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Abstract. We describe principles and design of a system for knowledge
bases applying a natural logic. Natural logics are forms of logic which
appear as stylized fragments of natural language sentences. Accordingly,
such knowledge base sentences can be read and understood directly by a
domain expert. The system applies a graph form computed from the in-
put natural logic sentences. The graph form generalizes the usual partial-
order ontological sub-class structures by accommodation of affirmative
sentences comprising recursive phrase structures. In this paper we focus
on the logical inference rules for extending the concept graph form en-
abling deductive querying as well as computation of pathways between
the concepts mentioned in the sentences.
Keywords. Deductive querying of natural-logic knowledge bases, Path
finding in knowledge bases, Logical knowledge bases in bio-informatics
and medicine

1 Introduction & Background

In a series of papers [2, 6, 1, 5, 4] we have recently developed and described prin-
ciples and systems design for natural-logic knowledge bases. This work originates
in our idea of providing so-called generative ontologies [7]. In our generative on-
tologies, the concepts are not merely given classes but entire phrases in which
the class noun is extended with restrictions for forming subclasses. These restric-
tive phrases, as in the natural language phrases they reflect and formalize, are
endowed with a recursive structure, thereby becoming “generative”, in analogy
to the well-known notion of generative grammars.

In the above-mentioned more recent papers we go a step further by adopt-
ing a simplified form of so-called natural logic [8, 9] as our formal language for
stating propositions. Accordingly, a knowledge base (KB) consists of a finite set
of affirmative sentences in natural logic. These sentences comprise traditional
ontological sub-class relationships as special cases, so there is no separate formal
ontology. As discussed in our [1] the natural logic formulations come close to nat-
ural language so that the KB can be read by domain experts, for instance, in the
bio-sciences. It goes without saying that the formal natural logic dialect cannot
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accommodate the full meaning content of a text sentence in natural language.
As discussed in our [6], it is our contention that semantically the considered
natural logic can cover substantial parts of typical textual specifications within
the bio-sciences.

In the present paper, we focus on computing conceptual pathways between
concept terms stated as a query. In order to achieve this functionality, we have
devised a graph form of the knowledge base in which the possibly complex knowl-
edge base sentences are broken down into more elementary ones without essential
loss of meaning. As part of this endeavour, we address the deductive querying
of natural-logic knowledge bases.

The paper is structured as follows: In section 2 we describe the applied nat-
ural logic with the accompanying internal graph form in section 3. In section 4
we describe the inference rules applying to the graph form and brought to bear
on pathway querying in section 5.

2 Natural Logic for Knowledge Bases

The knowledge base sentences considered express relationships between classes in
an ontology. The applied form of natural logic is meant to be readable for domain
experts without background in logic and computer science. At the same time,
the considered natural logic dialect constitutes a well-defined logic as discussed
in [3, 5, 4].

2.1 Simple Sentences in Natural Logic

The simplest sentence form
Cnoun isa Cnoun

expresses class inclusion. Cnoun-expressions are common nouns naming intro-
duced classes. The knowledge base ontology is shaped by such sentences, where
the class inclusion relationship forms a partial ordering of the classes. As an
example, we may have betacell isa cell. Notice that the system is incapable of
splitting agglutinated compounds like “betacell” in order to identify a head noun,
in casu “cell”.

More generally, the logic admits knowledge base sentences with transitive
verbs

Cnoun V erb Cnoun
as in the example betacell produce insulin. Thus, in addition to the strictly on-
tological class inclusion structure, the knowledge base comprises more general
state-of-affairs descriptions.

2.2 Complex Sentences in Natural Logic

Crucially, we further admit compound, recursively structured class terms
Cterm V erb Cterm

as in the sample
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cell that produce insulin located:in pancreatic gland,
where the phrase cell that produce insulin denotes a sub-class (complex concept)
of the given class cell formed by a restrictive relative clause. Similarly, the adjec-
tival modifier “pancreatic” introduces a subclass of the class “gland”. Generally
speaking, the various types of modifiers always act restrictively in the set up.

Restrictive relative clauses may recursively comprise restrictive relative clauses
as in the phrase gland that haspart (cell that produce hormone). The parentheses
here are for clarification, only. Thus, in principle, an open-ended and unrestricted
collection of classes is made available, although in a knowledge base with accom-
panying queries, obviously, only a finite set would be made explicit. This notion
of generative ontologies was launched in a seminal form in [7]. The various sug-
gested language forms are further described in our [1, 5, 4]. Sample knowledge
bases are found in our [6].

2.3 The Logical Understanding of Sentences

From a logical point of view, all the knowledge base sentences Cterm V erb Cterm
are implicitly quantified, namely as

every Cterm V erb some Cterm
giving for instance every betacell produce some insulin as explicitation of the
above betacell produce insulin. As is evident, there are actually four possible
quantifier constellations in the above sentence form. However, in this context
we only consider the above quantifier form, since it covers substantial parts of
the knowledge base information in the considered applications. This is confirmed
by the default assumptions applied in natural language concerning this adopted
quantifier form.

The natural logics offer an alternative to description logics. Specifically, the
natural logics recognize the key role of the main verb in natural language af-
firmative sentences. This is in contrast to description logics, where sentences
come about as extended copula forms, hampering the human comprehension
of knowledge bases. For instance, the sample, straightforward sentence beta-
cell produce insulin in description logic becomes the rather incomprehensible
betacell v ∃produce.insulin as discussed in [4].

In [1, 5, 4], we discuss further the relationships to syllogistic logic, predicate
logic, and description logic. There we also discuss our approach to denials by
way of a default assumption amounting to considering classes disjoint unless one
is a subclass of the other or they have a common subclass. More generally, we
lean towards the closed world assumption, unlike the open world assumption of
description logic.

3 The Concept Graph Form

The logical view of sentences supported by inference rules described below af-
fords deductive query facilities. In our system complex sentences are decomposed
into simple sentences. The simple sentences are thought of as arcs in a labeled



4 Authors Suppressed Due to Excessive Length

directed graph called the concept graph. Crucially, the decomposition of complex
sentences calls for generation of new concept nodes in the graph corresponding
to the concept terms as well as any sub-terms in the knowledge base sentences.

The graph view complements the logical view of knowledge base sentences by
affording computational path finding between - possibly complex - concepts. We
elaborate on the functionalities offered by the graph view in the final sections of
this paper.

As an example consider again the sentence cell that produce insulin located:in
pancreatic gland. In our system, this given sentence becomes decomposed into
the simple sentences:

cell-that-produce-insulin isa cell
cell-that-produce-insulin produce insulin
cell-that-produce-insulin located:in pancreatic-gland

where cell-that-produce-insulin is a system-generated concept term which names
a node as illustrated in figure 1. Since adjectival modifications are always taken

cell-that-
 produce-insulin

cell insulin

produce

pancreatic-glandlocated:in

gland

Fig. 1. Graph representation of the sentence “cells that produce insulin are located:in
the pancreatic gland”

for being restrictive here, the system adds pancreatic-gland isa gland.
In order to ensure that the meaning of a sentence in the knowledge base is

properly retained in the graph, we distinguish three different arcs as illustrated
in figure 1. The arcs contributing to the definition of a complex concept are
drawn as single arrows. isa-arcs are drawn as black arrows, whereas restrictive
contributions to the definition are drawn as grey arrows. The arc stemming from
the verb in the main sentence, which creates the proposition, is drawn as a double
arrow.

The representation of concepts is assumed to be unique and thus shared
across the contributing sentences. Accordingly, the KB sentences give rise to
one, usually coherent, graph.

4 Inference Rules

The considered sentences are subject to logical inference rules, that is, inference
rules provided for purely logical reasons with reference to the underlying predi-
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C X D

 

Fig. 2. Transitivity

C' C D

R

R

Fig. 3. Inheritance

C DR D'

R

Fig. 4. Generalization

cate logical explication. These rules admit deductive querying of the knowledge
base.

In addition, there may be ad hoc rules supporting introduced relationships
cf. the example in section 4.3.

4.1 Logical Inference Rules

First and foremost, the isa relation is made reflexive and transitive, that is, a
partial order:

C isa C

C isa X X isa D

C isa D

As a simple example, given the two KB sentences: pancreatic-gland isa endocrine-
gland and endocrine-gland produce hormone, we conclude that pancreatic-gland
produce hormone using the inheritance rule:

C R D C ′ isa C

C ′ R D

Moreover, given that betacell produce insulin and insulin isa hormone we con-
clude that betacell produce hormone using the rule of property generalization:

C R D D isa D′

C R D′

These two rules are known as monotonicity rules in natural logic. As it ap-
pears they express common sense reasoning without appeal to complicated log-
ical inference systems such as resolution and natural deduction.

The transitivity, inheritance and generalisation rules are illustrated in the
figures 2 to 4. The inferences drawn by these rules are not materialized in advance
in the concept graph. A stated query like betacell produce hormone? is confirmed
by appeal to the last of the above inference rules. Thus, derived sentences are
not computed in advance.

4.2 The Subsumption Rule

The use of decomposed sentences in the KB concept graph calls for a special
logical inference rule, termed the subsumption rule. This rule is to ensure that
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all logically relevant isa class inclusion arcs, less those following by transitivity
of isa, become present in the graph.

As an example consider the two concept terms

cell-that-produce-hormone and cell-that-produce-insulin

giving rise to

cell-that-produce-hormone isa cell
cell-that-produce-hormone produce hormone

respectively

cell-that-produce-insulin isa cell
cell-that-produce-insulin produce insulin

and assume that the proposition insulin isa hormone is included ind the KB. In
this case, as illustrated in figures 5 and 6, the subsumption rule calculates

cell-that-produce-insulin isa cell-that-produce-hormone

The subsumption pre-computation thus calculates missing class inclusion
arcs, and thereby serves to facilitate and crucially speed up subsequent deduc-
tive reasoning computations and pathway computations in the concept graph. In
some cases, the calculation would have to take regress to inclusion arcs through-
out the concept graph. Therefore, we devise the following algorithm for sys-
tematically calculating the missing inclusion arcs. The algorithm relies on the
principle that all inclusion arcs drawn on in a specific case have already been
calculated.

The first step is to rank the concept nodes in the graph according to a depth
criterion: Concept nodes which have no non-isa outlet arcs in their definitions
are assigned order 0. Concept nodes whose non-isa outlet arcs lead to concept
nodes of order 0 are assigned the order 1. Concept nodes whose non-isa outlet
arcs lead to concept nodes of order n (and in addition possibly less) are assigned
the order n+1. It should be noted that there is no risk of cycles in the definition
graph, assuming that there are no cycles in the isa inclusion sub-graph.

The ranking of concept nodes is to ensure that when a pair of concept nodes
is checked for subsumption, all the concept nodes pointed to from this pair have
already been processed. Accordingly, the algorithm begins with all ranks up to
1 pairs of concept nodes in the entire graph and processes these.

Consider all pairs of nodes C and C ′ of rank 1, where

C has arcs C Ri Di for i = 1..m

and

C ′ has arcs C ′ Ri D
′
i for i = 1..n

where the sets of arcs Ri Di and Ri D
′
i may include inherited arcs according to

inheritance inference, cf. figure 3. Now, assume that for all Ri D
′
i there is Ri Di

so that Di isa D
′
i, either explicitly or by transitivity. In that case, add the arc

C isa C ′.

The algorithm then proceeds to up to rank 2 pairs of concept nodes (less
the pairs having already been processed) and processes these, knowing that the
concept nodes pointed to have already been processed. The algorithm continues
in this way up to the highest rank being used in the concept graph. An example
showing addition of missing arcs at rank 1 as well as rank 2 is illustrated in
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rank 0

rank 1

rank 2

haspart

gland

haspart

cell hormone

produce

insulin

produce

Fig. 5. Before addition

rank 0

rank 1

rank 2

haspart

gland

haspart

cell hormone

produce

insulin

produce

gland-that-haspart-
 cell-that-

 produce-insulin

       

gland-that-haspart-
 cell-that-

 produce-hormone

       cell-that-
 produce-insulin

       

cell-that-
 produce-hormone

       

Fig. 6. After addition of subsumption arcs

figures 5 (before) and 6 (after). One should observe that the highest rank is not
given statically simply by the syntactic depth nesting of phrases in the original
propositions.

4.3 Domain Dependent Inference Rules

As an example of a domain inference rule the has-part relation may be made
transitive (cf. [10]) by way of the rule:

C haspart X X haspart D

C haspart D

Similarly for the complementary part-for relation. Again, these rules are to be
activated in the KB system rather than be used for pre-computation of derived
relationships.

5 Concept Path Finding

The concept graph is a logical view of the sentences in the corpus from which
it has been generated. Sentences are decomposed into simple sentences that
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endocrine-gland

hormone

secrete

gland

protein organ

stomach

pancreatic-gland

insulin

produce

thyroid-gland

grehlin

parafollicular-cell-
 in-thyroid-gland

located:in

calcitonin

produce

parafollicular-cell

cell

Fig. 7. A fragment of an ontology centered around endocrine gland

correspond to edges in the graph defining concepts and expressing propositions.
Thus, a path in the concept graph, a concept path, combines a series of simple
sentences and may therefore be rendered in natural language into an explanation
of the connection between the end nodes of the path. Concept path finding can
thus be applied as a means of knowledge base querying. Given two or more
concepts, we can search for natural-language renderings of connections relating
these. Given a single concept, we can search for related key concepts. We thus
consider queries to reveal connectivity in the graph. Below we mainly consider
two-concept queries.

As mentioned above, we assume that the concept graph G is closed wrt
subsumption, such that all edges that are inferable by the subsumption rule, are
included in G.

Candidate answers to a two-concept query Q = (C,C ′) are based on paths
connecting the two query concepts C and C ′ or, more specifically, paths con-
necting C to C ′. From any such path we can derive a natural-language rendering
corresponding to the connection it provides. For instance, an answer to the query
Q = (pancreatic-gland, protein) evaluated on a knowledge base corresponding to
the graph in figure 7 involves the path:

(pancreatic-gland produce insulin), (insulin isa hormone), (hormone isa protein)

or more succinctly:

(pancreatic-gland produce insulin isa hormone isa protein)

From this we can derive the natural-language rendering:

pancreatic-gland produce insulin, which is a hormone, which is a protein.
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All edges in the concept graph are directed. However, not only directed paths
may contribute to answers to two-concept queries. Given a two-concept query
Q = (C,C ′) we consider in principle any undirected path from C to C ′. Thus
the direction of edges does not influence the paths we are considering, but only
the interpretation and thereby the natural language rendering we can apply on
these.

5.1 Rendering a path into natural language

A natural language rendering of a path can be provided as follows. The rendering
of an inclusion edge in the beginning of the path X isa Y is “X, which is a Y ”,
while an inner edge that continues from a previous node and leads to Z on the
path simply adds “, which is a Z” to the rendering. Thus the rendering of the
path X isa Y isa Z will be “X, which is a Y , which is a Z”.

When in the beginning of the path, an inclusion edge traversed in the inverse
direction, for instance, a path from Z to Y through an edge Y isa Z, can be
read as “some Z are Y”, while an inverse inclusion inner edge that continues the
path from a previous node and leads to X on the path adds “, whereof some are
X” to the rendering. Thus, the rendering of the path from Z through Y to X
provided by the two edges Y isa Z and X isa Y will be “some Z are Y , whereof
some are X”.

Semantic relations (i.e. relations other than isa) are named by the main verb
in the phrase from which they are extracted, and these may therefore be read
“as is”. Thus the rendering of the forward direction of an edge X R Y beginning
a path is simply “X R Y” , while an inner edge that continues a path can be read
“R Y”. As with the inclusion relation, semantic relations may be traversed in the
inverse direction. However, for semantic relations we assume explicitly specified
inverse relations. For a relation R the inverse relation is given by R̄ = inv(R),
where inv is a symmetric mapping given by a domain expert.

When in the beginning of the path, an edge corresponding to the relation R
traversed in the inverse direction, for instance, a path from Z to Y through an
edge Y R Z, can be read as “some Z are inv(R) Y”, while an inverse semantic
inner edge that continues the path from a previous node and leads to X on the
path adds “, whereof some are inv(R) X” to the rendering. Thus, for instance,
the rendering of the path from Z through Y to X provided by the two edges Y
R Z and X R Y will be “some Z are inv(R) Y, whereof some are inv(R) X.

As an example, an answer to the query Q = (protein, pancreatic-gland) eval-
uated on figure 7 based on the path indicated above in inverse direction would
lead to the rendering:

some protein are hormone, whereof some are insulin, whereof some are
produced by pancreatic gland.

assuming that inv(produce) = produced:by, while an answer toQ = (protein, gland)
would lead to:

some protein are hormone, whereof some are secreted by endocrine gland,
which is a gland.
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assuming that inv(secrete) = secreted:by.

5.2 Reduction

Among the potentially most interesting paths that may be applied to provide
answers to a query Q = (C,C ′), are the shortest paths connecting the two
query concepts C and C ′. However, due to the fact that a significant number of
conceptual edges derivable by the inference rules are not explicitly included in
the graph G, we cannot be sure that a shortest path between C and C ′ in G
provides the briefest connection between the two concepts. A path connecting
two concepts C and C ′ may be reduced, replacing edges according to inference,
such that premise edges are removed and inferred edges are inserted. Due to
the transitivity inference rule, a path or a subpath may be reduced by edge
replacement

(C isa X isa D) replaced by (C isa D)

Similarly we can derive possible replacements from the two monotonicity
inference rules. Due to inheritance monotonicity, a path or a subpath may be
reduced by replacing edges:

(C ′ isa C R D) replaced by (C ′ R D)

and due to generalization monotonicity, a path or a subpath may be reduced by:

(C R D isa D′) replaced by (C R D′)

Thus, by applying generalisation twice or transitivity followed by generalisation,
we can reduce

(pancreatic-gland produce insulin isa hormone isa protein) to
(pancreatic-gland produce protein)

while by applying inheritance followed by generalization, we can reduce
(pancreatic-gland isa endocrine-gland secrete hormone isa protein) to
(pancreatic-gland secrete protein)

The shortest path in figure 7 connecting calcitonin and protein (assuming
inv(produce) = produced:by) is the following:

(calcitonin produced:by parafollicular-cell-in-thyroid-gland
located:in thyroid-gland isa endocrine-gland secrete hormone isa protein)

This path may be reduced to
(calcitonin produced:by parafollicular-cell-in-thyroid-gland
located:in endocrine-gland secrete protein)

Reduction leads to shorter paths and thereby to more succinct natural-
language renderings of connectivity. This is obviously at the expense of details
which in some cases may provide useful supplementary information. Thus a pos-
sibility in a user interface to expand reduced paths to their original form would
be a useful feature making a more dynamic interface.
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An alternative less coarse-grained reduction principle could also be applied:
always retain nodes that have outgoing semantic relation edges (relations other
than isa). This would correspond to ignoring inheritance while reducing paths.

5.3 Query evaluation principle

Evaluating two-concept queries to a concept graph is first of all a matter of find-
ing paths in the graph. The principle indicated above and described in more
detail below divides into shortest path computation, reduction and natural-
language rendering. The path computation applies a Breadth First Search (BFS)
starting from the first query concept.

Given the directed concept graph G and assuming that G is closed wrt
subsumption. Let Ḡ be an undirected version of G and let the query
Q = (C,C ′) be a two-concept query.

1. Derive the set P of all shortest paths from C to C ′ in Ḡ. Start from
C, apply BFS continuously adding all new paths from C to the set
B until C ′ is found, return P = {p|p ∈ B, p connects C and C ′}

2. For each path p ∈ P derive p′ by repeatedly reducing subpaths until
no further reduction can be performed, set P = P ∪ {p′}

3. Let σ = min({l|p ∈ P, l = length of p})
4. Let S̄ = {p|p ∈ P, σ = length of p}
5. Let S be the set of paths in G corresponding to the paths S̄ in Ḡ
6. For all p ∈ S provide the rendering of p as contribution to the answer

to Q

It should be noted that we cannot ensure that all shortest paths will be
found by this algorithm. Continuing step 1 until all paths are found may result
in additional paths that can be reduced to a shortest path in step 2. There will
also be cases where this will lead to a shorter length of the shortest paths found.

6 Summary and Future Work

We have outlined a system for pathfinding in logical knowledge bases. The key
component in the system is a concept graph being pre-computed from a given
knowledge base which consists of sentences in natural logic. In computing the
concept graph we strive – if only heuristically, so far – to strike a balance between
“materialized” information in the form of stored arcs versus virtual information
deducible by means of the stated inference rules. As the guiding principle we
require that all “isa” class inclusion relationships except for those following by
transitivity are explicitly recorded. Therefore, the described subsumption algo-
rithm is to be invoked in a pre-computation phase. On the other hand, we refrain
from pre-computing the entire transitive closure of the class inclusion as well as
what follows from applying the monotonicity rules. Currently we are performing
small-scale experiments with a prototype.
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Logic, Birkhäuser, Springer (2013)

4. Fischer Nilsson, J.: In Pursuit of Natural Logics for Ontology-Structured Knowl-
edge Bases. In: The Seventh International Conference on Advanced Cognitive Tech-
nologies and Applications, COGNITIVE 2015, Nice, France, March 22-27, IARIA.
ISSN: 2308-4197. ISBN: 978-1-61208-390-2. (2015)

5. Andreasen, T., Fischer Nilsson, J.: A Case for Embedded Natural Logic for On-
tological Knowledge Bases. Proceedings of the 6th International Conference on
Knowledge Engineering and Ontology Development (2014)

6. Andreasen, T., Bulskov, H., Fischer Nilsson, J., Jensen, P.A.: Computing Pathways
in Bio-Models Derived from Bio-Science Text Sources. IWBBIO 2014, pp. 217-226
(2014)

7. Andreasen, T., Fischer Nilsson, J., Grammatical Specification of Domain Ontolo-
gies in journal: Data & Knowledge Engineering, vol: 48, issue: 2, pp. 221-230 (2004)

8. van Benthem, J.: Essays in Logical Semantics, Studies in Linguistics and Philoso-
phy, Vol. 29, D. Reidel Publishing Company (1986)

9. van Benthem, J.: Natural Logic, Past And Future, Workshop on Natu-
ral Logic, Proof Theory, and Computational Semantics 2011, CSLI Stanford,
http://www.stanford.edu/~ icard/logic&language/index.html (2011)

10. B. Smith & C. Rosse, The Role of Foundational Relations in the Alignment of
Biomedical Ontologies, MEDINFO 2004, M. Fieschi et al. (2004)


