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Abstract

This article explores whether the relationship between the breath of technological

integration (recombination distance) and the breath of an invention’s subsequent

application (basicness) is moderated by the sector of activity, science-linkage

strength and industry characteristics. Our analysis of Canadian nanotechnology

patents granted between 1990 and 1997 shows that although private organiza-

tions generally yield smaller rates of basic inventions than public organizations,

increases to recombination distance by the former increases invention basicness

at a higher rate; increasing reliance upon basic science moderates the relationship

between recombination distance and basicness; and increases to recombination

distance in emerging science-based industries increases invention basicness at a

higher rate. These findings have implications regarding the debate around the

efficiency of the academic enterprise model.

∗Corresponding author at: Department of Mathematics and Industrial Engineering, Ecole Poly-
technique of Montreal, P.O. Box. 6079, Downtown office, Montreal, Qc, H3C 3A7, Canada. Tel.:
+1 514 340 4711x3357; fax: +1 514 340 4173. E-mail addresses: catherine.beaudry@polymtl.ca

August 2, 2014



Keywords: Academic enterprise, Markets for technology, Search heuristics,

Capabilities, Knowledge diffusion

1. Introduction

Basic inventions have broad technological applications and are the founda-

tions of many subsequent focused inventions whose applications are confined to

narrow fields (Trajtenberg et al., 1997). Studies about shifts in the rate of creation

of the former type of inventions concurring with the emergence of the academic

enterprise have led to a debate about a shift in the nature of academic research

(Larsen, 2011).

Henderson et al. (1998) claim that the basicness of university patents seems

to be declining with the emergence of the academic enterprise. Based on the

observation that recombination distance (the breath of technological integration)

is linked to invention basicness (Trajtenberg et al., 1997), the authors conclude

that this change in the quality of academic patents could imply a change in the

nature of academic research.

A reply to this study comes from Mowery and Ziedonis (2002) who claim that

the observed decline can mostly be attributed to entry by inexperienced univer-

sities and that learning effects can improve the importance of patents produced

by the latter (Mowery et al., 2002). Mowery and Sampat (2005) further stress

that university-industry technology transfer has been mostly successful in science-

based industries such as pharmaceuticals and biotechnology. These observations

possibly imply that differences in organizational capabilities and industry charac-

teristics can moderate the relationship between recombination distance and inven-

tion basicness.
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On the subject of organizational capabilities, Banerjee and Cole (2010) show

that firm entry into new application domains by a sample of biotechnology en-

trepreneurial firms has a negative moderating effect on the relationship between

recombination distance and basicness. Is it then possible that the sector of activity

from which an invention originates could also moderate the relationship between

recombination distance and basicness? Do other factors related to the university-

industry interface, such as industry characteristics and science-linkage strength of

an invention, have similar moderating effects?

To answer the above questions, we will perform an econometric analysis by

using a sample of Canadian nanotechnology patents registered in the US. This

emerging multidisciplinary field can potentially breed “general purpose technolo-

gies” (Youtie et al., 2008; Gómez-Baquero, 2009; Shea et al., 2011) and offers the

possibility to study the above-mentioned factors. We measure a patent’s recombi-

nation distance and invention basicness by constructing a Herfindahl-based index

of the diversity of technological classes from its backward and forward citations

respectively (Trajtenberg et al., 1997). By mean of regression analysis, we mea-

sure the moderating effect that the sector of activity (private or public), strength of

science linkage and industry emergence have on the relationship between recom-

bination distance and invention basicness.

In line with findings of Trajtenberg et al. (1997) and Banerjee and Cole (2010),

our results show that recombination distance is indeed positively linked with in-

vention basicness. However, we also find that while private organizations are less

likely to produce basic inventions, an increase in recombination distance by them

increases invention basicness at a higher rate. Science-linkage strength has a neg-

ative moderating effect on distant recombination. Finally, our results show that an

3



increase in recombination distance increases invention basicness at a higher rate

in the fragmented science-based nanotechnology industry. The remainder of this

paper is organized as follows: section 2 reviews the literature lists our hypotheses;

section 3 provides a complete description of the methodology; section 4 presents

the results; and section 5 discusses the results and provides some conclusions.

2. Literature Review and hypotheses

2.1. Measuring innovative activity through patenting

From a legal point of view, patents confer monopolistic power with regards to

the use, production and commercialization of an invention in exchange of its dis-

closure. Since patents are granted to inventions that are novel, non-obvious and

useful, they can generally be viewed as indicators of technological change and

innovative activity (Basberg, 1987; Acs and Audretsch, 1989; Griliches, 1990;

Archibugi and Pianta, 1996). Various studies, however, point out that the majority

of patents have little economic value (Allison et al., 2004; Moore, 2005). Patent-

ing can sometimes be compared to gambling where firms bet on slots (Lemley and

Shapiro, 2005). Also, as Pénin (2005) points out, patents can be used as strategic

devices and, consequently, cannot be used in a straightforward manner to mea-

sure innovation. Nevertheless, some patent quality indicators are known to be

associated with commercial success: patent citations can be linked to firm value

(Trajtenberg, 1990; Hall et al., 2005) and patents deposed in the US by foreigners

have a higher expected value (Bessen, 2008).

Forward citations can be used in various ways to measure patent quality (Squic-

ciarini et al., 2013). One method supposes that important inventions are those that

are subsequently used by a great number of inventions. This method typically con-
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sists in counting forward citations of a patent to measure its importance (Fleming,

2001; Sapsalis et al., 2006). Another method considers how the eventual use of an

invention spreads over technological classes (Trajtenberg et al., 1997; Henderson

et al., 1998; Mowery and Ziedonis, 2002), hence relying on the classification of

a patent’s forward citations in order to measure invention quality. Patents that are

subsequently cited in different technological classes are believed to be more ba-

sic. Both basicness and forward citation counts have been associated with patent

value (Bessen, 2008; Serrano, 2010; Sreekumaran Nair et al., 2011; Fischer and

Leidinger, 2014). Nonetheless, metrics using forward citations can also be viewed

as indicators of invention social value (Baron and Delcamp, 2012).

A few precisions are in order regarding patent citations. First, one should note

that while applicants have the obligation to cite all related sources of knowledge,

they are not legally obliged to perform prior art search. In fact, it is incumbent

upon USPTO examiners to make sure that all appropriate sources are cited. Be-

cause patents constitute legal documents, examiners go through a thorough search

process in which they attempt to add all citations that are relevant to a patent (Tra-

jtenberg, 1990). Because a patent’s scope is defined by the novel features of an

invention, proper reference to prior art should be made in order to correctly define

the technological boundaries legally protected by the patent (Merges and Nelson,

1990). This renders the examination process essential to the preservation of patent

scope legal validity.

Based on these premises, Jaffe et al. (1993) argue that patent citations repre-

sent knowledge spillovers generated by patents. This assumption has been, to a

certain degree, brought into question for two reasons. On the one hand, because

citations restrict the patent’s scope, applicants often choose not to perform prior art
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search, and when they do, they can cite other patents strategically (Sampat, 2010).

On the other hand, variations among patent examiners have been found imply-

ing that some patents could contain citations that are more accurate than others

(Cockburn et al., 2002; Alcácer and Gittelman, 2006). Also, time constraints can

lead examiners to add citations that are only remotely linked to the applied patent

in order to make sure that nothing has been missed out (Meyer, 2000). There are

reasons, nevertheless, to believe that patent citations contain relevant information

that can have analytical value.

A number of studies argue that applicants have more incentives to search for

prior art for discrete technologies such as pharmaceuticals or chemicals while the

opposite hold for complex technologies such as electronics or telecommunica-

tion (Lemley and Shapiro, 2005; Sampat, 2010; Alcácer et al., 2009). Hegde and

Sampat (2009) further show that examiner added citations are better predictors

of patent renewal than applicant added citations. In addition, examiner citations

are more likely to be added when there is technological and geographical distance

between citing and cited patent (Criscuolo and Verspagen, 2008). It is also worth-

while to note that examiners add a larger share of self-citations than the inventors

themselves (Sampat, 2010; Alcácer et al., 2009). Based on these considerations,

patent examination can also be viewed as a smoothing process that can sometimes

close citation gaps between related inventions (Azagra-Caro et al., 2011). USPTO

citations are indeed generally viewed as thorough in terms of containing links to

relevant prior art (Meyer, 2000; Von Wartburg et al., 2005).

Examiner citations can also be interpreted from a social learning perspective

(Amin and Cohendet, 2004). Although the validity of using patent citations to

measure knowledge flows can be brought into question, it is undeniable that ap-
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plicants must, to a certain degree, be aware of contemporary technological devel-

opments before engaging in R&D activities. Since learning can be viewed as a

social process and that technological development is path-dependent (Rosenberg,

1994), it is difficult to imagine that in knowledge intensive industries, inventors

can be totally unaware of current technological challenges and potential solutions,

and yet be successful in introducing novelties. Being part of the social process of

learning, inventors who search for novel solutions are embedded to their commu-

nity of practice. Furthermore, the tacit dimension of knowledge spillovers implies

that they do not always leave traces in the form of citations and do not neces-

sarily require formal transfer of knowledge (Krugman, 1991). Since this embed-

ding is likely to encompass even inventors who are employed by competitors, an

applicant’s failure to cite a relevant prior art does not necessarily rule out tacit

knowledge about related technologies.

2.2. The emergence of academic enterprise

Viewed as providers and repositories of basic knowledge, universities have

historically taken part in R&D activities that have low levels of appropriability

and in which firms found little incentives to invest (Nelson, 1959; Arrow, 1962).

Basic research undertaken by universities had tremendous spillovers to the in-

dustry (Jaffe, 1989; Adams, 1990; Zucker and Darby, 1996; Narin et al., 1997;

Cohen et al., 2002). The recognition of this phenomenon has led some to consider

a greater integration of universities with commercial activities (Etzkowitz, 1998;

Jensen and Thursby, 2001), an idea that is not unanimously acclaimed by scholars

(Larsen, 2011; Philpott et al., 2011). A major source of debate is about a possible

shift of university research toward more applied sciences, leading to an eventual

gap in basic research which might not be filled by firms (Foray and Lissoni, 2010).
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An important source of disagreement related to this debate is the concept that

public research is coordinated by a reputation-based reward system, and that it

is through this non-market mechanism that scientists endeavor risky exploratory

research (Dasgupta and David, 1994; Stephan, 1996; David, 2004). Changing the

reward system might change the behavior of academia and impact scientific pro-

duction. Other mechanisms that foster university-industry technology transfer and

which do not necessarily have to involve university patenting can be considered

(D’Este and Patel, 2007; Yusuf, 2008; Grimpe and Hussinger, 2013). In another

line of thought, it is claimed that research groups act as “quasi-firms” when they

perform their day-to-day routines (Etzkowitz, 2003). This idea reflects the as-

sumption that entrepreneurial universities can be successful in both performing

their duty of “searching for the truth” and transferring technologies to the market-

place (Etzkowitz, 1998). With the emergence of “markets for technology” (Arora

et al., 2001; Debackere and Veugelers, 2005), the idea that universities can ben-

efit commercially by supplying technologies to the industry can be reinforced by

empirical findings that do not see real differences in the value distribution of aca-

demic and industry patents (Sapsalis et al., 2006).

2.3. Search heuristics, capabilities and the self-organization of inventive activity

From the perspective of evolutionary economics, inventing can be viewed as

the act of combining exiting resources in new ways (Schumpeter, 1934; Nelson

and Winter, 1982). Recombination is the result of a “search” process aimed at

identifying and selecting useful components to solve problems in a “satisficing”

manner (March and Simon, 1958; Cyert and March, 1963). This selection process

can be analogous to the evolution of biological species, except it is not blind but

rather purposeful in nature (Nelson and Winter, 1982).
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When searching for existing components, agents can resort to a dichotomous

set of heuristics: they can either exploit known technological paths or explore new

ones (March, 1991). Knowledge exploitation leads to local recombination, i.e. the

integration of components situated in the immediate periphery of dominant rou-

tines. This option involves the improvement of current procedures and an ever

increasing specialization of the firm in a few fields of expertise. Knowledge ex-

ploration in contrast involves searching or experimenting in ways that break away

from dominant routines. It requires learning radically different ways of solving

problems and leads to distant recombination (Gruber et al., 2013).

Empirical findings generally associate the dichotomous nature of these search

heuristics to a dichotomy in their outcomes. In line with the idea that distant

recombination will yield basic inventions (Trajtenberg et al., 1997), Rosenkopf

and Nerkar (2001) show that searching beyond the boundaries of the optical disk

industry is more likely to lead to an invention that will be used in other industries.

Datta and Jessup (2013) also show that searching outside an industry leads to

the development of more radical inventions. Fleming (2001) argues that local

recombination contributes to the creation of incremental innovations while distant

recombination, although leading to many failures, is more likely to lead to radical

innovations. Similarly, Kim et al. (2012) find that exploitative search is positively

linked with invention rates but negatively with impact, while exploratory search

exhibits the opposite relationships.

Exclusive reliance on one heuristic can be detrimental to organizational ca-

pabilities. Although local recombination allows easier absorption of knowledge

and lower levels of uncertainty, firms that over-exploit existing routines can be

stuck in a competency trap where they cannot effectively adapt to an environment
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dominated by the widespread diffusion of components that are distant from the

ones with which they are familiar (Levitt and March, 1988; Levinthal and March,

1993). According to Tushman and O’Reilly III (1996)’s ambidexterity perspec-

tive, exploitation increases organizational efficiency and is beneficial in times of

environmental stability, while exploration increases organizational flexibility and

is beneficial in times of environmental fluctuation. From this perspective, explo-

ration increases a firm’s “absorptive capacity” (ability to learn from its environ-

ment) and thus to adapt to changing environments (Cohen and Levinthal, 1989,

1990; Raisch et al., 2009).

The aggregate effort of opportunity seeking agents having heterogeneous ca-

pabilities can be viewed as a complex adaptive system (Silverberg et al., 1988;

Fleming and Sorenson, 2001). In this perspective, inventors evolve in a commu-

nity which is constantly recombining existing technologies to create new ones.

This collective effort results in a complex network of interlinked technological

components. In this setting, the search process is partly simplified by the presence

of “technological trajectories” which act as “cognitive outposts” shared collec-

tively and direct search effort toward certain paths (Dosi, 1982). “Bounded ra-

tionality”, however, implies that search is performed without a priori knowledge

of its outcome. Even if technological trajectories act as guideposts for search,

neither opportunities nor the ways to grasp them are entirely known in advance

(Cyert and March, 1963; Dosi, 1988). The diffusion of inventions reflects the het-

erogeneous learning capabilities of, and the search heuristics employed by, the

collection of agents (Dosi, 1988; Geroski, 2000). What is adopted, and deemed

useful, is what falls within search. Given that there is always an upper bound

on agents’ absorptive capacity, the adoption of potentially useful inventions is not

10



warranted.

2.4. Inter-institutional heterogeneity and the public-private dichotomy

If heterogeneous capabilities at intra-institutional level can explain differences

in the quality of academic patents (Mowery et al., 2002; Czarnitzki et al., 2011;

Acosta et al., 2012), then the same principle can be applied to expect similar

observation at inter-institutional level, i.e. between the private and the public

sector.

Institutional proximity between inventive agents can influence the knowledge

diffusion process (Cantwell, 2000; Boschma, 2005; D’Amore et al., 2013). This

perspective would suggest that organizations are more likely to recombine tech-

nologies produced by organizations that are bound to the same rules and norms.

Inter-institutional heterogeneity can be rooted in the normative rules and reward

systems to which private and public sector are respectively subjected (Dasgupta

and David, 1994; Stephan, 1996; Tartari and Breschi, 2012; Bodas Freitas and Nu-

volari, 2012; Veer and Jell, 2012; Ankrah et al., 2013). Faced with short-term im-

peratives, firms often have the reflex of exploiting already possessed skills (Tush-

man and O’Reilly III, 1996; Ahuja and Lampert, 2001; Fang et al., 2010). Such

imperatives are not imposed on public organizations that do not abide to market

norms. While this reality can have an impact on the respective capabilities of pri-

vate and public sector organizations to perform basic research (Trajtenberg et al.,

1997), it can also have an impact on how easily inventions produced by the public

sector pervade across institutional boundaries and be adopted in the private sector.

In other words, institutional proximity between actors in the private sector

directs technological development towards trajectory commonly adhered by ac-

tors in that sector. The more complex is an invention, and thus its absorption
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difficult, the more difficult becomes inter-institutional transfer (Petruzzelli, 2011;

Czarnitzki et al., 2012; Woerter, 2012; Muscio and Pozzali, 2013). In a techno-

logical landscape where most patents are owned by the private sector, the picture

could appear grim for the diffusion of complex inventions resulting from public

sector research. Popular views about the embryonic nature of university inven-

tions, whether true or not (Jensen and Thursby, 2001; Colyvas et al., 2002), could

create a bias which would advantage the diffusion of private sector inventions that

result from distant recombination.

Another source of inter-institutional heterogeneity can be traced in the respec-

tive complementary assets (Teece, 1986) owned by the private and the public

sector. Here, one major difference is that patent licensing consists in the main

channel for technology commercialization that public organizations dispose of

(Shane, 2004b). Even though spinoffs can theoretically be created around uni-

versity technologies, they represent a small percentage of invention disclosures

(Shane, 2004a). In other words, strategic options for public organizations are lim-

ited to the markets for technologies.

While it is true that markets for technology offer new strategic possibilities,

their presence alone does not guarantee the diffusion of technologies. While com-

plementary assets are not required for entering the markets for technology, it does

not mean that they are not useful for proper screening and sensing of technological

opportunities (Day, 1994; Teece, 1998, 2007).

Here, a relevant feature of complementary assets could be noted in R&D and

marketing integration (Griffin and Hauser, 1996; Leenders and Wierenga, 2002;

Verhoef and Leeflang, 2009). Given that R&D and marketing integration activities

can be seen as central components to foresight and sensing (Day, 1994), this factor
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can also contribute to different outcomes with regards to distant recombination.

Indeed, such capabilities can embed market knowledge during the search process

and allow for recombinations that will land on the right outposts of technological

trajectories. Regarding R&D and marketing integration, it is difficult to claim that

public sector organizations have the same kind of capabilities than those in the

private sector. This function cannot be fulfilled by the technology transfer office

which comes into play only after the invention is created (Kenney and Patton,

2009; Landry et al., 2013). Faculty involvement in technology transfer through

royalty or equity (Jensen and Thursby, 2001) will not solve this issue either.

In sum, given that the private sector produces most of the patents and that

it is more likely to source itself within its own institutional boundaries when in-

ventions are complex, and that complementary assets possessed by private sector

organizations help the latter in identifying major trajectory outposts, we hypothe-

size that:

Hypothesis H1. Increases in recombination distance by the private sector

leads to higher increases in invention basicness.

2.5. Cognitive distance and science linkage strength

According to Nooteboom et al. (2007), too much cognitive distance between

knowledge owned and explored is detrimental to its transfer. Distant recombina-

tion requires a broader absorptive capacity from both the agent that performs it

and those that eventually adopt it. The difficulty encountered by firms in absorb-

ing external knowledge can explain why many inventions resulting from distant

recombination end-up being failures (Nemet and Johnson, 2012). Also, firm ab-

sorptive capacity, which is linked to preferred search heuristics, can impact its

ability to license distant technologies (Laursen et al., 2010).
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Proximity to basic sciences leads to the creation of innovations that have broad

applications. However, beside the risk associated to the many failures that it can

cause (Kim et al., 2012), knowledge that is close to basic research is more difficult

to absorb outside the academic environment, that is a locus where access to basic

science is the strongest (Cohen and Levinthal, 1990; Nooteboom et al., 2007).

This observation hints at the direction that inventions that have strong linkage with

basic sciences will not always succeed in finding adoption. Being strongly linked

to basic science can thus be an inhibitor when it comes to invention diffusion.

Incidentally, if new technologies that are close to basic science result from

distant recombination, it could be that they have too much cognitive distance

from what can be promptly absorbed in the industry. There could be a case of

knowledge that is “too theoretical” to be easily absorbed (Gilsing et al., 2011).

Given that firms operate under conditions of time constraint in which they tend to

prefer short-term solutions to current problems (Lynn et al., 1996; Tushman and

O’Reilly III, 1996), such cognitively different inventions can be overlooked or too

difficult to incorporate within search. In other words, such inventions could po-

tentially have a very broad impact, but they could also be too innovative to satisfy

immediate needs (McGrath, 2001; Lo et al., 2012). We thus hypothesize that:

Hypothesis H2. The interaction between the strength of linkage to basic sci-

ences and recombination distance is negatively associated with invention basic-

ness.

2.6. Industry characteristics and preferred search heuristics

From an industry evolution perspective, preferred search heuristics can evolve

as industries evolve from periods of radical change to periods of incremental im-

provements (Dosi, 1982; Tushman and Anderson, 1986; Abernathy and Utterback,
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1978). Industry birth is generally initiated with the occurrence of “competence-

destroying discontinuities” (Tushman and Anderson, 1986). These breakthroughs

can result from the confluence of existing technologies and threaten the techno-

logical dominance of incumbent firms (Maine et al., 2014). In the early days of an

industry, most research effort is spent on positioning against a “dominant design”

built around the technological breakthrough (Utterback and Abernathy, 1975; An-

derson and Tushman, 1990). This stage is marked by great turbulence as new

entrants will explore and recombine distant technological components to find so-

lutions that will become the dominant design. Once a dominant design is adopted,

technological development becomes focused and cumulative as components are

improved over time (Utterback and Abernathy, 1975; Anderson and Tushman,

1990). As a result, a concentration of inventive activity can be seen along trends

toward more incremental improvements (Utterback and Suárez, 1993).

Breakthroughs that have competence-destroying potential do not always dis-

place incumbents. In fact, Tripsas (1997) argues that the latter can leverage their

dynamic capabilities and complementary assets to withstand newcomer attacks.

In such cases, discontinuities can be “competence-enhancing” and thus reinforce

incumbent position (Tushman and Anderson, 1986). When the discontinuity is

dependent upon complementary assets owned by the incumbent, or when the lat-

ter has the ability to adapt to the discontinuity, the expected turbulent period of

technological exploration by new entrants does not occur. As a result, inventive

effort can continue to be focused and cumulative in nature.

Sectoral patterns can also dictate the type of research heuristics that will ap-

pear to be attractive. Literature reporting successful university-industry technol-

ogy transfer in science-based industries such as biotechnology and pharmaceu-
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ticals is aplenty (Trajtenberg et al., 1997; Etzkowitz, 1998; Zucker et al., 2002;

Gittelman and Kogut, 2003; Owen-Smith and Powell, 2004; Mowery and Sam-

pat, 2005; Nikulainen and Palmberg, 2010; Gilsing et al., 2011; Lissoni, 2012). In

development-based industries, however, there is a higher dependency on nonaca-

demic research (Gilsing et al., 2011). In these fields, the bulk of inventive activity

consists in incremental advances that were almost exclusively the domain of in-

dustrial R&D (Mowery and Sampat, 2005). One could thus argue that there is

a fit between university capabilities in performing basic and exploratory research

and the needs of firms in science-based industries. We thus expect the relationship

between recombination distance and invention basicness to be positively moder-

ated by industry fragmentation and science-based nature of inventive activity and

propose our last hypothesis:

Hypothesis H3. Increases in recombination distance in fragmented science-

based industries leads to higher increases in invention basicness.

3. Methodology

3.1. Data

We analyze a sample of patents from the Canadian nanotechnology industry

registered in the US. Nanotechnology is an emerging and multidisciplinary field,

which makes a great locus for novel creations. The US represent the largest global

market and are the most important economic partner for Canada. Li et al. (2007)

show that the US is the first foreign destination in which Canadian firms file for

patents. Barirani et al. (2013) offer a lexical query for the extraction and clustering

of technologically similar “Canadian-made” nanotechnology patents. The study

identifies three broad fields of expertise in Canada: nanobiotechnology, display
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technologies and optics. Because the method employed by the study only takes

into account patents connected to the main network component, the whole set of

patents that are extracted from the lexical query are not classified. We use the

title and abstracts from the main network component’s classified patents to train

a K-NN model that would subsequently classify the non-connected patents into

the three fields of expertise. We then select patents that were granted from 1990

to 1997 for which we extract information regarding their grant date, inventors,

number of claims, and forward citations until year 2009. Patents for which no

assignees are specified, as well as those that were co-assigned to public and private

organizations (the latter case only includes three patents) were removed. The final

sample contains 848 patents.

3.2. Dependent variable

Given a patent with n forward citations falling into m 3-digit classes, Trajten-

berg et al. (1997) measure the degree with which future use of a patent spans

technological classes with the following equation:

BAS ICNES S = 1 −
m∑

i=1

(CLAS S i

n

)2

(1)

Where CLAS S i is the number of the patent’s forward citations that fall within

class i. As this value gets closer to zero, future inventions are limited in a narrow

set of technological areas (which we call focused inventions), and a value closer

to one indicates a more basic invention which is used in numerous technological

areas.

To compute this value, we use patents’ forward citations for a 12-year period

after the grant year. This is justified by the fact that technological breakthroughs
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enjoy a rather slower adoption rate due to their inherent complexity (Schoenmak-

ers and Duysters, 2010). Furthermore, patents that receive citations for a longer

period are more likely to be important patents since high rates of technological ob-

solescence in high-technology industries means that lower quality patents could

stop receiving citations earlier in their lifetime.

3.3. Independent variables

Given a patent with p backward citations falling into q 3-digit classes, the

degree with which a patent combines technologies from distant classes can be

computed with the following equation:

DIS T ANCE = 1 −
q∑

i=1

(
CLAS S i

p

)2

(2)

This variable measures the distance between technological components that

were recombined to create an invention. As this value gets closer to zero, we are

dealing with local recombination, and as it gets closer to one, we are dealing with

distant recombination.

Prior studies indicate that within the three major areas of expertise, nanobiotech-

nology (encompassing nanotechnology-based pharmaceutical and biotechnology

applications) is a science-based industry with low levels of concentration of patents

in few firms (Barirani et al., 2013). Indeed, public institutions play a central role

in the patent co-citation network. Similar patterns were found in the initial days

of the biotechnology industry (Owen-Smith and Powell, 2004). The other dis-

ciplines are dominated by a smaller number of players and thus exhibit concen-

tration although, given their activities in the nanotechnology industry, these in-

dustries are obviously very knowledge intensive. The main difference between
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nanobiotechnology and the other industries (optics and display technologies) is

that it can answer to needs that could not be answered previously (such as ap-

plications of drug delivery allow for new types of treatment that are not possible

without the application of nanoscale technologies), whereas the others are merely

using new technology to answer existing needs. In these industries, one can as-

sume that incumbents were able to adapt nanotechnology components and that

many of the complementary assets owned by them have kept their value. Thus,

to distinguish between emerging and mature industries, we will add the dummy

variable NANOBIO using the patent classification process described earlier.

We account for the sector of activity (private or public) using information on

patent assignees. Patents are classified based on whether they are owned by cor-

porations or public organizations, the latter including universities. We employ the

dummy variable PRIVATE to identify corporations.

We use the number of non-patent references (NPRS) as a proxy for the strength

of the linkage between a patent and basic science. Callaert et al. (2006) find

that most NPRS are references to scientific journals, and that a greater share of

NPRS are made to scientific journals in knowledge intensive industries. Given

the emerging nature of the nanotechnology industry, we thus believe that it is

reasonable to use the number of non-patent references to measure proximity to

basic science.

3.4. Control and dummy variables

The variable DISTANCE is dependent upon the number of backward citations

that a patent contains. In other words, the higher is the number of backward

citations, the higher is the probability that all of them are not assigned to one class.

To account for this, we propose to control the degree of distant recombination by
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the patent’ total number of backward-citations (NCITBACK). Similarity, variable

BASICNESS can be influenced by the number of forward citations. We thus add

control variable NFORWCIT to our model which is a measure of the number of

forward citations for a 12-year period after the patent’s grant year.

The scope of a patent’s claims determines the monopoly power of the patent

holder by defining the main novel features of the invention (Merges and Nelson,

1990). Inventors have an incentive to claim as much as possible while patent ex-

aminers must narrow down the scope of the patent before granting it (Lanjouw

and Schankerman, 2004). The number of claims can therefore be used as an indi-

cation of a patent’s quality (Tong and Frame, 1994). Patents that claim more are

thus more likely to restrict the scope of other patents which also translates into

being cited by those restricted patents. This in turn can have an impact on the dif-

fusion pattern of a patent. We thus employ the variable CLAIMS which counts the

number of claims a patent makes to control for its impact on basicness. Technol-

ogy classes in which a patent falls can also be used to measure its scope (Lerner,

1994). We use the variable SCOPE to measure the number of distinct 3-digit US

classes to which each patent is assigned. The addition of this variable also controls

for the fact that examiner citations are closely linked to the technological classes

in which patents fall (Lerner, 1994). In other words, inventions that fall in numer-

ous classes will have a higher likelihood of citing (and eventually being cited by)

patents from various classes. SCOPE will thus control the part of an invention’s

basicness that is due to the classification performed by USPTO examiners.

Organizational experience in patenting can also have an impact on diffusion

outcome. This is especially true for universities whose accumulated experience

in patenting and technology transfer can have a positive impact on the adoption
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of their inventions on the marketplace (Thursby and Thursby, 2007). We control

for experience in patenting in two ways. First by measuring the total number of

nanotechnology patents that a patent holder obtains between the 1990-1997 pe-

riod. We report this variable as NBPATS. It should be noted that the number of

patents obtained by the same firms in various periods (ex: between 1980-1989

and 1990-1997) is strongly correlated for the organizations in our sample (greater

than 0.75). Second, we compute a 5-year moving sum representing all the patents

owned by an assignee 5 years prior to the obtainment of a new patent. This vari-

able is reported as EXPERIENCE.

Since many advantages can be associated with being part of a patent’s invent-

ing team, it is natural to assume that only those who bring distinctive skills to the

table will have the power to earn a place among the list of inventors. For instance,

if an invention results from the work of a team composed of one senior-level re-

searcher or engineer and a few junior-level engineers who play a less critical role

in the development of the invention, it is more likely that only the senior-level

member will end up as the sole inventor. In contrast, if a complex invention re-

quires the involvement of many senior-level researchers and scientists who each

come with their own special skills, then chances are that they will have to come

to an agreement to include all of them in the list of inventors. Since it is not likely

that one individual has enough expertise to cover a broad range of technologies,

we are expecting to see that teams composed of a greater number of inventors

should cover different technological areas. We thus control for team size through

variable TEAMSIZE, which measures the number of investors listed in a patent.

Time can have various effects on patent metrics. For instance, technological

progress goes through different stages, which can be visible over time, and poli-
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cies can have an impact on patenting activity. Numerous studies therefore use the

patent’s grant date to control for various factors that may affect dependent vari-

ables (Schoenmakers and Duysters, 2010; Nemet and Johnson, 2012). We also use

the patent grant year to account for unmeasured time effects. This is represented

by year dummy variables Y1991 to Y1997.

3.5. Interaction variables

To measure the moderating impact of the type of activity (private-public di-

chotomy), science linkage and industry emergence, three interaction variables will

be considered in this study. The interaction between DISTANCE and PRIVATE

will show how distant recombination performed by firms results in basic inven-

tions, compared to the public research institutions. The interaction between DIS-

TANCE and NPRS will show how the strength of science linkage will lead to more

basic inventions. Given that these two variables are continuous, a positive coeffi-

cient will indicate that distant recombination and science-linkage have impact in

the same direction, while a negative coefficient will indicate that the two variables

work in opposite directions. The interaction between DISTANCE and NANOBIO

will indicate whether distant recombination in the emerging nanobiotechnology

industry leads to more basic inventions, compared to the two other technologies

(optics and display).

3.6. Models

In attempting to link distant recombination with invention basicness, our method-

ology mainly consists in analyzing the statistical relationship between the spread

of a patent’s backward-citations with that of its forward-citations. We therefore

associate recombination distance with the use of inventions from a multitude of
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disciplines during research and its basicness with its use by subsequent inventions

in a multitude of disciplines. Because we also try to measure the impact of institu-

tional differences (H1), science-linkage strength (H2) and industry characteristics

(H3), we perform a hierarchical analysis that will measure the moderating effect of

these factors over the relationship between recombination distance and invention

basicness.

Because our dependent variable is continuous, our main statistical method will

use ordinary least squares (OLS). Since many patents will fall within the definition

of focused inventions and will have a value of zero, we use the left censored Tobit

model to test the robustness of our OLS model. Furthermore, for each model,

robust variance estimates are computed through “clustered sandwich estimator”

method (Rogers, 1987) using patent assignee names as cluster authenticators. This

is justified by the fact that organizational practices in patenting can have an impact

on diffusion outcome. For large patent holders, there can be correlation among

observations (patents) given the cumulative nature of technology development for

these organizations.

4. Analysis and Results

4.1. Descriptive statistics

Table 1 shows the correlation matrix for all variables (except YEAR dummies).

One can see a positive relationship between DISTANCE and BASICNESS, which

goes in the direction of our first hypothesis. It is also worth discussing the rela-

tionship between variables NPRS, PRIVATE and NANOBIO. These results corrob-

orate findings about the nature of activities in the biotechnology industry (Barirani

et al., 2013), compared to the other two industries. Indeed, we can see that pub-
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lic institutions are more present in the nanobiotechnology industry. Furthermore,

organizations in this industry appear to have stronger links with basic sciences.

Some other finding can be corroborated by our data. For instance, PRIVATE is

negatively correlated with NPRS as it is often observed (Dasgupta and David,

1994; Stephan, 1996; Trajtenberg et al., 1997).

One can notice a strong correlation between DISTANCE and NCITBACK (and

with SCOPE to a smaller extent), and thus the possibility of multicollinearity. One

should note that these variables are naturally confounded given the correlation be-

tween examiner classifying patents in multiple classes and citing (many) patents

from multiple classes. Nonetheless, the regression results shown in the following

sections are robust with regards to this degree of correlation. For instance, re-

moving variable NCITBACK (these estimations are, however, not reported here)

from models 2 to 6 in tables 2 and A.4 yields very similar results. It thus ap-

pears that the variable DISTANCE contains information that encompasses that of

NCITBACK. Also, measuring variance inflator factor (VIF) for models 1 and 2 in

table 2 both give a value of 1.86 and 1.73 respectively, which is below generally

recommended maximum value (Neter et al., 1985; Hair et al., 2009). Models 3

to 6, which include interaction variables, are also below the rule-of-thumb thresh-

old. Our view is that although our data exhibits some level of multicollinearity

between certain variables, enough information is contained in each of them to

allow for discrimination between observations.

4.2. Inferential statistics

Tables 2 to A.5 present our results for the OLS and Tobit models. Because

estimates for these models are very similar, we will refer to the results from the

OLS models using NBPAT in the following discussion. Model 1 shows that the
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link between the number of forward citations and patent basicness is significant.

As expected, we find a positive relationship between SCOPE and BASICNESS.

Similarly, the total number of backward citations has a positive relationship with

BASICNESS.

Model 2 takes into account the independent variables to our experiment and

is an improvement over model 1: adding recombination distance to the model

improves its explanatory power. We find a negative and significant relationship

between PRIVATE and basicness. This observation corroborates the findings that

firms produce a smaller share of basic inventions. The model also shows a signifi-

cant relationship between DISTANCE and basicness, but interestingly, the impact

from the number of backward citations (NCITBACK) on invention basicness is no

longer significant when we control for distant recombination. It appears that, all

things being equal, patents that result from the combination of technologies from

different fields will turn out to be eventually used in a multitude of disciplines.

These findings are in line with Trajtenberg et al. (1997) and Banerjee and Cole

(2010).

Model 6 incorporates interaction effects with DISTANCE (models 3 to 5 in-

corporate interactions one-by-one for robustness checking). As we can see, the

interaction between DISTANCE and PRIVATE results into a significant and pos-

itive relationship with basicness. It thus appears that whether the patent holder

is a private or public organization has an impact on the degree with which inven-

tions diffuse across disciplines as recombination distance increases. Given that

PRIVATE is negatively associated with BASICNESS, this implies that public orga-

nizations produce higher rates of basic inventions at lower values recombination

distance and that this difference between private and public sector dissipates as
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Table 2: Results - OLS regressions using NBPAT.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

NCITFORW 0.0027∗∗∗∗ 0.0027∗∗∗∗ 0.0027∗∗∗∗ 0.0027∗∗∗∗ 0.0026∗∗∗∗ 0.0026∗∗∗∗ 0.0029∗∗∗∗ 0.0029∗∗∗∗ 0.0033∗∗∗∗

(0.0005) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0006) (0.0004) (0.0006)

NCITBACK 0.0028∗ -0.0000 -0.0001 0.0005 -0.0001 0.0002 -0.0011 0.0001 -0.0010
(0.0015) (0.0015) (0.0015) (0.0016) (0.0016) (0.0016) (0.0018) (0.0017) (0.0018)

SCOPE 0.0389∗∗∗ 0.0250∗∗ 0.0246∗∗ 0.0239∗∗ 0.0260∗∗ 0.0252∗∗ 0.0115 0.0246∗∗ 0.0102
(0.0134) (0.0119) (0.0119) (0.0120) (0.0115) (0.0115) (0.0100) (0.0123) (0.0108)

CLAIMS 0.0003 0.0005 0.0005 0.0005 0.0005 0.0005 0.0009 0.0006 0.0011
(0.0007) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0008) (0.0007) (0.0008)

TEAMSIZE -0.0027 -0.0014 -0.0015 -0.0009 -0.0013 -0.0006 0.0078 -0.0018 0.0062
(0.0059) (0.0056) (0.0055) (0.0057) (0.0056) (0.0057) (0.0067) (0.0051) (0.0067)

NBPAT -0.0004∗∗∗∗ -0.0003∗∗∗ -0.0003∗∗∗ -0.0003∗∗∗ -0.0003∗∗∗ -0.0003∗∗∗ -0.0016∗∗∗ -0.0003∗∗∗ -0.0010
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0006) (0.0001) (0.0024)

GRANTYEAR yes yes yes yes yes yes yes yes yes

DISTANCE 0.2599∗∗∗∗ 0.1655∗∗∗∗ 0.2855∗∗∗∗ 0.2351∗∗∗∗ 0.1407∗∗ 0.1270∗∗ 0.1368∗∗ 0.1203∗

(0.0291) (0.0465) (0.0325) (0.0347) (0.0602) (0.0629) (0.0603) (0.0640)

NPRS -0.0006 -0.0006 0.0011 -0.0006 0.0015∗ 0.0014∗ 0.0015∗ 0.0014∗

(0.0006) (0.0005) (0.0007) (0.0005) (0.0008) (0.0008) (0.0008) (0.0008)

PRIVATE -0.0760∗∗ -0.1191∗∗∗ -0.0757∗∗ -0.0755∗∗ -0.1187∗∗∗ -0.1118∗∗∗ -0.1153∗∗∗ -0.1096∗∗∗

(0.0294) (0.0387) (0.0294) (0.0295) (0.0396) (0.0405) (0.0397) (0.0415)

NANOBIO -0.0144 -0.0139 -0.0143 -0.0385 -0.0667∗ -0.0972∗∗∗ -0.0724∗ -0.1000∗∗∗

(0.0237) (0.0237) (0.0235) (0.0372) (0.0362) (0.0347) (0.0388) (0.0367)

DISTANCExPRIVATE 0.1202∗∗ 0.1229∗∗ 0.1164∗ 0.1242∗∗ 0.1154∗

(0.0527) (0.0584) (0.0603) (0.0584) (0.0624)

DISTANCExNPR -0.0041∗∗ -0.0050∗∗∗ -0.0048∗∗ -0.0051∗∗∗ -0.0050∗∗∗

(0.0016) (0.0018) (0.0019) (0.0018) (0.0019)

DISTANCExNANOBIO 0.0647 0.1420∗∗ 0.1773∗∗∗ 0.1431∗∗ 0.1809∗∗

(0.0619) (0.0628) (0.0668) (0.0653) (0.0732)

Constant 0.2658∗∗∗∗ 0.2812∗∗∗∗ 0.3160∗∗∗∗ 0.2662∗∗∗∗ 0.2903∗∗∗∗ 0.3183∗∗∗∗ 0.3336∗∗∗∗ 0.3347∗∗∗∗ 0.3449∗∗∗∗

(0.0423) (0.0493) (0.0537) (0.0492) (0.0498) (0.0561) (0.0632) (0.0555) (0.0612)

Observations 848 848 848 848 848 848 583 797 532
Clusters 284 284 284 284 284 284 283 283 282
Log lik. -38.4170 -3.3836 -2.0512 -1.4403 -2.8240 1.6292 15.1335 -4.3385 8.2481
F 17.6193 32.9509 30.1708 34.2517 32.5005 32.6476 12.9682 31.5472 9.0664
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
R-squared 0.1478 0.2154 0.2178 0.2190 0.2164 0.2246 0.2219 0.2323 0.2282
Adjusted R-squared 0.1345 0.1993 0.2009 0.2020 0.1994 0.2059 0.1943 0.2125 0.1979
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01, ∗∗∗∗ p < 0.001
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recombination distance increases. This finding supports H1 that while the rela-

tionship between recombination distance and invention basicness is still positive

for public organizations, an increase of one unit in recombination distance can be

linked to a greater increase in invention basicness in the private sector. As we can

see in figure 1a, distant recombination by the private sector eventually surpasses

the public sector (in terms of associated patent basicness), but this is the case for

very large values. One should note that our sample does not contain such large

values of DISTANCE.

As expected, we observe a negative and significant relationship between BA-

SICNESS and the interaction of DISTANCE and NPRS. It thus appears that com-

bining distant technologies and depending heavily on basic science have a nega-

tive impact on the patent’s diffusion over multiple disciplines. Again, this interac-

tion effect does not mean that the resulting invention will be useless. However, it

implies that such inventions do not succeed in reaching the broad adoption that one

expects the results of combining basic knowledge should have. It should be noted

that there is a positive significant relationship between NPRS and BASICNESS for

models 4 and 6 where NPRS interact with DISTANCE. In other models where

the interaction between NPRS and DISTANCE is not included, the relationship

between NPRS and BASICNESS is negative although not significant. Our inter-

pretation of this phenomenon is that observations for which NPRS and DISTANCE

are both high appear to drag down the coefficient of NPRS when interaction effects

are not taken into account. Our take is that exploratory research (either through

strong scientific linkage or distant technological recombination) can be generally

linked with inventions basicness, but that interaction between different modes of

exploration can lead to difficult absorption and thus decreased observed basicness.
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Figure 1: Regression lines for models 3, 6, 7, 8 and 9 from table 2 (using NBPAT).
Solid and dashed lines represent regression lines for the public and the private
sector respectively. Dotted lines represent the value of DISTANCE at which the
private sector produces basic inventions at a higher rate. Both DISTANCE and
BASICNESS are in the interval [0, 1[. Note that the highest value of DISTANCE
in our sample is 0.8984.
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These findings support H2 in that the exploratory search involving distant techno-

logical recombination and strong linkage with basic sciences is negatively related

to invention basicness.

We find a positive and significant relationship between basicness and the inter-

action of DISTANCE with NANOBIO. One should however notice that this feature

of the industry is not apparent when we do not control for other interactions (as

in model 5). In fact, science linkage and inventive activity by public institutions

is stronger in nanobiotechnology than other industries. Thus, the effect of these

various forces (measured through NPRS and PRIVATE) impact the interaction of

DISTANCE with NANOBIO. When controlling for these factors (in model 6), we

see that distant recombination in nanobiotechnology, an emerging science-based

industry, results in inventions that will have spread over various disciplines. These

findings support H3.

Finally, given the skewed distribution of patents among organizations (a few

organizations own many patents, while many organizations own a few patents), it

is relevant to test whether the presence of large private patent holders introduces

a bias in our results. We have run model 6 on separate samples removing the two

largest patents holders: Xerox Corporation (with 265 patents) and Nortel Net-

works (with 51 patents). Model 7 removes Xerox Corporation, model 8 removes

Nortel Networks and model 9 removes both firms. As we can see, results are sen-

sibly the same as those reported above. We can say that the results are robust to

the exclusion of the two largest patent holders, Xerox and Nortel.
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5. Discussion and conclusion

There is little consensus among scholars regarding the benefits of the academic

enterprise model. One camp claims that universities can leverage markets for

technology and use patenting as a way to finance their operations. The other

camp claims that changing the reward and incentive system can have a negative

impact on the type of research endeavored in universities. A large part of this

debate has taken place around the presumption that distant recombination is linked

to invention basicness, rendering possible the ability to take conclusions about a

shift in the nature of research conducted within universities by examining shifts

to the basicness of the patents they are granted. We argue that these assumptions

do not fully take into consideration moderating factors that come into play.

The purpose of this paper is to test whether the relationship between recombi-

nation distance and invention basicness can be moderated by institutional differ-

ences, science-linkage strength and industry characteristics. We have conducted

an econometric analysis by employing a sample of Canadian-invented nanotech-

nology patents granted between 1990 and 1997. Our results show that the above

factors can indeed have moderating effects.

An interesting finding in our study is the ability of private organizations to

transform the results of distant recombination into inventions that become basic

in the future. This is despite the fact that public institutions are, overall, producing

basic inventions at a higher rate. Therefore, while our results confirm other obser-

vations about a tendency of firms for short-term profits and exploitative activities

(Ahuja and Lampert, 2001; Tushman and O’Reilly III, 1996), there appears to

be more than meets the eye. Indeed, we find that firms can be more successful

than public organizations in producing basic inventions under the condition that
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they engage in technological exploration. This finding also brings new insight

about the involvement of universities in commercial activities. More precisely,

even though universities could be better equipped in performing basic research,

it does not mean that such efforts will be effectively transmitted into inventions

that have a broad social impact. The skills for which universities are solicited

(performing explorative research) does not appear to be the one leading to the de-

sired effect of producing more socially useful inventions. In fact, it is when they

perform local recombination (that is the opposite of what they are supposed to

be good at) that public organizations appear to be distinguished from firms. This

finding could appear counter intuitive in that, to the proponents of the academic

enterprise, it could mean that universities should be performing more local re-

combination, which would implicitly call for them doing less basic research. The

question would thus remain: who will do basic research if one does not expect

public institutions to have more resources to fill the gap left?

Another contribution of this article is concerned with the impact of basic sci-

ences on basic inventions. Proximity to basic science is often believed to be a

source of inspiration for breakthrough creation. However, if one takes the risks

associated with the failure of potential adopters to absorb novelties that are too

complex, then combining both strong science linkage with distant recombination

can have a detrimental effect on diffusion. In these cases, a new technology that

has great potential could have been developed, but could also fail to find subse-

quent users. Given that the combined impact of distant recombination and basic

science linkage move in opposite directions, our findings support the idea that in-

ventions which are strongly sourced in basic sciences should be focused in one

technological discipline to have maximum social impact. These findings are in
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line with study by Kim et al. (2012) about the trade-offs of scientific exploration.

Finally, our results show that distant recombination does not equally produce

basic inventions in all domains. In the nanobiotechnology sector, where compe-

tition is high, distant recombination yields a greater amount of basic inventions.

This is, to a certain degree, due to fact that mature industries will concentrate on

focused inventions. In such fields, where a few players are dominant, inventions

are cumulative in nature. R&D effort will therefore be concentrated on incremen-

tal improvement around the dominant designs. Introducing radically novel ways

of doing things in such industries will not translate into proper level of adoption.

This finding can be put in perspective with regards to ambidexterity (Tushman

and O’Reilly III, 1996). The balance between exploration and exploitation can be

dictated by industry development stage: when markets are turbulent, exploration

is more likely to produce basic inventions; but when they are stable, exploitation

is the type of activity that leads to basic inventions. This statement, however, does

not suggest that basic inventions have better prospects of private returns in mature

industries.

Looking at the whole picture, more can be said about the importance of uni-

versity inventions in science-based industries (Mowery and Sampat, 2005). Our

results seem to indicate that, when we control for sectoral effects (nanobiotech-

nology in this case) and science-linkage strength, the relationship between re-

combination distance and invention basicness is negatively moderated in the case

of public organizations. In other words, without having to dispute the idea that

university research has a much more important impact in science-based fields,

the relevance of university patenting as the best way to foster university-industry

technology transfer can still be questioned.
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Our study brings under scrutiny the idea that markets for technology will un-

leash the revenue generating capacity of the academic enterprise. Unless one’s

view about successful technology transfer requires heroic efforts by faculty mem-

bers, research groups cannot be as efficient as firms in exploiting their ability to

perform exploratory research unless they are able to integrate marketing resources

for better sensing of technological opportunities. Further taking into account the

impact that inter-institutional differences can have on invention diffusion adds an-

other dimension to the problem. This perspective implies that even the ownership

of complementary assets by universities (better patent office capabilities, more

successful spinoff generation, stronger industry ties) might not completely over-

come the institutional distance that impedes the transfer of complex technologies

to the private sector.

This paper does not intent to question the possibility that universities could be

able to appropriate returns on research that they endeavor. However, to the extent

where part of the trend in academic patenting is motivated by a replacement of de-

creasing public funds, our study suggests that it is worthwhile to further study the

efficiency of such trends especially when considering differences in capabilities

between private and public institutions. The fact that lack of funding pushes uni-

versities towards commercial avenues should be questioned instead of be treated

for granted. An interpretation of our study would be that favoring distant recombi-

nation within firms might be a better policy from a social point of view. This does

not rule out considering ways to foster university-industry technology transfer that

do not automatically call for more patenting or competitive behavior by public

sector organizations (D’Este and Patel, 2007; Yusuf, 2008). One should note that

our findings do not automatically imply that the production of basic patents by the
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public sector is cost ineffective: institutional differences between the private and

the public sector could mean different cost functions to distant recombination that

would favor performing this kind of research in the public sector.

An inherent limit of our study is in the use of US classes to measure recombi-

nation distance and invention basicness. The problem arises from the fact that US

classes are not defined hierarchically. All three-digit US classes are at the same

level and do not contain information about proximity between classes. Thus, two

patents can have the same value for recombination distance but combine techno-

logical classes that are at different distances. Our Herfindahl-based index mea-

suring recombination distance and invention basicness is bound between zero and

one and thus does not fully reflect the highly skewed distribution of invention

impact. Building co-citation networks and measures of distant recombination

(basicness) through centrality metrics, such as the betweenness metric, can of-

fer interesting methodological opportunities to palliate these shortcomings. Also,

our study is limited to the case of the Canadian nanotechnology sector. Similar

experiments with larger samples or other industries can be used to corroborate

the findings of this study. Finally, our study does not take into consideration how

various practices within the public sector (ex: size of technology transfer office,

faculty involvement with industry, spinoff creation) moderate the relationship be-

tween recombination distance and invention basicness. Nonetheless, one should

notice that various practices within the private sector can also lead to different

outcomes in terms of patent diffusion: one cannot claim that all firms are adopting

best practices and obtaining optimal outcomes to their research effort. Our study

thus assumes that the adoption of best practices in the private and public sector

follow similar distributions. Although this feature is intentional in that its aim is
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to illustrate the impact of institutional differences, it is nevertheless important to

further study whether certain practices can fill the institutional gap in capabilities

between the private and public sector without jeopardizing the production of basic

knowledge.
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Table A.3: Results - OLS regressions using EXPERIENCE.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

NCITFORW 0.0027∗∗∗∗ 0.0027∗∗∗∗ 0.0027∗∗∗∗ 0.0027∗∗∗∗ 0.0026∗∗∗∗ 0.0026∗∗∗∗ 0.0029∗∗∗∗ 0.0029∗∗∗∗ 0.0033∗∗∗∗

(0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0003) (0.0006) (0.0004) (0.0006)

NCITBACK 0.0025∗ -0.0003 -0.0004 0.0002 -0.0004 -0.0001 -0.0011 -0.0002 -0.0011
(0.0014) (0.0015) (0.0015) (0.0015) (0.0015) (0.0016) (0.0018) (0.0016) (0.0018)

SCOPE 0.0404∗∗∗ 0.0250∗∗ 0.0246∗∗ 0.0240∗∗ 0.0260∗∗ 0.0253∗∗ 0.0119 0.0248∗∗ 0.0105
(0.0137) (0.0117) (0.0117) (0.0118) (0.0113) (0.0113) (0.0100) (0.0121) (0.0108)

CLAIMS 0.0001 0.0004 0.0004 0.0005 0.0004 0.0005 0.0009 0.0005 0.0011
(0.0008) (0.0007) (0.0007) (0.0006) (0.0006) (0.0006) (0.0008) (0.0007) (0.0008)

TEAMSIZE -0.0032 -0.0013 -0.0014 -0.0008 -0.0011 -0.0005 0.0082 -0.0018 0.0061
(0.0058) (0.0054) (0.0054) (0.0056) (0.0054) (0.0056) (0.0068) (0.0050) (0.0068)

EXPERIENCE -0.0007∗∗∗∗ -0.0006∗∗∗∗ -0.0006∗∗∗∗ -0.0006∗∗∗∗ -0.0006∗∗∗∗ -0.0006∗∗∗∗ -0.0026∗∗∗ -0.0006∗∗∗∗ -0.0024
(0.0001) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0009) (0.0002) (0.0023)

GRANTYEAR yes yes yes yes yes yes yes yes yes

DISTANCE 0.2664∗∗∗∗ 0.1727∗∗∗∗ 0.2913∗∗∗∗ 0.2401∗∗∗∗ 0.1449∗∗ 0.1267∗∗ 0.1422∗∗ 0.1188∗

(0.0289) (0.0459) (0.0319) (0.0352) (0.0598) (0.0631) (0.0600) (0.0642)

NPRS -0.0006 -0.0006 0.0010 -0.0007 0.0014∗ 0.0014∗ 0.0014∗ 0.0014∗

(0.0006) (0.0006) (0.0008) (0.0005) (0.0008) (0.0008) (0.0008) (0.0008)

PRIVATE -0.0788∗∗∗ -0.1214∗∗∗ -0.0787∗∗∗ -0.0783∗∗∗ -0.1219∗∗∗ -0.1131∗∗∗ -0.1198∗∗∗ -0.1098∗∗∗

(0.0289) (0.0383) (0.0289) (0.0290) (0.0391) (0.0402) (0.0392) (0.0405)

NANOBIO -0.0118 -0.0115 -0.0116 -0.0376 -0.0653∗ -0.0973∗∗∗ -0.0691∗ -0.1017∗∗∗

(0.0231) (0.0230) (0.0230) (0.0366) (0.0355) (0.0348) (0.0383) (0.0367)

DISTANCExPRIVATE 0.1191∗∗ 0.1236∗∗ 0.1167∗ 0.1257∗∗ 0.1164∗

(0.0527) (0.0580) (0.0606) (0.0580) (0.0623)

DISTANCExNPR -0.0040∗∗ -0.0049∗∗∗ -0.0049∗∗ -0.0050∗∗∗ -0.0050∗∗∗

(0.0016) (0.0018) (0.0019) (0.0018) (0.0019)

DISTANCExNANOBIO 0.0691 0.1455∗∗ 0.1822∗∗∗ 0.1456∗∗ 0.1828∗∗

(0.0607) (0.0620) (0.0675) (0.0641) (0.0731)

Constant 0.2437∗∗∗∗ 0.2629∗∗∗∗ 0.2978∗∗∗∗ 0.2485∗∗∗∗ 0.2723∗∗∗∗ 0.3007∗∗∗∗ 0.3187∗∗∗∗ 0.3157∗∗∗∗ 0.3395∗∗∗∗

(0.0461) (0.0497) (0.0542) (0.0491) (0.0512) (0.0571) (0.0630) (0.0573) (0.0612)

Observations 848 848 848 848 848 848 583 797 532
Clusters 284 284 284 284 284 284 283 283 282
Log lik. -39.4256 -2.1288 -0.8163 -0.3000 -1.4895 2.8897 14.2966 -3.5638 8.3555
F 21.2631 36.2711 33.2830 37.5611 36.0163 36.1487 14.7157 35.5227 9.4463
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
R-squared 0.1458 0.2177 0.2201 0.2211 0.2189 0.2269 0.2197 0.2338 0.2285
Adjusted R-squared 0.1325 0.2017 0.2032 0.2042 0.2019 0.2082 0.1919 0.2141 0.1983
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01, ∗∗∗∗ p < 0.001

37



Table A.4: Results - Tobit regressions using NBPAT.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

model
NCITFORW 0.0035∗∗∗∗ 0.0034∗∗∗∗ 0.0034∗∗∗∗ 0.0034∗∗∗∗ 0.0033∗∗∗∗ 0.0034∗∗∗∗ 0.0035∗∗∗∗ 0.0036∗∗∗∗ 0.0039∗∗∗∗

(0.0006) (0.0005) (0.0005) (0.0004) (0.0005) (0.0004) (0.0007) (0.0004) (0.0007)

NCITBACK 0.0030∗ -0.0002 -0.0004 0.0004 -0.0004 0.0000 -0.0015 0.0000 -0.0014
(0.0018) (0.0018) (0.0018) (0.0019) (0.0018) (0.0020) (0.0021) (0.0020) (0.0021)

SCOPE 0.0428∗∗∗ 0.0270∗ 0.0264∗ 0.0256∗ 0.0283∗∗ 0.0273∗∗ 0.0105 0.0264∗ 0.0081
(0.0162) (0.0145) (0.0145) (0.0145) (0.0139) (0.0139) (0.0113) (0.0148) (0.0120)

CLAIMS 0.0004 0.0007 0.0007 0.0007 0.0006 0.0007 0.0011 0.0008 0.0014
(0.0008) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0009) (0.0007) (0.0009)

TEAMSIZE -0.0025 -0.0009 -0.0010 -0.0001 -0.0007 0.0003 0.0097 -0.0008 0.0080
(0.0066) (0.0063) (0.0062) (0.0064) (0.0063) (0.0064) (0.0075) (0.0059) (0.0076)

NBPAT -0.0004∗∗∗∗ -0.0004∗∗∗∗ -0.0004∗∗∗∗ -0.0004∗∗∗∗ -0.0004∗∗∗∗ -0.0004∗∗∗∗ -0.0015∗∗ -0.0004∗∗∗∗ -0.0007
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0007) (0.0001) (0.0029)

GRANTYEAR yes yes yes yes yes yes yes yes yes

DISTANCE 0.2934∗∗∗∗ 0.1814∗∗∗ 0.3259∗∗∗∗ 0.2566∗∗∗∗ 0.1419∗∗ 0.1248∗ 0.1400∗ 0.1205
(0.0356) (0.0559) (0.0395) (0.0410) (0.0718) (0.0731) (0.0722) (0.0747)

NPRS -0.0005 -0.0005 0.0016∗ -0.0005 0.0022∗∗ 0.0019∗∗ 0.0022∗∗ 0.0020∗∗

(0.0006) (0.0006) (0.0009) (0.0006) (0.0010) (0.0010) (0.0010) (0.0010)

PRIVATE -0.0882∗∗ -0.1401∗∗∗ -0.0881∗∗ -0.0877∗∗ -0.1418∗∗∗ -0.1330∗∗∗ -0.1400∗∗∗ -0.1304∗∗

(0.0347) (0.0475) (0.0346) (0.0347) (0.0489) (0.0488) (0.0493) (0.0506)

NANOBIO -0.0249 -0.0245 -0.0246 -0.0613 -0.0987∗∗ -0.1317∗∗∗ -0.1026∗∗ -0.1353∗∗∗

(0.0281) (0.0280) (0.0278) (0.0468) (0.0455) (0.0435) (0.0485) (0.0454)

DISTANCExPRIVATE 0.1434∗∗ 0.1508∗∗ 0.1436∗∗ 0.1528∗∗ 0.1427∗

(0.0641) (0.0713) (0.0725) (0.0716) (0.0753)

DISTANCExNPR -0.0051∗∗∗ -0.0066∗∗∗ -0.0060∗∗∗ -0.0067∗∗∗ -0.0064∗∗∗

(0.0020) (0.0023) (0.0023) (0.0023) (0.0023)

DISTANCExNANOBIO 0.0960 0.1968∗∗ 0.2360∗∗∗ 0.1963∗∗ 0.2398∗∗∗

(0.0772) (0.0787) (0.0810) (0.0814) (0.0881)

Constant 0.1996∗∗∗∗ 0.2242∗∗∗∗ 0.2659∗∗∗∗ 0.2050∗∗∗∗ 0.2380∗∗∗∗ 0.2718∗∗∗∗ 0.2924∗∗∗∗ 0.2905∗∗∗∗ 0.3066∗∗∗∗

(0.0555) (0.0616) (0.0671) (0.0615) (0.0630) (0.0709) (0.0782) (0.0708) (0.0750)

sigma
Constant 0.3034∗∗∗∗ 0.2909∗∗∗∗ 0.2904∗∗∗∗ 0.2901∗∗∗∗ 0.2907∗∗∗∗ 0.2890∗∗∗∗ 0.2753∗∗∗∗ 0.2929∗∗∗∗ 0.2800∗∗∗∗

(0.0112) (0.0116) (0.0118) (0.0117) (0.0117) (0.0120) (0.0129) (0.0115) (0.0132)

Observations 848 848 848 848 848 848 583 797 532
Clusters 284 284 284 284 284 284 283 283 282
Log lik. -332.9313 -302.2670 -300.9739 -300.1840 -301.4383 -296.5088 -172.2752 -290.3013 -167.1253
F 17.6609 30.7631 28.7567 32.2992 30.0669 31.1296 10.5480 30.2262 7.0043
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
pseudo R-squared 0.1676 0.2443 0.2475 0.2495 0.2464 0.2587 0.2912 0.2571 0.2858
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01, ∗∗∗∗ p < 0.001
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Table A.5: Results - Tobit regressions using EXPERIENCE.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

model
NCITFORW 0.0035∗∗∗∗ 0.0034∗∗∗∗ 0.0034∗∗∗∗ 0.0035∗∗∗∗ 0.0033∗∗∗∗ 0.0034∗∗∗∗ 0.0034∗∗∗∗ 0.0036∗∗∗∗ 0.0039∗∗∗∗

(0.0005) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0007) (0.0004) (0.0007)

NCITBACK 0.0026 -0.0005 -0.0007 0.0001 -0.0007 -0.0003 -0.0015 -0.0003 -0.0014
(0.0017) (0.0017) (0.0018) (0.0018) (0.0018) (0.0019) (0.0021) (0.0020) (0.0021)

SCOPE 0.0446∗∗∗ 0.0270∗ 0.0265∗ 0.0257∗ 0.0284∗∗ 0.0275∗∗ 0.0109 0.0267∗ 0.0084
(0.0165) (0.0143) (0.0143) (0.0143) (0.0137) (0.0136) (0.0113) (0.0146) (0.0120)

CLAIMS 0.0002 0.0006 0.0006 0.0006 0.0005 0.0006 0.0011 0.0007 0.0014
(0.0009) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0009) (0.0008) (0.0009)

TEAMSIZE -0.0032 -0.0008 -0.0009 -0.0002 -0.0006 0.0004 0.0101 -0.0008 0.0081
(0.0066) (0.0061) (0.0060) (0.0062) (0.0061) (0.0062) (0.0076) (0.0057) (0.0078)

EXPERIENCE -0.0008∗∗∗∗ -0.0007∗∗∗∗ -0.0007∗∗∗∗ -0.0007∗∗∗∗ -0.0008∗∗∗∗ -0.0008∗∗∗∗ -0.0024∗∗ -0.0008∗∗∗∗ -0.0019
(0.0001) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0010) (0.0002) (0.0025)

GRANTYEAR yes yes yes yes yes yes yes yes yes

DISTANCE 0.3017∗∗∗∗ 0.1899∗∗∗∗ 0.3334∗∗∗∗ 0.2631∗∗∗∗ 0.1469∗∗ 0.1248∗ 0.1462∗∗ 0.1191
(0.0351) (0.0550) (0.0386) (0.0419) (0.0714) (0.0733) (0.0718) (0.0749)

NPRS -0.0006 -0.0006 0.0015∗ -0.0006 0.0020∗∗ 0.0019∗∗ 0.0020∗∗ 0.0020∗∗

(0.0006) (0.0006) (0.0009) (0.0006) (0.0009) (0.0010) (0.0010) (0.0010)

PRIVATE -0.0918∗∗∗ -0.1434∗∗∗ -0.0919∗∗∗ -0.0914∗∗∗ -0.1462∗∗∗ -0.1342∗∗∗ -0.1458∗∗∗ -0.1308∗∗∗

(0.0341) (0.0469) (0.0341) (0.0341) (0.0481) (0.0485) (0.0485) (0.0491)

NANOBIO -0.0215 -0.0213 -0.0209 -0.0598 -0.0967∗∗ -0.1316∗∗∗ -0.0987∗∗ -0.1365∗∗∗

(0.0278) (0.0277) (0.0277) (0.0466) (0.0453) (0.0436) (0.0484) (0.0456)

DISTANCExPRIVATE 0.1428∗∗ 0.1524∗∗ 0.1440∗∗ 0.1554∗∗ 0.1435∗

(0.0639) (0.0706) (0.0729) (0.0709) (0.0752)

DISTANCExNPR -0.0050∗∗ -0.0065∗∗∗ -0.0061∗∗∗ -0.0066∗∗∗ -0.0063∗∗∗

(0.0020) (0.0023) (0.0023) (0.0023) (0.0023)

DISTANCExNANOBIO 0.1011 0.2010∗∗∗ 0.2407∗∗∗ 0.1994∗∗ 0.2412∗∗∗

(0.0758) (0.0776) (0.0819) (0.0801) (0.0881)

Constant 0.1735∗∗∗ 0.2023∗∗∗ 0.2443∗∗∗∗ 0.1837∗∗∗ 0.2163∗∗∗ 0.2508∗∗∗∗ 0.2782∗∗∗∗ 0.2682∗∗∗∗ 0.3031∗∗∗∗

(0.0610) (0.0631) (0.0685) (0.0623) (0.0657) (0.0729) (0.0782) (0.0738) (0.0762)

sigma
Constant 0.3037∗∗∗∗ 0.2904∗∗∗∗ 0.2899∗∗∗∗ 0.2897∗∗∗∗ 0.2902∗∗∗∗ 0.2885∗∗∗∗ 0.2757∗∗∗∗ 0.2926∗∗∗∗ 0.2800∗∗∗∗

(0.0112) (0.0115) (0.0116) (0.0116) (0.0115) (0.0118) (0.0128) (0.0113) (0.0132)

Observations 848 848 848 848 848 848 583 797 532
Clusters 284 284 284 284 284 284 283 283 282
Log lik. -333.9356 -301.1838 -299.8981 -299.2148 -300.2635 -295.3960 -172.9004 -289.6424 -167.0619
F 21.8147 34.3091 32.1643 35.9751 33.8361 35.2016 12.3492 34.9323 7.3116
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
pseudo R-squared 0.1651 0.2470 0.2502 0.2519 0.2493 0.2615 0.2887 0.2588 0.2861
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01, ∗∗∗∗ p < 0.001
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