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Abstract

Distance-to-default (DD) is a measure of default risk derived from observed stock prices

and book leverage using the structural credit risk model of Merton (1974). Despite the

simplifying assumptions that underlie its derivation, DD has proven empirically to be a

strong predictor of default. We use simulations to show that the empirical success of DD

may well be a result of its strong robustness to model misspecifications. We consider a

number of deviations from the Merton model which involve different asset value dynamics

and different default triggering mechanisms. We show that, in general, DD is successful in

ranking firms’ default probabilities, even if the underlying model assumptions are altered.

A possibility of large jumps in asset value or stochastic volatility challenge the robustness of

DD. We propose a volatility adjustment of the distance-to-default measure that significantly

improves the ranking of firms with stochastic volatility, but this measure is less robust to

model misspecifications than DD.

1 Introduction

’Distance-to-default’ is a credit score derived from observed stock prices and book leverage

using a structural model of default risk. A version of the measure based on the Merton

(1974) model has been shown empirically to perform well when it comes to ranking firms
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Systemic Risk in Paris, André Lucas, and an anonymous referee.

1



according to their default risk, see for example Hillegeist, Keating & Cram (2004), Duffie,

Saita & Wang (2007) and Bharath & Shumway (2008). Thus, the measure is commonly

applied as an alternative to ratings to control for firms’ default risk, as in e.g. Chava

& Purnanandam (2010), Vassalou & Xing (2004) and Acharya, Lochstoer & Ramadorai

(2013). The good ranking performance of a measure based on the Merton model is striking

in view of the model’s somewhat poorer ability to capture the level of default probabilities,

and in view of its simple assumptions on asset dynamics and debt structure. In this paper

we investigate whether the success of the distance-to-default can in part be explained by

a strong robustness to model misspecifications. In other words, is it the case that the

distance-to-default measure performs well even if the observed data are generated using

other asset value dynamics or different default triggering mechanisms? As part of this

agenda, we focus on understanding which violations of the underlying Merton model that

may cause the distance-to-default to fail in its ranking of firms. We base all of our results

on simulated samples so that we are able to run tightly controlled experiments.

We find that changing the default triggering mechanism into a model with an exoge-

nous default boundary like the one of Black & Cox (1976) or having an endogenously

determined default boundary as in Leland & Toft (1996) has little effect on the robustness

of the distance-to-default measure. However, changing asset-value dynamics may have a

pronounced effect. Introducing the possibility of large jumps in asset value challenges the

robustness of the measure. Interestingly, jumps in themselves are not enough to challenge

the robustness. The measure performs well if jumps are frequent but relatively small, such

that the majority of the variation in asset value comes from the diffusion part, or the jump-

diffusion is well approximated by a diffusion. Having stochastic volatility in asset value also

makes the measure significantly less reliable. This happens because the constant volatility

estimate may turn out much lower than the realized volatility path, and distance-to-default

therefore mistakenly classifies the firm as less risky than it truly is. The opposite effect can

be obtained in a model of a firm with dual business lines. If a firm has both high-volatile

and low-volatile assets, one may in theory have a firm with zero probability of default for

which an estimated distance-to-default implies a non-negligible risk of default. Yet, for

realistic parameters in the dual business model, distance-to-default is a robust measure for

ranking firms’ default risk.

Even if the ranking by distance-to-default turns out poor for the case of stochastic

volatility, the procedure by which the distance-to-default is estimated gives remarkably

robust estimates of the underlying firm asset value. Consequently, we propose a modified

distance-to-default measure that accounts for stochastic volatility. We use the same method

for estimating the underlying firm asset value but then in a second step estimate a stochastic

volatility specification of the asset value dynamics. Our alternative distance-to-default

measure improves the ranking performance for firms with stochastic volatility, but it comes

at the cost of being less robust to deviations from this assumption; for both the Merton

and jump diffusion models it leads to a slightly poorer ranking performance.
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We evaluate distance-to-default’s ranking ability using three methods: The first is visual

inspection of Cumulative Accuracy Profiles (CAP curves), the second uses a formal test of

significance based on Receiver Operator Characteristics and the third is based on a measure

of profitability for competing banks that employ models in the decisions to grant loans and

whose profitability are a function of the accuracy of their model compared to that of their

competitor. With respect to the last method, we find that if firms have stochastic volatility

in asset value there is a large potential economic benefit of changing to a more powerful

credit scoring model than distance-to-default, whereas the benefit obtained is small for all

other violations of Merton’s assumptions that we test.

The Merton model is notoriously known to produce default probabilities that are too

low, and therefore the common use of distance-to-default is to apply some empirically based

transformation which maps the measure into a default probability. This was proposed by

Crosbie & Bohn (2003) and Kealhofer (2003) who mapped distance-to-default to a so-

called expected default frequency. We will not consider such empirical transformation in

this paper, which solely focuses on distance-to-default’s ranking performance.

2 The distance-to-default

The basic ingredients of the simple version of the Merton model that are used to derive the

distance-to-default measure are:

1. The firm’s asset value process, V , follows a geometric Brownian motion and therefore,

in particular, has constant volatility and no jumps.

2. The firm’s capital structure consists of debt and equity, where debt is issued as a

single zero coupon bond. This means that the firm can only default at maturity of

debt.

3. All market frictions are ignored.

The default probability predicted by the Merton model is given as PD = N(−DD), where

N is the standard normal distribution function and DD is the distance-to-default:

DD =
ln
(
V
P

)
+
(
µ− 1

2σ
2
)
T

σ
√
T

. (1)

Here T denotes the maturity of outstanding debt, P is the face value of debt, µ the drift

and σ the volatility of the asset value process.

Estimating the primary parameters, σ and V , that determine DD is challenging, because

the firm asset value, V , is not directly observable. The classical way to handle this is to

apply equity data for the estimation instead. There exist several approaches1 to estimating

1Alternatively, one can solve a system of two nonlinear equations with the two unknowns, σ and V , as e.g.

Hillegeist et al. (2004) do using historical equity volatility or apply options implied equity volatility. Maximum

likelihood estimation of σ and V is also possible by viewing the asset value process as a transformation of observed

equity data (Duan (1994)).
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σ and V from equity data, but we choose the iterative procedure of Vassalou & Xing (2004),

which we will refer to as the VX-algorithm and describe below. We consider firm’s face

value of debt, P , and maturity, T , observable from accounting statements. The estimation

makes use of the fact that in the Merton model the equity value, E, equals the value of a

call option on the firm’s asset value with strike equal to face value of debt:

Et = c(Vt;σ, P, T − t, r), (2)

where c(·) is the Black Scholes call option price formula.

Let Et0 , Et1 , ..., EtN be a set of observed equity values over a time-span of tN years. For

simplicity assume that we work with equidistant observations such that observations are

∆t = tN
N apart. Fix an initial guess of the volatility parameter, σ̂0, to start the iteration.

The n’th step of the iteration updates the asset volatility estimate, σ̂n−1, to an improved

estimate, σ̂n, in two steps. First, calculate estimated asset values Vt0(σ̂n−1), ..., VtN (σ̂n−1)

from observed equity values by inverting the Black Scholes formula in (2) using the previous

step’s volatility estimate, σ̂n−1. Second, find the updated volatility estimate, σ̂n, as the

volatility estimate of the estimated asset value process, Vt0(σ̂n−1), ..., VtN (σ̂n−1), from step

one, where the asset value process is assumed to follow a geometric Brownian motion:

σ̂n =

√√√√ 1

N∆t

N∑
i=1

(
ln

(
Vti(σ̂n−1)

Vti−1(σ̂n−1)

)
− ξ̄
)2

ξ̄ =
1

N∆t

N∑
i=1

ln

(
Vti(σ̂n−1)

Vti−1(σ̂n−1)

)
=

1

N∆t

(
lnVtN (σ̂n−1)− lnVt0(σ̂n−1)

)
.

These two steps are repeated until σ̂n converges which usually happens after only few

iterations. We denote the final volatility estimate by σ̂.

The iterative procedure also provides a drift estimate: µ̂ = 1
∆t ξ̄ + 1

2 σ̂
2. This estimate,

however, has a large standard deviation and is therefore rarely applied in empirical studies.2

Generally, it is well known that the expected return is hard to estimate with precision as

documented by e.g. Merton (1980). Instead we will assume that asset returns satisfy a

CAPM-style relation, such that the drift varies with the volatility; µ = r + λσ. Thus, we

estimate the drift by µ̂ = r + λσ̂, assuming λ is known.

The default probabilities that we would estimate using this model on real data would in

general be far too small, especially for relatively safe firms. But since the default probability

is a monotone function of DD, this measure can still be used as a measure for ranking firms’

default risk. One could proceed and use DD as an explanatory variable in a statistical

model of default. Working with a slightly simpler distance-to-default measure, Crosbie &

Bohn (2003) and Kealhofer (2003) translate distance-to-default into an empirical default

probability by fitting a firm’s distance-to-default non-parametrically to the historical default

2E.g. Campbell, Hilscher & Szilagyi (2008) set the drift equal to the risk free rate plus some fixed risk premium,

µ̄ = r + πa.
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frequency of other firms with the same distance-to-default. Numerous other studies have

used DD as a covariate in hazard regressions, see for example Duffie et al. (2007), Lando &

Nielsen (2010), Lando, Medhat, Nielsen & Nielsen (2013), and Shumway (2001). All studies

have found a very significant role of DD in default prediction.

3 Experimental design

The success of DD as a default predictor depends critically on its ability to rank firms

according to their default risk, and its empirical performance indicates that this ability is

robust to model misspecification. We therefore conduct the following experiment. For six

models, five of which violates at least one of the three Merton assumptions, we simulate

asset values for a large sample of firms and calculate corresponding equity values, which

we then think of as the observed equity values. We use the equity paths to estimate DD

by the iterative procedure of Vassalou & Xing (2004) in order to test the robustness of the

distance-to-default to a number of deviations from the simple Merton model.

To evaluate the robustness of distance-to-default, we compare the ranking of firms’

default risk according to the estimated DD to the ranking by the default probability calcu-

lated according to the true model specifications. We evaluate the two credit scores’ ranking

abilities for each model along several dimensions; graphically in terms of cumulative accu-

racy profiles (CAP curves), statistically in terms of a test of whether the difference between

the curves is significant and economically by comparing the returns of two banks using the

two credit scores for loan approval. If the performance of the estimated DD’s ranking is

significantly poorer for some model, we conclude that the assumption violated by the model

is a potential source of error when employing Merton’s distance-to-default as measure of

default risk.

3.1 Simulation setup

For each model specification the experiment proceeds as illustrated in Figure 1. We first

simulate daily asset values of M firms over a period of T1 years, which we will call the

estimation period. Using the simulated asset value process we calculate each firm’s equity

value process according to the given model specification. We treat these computed equity

values as observed data and use them for estimating DD. Consistent with the usage of DD

in practice, we treat the underlying firm asset values as unobservable and use them only

for comparing our estimated distance to default to a measure based on the true default

probabilities.

Next, we use the VX-algorithm described in Section 2 on the equity data to obtain

estimates of the firms’ asset volatility, σ̂, drift, µ̂, and value, VT1(σ̂). This allows us to
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Estimation          Ranking        Recording
period          of firms        defaults

t1= 0 T1 T2 = T1 + T

Simulation period

Figure 1: Timeline of experiment.

calculate a VX-estimated distance-to-default, DDVX, at time T1:

DDVX =
ln
(
VT1

(σ̂)

P

)
+
(
µ̂− 1

2 σ̂
2
)
T

σ̂
√
T

.

T is the default horizon we wish to consider. For comparison, we also calculate the true

default probability, PDtrue, at time T1 according to the underlying model specification

using the simulated asset value at time T1 and the true model parameters applied in the

simulation. The true default probability can be transformed into what we will call the ’true

distance-to-default’ by DDtrue = −N−1(PDtrue), where N−1 is the inverse standard normal

distribution function. Note that this measure is not computed from estimated asset values

and volatilities. Rather it is a transformation of the true default probability into a DD-like

measure, which ranks the firms according to their true default probabilities and which is

on the same scale as the estimated DD.

Next we rank firms’ by their default risk at time T1, first as measured by the esti-

mated distance-to-default (DDVX) and second, as measured by the true distance-to-default

(DDtrue). To compare these two rankings, we continue the simulation for another T years

and record whether or not each firm defaults during this period. If distance-to-default is a

good measure for ranking firms’ default risk, then firms that end up in default after T years

ought to be listed among firms with the lowest distance-to-default at the ranking time, T1.

Note, that even though DDtrue is calculated based on all available information about the

true model specification and parameters, the stochastic evolution of asset value between the

ranking time, T1, and debt maturity, T2, prevents DDtrue from providing a perfect ranking.

To explore the relative information contained in the volatility estimate compared to

the leverage ratio, we also consider the ranking of firms by leverage, L. Here, leverage is

calculated at time T1 as the book value of debt relative to the market value of equity plus

the book value of debt; LT1 = P
ET1

+P .

3.2 Performance evaluation

To compare the ranking of DDtrue and DDVX we first calculate Spearman’s ρ. We choose

this rank correlation coefficient because it punishes large dislocations harder than e.g.
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Kendall’s τ , and does not assume a linear relationship as does Pearson’s correlation co-

efficient. The rank correlation only measures how the estimated DDVX relates to DDtrue,

and not how the two perform for identifying firms that actually default.

We use Moody’s cumulative accuracy profiles (CAP) to evaluate the ability of our three

risk scores, DDtrue, DDVX, and leverage, to identify firms that actually default within T

years. For x ∈ [0, 1], the CAP curve corresponding to a given scoring method plots the

fraction of defaulted firms whose risk score was in the lowest x-percentile of risk scores

in the sample. The CAP curves give a graphical indication of the relative performance

of the risk scores, whereas a comparison of the areas under the risk scores’ CAP curves,

referred to as accuracy ratios (AR), will identify the score with the overall superior ranking

performance.

To give a statistical answer to which risk score performs the best, we test whether

the areas under the curves differ significantly. Instead of testing for differences in the

accuracy ratios we apply another popular but equivalent measure called receiver operating

characteristic (ROC), which relates to AR as ROC = 1
2(AR+1). The null-hypothesis, that

two risk scores perform equally well, is H0 : ROC1 = ROC2, where ROCi is the ROC for

risk score i, i = 1, 2. In testing H0, we follow Engelmann, Hayden & Tasche (2003), who

employ the fact that ROC can be calculated as the test statistic of a Mann-Whitney U-test,

which is asymptotically normally distributed. They propose the test-statistic

T =
(ROC1 −ROC2)2

σ2
1 + σ2

2 − 2σ2
12

, (3)

where σ2
i is the variance of risk score i, and σ2

12 is the correlation between the risk scores.

The test statistic is χ2(1)-distributed with one degree of freedom.

Strictly speaking, it only makes sense to compare CAP curves and ROC measures for

risk scores calculated on the same sample, cf. Section 4.9 in Lando (2004). However, by the

nature of our experiment, we create different samples for each model specification. To make

the comparison of the relative performance of DDVX and DDtrue meaningful across models,

we impose some homogeneity across the simulated samples by choosing parameters such

that initially at time t0, the default probabilities for all firms are equal. Over the estimation

period the firms’ asset values will develop differently and thereby ensure diversity in firm

values at the ranking time point T1. We need this diversity since even the best risk model

cannot separate firms whose differences in characteristics are small compared to the random

shocks in future asset values. In summary, we ensure diversity of risks within a sample while

preserving homogeneity in the distribution of characteristics across samples.

The statistical test is an improvement over the mere visual inspection of CAP curves, but

still it tells us little about the economic significance of using a misspecified model to calculate

the credit score. To quantify the potential economic benefit of having a more powerful

credit scoring model for ranking firms’ default risk, we follow the approach developed by

Blöchlinger & Leippold (2006) who set up a stylized loan market consisting of two banks
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with different credit scoring models available. In a similar fashion, Stein (2005) and Stein

& Jordão (2003) also develop an approach for linking power curves and the prices of loans.

Consider a lending market consisting of two banks, both interested in lending to the

firms in our sample. The first bank ranks firms by their true default probability and the

second by the VX-estimated distance-to-default. Both banks discretize their credit scores

such that firms receive a score between 1 and 20 corresponding to each 5%-quantiles. Let

P (Y = 1|X = x) (P (Y = 0|X = x)) denote the probability that a firm with default

indicator Y and risk score x defaults (does not default) after one year. Both probabilities

are calculated based on our simulated sample. Let LGD denote the loss given default and

assume it equals 40% for all firms. Then, if we assume a discount rate of r, a loan with

face value 1 to a firm with score x has a net present value of zero if the spread on the loan,

s(x), is chosen such that

−1 +
(1 + r + s(x))P (Y = 0|X = x) + (1− LGD)P (Y = 1|X = x)

1 + r
= 0.

We assume that both banks reject the loan application from firms with score 1, i.e. firms

ranked among the lowest 5%. Furthermore, the banks charge a fixed fee of 30 bps on top of

the spread that gives an NPV of zero. Hence, the rate offered to the remaining 95% firms

equals

r + s(x) =
P (Y = 1|X = x)

P (Y = 0|X = x)
LGD +

r

P (Y = 0|X = x)
+ 30bp. (4)

Firms that are offered a loan by both banks accept only the cheapest or if the banks offer

the same spread, the loan is split between the two. Firms that are offered a loan only by

one of the banks accept this regardless of the spread. The bank’s realized return, R, on a

loan to firm i with default indicator Yi and risk score x is

R(x) = −1(1 + r) + 1{Yi=1}(1− LGD) + 1{Yi=0}(1 + r + s(x)). (5)

As our final performance evaluation we compare the two banks’ average return to measure

the economic benefit of having a more powerful credit scoring model than the VX-estimated

distance-to-default.

4 Models

We have chosen five different models, besides the Merton model, for the experiment. First,

we use a jump-diffusion and a stochastic volatility specification of the asset value process

to test the robustness of distance-to-default when the firm asset value does not follow

a geometric Brownian motion. A violation of this model assumption is also tested with

the dual business model of Arora & Sellers (2004), who study firms that consist of a high-

volatile and a low-volatile business part. Second, to test Merton’s simple assumption on the

firm’s capital structure and the default triggering mechanism, we first simulate asset values
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from the Black & Cox (1976) model, where firms default the first time an exogenous default

boundary is hit. Next, we use the Leland & Toft (1996) model to further investigate whether

market frictions such as taxes and dead weight costs of default leading to an endogenous

default boundary causes the ranking by DD to break down.

This section provides a short introduction to each of the models. As we wish to study the

default risk under the real-world probability measure, P, all model dynamics are specified

with respect to P. Yet, we do assume arbitrage free markets and the existence of a pricing

measure, Q, since we need to convert asset values into traded equity prices. For simplicity,

we assume a constant risk free rate, r, in all of the models.

4.1 Violations of the Merton asset value specification

4.1.1 Jumps and stochastic volatility

First we look at two extensions of the Merton model, one with stochastic volatility and one

with jumps in asset value.3 The model with stochastic volatility specifies the dynamics for

the firm asset value V as follows:

dVt
Vt

= µdt+
√
vtdW

1
t (6)

dvt = κ(θ − vt)dt+ η
√
vtdW

2
t . (7)

W 1 and W 2 are Brownian motions with correlation cor(dW 1
t , dW

2
t ) = ρdt.

The jump-diffusion model assumes the following dynamics of the firm assets:

dVt
Vt

= (µ− λµJ)dt+ θdWt + JtdNt.

Here, N is a Poisson process with intensity λ. Jt is the jump size, which is log-normally

distributed: ln (1 + Jt) ∼ N
(
ln(1 + µJ)− 1

2σ
2
J , σ

2
J

)
.

For asset value specifications, the value equals the sum of debt, Dt, and equity, Et:

Vt = Dt +Et. As in the original Merton model the firm defaults at debt’s expiration time,

T , if the firm value is not sufficient to repay the face value of debt; VT < P . The value of

equity equals the value of a call option on firm assets: Et = EQ[e−r(T−t)(VT − P )+|Ft
]
,

where EQ[ · |Ft] denotes the expectation with respect to the pricing measure Q given

the information available at time t, Ft. When pricing equity, we allow for a proportional

volatility risk premium, πv = κQ−κ, θQ = θκ
κQ

, and a jump risk premium, πJ = λµJ−λQµQJ .

Both the stochastic volatility and the jump specification are affine processes, so in both

models equity values, Et and default probability, PDt := P(VT < P |Ft), can be calculated

using the transform methods of Duffie, Pan & Singleton (2000).

3Zhang, Zhou & Zhu (2009) provide empirical justification for a structural model with jumps and stochastic

volatility in the firm value process in that this helps explain the credit default swap premium.
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4.1.2 Dual business model

Arora & Sellers (2004) introduce a model inspired by the business composition of large

financial institutions, which can be thought of as composed of two parts: a high-risk and a

low-risk business. To model this idea, let the firm value V be given as V = V 1 +V 2, where

V 1 and V 2 follow correlated geometric Brownian motions:

dV 1
t

V 1
t

= µ1dt+ σ1dW
1
t

dV 2
t

V 2
t

= µ2dt+ σ2dW
2
t ,

where cor(dW 1
t , dW

2
t ) = ρdt. As in the Merton model, the firm defaults if VT < P at debt

maturity T .

Instead of following Arora & Sellers (2004) who simplifies the setup in order to calculate

the default probability analytically, we will use Monte Carlo simulations for calculating

both default probabilities and equity values.

4.2 Violations of the Merton default triggering mechanism

4.2.1 Exogenous default barrier

The Black-Cox model is an extension of the Merton model that allows for a more realistic

default trigger; the firm defaults the first time the asset value falls below some exogenously

given default boundary, B, and hereby the firm may default any time prior to maturity

of debt. This default assumption implies a stochastic default time given by τ = inf{t >
0 |Vt ≤ B}, where we assume that the default barrier is a constant fraction of face value of

debt: B = βP . Like in the Merton model, firm’s asset value process follows a geometric

Brownian motion.

4.2.2 Endogenous default barrier

The Merton model’s assumption on the firm’s capital structure is not maintained in the

Leland-Toft model, where the firm at each moment has a continuum of bonds outstanding

with total principal P and an aggregate annual coupon payment C. Each bond has maturity

T , and as bonds mature they are rolled over. Furthermore, the Leland-Toft model violates

the assumption on market frictions, which is incorporated in terms of a bankruptcy cost and

a tax benefit from issuing debt specified as a marginal tax benefit rate, τ . These frictions

introduce a trade-off from issuing debt: debt coupons are tax-deductible and therefore carry

a tax-benefit over equity but debt also carries a dead-weight cost in the event of default. In

the original article, Leland & Toft (1996) allow firm owners to choose leverage to optimize

the value of the firm. Here we want to ensure that leverage is in line with the rest of

the models, so we consider the face value of debt exogenously given. Still, equity holders
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optimally choose a constant default boundary, VB, at which it is optimal to default, and in

default debt holders recover only a fraction, α, of the asset value. As in the Merton and

Black-Cox models, firm’s asset value process follows a geometric Brownian motion.

5 Results

In this section we present the results of our simulations for each of the six models. We

first discuss our choice of model parameters thoroughly. We then evaluate the ranking

performance of the estimated distance-to-default compared to the true one for each model

in turn.

5.1 Calibration of key parameters

Our choice of key parameters such as leverage and default rate seeks to match observed

averages for the period 2002–2011. The empirical sample, whose characteristics we try to

match, consists of 13,216 firm years for which we have default data from Moody’s, equity

data from CRSP and accounting data from Compustat. To match the size of a typical

sample, we conduct the experiment for M = 10, 000 simulated firms for each model. It

is fairly common in the literature to use a 1-year estimation period and a 1-year default

horizon, so we choose T1 = 1 and T = 1. For all models we set the risk free rate to r = 2%

matching the observed 10-year average 1-year T-bill rate of 2.0%.

We obtain dispersion in firm characteristics by varying initial leverage ratios, P
V0

, from

20% to 70% with an average of 45% close to the empirical sample average of 40%. In

the empirical sample, the average yearly default rate is 1.3%, and we target this default

frequency in our simulated samples to preserve homogeneity across models. First, we fix all

parameters, except the diffusion volatility (θ in the stochastic volatility specification and

σ2 in the dual business model) according to existing literature as laid out in Table 1.Then

for each model, we use the remaining free volatility parameter to ensure that each model’s

T2-year default probability equals the empirical target of 1.3%. This results in an average

1-year distance-to-default of 3.1 which is lower than the observed average of 4.1.

The chosen parameters imply an average asset volatility (σM) of 28% for our simulated

Merton sample, whereas the empirical sample has an average observed volatility of 35%

when estimated by the VX-algorithm. Initially, the average equity volatility in the Merton-

sample is 49% and very close to our empirical sample average of 52%. For all models, the

asset risk premium is set to πa = 3.5% as found by Zhang et al. (2009) for BBB-rated firms.

This corresponds to a market price of risk of λ = 0.132. We set the drift parameter to

µi = r + λσM
i for firm i in all models, and the drift thereby ranges from 3.7%–8.5% across

firms with an average of 5.7%.
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Model Fixed parameters Parameter justification

JD λ = 11 Parameters are from the estimation in

µJ = 0 Wong & Li (2006). The jump risk premium, πJ ,

σJ = 4.2% is from Zhang et al. (2009) for BBB-rated firms.

πJ = 1.9%

SV κ = 0.21 Parameters, κ, η and ρ are from the estimation

η = 10% in Bu & Liao (2013). The volatility risk premium,

ρ = −60% πv, is from Zhang et al. (2009).

πv = −1.5%

DB A1 = 70 Parameters are inspired by Landier, Krüger & Thesmar (2011).

ρ = 40% Arora & Sellers (2004) only implement the model for financial

σ1 ∈ [11%, 42%] firms, which is not our focus, so instead we follow

Landier et al. (2011), who study firms with operations

in more than one industry.

BC β = 70% The parameter is based on the average default

barrier found by Davydenko (2012b).

LT τ = 27% Parameters are from He & Xiong (2012).

C = 6 These parameters are slightly different than those in

α = 60% Leland & Toft (1996), however, He & Xiong (2012)

provide a careful justification for each choice.

Table 1: The table provides an overview of the models included in our experiment, our choice of fixed

parameters under the real world measure, P, and justifications of parameter choices. In each sample,

leverage varies from 20% to 70%, and for each model the volatility parameter (θ in the stochastic

volatility model and σ2 in the dual business model) varies with leverage and is chosen to ensure an

initial T2-year default probability of 1.3%.

5.2 Ranking of firms’ default risk

Figure 2 shows the CAP curves for the Merton model. Here we see practically no difference

between the curve generated by the true DD compared to the estimated DD. The rank

correlation between DDtrue and DDVX calculated by Spearman’s ρ is 0.99 and supports the

observed closeness of the CAP curves. As expected, the ranking produced by the leverage

ratio is clearly inferior, and we conclude that in the Merton model, the volatility estimate

carries important information about a firm’s default risk.
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Figure 2: CAP curves for the estimated and true DD and leverage in the Merton model. Initial leverage

ranges from 20%−70%, and volatility is chosen such that initial 2-year default probability is 1.3%. This

implies a volatility σ in the range 48.9% − 13.2%. The risk free rate is r = 2% and the market risk

premium λ = 0.132.

5.2.1 Ranking in the jump-diffusion model

Next we consider deviations from the Merton model assumptions regarding asset value dy-

namics, and we first evaluate the jump-diffusion specification. The chosen jump parameters,

µJ = 0, σJ = 4.2% and λ = 11, are based on the maximum likelihood estimation of Wong

& Li (2006) with a downward bias on the jump size (Wong & Li (2006) find an average

jump size of 1%). To ensure some diffusion risk for the highest leveraged firms, we impose

a lower bound on σ of 6% despite the fact that this results in a default frequency higher

than the target of 1.3%. Even though the average jump in asset value is zero, we can on

any given day expect to see a negative jump of at least 10% for on average 2.6 of the 10,000

firms in the sample. Wong & Li (2006) assume that the jump distributions under the P
and Q-measure are the same, but we apply the jump risk premium, πJ = 1.9%, from the

calibration in Zhang et al. (2009). This gives us the freedom to choose either µQJ or λQ,

whereafter the other is pinned down by the relation µJλ = µQJ λ
Q +πJ . We set µQJ = −0.2%

implying λQ = 9.4.4

With asset values generated by the jump-diffusion specification, the estimated DD is

4Unreported results show, that assuming zero jump risk premium does not change our conclusions.
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not able to rank firms as accurately as the true default probability as is shown in figure 3,

although the difference between the CAP curves is small still. We also observe a somewhat

lower rank correlation of 0.91 compared to the Merton model. The main reason why DDVX

performs fairly well in this model specification is that the majority of the variation in firm

asset value comes from the diffusion. With the above parameter specification, the asset

value process experiences frequent, but mostly small jumps implying that paths can be well

approximated by a geometric Brownian motion and therefore the VX-algorithm still ranks

well.

The performance of the ranking based onDD estimated using the VX-algorithm strongly

depends on the jump parameter specification. In the literature, there are not many exam-

ples of actual estimations of a Merton model extended to have jumps in asset values, and

therefore we cannot claim that the chosen parameters are well established in the literature.

Yet, there exist several calibrations of the model, where asset value jump parameters typ-

ically are chosen to match some observed characteristics in equity markets. One example

is Zhang et al. (2009) who determine jump parameters by simulations that seek to fit the

sample average and standard deviation of jumps in equity, and arrive at somewhat differ-

ent jump parameters: µJ = 1.2%, σJ = 19% and λ = 0.16 for BBB-rated firms. Here

jumps are very rare but potentially large in absolute size, and using these parameters in

our experiment results in a ranking by DD which is significantly poorer than the ranking

by the true default probability. The Spearman correlation is also low at 81%, and the

difference between the areas under the ROC-curves for the VX-estimated versus the true

DD’s rankings is significant as reported in Section 5.3. Part of this conclusion is due to our

experimental design, where we hold jump parameters fixed and only use diffusion volatility

to ensure a default frequency of 1.3%. This means that the diffusion volatility parameter

becomes low for highly leveraged firms.

In summary, our conclusion regarding the jump-diffusion specification is that the esti-

mated DD performs well as a measure for ranking firms’ default risk as long as the majority

the of variation in asset value come from the diffusion part (or a process well approximated

by a diffusion). However, the ranking will break down if firms have rare, but potentially

large jumps and the diffusion part plays a minor role.

5.2.2 Ranking in the stochastic volatility model

The parameters for the stochastic volatility model are based on the estimation of Bu &

Liao (2013). Performing an estimation of this model is not straight forward since both the

asset value process and its volatility are unobservable processes. Bu & Liao (2013) solve

this with a particle filtering approach which they test on a sample of 27 Dow Jones firms.

We employ their average estimates of η = 10%, κ = 0.21 and ρ = −60% even if based

on a relatively small sample. We use the volatility risk premium, µv = −1.5%, found by
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Figure 3: CAP curves for the estimated and true DD and leverage in the extended Merton model with

jumps in firm asset value. Initial leverage ranges from 20% − 70%, and volatility is chosen such that

initial 2-year default probability is 1.3%. This implies σ in the range 47%− 6%. The jump intensity is

λ = 11 (λQ = 9.4), mean jump size µJ = 0 (µQJ = −0.2%) and jump volatility σJ = 4.2%. The risk free

rate is r = 2% and the market risk premium λ = 0.132.

Zhang et al. (2009), since Bu & Liao (2013) implicitly assume this equals zero.5 As with

the jump-diffusion specification, estimations of the stochastic volatility model is very sparse

in the literature and we cannot claim that our parameter choices are representative for all

firms.

When the asset value dynamics has stochastic volatility, the estimated DD-measure

produces a visibly lower CAP curve than the curve by the true measure as shown in Figure

4. Moreover, the CAP curves show that there is a considerable number of firms with

estimated DD around the median which actually end up in default, but which the estimated

DD cannot identify as high risk firms. This observation of large dislocations in DDVX’s

ranking compared to DDtrue is confirmed by a low Spearman’s ρ of 0.91.

DDVX is more often mistaken about the relative default risk of the firms in this model

because the VX-volatility estimate is approximately equal to the mean of the volatility path

over the estimation period, which can be far from the true long term mean (θ). The key

parameters driving this result are the volatility-of-volatility parameter, η, and the mean

reversion speed, κ. In a sample with a low volatility-of-volatility or a high mean reversion

5Unreported results show, that assuming zero volatility risk premium does not change our conclusions.

15



speed, the asset value paths would resemble a geometric Brownian motion, and DD would

in fact be able to rank firms’ default risk. In section 6 we return to the performance of

distance-to-default for ranking firms with stochastic volatility.
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Figure 4: CAP curves for the estimated and true DD and leverage in the extended Merton model

with stochastic volatility of firm asset value. Initial leverage ranges from 20% − 70%, and volatility is

chosen such that initial default probability is 1.3%. This implies a long term mean volatility (squared to

compare with remaining models),
√
θ in the range 45.2%− 9.6%. The mean reversion speed is κ = 0.21

(κQ = 0.19), vol-of-vol η = 0.10 and correlation ρ = −0.6. The risk free rate is r = 2% and the market

risk premium λ = 0.132.

5.2.3 Ranking in the dual business model

Arora & Sellers (2004), who propose the dual business model, calibrate the model to a small

sample of eight financial firms. Because such firms have quite different capital structures

compared to firms in other sectors, they are usually excluded from empirical default inves-

tigations and they are not the target-firm in our study either. Instead, we use the results

of Landier et al. (2011), who compare the characteristics of firms with business in a single

industry to conglomerates with businesses in more than one industry. We use their empir-

ical results on conglomerates. First, they find that on average 73% of sales comes from the

largest division, which motivates our choice of A1 = 70%. Second, they find the average

asset beta for both the core business (A1) and the divisions (A2) to be β1 = β2 = 0.55. In-

16



stead of using the average β-estimates, we use the 25th quantile for β1 = 0.34 and the 75th

quantile for β2 = 0.77 to obtain a spread between the two. To convert β-values into rea-

sonable estimates of average volatilities, σ1 and σ2, we use the CAPM-relation βi = ρ
σm
σi,

where we put market volatility σm = 0.25 and the industry’s correlation with the market

to ρ = 0.33. This results in average volatilities of σ1 = 0.26 and σ2 = 0.58, which we will

target. If we put σ1 = 0.85 · σM ∈ [11.2%, 41.6%] (average 24%), and fix initial default

probability at 1.3%, this implies σ2 ∈ [27.7; 99%] with an average of 64%. These are not

necessarily parameters of the average conglomorate, but if anything they provide a stressed

test of the dual business model since a higher difference between σ1 and σ2 represents a

model further from the Merton model. We also allow different drift for the two business

parts. We set µ1 = r + λσ1 and choose µ2 such that the weithted (according to size of

business parts) average of the two drift parameters equals the drift in the other models;

µ = 0.7µ1 + 0.3µ2.

CAP curves for the dual business model are shown in Figure 5. Both CAP curves and a

rank correlation of 0.96 show that the estimated DD performs well for ranking firms’ default

risk even in this model, where the asset value specification appear quite different from that

in the Merton model. Yet, if we employ an Anderson-Darling test of whether increments

in log asset value are normally distributed it is in fact accepted at the 5% level for 91%

of the paths compared to 94% for the Merton model. This provides at least a part of the

explanation for why DD is able to rank the dual business firms’ default risk. Yet, we could

choose parameters in this model such that DD’s ranking is bound to fail. For example,

think of a hypothetical firm with A1 = 70 and a face value of debt of P = 70. Assume that

the low risk part of the firm is completely risk free (σ1 = 0), thereby implying that this

firm has zero probability of defaulting on its debt. In this case, the VX-algorithm would

estimate a strictly positive default probability (given σ2 > 0) and thereby overestimate the

default risk of such firm. There may of course exist such firms, but this will not characterize

the average firm in an empirical sample and we consider the above experiment a realistic

test of DD’s ranking abilities in the dual business model.

5.2.4 Ranking in the Black Cox model

Now we turn to the robustness of the DD when the Merton model’s assumption regarding

the timing of default is violated, and we start with the exogenous default barrier specifi-

cation in the Black Cox model. The only parameter in this model, besides the diffusion

volatility, is the default barrier. We have specified this as a percentage of the level of debt

which varies across firms. Davydenko (2012b) conducts a purely empirical investigation

and finds that on average firms default when asset value hits 66% of the face value of debt.

Wong & Choi (2009) estimates the Black Cox model and find β = 74%. We therefore

choose β = 70%. A higher value of β implies a higher hitting probability, i.e. a higher

probability of default prior to debt’s maturity. In our setup, a higher β therefore means
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Figure 5: CAP curves for the estimated and true DD and leverage in the dual business model. Initial

leverage ranges from 20% − 70%, σ1 from 41.6% − 11.2%, and σ2 is chosen such that initial default

probability is 1.3%. This implies a σ2 of 99.2% − 27.7%. The firm consists of 70% low-volatility

business and 30% high-volatility business. The two businesses are correlated ρ = 0.4%. The risk free

rate is r = 2% and the average market risk premium λ = 0.132.

a calibration of the Black Cox model further from the Merton model. Unreported results

show that choosing e.g. β = 80% does not change our conclusions.

Figure 6 shows that the estimated DD’s ability to rank firms’ default risk relative to the

true DD is only slightly weaker in the Black Cox model, and also confirmed by a Spearman

rank correlation of 0.99. The good performance of the VX-algorithm can to some extent

be explained by the fact that the underlying asset value does indeed follow a geometric

Brownian motion. Yet, the CAP curves indicate that the change in default triggering

mechanism does not significantly affect the ability of DDVX to rank firms’ default risk.

Here we observe that the CAP curve generated by leverage is somewhat closer to the other

two CAP curves, and thereby the volatility estimate is relatively less important compared

to its importance in the previously analyzed models.

5.2.5 Ranking in the Leland-Toft model

Finally, we study the robustness of the DD-measure for the Leland-Toft model incorpo-

rating bankruptcy costs and tax advantage of debt in which firms default the first time

an endogenous default boundary is hit. We use the parameters of He & Xiong (2012),
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Figure 6: CAP curves for the estimated and true DD and leverage in the Black Cox model. Initial

leverage ranges from 20% − 70%, and volatility is chosen such that initial default probability is 1.3%.

This implies a σ of 48.6%− 13.2%. The default barrier is chosen to β = 70% of face value of debt. The

risk free rate is r = 2% and the market risk premium λ = 0.132.

who provide a careful discussion of each parameter choice. They employ a slightly higher

recovery value, α, and a slightly lower tax rate, τ , than the original article of Leland & Toft

(1996).

The CAP curves shown in Figure 7 indicate that the estimated DD performs well for

ranking firms’ default risk in this model, and the rank correlation is also high at 0.95. As

for the Black Cox model a part of the explanation lies in the fact that the underlying asset

value does indeed follow a geometric Brownian motion, and since the endogenous default

barrier in this model is even lower than the exogenous barrier applied in the Black Cox

model for most firms, defaults prior to debt’s maturity will be even less important. Yet, the

capital structure in this model is quite different from Merton’s assumptions but according

th the visual inspection this does not influence the estimated DD’s ranking significantly.

The conclusion from the graphical inspections in this section is that for most violations

of the Merton model’s simplifying assumptions, the distance-to-default performs well for

ranking firms’ default risk. Neither a more complex capital structure nor market frictions

seem to visibly reduce DD’s ability to rank firms’ default risk compared to the true default

probability. However, the estimated DD’s ranking is less accurate when the underlying

asset value does not follow a geometric Brownian motion, in particular stochastic volatility
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Figure 7: CAP curves for the estimated and true DD and leverage in the Leland-Toft model. Initial

leverage ranges from 20% − 70%, and volatility is chosen such that initial default probability is 1.3%.

This implies a σ of 45.5%− 10.9%. The marginal tax rate is τ = 0.27, yearly coupon rate is C = 6, and

the debt holders recover a fraction α = 60% of firm value in bankruptcy. The risk free rate is r = 2%

and the market risk premium λ = 0.132.

and jumps in asset value may challenge the ranking by distance-to-default.

Not surprisingly, the performance of leverage as risk score is generally poorer than

distance-to-default. However, for models where firms default the first time their asset

values hit a default boundary related to leverage, leverage CAP curves are closer to DD

CAP curves, which indicates that the volatility estimate is relatively less important in these

models.

5.3 Statistical test of ranking performance

In this section we use the test statistic in (3) to test the hypothesis that the ROC of the

true DD’s ranking equals the ROC of the estimated DD’s ranking. Table 2 shows the

results of the test for each of the six model specifications. As we would expect, the test is

accepted for the Merton model; the area under the ROC curve generated by VX-estimated

distance-to-default is not significantly different from the area under the curve generated by

the true default probability. For the dual business and Black Cox models, we also clearly

accept the hypothesis, whereas the p-values of the test for the jump-diffusion and Leland-
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Toft model specifications are only just over the 5% acceptance level. The test clearly rejects

the hypothesis when asset value has stochastic volatility as was already clear from the CAP

curves. For a jump specification with very rare and potentially large jumps (λ = 0.16,

µJ = 1.2% and σJ = 19%) the test is also clearly rejected with a p-value of 0.1%. Overall,

the formal statistical test conducted here confirms the conclusions of the visual inspection

of the CAP curves.

ROCtrue ROCVX T p-value (%)

Mer. 0.922 0.920 0.76 38.5

JD 0.942 0.936 2.2 14.1

SV 0.944 0.933 9.0 0.26

Dual 0.944 0.941 2.3 13.1

BC 0.929 0.927 1.2 26.7

LT 0.946 0.941 3.4 6.4

Table 2: For each model, the table reports the area, ROCtrue, under the ROC-curve generated by the

true distance-to-default and the area, ROCVX, under the ROC-curve generated by the VX-estimated

distance-to-default. We also report the test statistic, T , in (3) for testing the hypothesis that ROCtrue =

ROCVX together with its p-value.

5.4 Economic benefit of powerful ranking method

Here we calculate the economic benefit of a bank that knows the firms’ ranking by the

true default probability compared to a bank that grants loans based on an estimate of the

distance-to-default. Both banks offer loans to firms they perceive as healthy and calculate

spreads based on their credit scoring model, but firms only accept the loan from the bank

offering the lowest spread. To obtain a robust estimate of the banks’ average returns we

follow Stein & Jordão (2003) and draw 1000 samples each consisting of 200 firms from

our originally simulated pool of firms. For each sample, we assign risk scores to all firms

according to the true default probability and to the estimated distance-to-default, and from

equation (4) we then calculate the spread offered to each firm by each bank. Next, for each

bank we find the return according to equation (5) for the loans they grant. Results for the

two banks’ average returns, market shares and shares of defaults are provided in Table 3.

Note, that since not every firm is offered a loan, the sum of the banks’ market shares and

their shares of defaults are below one.

Table 3 confirms our previous findings. In the original Merton, dual business and Black

Cox models the additional return earned by ranking firms by their true default probability

is very small. For the Leland-Toft model the difference is slightly higher at 6 bp. For firms

with frequent but mostly small jumps (parameters from Table 1) the difference in returns

is also moderate as reported in Table 3, whereas in a sample of firms with very rare and
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Rtrue (bp) RVX (bp) MStrue (%) MSVX (%) DStrue (%) DSVX (%)

Mer. 21 21 50.2 45.7 30.3 21.3

JD 22 16 53.2 43.1 18.0 23.4

SV 24 15 56.6 39.5 20.9 19.7

Dual 22 20 46.4 49.6 13.7 28.8

BC 23 21 50.1 45.8 24.9 21.4

LT 23 17 51.8 44.2 14.7 25.9

Table 3: For each model, the table reports the return (R), market share (MS) and share of defaults

(DS) for the bank ranking firms by their true default probabilities (bank 1) and for the bank ranking

firms by their VX-estimated distance-to-defaults (bank 2). E.g. for the sample of firms generated by

the Merton model, bank 1 will on average earn a return of 21 bp on their lending activities, and also

the competing bank 2 will earn a return of 21 bp on average. Bank 1 lends out to 50.2% of the firms in

the sample, 45.7% of the firms choose loans from bank 2, whereas the remaining firms are refused loans

from both banks. Of the firms, that end up in default, 30.3% had a loan in bank 1, whereas 21.3% had

a loan in bank 2.

potentially large jumps (λ = 0.16 and σJ = 19%) the bank ranking by the true default

probability would have a greater advantage (Rtrue = 23 bp vs. RVX = 15 bp). For firms

with stochastic volatility in asset value a bank that ranks firms by DDV X can potentially

increase its return by up to 9 bp by shifting to a more powerful model.

The low return for the bank ranking firms by their estimated distance-to-default can be

caused either because the bank is unable to set competitive spreads and therefore looses

a large market share, which is the primary problem in the stochastic volatility model and

jump diffusion model, or because it ends up lending to many firms that end up defaulting

as is the case in the dual business and Leland-Toft model specifications. For the Merton

model, and to some extent also the Black-Cox model, the bank using DDV X as risk score

is surprisingly successful in refusing loans to firms that later end up in default, but since it

is unable to set competitive spreads it does not perform better than the bank having the

true default probability as default score.

6 Ranking of stochastic volatility firms

Our results so far indicate that jumps and in particular stochastic volatility in the firm

asset dynamics pose the biggest challenges to the robustness of the distance-to-default as

credit score. Here we study the case where firms have stochastic volatility in more detail

and propose an adjustment to the DD measure that accounts for stochastic volatility.

The VX-estimation can be mistaken about the ranking of firms with stochastic volatility

both because it may estimate firm asset value incorrectly, and because the VX-volatility
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estimate is a constant, that cannot capture possible future changes in volatility. It turns out,

that the asset value estimate is surprisingly close to the true value (see Table 4) even when

the VX-estimated volatility is far from the realized volatility. Therefore, the robustness of

DD is primarily weakened because of its constant volatility assumption. From Table 4 we

see that the VX-ranking makes the biggest mistakes (i.e. estimates DDV X relatively high

at time T1 for firms that actually end up in default) for firms whose estimated volatility is

far from the realized volatility at the ranking time point, T1, and in particular, far from

the realized volatility path over the period t ∈ [T1, T2]. Therefore, when ranking firms’

default risk according to the estimated DD, we risk mis-judging the riskiness of firms

whose volatility path during the estimation period turn out significantly lower than after

the ranking is done.

(vt)t∈[0,T1] (vt)t∈[T1,T2] vT1 σ̂V X
V̂V X(T1)−Vtrue(T1)

Vtrue(T1)
(abs)

total sample 24.4% 24.0% 24.1% 24.4% 0.07% (0.07%)

survivors 24.3% 23.8% 24.0% 24.3% 0.06% (0.06%)

defaults 28.5% 33.5% 31.4% 28.1% 0.85% (0.87%)

defaults with DDV X > 2 22.2% 28.0% 24.3% 21.6% 0.17% (0.17%)

Table 4: The table provides mean values of the volatility paths during the estimation period, (vt)t∈[0,T1],

after the ranking, (vt)t∈[T1,T2], the mean volatility at the ranking time point, vT1 and the VX-algorithm’s

volatility estimate, σ̂V X . The table also reports average (absolute) relative firm value estimation errors,
V̂V X(T1)−Vtrue(T1)

Vtrue(T1) (
∣∣ V̂V X(T1)−Vtrue(T1)

Vtrue(T1)

∣∣).
The reason that the VX-algorithm is fairly precise in its estimation of firm value is that

it is the observed path of equity values, not the volatility parameter, that mainly determines

the asset value path in the VX-algorithm’s inversion of the Black-Scholes formula. For a

given equity value, a change of one percentage point in the volatility parameter merely

leads to a change in asset value of less than 0.2, whereas for a given volatility parameter

a change of 1 in equity value leads to a change of at least 1 in asset value. Furthermore,

for fixed volatility and equity values the Black Scholes inversion and the corresponding

inversion in the stochastic volatility model produce similar results in most cases; the asset

values produced by the two inversion formulas will differ significantly (up to 10%) only for

low equity values combined with a VX-estimated volatility far from the realized volatility.

6.1 Volatility adjustment of distance-to-default

The relatively poor performance of the VX-algorithm for ranking the default risk of firms

with stochastic volatility leads us to consider an adjustment of the traditional distance-

to-default measure that takes stochastic volatility into account. The key observation from

Table 4 is that mainly the deviation of volatility at the ranking time point, vT1 , from its
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long term mean, θ, leads to errors in the ranking and therefore we need a volatility measure

that incorporates this.

Our volatility adjustment is inspired by Packham, Schlögl & Schmidt (2013) who con-

sider a first passage time model, where the firm defaults the first time, τ , its credit quality

process, X, hits a barrier b < 0: τ = inf{t > 0 |Xt ≤ b}. The credit quality is specified

by Xt =
∫ t

0 σsdWs, where Wt is a Brownian motion and σt a strictly positive, càdlàg pro-

cess independent of Wt. Packham et al. (2013) show that in this model the T -year default

probability can be calculated as

P(τ ≤ T ) = 2EP
[
N

(
b−X0√
QVT

)]
,

where QVT is the T -year quadratic variation of X. For a credit quality process with

deterministic quadratic variation, this translates to a ”distance-to-default” given by X0−b√
QVT

.

The stochastic volatility model considered in our experiment does not quite fit into this

setup, firstly because default happens only at maturity, not the first time the barrier b is

crossed, secondly because the stochastic volatility specification in (6)–(7) does not fit into

the format of Packham et al. (2013), and thirdly because our ”credit quality process” (i.e.

log firm asset value) has drift. Nevertheless, we propose to rank firms by the following

volatility adjusted distance-to-default measure:6

DDV =
lnV − lnP√
EP [QVT ]

. (8)

The quadratic variation takes both the long term level of volatility as well as the current

spot volatility into account, and therefore we expect that the quadratic variation is better

able to address the problem of ranking firms whose realized volatility at the time of ranking

is far from its long term volatility as illustrated in Table 4.

In order to calculate DDV we need an estimate of the expected quadratic variation

of the asset value, which is considered an unobservable variable. However, since Table 4

indicates that the VX-algorithm is able to estimate the firms’ assets fairly accurately, we

will use the VX-estimated asset value path over the period [0, T1] to estimate the quadratic

variation. It is commonly accepted that volatility follows a mean reverting process, and

given that this is diffusion driven the expected value of the t-year quadratic variation as

seen from time t = 0 is given by

EP [QVt] = θt+
1

κ
(θ − v0)(e−κt − 1) (9)

In our experiment we assume that the stochastic volatility follows a CIR-process (7), which

has exactly this expected quadratic variation. Our experiment would be biased if we apply

6We also conducted this experiment with DDV =
ln(V

P )+µT− 1
2E

P[QVT ]√
EP[QVT ]

, however the simpler formulation proved

more robust in the simulation experiment.
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information about the underlying model in our estimation, however, the expected quadratic

variation in (9) applies for a large class of stochastic volatility models.

To estimate the parameters, θ and κ, and the state variable, v0, in (9) we turn to

the literature on stochastic volatility models for stock prices, where different methods are

proposed. ? derive a maximum likelihood procedure to estimate all model parameters

simultaneously under both the P and Q-measure, whereas e.g. Reno (2006) and ? use real-

ized volatility to proxy for the spot volatility process and estimate the volatility parameters

directly from this. We will use the realized volatility approach in our estimation.

Whereas volatility estimation in stock pricing models commonly use intraday data to

calculate the realized variance on a daily basis, we face the challenge of having only daily

”observations” of the asset value process available. Therefore, we use daily data over the

period of two weeks (∆t = 1
26) to calculate the realized variance, RV , on a biweekly basis:

RVt =
1

∆t

14∑
i=2

si∈[t−∆t;t]

(
lnVsi − lnVsi−1

)2
.

This gives us 26 observations of the realized variance if considering an estimation period of

one year (T1 = 1) as we have done up until now. To obtain a longer time series, we extend

the estimation period to two years (T1 = 2) such that we have 52 observations to estimate

κ and θ. The spot volatility at the ranking time point, vT1 , is set equal to the realized

volatility over the preceding two weeks.

We follow the estimation approach of Reno (2006) who uses the realized volatility path

to obtain a nonparametric estimate of the linear drift function of the volatility process. We

then find the parameters as the slope (−κ̂) and interception (κ̂θ̂) of the drift function. For

our simulated sample we find an average mean reversion estimate of κ̂ = 1.7 compared to the

true value κ = 0.21,7 and an average long term volatility estimate of θ̂ = 0.079 compared to

the true average of θ = 0.073. The average spot volatility at time T1 is vT1 = 0.074, whereas

the average realized volatility is v̂T1 = 0.066. The mean estimated quadratic variation is

0.073, close to that calculated with the true model parameters, which is 0.074.

In Figure 8 we compare the ranking ability of DDV to that of the true default prob-

ability and the VX-estimated DD in the stochastic volatility model. Notice that with a

2-year estimation period the CAP-curves are closer and the ROC-numbers higher than in

our original experiment in Figure 4. The primary explanation lies in our experimental

design, where we start out all firms with the same initial asset value at time t0, and over

a 2-year estimation period their asset values spread out more than over a 1-year period.

This makes it easier for our credit scoring models to distinguish good from bad firms and

7It is well known from the stock pricing literature, that especially the volatility’s mean reversion parameter

is hard to estimate precisely. Since we use low-frequency estimates of the asset value process (which is itself

an estimated process) compared to the stock pricing literature’s high-frequency data, we are satisfied with this

estimation precision.
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therefore improves the ranking compared to our original experiment. Moreover, with a

longer estimation period the VX-algorithm produces a more precise estimate of the average

volatility level. Still, the CAP curves show a clear improvement in the ranking, when using

DDV instead of DDV X . This is also confirmed by the receiver operating characteristics

in Table 5. The ROC-test now accepts the hypothesis that ROCtrue = ROCV , while still

ROCtrue = ROCV X is rejected, although not as firmly as in Table 2. Yet, the ROC-test

also show that ROCV is not significantly different from ROCVX. The volatility adjusted

distance-to-default is highly correlated with the V X-estimated distance-to-default with a

Spearman’s ρ of 95%, yet its correlation with the true default probability is slightly higher

than the correlation between DDV X and DDtrue, see Table 6.
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Figure 8: CAP curves for the VX-estimated, the true DD and the volatility adjusted DDV in the

stochastic volatility model. Parameters are as in Table 1, except here the estimation period is extended

to 2 years (T1 = 2).

Even if the volatility adjustment clearly improves the ranking performance in the stochas-

tic volatility model, we see that the performance of DDV is poorer than DDV X for the

Merton and in particular for the jump diffusion model as shown in figures 9 and 10. This

is also confirmed by the ROC-numbers in Table 5, where we see that difference between

ROCtrue and ROCV is borderline significant at the 5% level for the Merton model and

highly significant for the jump-diffusion model.

In conclusion, we see a significant improvement in the ranking by the volatility adjusted

distance-to-default compared to the original measure when firms have stochastic volatility,
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but the volatility adjustment is less robust to model misspecifications compared to the

VX-estimated distance-to-default.
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Figure 9: CAP curves for the VX-estimated, the true DD and the volatility adjusted DDV in the

Merton model. Parameters are as in Table 1, except here the estimation period is extended to 2 years

(T1 = 2).

ROCtrue ROCV ROCV X H1 p-value H2 p-value H3 p-value

Merton 0.952 0.949 0.952 3.2% 25% 4.0%

JD 0.948 0.940 0.945 0.1% 9.2% 2.4%

SV 0.960 0.959 0.956 65% 5.6% 23.4%

Table 5: The first three columns in the table provide receiver operating characteristics for the ranking

by the true default probability, DDV and DDV X for the Merton, jump-diffusion and stochastic volatility

models. The three last columns reports the p-values for tests of the hypotheses H1 : ROCtrue = ROCV ,

H2 : ROCtrue = ROCV X and H3 : ROCV = ROCV X .

7 Conclusion

We have found that distance-to-default is a robust measure for ranking firms according to

their default risk under most violations of the assumptions underlying the Merton model
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Figure 10: CAP curves for the VX-estimated, the true DD and the volatility adjusted DDV in the

jump diffusion model. Parameters are as in Table 1, except here the estimation period is extended to

2 years (T1 = 2).

Rank correlation ρ(DDtrue, DDV ) ρ(DDtrue, DDV X) ρ(DDV , DDV X)

Merton 95.6% 99.7% 95.9%

JD 89.6% 97.0% 89.9%

SV 89.1% 88.5% 95.1%

Table 6: The table provides pairwise Spearman rank correlations for DDtrue, DDV and DDV X for the

Merton, jump diffusion and stochastic volatility models.

that we consider. However, when the asset value process may experience large jumps or

has stochastic volatility, we see a significantly poorer ranking performance documented by

both a lower CAP curve and by less profitable lending decisions for a bank using distance-

to-default for credit scoring.

Ignoring stochastic volatility will lead to a significant underestimation of the credit risk

of firms that happen to experience low asset volatility during the estimation period but

which are in fact at risk of a significant increase in future asset volatility. We propose a

volatility adjustment to the traditional distance-to-default, that accounts for the potential

difference between the spot volatility of assets and the long term level. This significantly

improves the ranking of the firms’ default risk when the true model has stochastic volatility,

but it shows less robustness than the traditional DD measure when the true model has
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constant volatility or jumps in asset value. Hence, the increase in precision comes at the

cost of lower robustness.

Clearly, there may be other covariates than DD that are relevant for predicting firm

defaults. For example, the empirical literature (e.g. Campbell et al. (2008) and Bharath &

Shumway (2008)) documents that measures of a firm’s profitability such as net income have

strong explanatory power for the firm’s default risk. Others, such as Davydenko (2012a)

show empirically that a significant fraction of defaults happens because of illiquidity rather

than insolvency. Gryglewicz (2011) introduces cash holdings to the Leland-Toft model and

thereby combines liquidity and solvency concerns of the firm. He & Xiong (2012) extend

the Leland-Toft model to include liquidity shocks to the corporate bond market. For this

particular model, unreported results show that distance-to-default’s ranking performance

is very similar to that in the Leland-Toft model.

As a final caveat, note that we have only checked robustness within reasonable parameter

ranges. We are able to set up samples of extreme firms in each model (i.e. firms with extreme

parameters) for which distance-to-default is unable to provide a precise ranking of the firms’

default risk. Yet, the aim of our study is to draw conclusions for a simulated sample of

firms whose characteristics are empirically plausible.

References

Acharya, V. V., Lochstoer, L. A. & Ramadorai, T. (2013), ‘Limits to arbitrage and hedging:

Evidence from commodity markets’, Journal of Financial Economics 109, 441–465.

Arora, N. & Sellers, M. (2004), ‘Financial EDF Measures: A new Model of Dual Business

Lines’, Moody’s KMV .

Aı̈t-Sahalia, Y. & Kimmel, R. (2007), ‘Maximum likelihood estimation of stochastic volatil-

ity models’, Journal of Financial Economics 83, 413–452.

Bharath, S. & Shumway, T. (2008), ‘Forecasting Default with the Merton Distance to

Default Model’, Review of Financial Studies 21, 1339–1369.

Black, F. & Cox, J. (1976), ‘Valuing corporate securities: some effects of bond indenture

provisions’, Journal of Finance 31, 351–367.
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