.16%

Table 5: Basis swaption: Time-0 TVA relative errors.

Figure 10: Expected exposures of the TVA components of the basis swaption.

Case Regr TVA CVA DVA LVA RC Sum Sum/TVA

1 -0.3192 -0.2133 0 -0.1893 0.0871 -0.3156 -1.13%

2 -0.0588 0 0 -0.0738 0.0157 -0.0581 -1.19%

3 -0.2235 -0.2133 0 -0.0672 0.0596 -0.2209 -1.16%

4 -0.3192 -0.2133 0 -0.1893 0.0871 -0.3156 -1.13%

5 -0.3635 -0.1735 0 -0.1859 0 -0.3593 -1.16%

Table 6: Basis swaption: Time-0 TVA and its decomposition under the 5 CSA specifications
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