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A B S T R A C T

Private equity (PE) performance is persistent, with PE firms consistently

producing high (or low) net-of-fees returns. We use a new variance

decomposition model to isolate three components of persistence. We find

high long-term persistence: the spread in expected net-of-fee future returns

between top and bottom quartile PE firms is 7 to 8 percentage points annually.

This spread is estimated controlling for spurious persistence, which arises

mechanically from the overlap of contemporaneous funds. Performance is noisy,

however, making it difficult for investors to identify the PE funds with top

quartile expected future performance and leaving little investable persistence.

JEL classification: C11 D83 G11 G14 G23 G24

Keywords: Persistence, Private equity, Venture capital, Skill, Learning

IWe are grateful to the editor (Bill Schwert), an anonymous referee, Ulf Axelson, Andrea
Buraschi, Jung Hyun Choi, Peter Cornelius, Wayne Ferson, Ulrich Hege, Chris Jones, Bing
Liang, Yun Ling, Georgios Magkotsios, John Matsusaka, Andrew Metrick, Paul Pfleiderer,
Matt Rhodes-Kropf, Berk Sensoy, Peter Shepard, Per Stromberg, Irene Yi, and seminar
participants at Arizona State University, Columbia Business School, Cornerstone Research,
HEC Paris, Hong Kong University, National University of Singapore, Syddansk Universitet,
University of California at San Diego, University of Alberta, University of Virginia Darden
School of Business, the 2013 Spring Journal of Investment Management (JOIM) conference
on Private Equity, the 7th Private Equity Findings Symposium at London Business School,
the Hong Kong University of Science and Technology Conference on Entrepreneurship and
Finance, the 2014 University of North Carolina Private Equity Conference, the 2014 Argentum
Private Equity Symposium, the 2015 American Finance Association meetings, the 2015
Financial Intermediation Research Society (FIRS) conference, the 2015 Four Nations Cup,
and the Conference on Entrepreneurship and Finance in memory of Ola Bengtsson for helpful
comments and feedback. Morten Sorensen gratefully acknowledges funding by the Danish
Council for Independent Research (“Det Frie Forskningsrd”) under the Sapere Aude program
through grant number: DFF-4003-00095.

∗Corresponding author. Tel.: +1 213 740 0567; fax: +1 213 740 6650.
Email address: korteweg@marshall.usc.edu (A. Korteweg)

Preprint submitted to Elsevier February 10, 2017



1. Introduction

A central question in finance is whether some investment managers

persistently outperform and, if so, how rents are shared between these managers

and their investors. Most empirical studies focus on mutual funds and hedge

funds, with mixed results.1 To the extent that mutual funds generate rents,

Berk and Green (2004) argue that they should accrue fully to the manager. For

private equity investments, e.g., in venture capital (VC) or buyout (BO) funds,

there are several reasons why investors could extract a share of the rents. A

private equity (PE) firm typically manages a sequence of funds that are raised

several years apart, so capital cannot flow elastically across firms. Furthermore,

realized returns are known only at the end of a fund’s life, and the environment of

high uncertainty and large information asymmetries could enable some investors

in these funds (called limited partners or LPs) to learn about the PE firm’s skill,

resulting in persistence in these LPs’ net-of-fee returns.

The seminal study by Kaplan and Schoar (2005) finds evidence of persistence

in net-of-fee PE performance. They estimate the regression

yi,N = α+ β · yi,N−1 + εi,N , (1)

where yi,N is the net-of-fee performance of fund number N managed by PE firm

i. They find a positive and statistically significant β coefficient, which means

that the performance of fund number N − 1 predicts the performance of fund

N of the same PE firm. Their interpretation is that PE firms differ in their

1Lack of persistence in investor returns is shown, for example, by Jensen (1968), Malkiel
(1995), Gruber (1996), and Carhart (1997) for mutual funds, by Brown, Goetzmann, and
Ibbotson (1999) and Griffin and Xu (2009) for hedge funds, by Timmermann and Blake (2005)
and Busse, Goyal, and Wahal (2010) for institutional trading desks, by Graham and Harvey
(1996) for investment newsletters, and by Barber and Odean (2000) for individual investors.
The evidence against persistence in mutual and hedge funds is not unequivocal, however,
and substantial heterogeneity exists across managers. See, for example, Baks, Metrick, and
Wachter (2001), Kacperczyk, Sialm, and Zheng (2005), Busse and Irvine (2006), and Koijen
(2014) for mutual funds, and Titman and Tiu (2011) and Jagannathan, Malakhov, and
Novikov (2010) for hedge funds. For comprehensive reviews of the performance measurement
literature for mutual and hedge funds, see Ferson (2010) and Wermers (2011).
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skills and abilities and that LPs invested in funds that are managed by skilled

PE firms persistently outperform, even-net-of-fees.2

Regression (1) is motivated by a cross-sectional intuition: Some funds

outperform, and when these funds’ predecessors also outperformed, this is

evidence of performance persistence. Eq. (1) is a time series AR(1) model,

however, and a tension exists between this cross-sectional intuition and the

model’s time series properties. In the AR(1) model, persistence is short

term. The expected return of fund N depends only on the performance of

fund N − 1, regardless of whether this past performance was due to skill or

luck, and in the long run all PE funds have the same expected performance,

E[y] = α
1−β . Hence, the AR(1) model is a model of performance persistence

that, by construction, does not allow for long-term performance differences,

which is clearly undesirable.

To better capture the cross-sectional intuition, we analyze a variance

decomposition model of PE performance. Taking the LP’s perspective,

performance persistence has three components. First, long-term persistence

refers to the possibility that some PE firms generate consistently higher (or

lower) expected returns (net of fees). LPs can outperform by investing in these

skilled PE firms with high expected returns. Second, investable persistence

reflects the difficulty of identifying the PE firms with higher expected returns.

When performance is noisy, top quartile past performance could be due to luck

and does not necessarily predict future top quartile performance. This noise

makes it difficult for LPs to identify skilled PE firms, implying low investable

2Following Kaplan and Schoar (2005), several studies of PE performance persistence
have developed different variations of the AR(1) model. Phalippou and Gottschalg (2009)
consider persistence after correcting for biases in the reported interim net asset values (NAVs).
Phalippou (2010) and Chung (2012) find weaker evidence for persistence when regressing
yi,N on yi,N−2 and argue that persistence is short-lived. Robinson and Sensoy (2016) find
persistence in a more recent sample than the original Kaplan and Schoar study. Harris,
Jenkinson, Kaplan, and Stucke (2014b) and Braun, Jenkinson, and Stoff (2016) find that
persistence has declined for buyout firms post-2000. Li (2014) finds evidence of stronger
persistence in buyout firms compared with VC. Hochberg, Ljungqvist, and Vissing-Jorgensen
(2014) also add interim performance of the most recent fund to the AR(1) regression, and find
that this helps predict performance of the next fund.
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persistence. The third component, spurious persistence, arises from the partial

overlap of consecutive funds that are managed by the same PE firm. Partially

overlapping funds are exposed to the same market conditions during the overlap

period. Even though these contemporaneous exposures are transitory, so that

past performance does not predict future performance, they induce a positive

correlation in the performance of subsequent overlapping funds that shows up

as spurious persistence in the AR(1) model. The AR(1) model is constrained to

capture the three persistence components with its single beta coefficient, which

is too restrictive given their variation in the data. To the best of our knowledge,

our analysis is the first to formally distinguish between these components of

persistence and to quantify them separately.

We find substantial long-term persistence in expected net-of-fee returns.

Top quartile PE firms have annual expected net-of-fee returns that are 7 to 8

percentage points higher than bottom quartile firms, on average, across all fund

types. Performance is noisy, though, and we find little investable persistence,

particularly for VC firms. VC performance is mostly driven by luck, and LPs

need to observe an excessive number of past funds (25 or more) to identify VC

firms with top quartile expected returns with reasonable certainty. Furthermore,

we find a substantial amount of spurious persistence, accounting for 44% of

the observed autocorrelation in PE firms’ returns, on average across model

specifications.

Comparing subsamples, smaller funds have greater long-term persistence

and more investable persistence (higher signal-to-noise ratios) than larger funds,

especially for VC firms. We find less long-term persistence for PE firms in the

US, followed by Europe, and greatest persistence for PE firms in the rest of

the world (ROW), which also have more volatile performance. We confirm the

findings in Braun, Jenkinson, and Stoff (2016) and Harris, Jenkinson, Kaplan,

and Stucke (2014b) that long-term persistence has declined in the 2000s, relative

to the 1990s. This decline is largest for VC firms. Substantial persistence still

exists for BO and other firms post-2000.

If LPs are risk neutral, so that they simply maximize expected returns
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net-of-fees, then our results are directly applicable to their portfolio allocation

decisions. For risk-averse LPs, we estimate a second set of risk-adjusted

performance specifications that control for common risk exposures, such as

systematic market risks. These specifications assume identical exposures in the

cross section of PE funds of the same type and vintage year, but they allow for

time-varying risk exposures and risk premiums across vintages. This follows the

general PE literature [e.g., Driessen, Lin, and Phalippou (2012) and Hochberg

and Rauh (2013)], in which the limitations of fund-level data do not allow for

estimation of fund or firm-specific risk exposures. Our results suggest that there

is long-term persistence even in risk-adjusted returns.

Our findings of large long-term persistence but little investable persistence

have important implications. They can explain LPs’ recent focus on obtaining

more detailed information about PE firms and their past funds (such as

firms’ internal organization and culture, compensation structure, incentives,

alignment of interests, internal processes, and deal sourcing) to help analyze

past performance [see Ewens and Rhodes-Kropf (2015); Jenkinson, Jones, and

Martinez (2016); Kuckertz, Kollmann, Rohm, and Middelberg (2015)]. The

additional information is necessary for LPs to identify top PE firms, as past fund

performance by itself is insufficient. This lends support to a new explanation for

the puzzle that net-of-fee outperformance is not competed away, contrary to the

prediction by Berk and Green (2004). Skilled PE firms are scarce, but LPs with

the ability to identify these skilled firms can also be scarce [for example, Lerner,

Schoar, and Wongsunwai (2007); Hochberg and Rauh (2013); Sensoy, Wang,

and Weisbach (2014) present evidence that LPs have heterogeneous investment

skills].3 Skilled LPs should therefore earn rents. Our results are also consistent

with the model in Hochberg, Ljungqvist, and Vissing-Jorgensen (2014), in which

3As the mutual fund literature argues, manager skill is measured by gross-of-fee
performance, possibly adjusted for the amount of capital under management [e.g., Jensen
(1968); Malkiel (1995); Berk and Green (2004); Berk and Van Binsbergen (2015)]. Such skill
is a necessary condition [though not sufficient, as Berk and Green (2004) argue] for persistence
in net-of-fee returns. PE firms report only net-of-fee performance, and therefore we cannot
quantify the existence of managerial skill directly.
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net-of-fee performance persistence arises from a hold-up problem created by

the asymmetric information between LPs and the PE firm, and the model by

Garleanu and Pedersen (2016), in which search frictions generate net-of-fee

persistence.4 Furthermore, our evidence helps explain empirical results in

the recent literature on the strength of flow-performance relations in PE. For

example, the low investable persistence of VC firms is consistent with their lower

flow-performance sensitivity relative to buyout firms, as reported by Kaplan and

Schoar (2005) and Chung, Sensoy, Stern, and Weisbach (2012). We also find that

learning effects are strongest for smaller size funds of a given type, which tend

to be funds of younger firms, consistent with the result in Chung, Sensoy, Stern,

and Weisbach (2012) that funds with lower sequence numbers have stronger

flow-performance sensitivity than later funds of the same firm.

Our empirical variance decomposition model, or hierarchical linear model,

generalizes the classical analysis of variance (ANOVA) method to capture the

particular features of PE performance. The model allows us to separate the three

different forms of persistence (long-term, investable, and spurious persistence),

and it differs from the AR(1) model in several ways. First, it explicitly models

the timing of funds without relying on their numbering, which is important

when funds are simultaneous, so that it is arbitrary which one is labeled N or

N − 1. Second, it accounts for the overlap between funds and distinguishes

situations in which fund N follows quickly after fund N − 1 from cases in which

funds are many years apart. Third, it is robust to missing data for intermediate

funds. Fourth, unlike the AR(1) regressions, our model can accommodate PE

firms with only a single fund, which do not have a fund N − 1. These firms are

typically worse firms, and they are excluded in the AR(1) model, which could

introduce systematic biases. Our method also captures estimation error in the

model parameters and the effects of parameter uncertainty on the LPs’ inference

problem of identifying skilled PE firms.

4Glode and Green (2011) present a similar model for hedge funds in which the source of
asymmetry is knowledge about the PE manager’s investment strategy. Marquez, Nanda, and
Yavuz (2015) consider the information asymmetry between entrepreneurs and PE firms.
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Econometrically, unlike standard ANOVA models, our model is

semi-parametric, and it does not require fund returns to follow a normal

distribution. We use a mixture-of-normals distribution and a Bayes factor

test to determine the appropriate number of mixtures. This generalization

is especially important for VC funds, whose returns are highly skewed. Our

Bayesian estimation approach, which is described in detail in the Appendix,

is computationally efficient, and it provides accurate small sample inference for

the estimated parameters, which is important because the parameters of interest

are variances and ratios of variances (in the case of signal-to-noise ratios), which

have nonstandard asymptotic distributions.

One limitation of our analysis is that it focuses on cross-sectional

heterogeneity in PE performance. We do not consider aggregate skill and

performance, and we do not investigate whether PE in aggregate outperforms

the market or other types of investments. For studies of aggregate PE

performance, see, for example, Korteweg and Sorensen (2010), Ang, Chen,

Goetzmann, and Phalippou (2014), Harris, Jenkinson, and Kaplan (2014a),

and Korteweg and Nagel (2016).

Our analysis is related to the recent literature on performance persistence in

mutual funds and hedge funds. Kosowski, Timmermann, Wermers, and White

(2006) and Fama and French (2010) estimate manager skill fixed effects using a

bootstrap method, which allows for flexible distributions of the return residuals,

like our mixture-of-normals distribution. Barras, Scaillet, and Wermers (2010)

and Ferson and Chen (2015) extend the bootstrap approach to the null

hypothesis that only a fraction of managers have no skill, a generalization that

is similar to our prior distribution of managers’ skill. However, fixed effects skill

estimates and bootstrapping are more applicable in settings with long panel

data sets (i.e., with many observations per individual), such as mutual and

hedge funds.

A main benefit of the Bayesian approach is its application to learning

and investability, but it also has technical benefits for estimating variance

decomposition models, for example, in enforcing non-negative variance
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estimates. Bayesian approaches to skill assessment in mutual and hedge funds

have been applied, amongst others, by Baks, Metrick, and Wachter (2001),

Pastor and Stambaugh (2002a, 2002b), Jones and Shanken (2005), Avramov

and Wermers (2006), and Busse and Irvine (2006). In particular, Jones and

Shanken (2005) use a random effect prior on skill that is close to ours. However,

these studies do not allow for non-normal residuals, and they do not explore

the speed of learning about skill over time. To our knowledge, the variance

decomposition approach we pursue here is new to the literature.

The problem of producing a skill estimate for a manager who simultaneously

manages investments across several funds has not received much attention in the

mutual and hedge fund literatures. Wu, Wermers, and Zechner (2016) show that

multi-fund managers are common and that the average mutual fund manager

manages 2.2 funds at any given time. Our method for controlling for overlap

can therefore also be useful for mutual and hedge fund studies.

More generally, evaluating persistence and separating skill from luck are

fundamental issues in economics and finance. For example, other applications

of our method include the performance persistence of serial entrepreneurs [e.g.,

Gompers, Kovner, Lerner, and Scharfstein (2010) and Bengtsson (2013)] and

studies of management style, such as Bertrand and Schoar (2003), which address

the closely related issue of persistence in managers’ business practices.

The paper proceeds as follows. In Section 2, we present the data. Section 3

describes our empirical model. Section 4 discusses our results and the evidence

for long-term persistence in private equity performance. Section 5 evaluates

investable persistence. Section 6 analyzes various subsamples of the data.

Section 7 discusses robustness to using an alternative measure of fund returns,

and Section 8 concludes.

2. Data

The analysis uses an extensive data set with information about PE firms

and the funds they manage. The data are obtained from Preqin and include
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fund-level information such as performance, size, type (e.g., VC or BO),

and geography. Preqin is a commercial data provider that started collecting

performance data using Freedom of Information Act requests to public investors

and later extended the scope of its data collection to other public filings and to

voluntary reports by some general partners (GPs) and LPs. For each fund,

Preqin reports aggregate net-of-fees fund performance, such as the internal

rate of return (IRR) and the total value to paid-in capital multiple (TVPI).

No information about gross-of-fees performance is available. We also cannot

calculate the public market equivalent (PME) measure of fund performance,

which has some advantages when evaluating PE performance (Korteweg and

Nagel (2016); Sorensen and Jagannathan (2015)), because the data do not

contain cash flows between the GP and LPs.

We focus on the IRR, which is the annualized return to LPs net of

performance fees (carried interest) and management fees. While it has

well-known limitations, IRR is the most widely available fund performance

measure, and it is commonly used to analyze PE performance.5 Though the

IRR is an absolute performance measure, our model controls for general market

performance and systematic risks. The analysis in Section 7 confirms our results

using TVPI as an alternative measure of performance.

Harris, Jenkinson, and Kaplan (2014a) compare several data sets with PE

fund performance. Most of these data are from commercial data providers

(Preqin, Burgiss, and Cambridge Associates) and one data set is from a large

anonymous LP that was also studied by Robinson and Sensoy (2016). For

VC funds, Preqin has slightly weaker coverage for the 1980s and 1990s, but it

provides the most comprehensive coverage for the 2000s. For BO funds, Harris,

5Other papers that use IRR to measure PE performance include Ljungqvist and Richardson
(2003), Kaplan and Schoar (2005), Lerner, Schoar, and Wongsunwai (2007), Ljungqvist,
Richardson, and Wolfenzon (2008), Kaplan and Stromberg (2009), Chung (2012), Franzoni,
Nowak, and Phalippou (2012), Higson and Stucke (2012), Acharya, Gottschalg, Hahn, and
Kehoe (2013), Caselli, Garcia-Appendini, and Ippolito (2013), Hochberg and Rauh (2013),
Jenkinson, Sousa, and Stucke (2013), Lopez-de Silanes, Phalippou, and Gottschalg (2015),
Robinson and Sensoy (2016), Harris, Jenkinson, and Kaplan (2014a), Hochberg, Ljungqvist,
and Vissing-Jorgensen (2014), Li (2014), and Sensoy, Wang, and Weisbach (2014).
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Jenkinson, and Kaplan find that Preqin contains the largest total number of

funds for the 1990s and 2000s (but not for the 1980s). Importantly, the Preqin

data have performance information for the largest number of both BO and

VC funds. Moreover, they find no evidence that Preqin’s IRR performance

data are biased relative to the performance data from the other data sources.

Phalippou (2014) finds that Preqin is representative of the data sets from Burgiss

and Cambridge Associates, though Phalippou considers only BO funds. Hence,

when analyzing the performance and persistence of PE funds, Preqin is one of

the best data sets available.

The two main fund types are VC and BO funds, but Preqin also classifies

some funds as real estate, fund-of-funds, infrastructure, turnaround, special

situations, co-investment, and venture debt funds, which we collectively refer to

as Other funds. The majority of Other funds are real estate and funds-of-funds,

and though the investments by these two fund types are very different, they have

(surprisingly) similar performance and persistence characteristics. Therefore, we

combine all Other funds for most of our analysis.

We define a fund’s location by the geographical location of its GP. This

location can sometimes differ from the locations of its portfolio companies, but

we obtain very similar results when we define location in terms of the fund’s

geographical investment focus.

2.1. Descriptive statistics

We restrict our sample to funds with available performance information.6

Our model does not require a fund to be preceded by another fund, and

6Our estimates remain valid with randomly missing fund performance data. Moreover,
survivorship does not bias our parameter estimates when each PE firm’s survival depends
only on past observed data (i.e., performance), but not on the true parameter values, so
observed data are a sufficient statistic for survivorship. Similar (or stronger) assumptions
are common in studies of mutual fund performance persistence, such as, for example, Baks,
Metrick, and Wachter (2001) and Pástor and Stambaugh (2002). Formally, it always holds
that p(θ|data, survival) = [p(survival|data, θ)/p(survival|data)] · p(θ|data), where θ contains
the model parameters. The θ estimates are then valid when p(θ|data, survival) = p(θ|data),
which holds when the fraction in brackets equals one.

10



we include PE firms with only a single fund.7 To avoid concerns about

funds’ self-reported intermediate IRRs and NAVs [see Phalippou and Gottschalg

(2009); Brown, Gredil, and Kaplan (2016); Jenkinson, Sousa, and Stucke (2013);

Barber and Yasuda (2016)], we restrict our sample to fully liquidated funds.

We eliminate funds with less than $5 million in committed capital (in 1990 US

dollars) to exclude smaller, idiosyncratic funds.

Table 1 shows descriptive statistics for our final sample. The sample contains

1,924 funds, raised between 1969 and 2001 and managed by 831 unique PE firms.

Of these funds, 842 are VC funds (managed by 409 firms), 562 are BO funds

(285 firms), and the remaining 518 funds (197 firms) are classified as Other

funds.8 Fig. 1 shows the distribution of the number of funds per PE firm, by

firm type. The average VC and BO firm manages about two funds during our

sample period (2.6 for Other firms), but the median VC and BO firm manages

just a single fund. Table 1 shows that the average (median) overlap between

two funds managed by the same PE firm, which is important when assessing

persistence, is 5.8 years (6.0 years) for VC and BO and 6.8 years (7.0 years) for

Other.9

** INSERT TABLE 1 AND FIGURE 1 NEAR HERE **

The average (median) VC fund has $207 million ($110 million) of committed

capital, compared with $694 million ($300 million) for BO and $373 million

($207 million) for Other funds. For VC and Other funds, the subclassifications

in Panel B of Table 1 show that late-stage VC funds and distressed debt funds

7Firms with a single fund do not help identify persistence parameters directly. With a
sample of only single fund firms, it would not be possible to distinguish whether the dispersion
in fund performance were due to dispersion in long-term persistence, idiosyncratic variation,
or some combination. Still, single fund firms are informative about the remaining model
parameters. They contain information about time fixed effects and the total variance of
performance. That said, we have confirmed that the results are robust to excluding single
fund firms from the sample.

8The number of firms by type add up to more than the 831 unique firms in our sample,
because some PE firms manage funds of several types.

9We report overlaps for fund pairs, and there can be more pairs than individual funds, as is
the case for VC funds. To illustrate, a PE firm that raises a fund every second year manages
five partially overlapping funds (raised in years 0, 2, 4, 6, and 8). These five funds form ten
fund pairs.
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tend to be larger, whereas early stage VC and natural resource funds tend to

be smaller. There are no subclassifications of BO funds.

Turning to performance, Panel A of Table 2 shows that the average (median)

fund IRR is 17.7% (8.6%) for VC funds, 16.9% (14.9%) for BO funds, and 13.9%

(11.9%) for Other funds. Table 2 shows IRRs by vintage year and fund type,

and Fig. 2 plots average IRRs. For VC funds, very strong performance is evident

during the dot-com bubble in the late 1990s, with average IRRs as high as 45.2%

annually, followed by a sharp drop after the dot-com bubble burst. Funds have

ten-year lives, so funds with vintage years well before 2000 were exposed to

this bubble and have lower performance. BO performance is more stable and

shows a recovery toward the end of the sample period, relative to VC and Other

funds. The performance of Other funds is even more stable, showing an earlier

but more modest decline in the late 1990s followed by a comparable modest

recovery.

** INSERT FIGURE 2 NEAR HERE **

** INSERT TABLE 2 NEAR HERE **

Our empirical analysis uses total log returns (i.e., continuously compounded

returns) instead of annualized IRRs. The total log return for fund u of firm i is

denoted yiu. It is calculated by compounding the fund’s IRR over its ten-year

life:

yiu = 10 · ln(1 + IRRiu) . (2)

The natural logarithm reduces the skewness of the IRRs, and it allows us

to decompose the total ten-year return into a sum of annual returns. The

transformation fails for the two funds in our sample with IRRs of -100% (one is

a vintage 2001 VC fund and the other is a 1998 BO fund), and these two funds

are excluded in the empirical analysis, but our results are robust to including

them with IRRs set equal to the first (lowest) percentile of the IRR distribution.
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3. Variance decomposition model

Our empirical model is a hierarchical linear model, which generalizes the

classical analysis-of-variance (ANOVA) decomposition. Hierarchical linear

models have been widely used, for example, in education research, because they

capture the hierarchical structure that arises when, for example, one observes

individual students, who are grouped into classrooms, which are grouped into

different schools, which are located in different districts, etc. Such a hierarchical

structure also arises for PE when individual PE funds are managed by different

PE firms and span different time periods. Although not pursued here, our

model could be extended to include data at additional levels, for example, data

for individual deals, as in Braun, Jenkinson, and Stoff (2016), or data with

LPs’ holdings of PE funds, as in Sensoy, Wang, and Weisbach (2014). General

overviews and discussions of hierarchical models are in Raudenbush and Bryk

(2002) and De Leeuw, Meijer, and Goldstein (2008).

3.1. Economic intuition

To illustrate the intuition behind the variance decomposition in short panels,

consider a set of 60 PE firms. Each firm makes just two investments (or

manages two funds), each of which succeeds or fails. Of the resulting 120

investments, we observe that one-half fails and the other half succeeds, and

the unconditional success probability is thus 50%. If the investments were

statistically independent, each firm would have a 25% probability of zero, a 50%

probability of a single, and a 25% probability of two successful investments,

and we should see 15 of the 60 PE firms with no successes, 30 with a single

success, and the remaining 15 firms with two successful investments. But

imagine instead that the successes are evenly distributed among the 60 PE

firms, so 20 have zero, 20 have one, and 20 PE firms have two successful

investments. In this case, the performance variation between PE firms exceeds

the variation that is implied by the variation within PE firms if they were

13



statistically independent, so the investments cannot be independent.10 Some

PE firms have higher (and some have lower) success probabilities. In this

example, the even distribution of successes among PE firms is consistent with

each firm’s success probability being drawn from the uniform distribution on

[0, 1]. If pi ∼ U [0, 1] denotes firm i’s success probability, then the expected

probability of two successes is E[p2i ] = 33%. Following this intuition, our model

defines and measures persistence by comparing performance variation within

PE firms with performance variation between firms. Excess variation between

firms, as in this example, implies persistence.

Excess variation, and hence persistence, also implies that the outcomes of

the investments made by a PE firm are positively correlated. In the example,

let s1 and s2 be indicators for the outcomes of the two investments by a given

PE firm. When pi ∼ U [0, 1], then cov(s1, s2) = E [s1s2]− E [s1]E [s2] = 1/12.

This intuition leads to a natural distinction between PE firms’ past

performance and expected future performance. With pi ∼ U [0, 1] and using

Bayes’s rule, the posterior density of pi conditional on observing two past

successes is f(pi|s1 = 1, s2 = 1) = 3p2i . Some firms with two successes are

mediocre firms that have been lucky, and the probability that a firm with

top tercile past performance (two successes) has top tercile expected future

performance is only Pr (pi ∈ [0.66, 1]|s1 = 1, s2 = 1) = 70%.11 The success

probability of a new investment by firms with top tercile past performance

is E [pi|s1 = 1, s2 = 1] = 75%, and the success probability for firms with actual

top tercile expected performance is E [pi|pi > 66%] = 83%. To summarize, in

short panels, it is not possible to determine precisely which firms have high or

10Here we ignore the possibility that the number of successes are evenly distributed across
firms due to random sampling. Our argument is an identification argument, and it should be
interpreted in the limit as the number of firms tends to infinity. Put more simply, nothing
changes if one replaces our 60 firms making a total of 120 investments with, e.g., 60 million
firms making a total of 120 million investments. What is important is that each firm makes
only a small number of investments (funds).

11In this particular example, in which a third of the funds have two successes, a third have
a single success, and a third have none, it is natural to consider top tercile performance. In
practice, it is more common to consider top quartile performance.

14



low pi, but the dispersion in pi can still be determined.

3.2. Comparing random and fixed effects

The previous example essentially describes a random effects model in which

the random effect is each firm’s success probability, pi. The example illustrates

some advantages of the random effects model over the more typical fixed

effects model in short panels (i.e., panels with few observed outcomes for each

individual firm) with large idiosyncratic error terms. In these short panels,

fixed effects are estimated with substantial standard errors, making it difficult

to interpret the dispersion in the estimated fixed effects, because it confounds

the true variation in the fixed effects, which is due to skill differences between

firms, with the standard errors of the fixed effects. To illustrate, continuing

the example, let fi be the estimated fixed effect for PE firm i, so PE firms

with two successes have fi = 1, firms with a single success have fi = 1
2 , and

firms with no successes have fi = 0. Because pi varies uniformly between

zero and one, while there are equal numbers of firms with fi = 0, 1
2 , 1, these

fixed effects are clearly noisy estimates of the true underlying pi. The variance

in the estimated fixed effects, var[fi] = 1
6 , is twice the variance due to actual

long-term persistence, which is var[pi] = 1
12 .12 Random effects models avoid this

problem by explicitly parameterizing and estimating var[pi], at the cost of more

restrictive assumptions (primarily distributional assumptions and independence

between the random effects and the covariates).

A second advantage of the random effects model is that the model and

its estimates are directly applicable to the LP’s inference problem and, hence,

provide a consistent way to evaluate the speed of learning and investable

persistence.

12The literature about this problem [dating back to Stein (1956) and Lindley (1962)] has
developed a number of “shrinkage” methods that reduce the estimated dispersion in the fixed
effects, under various assumptions, to isolate the dispersion that is due to actual cross-sectional
differences. Shrinkage methods are effectively ways to pull estimates from fixed effect models
closer to the corresponding random effects estimates [see, for example, Efron and Morris
(1975)].
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3.3. Full model

Our full model generalizes the above example. The main outcome variable

is fund performance, not simply success or failure. The model allows for

overlapping funds and includes explanatory covariates. The basic intuition,

however, remains the same.

The model, which is estimated separately for each fund type (VC, BO,

Other) is set up as follows. Let PE firms be indexed by i. Each firm manages a

sequence of funds indexed by u. Each observation contains the performance of

a fund and characteristics of the fund and firm. The ten-year total log return

of fund u managed by firm i is

yiu = X ′iuβ +

tiu+9∑
τ=tiu

(γi + ηiτ ) + εiu . (3)

The summation runs over the fund’s ten-year life, with year tiu denoting the

fund’s first year of operation (its vintage year). Xiu is a vector of observed

fund-specific covariates and can include fund or firm characteristics, vintage

year fixed effects, etc.

The three random effects that determine the covariance structure are γi,

ηiτ , and εiu. The γi term captures long-term persistence, similar to the success

probability, pi, in the example above. At birth, each PE firm receives an

independent draw of γi, distributed γi ∼ N
(
0, σ2

γ

)
, which remains constant

for all funds managed throughout the life of the firm.13 Funds of a PE firm

with higher γi have persistently higher expected returns (corresponding to a

higher success probability, pi, in the example). The variation in γi across PE

firms reflects differences in expected returns across PE firms. When there is little

variation in γi (i.e., σ2
γ is small), then PE firms are similar, and there are few

13In PE there are too few funds for each firm to allow γ to vary throughout the life of a PE
firm. In Section 6, we divide the sample period into early and late subsamples, which permits
γ to vary across these subsamples and somewhat mitigates this problem. A constant γ is the
best case for the LP’s inference problem of determining γ, and this case thus represents an
upper bound on the investable persistence in PE.
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long-term persistent differences in their performance. When σ2
γ is larger, more of

the performance differences are due to heterogeneity in expected returns across

PE firms. Without loss of generality, the mean of γi (along with the means of the

other random effects) is normalized to zero, and the industry level of expected

returns is captured by the intercept term in Xiu. The model is parameterized

with γi inside the sum in Eq. (3), so γi is the annualized abnormal performance

for firm i relative to its peers, and each fund earns γi ten times during its life.

The covariance in the returns of partially overlapping PE funds is captured

by the PE firm-year-specific effects, independent and identically distributed

(i.i.d.) ηiτ ∼ N
(
0, σ2

η

)
. Two overlapping funds that are managed by the same

PE firm share an ηiτ term for each year of overlap, and these terms generate

short-term correlations in the overlapping funds’ performances. Economically,

such correlations can arise due to common strategies, common risk exposures, or

common investments in the same portfolio companies.14 To illustrate, suppose

a PE firm manages two funds with vintage years 1999 and 2001, both focused

on investments in emerging markets. From 2001 to 2009, these two funds would

then have similar emerging market exposures. Due to these common exposures,

an AR(1) regression of yi,N on yi,N−1 would yield a positive coefficient, but

this coefficient would not be evidence of actual persistence, and it does not

imply that past performance predicts future performance. When these spurious

correlations are large, the estimated σ2
η is large. Conversely, when there is no

effect of shared exposures, the variance tends to zero. The model accommodates

all of these cases.15

The error term εiu captures fund-specific idiosyncratic performance shocks.

It is i.i.d. across funds, across firms, and over time. Because fund performance

14Braun, Jenkinson, and Stoff (2016) find that an average BO fund with 15.6 investments
contains 1.0 deals that are common with another fund that is managed by the same PE firm.
They do not have data for VC or Other firms.

15We also estimate specifications that account for overlap only during the first five years of
the funds’ lives, to focus on the correlation that is due to the investment decisions that are
made in these initial years. These specifications give similar estimates, and the main results
and conclusions remain unchanged.
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is skewed, εiu is modeled using a mixture-of-normals distribution, which is

considerably more general than the normal distribution. This flexibility is

particularly important for VC performance, which we find requires a mixture of

three normals, whereas the performance of BO and Other funds is captured by

mixtures of just one or two normal distributions. Details are in the Appendix.

The total variance of yiu is the sum of the variances of the three random

effects. The summation in Eq. (3) contains the same γi term ten times, and it

contains ten i.i.d. ηiτ terms, so the total variance is

σ2
y = 100σ2

γ + 10σ2
η + σ2

ε . (4)

The covariance between two funds that are managed by the same PE firm and

have N years of overlap is

cov(yiu, yiv) = 100σ2
γ +Nσ2

η . (5)

This covariance relation is plotted in Fig. 3, and this figure also illustrates the

identification of the model. The parameters of interest are the variances of the

three random effects, σ2
γ , σ2

η, and σ2
ε . In Fig. 3, the intercept is σ2

γ and the slope

is σ2
η, so these two variances are identified by comparing the covariances of funds

with increasing amounts of overlap. Given σ2
γ and σ2

η and observing the total

variance, σ2
y, the remaining σ2

ε is identified as the residual variance in Eq. (4).

Thus, although the model cannot determine when exactly returns are earned

during a fund’s life (as we use only each fund’s total return, when liquidated),

it can determine how much of the variation in funds’ total performance is due

to each of the three random effects.

** FIGURE 3: OVERLAP AND COVARIANCE **

With respect to the vector of covariates, Xiu, we estimate two specifications.

In Specification I, Xiu contains only a constant term. All correlations in

contemporaneous performance, including correlations due to common exposures

to systematic risk factors that are shared across all firms, are then captured
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by the ηiτ terms. To explicitly control for these risk exposures, Specification II

adds vintage year fixed effects to Xiu (the model is then formally a mixed-effects

model). All funds with the same vintage year experience the same factor returns

(e.g., total market returns) over their ten-year lives. If these funds have the

same exposures to these factors [e.g., the same beta in the capital asset pricing

model (CAPM) or the same loadings on the Fama and French risk factors],

then vintage year fixed effects capture the common performance component

that is due to these exposures. Under this assumption, γi then represents the

PE firm’s risk-adjusted annualized expected return relative to other PE firms

(as it is centered at zero). It does not, however, show performance relative to

the market overall, and it cannot tell whether PE outperforms in the aggregate.

Apart from the assumption that PE firms have the same contemporaneous

factor exposures, this risk-adjustment is general.16 Each vintage year has a

separate fixed effect, so risk exposures and factor premiums can vary over

time, for example, due to trends in leverage and credit market conditions.

The exposures can also vary by fund type, because we estimate the model

separately for VC, BO, and Other funds. In Section 6, we also estimate the

model separately for finer subsamples.

3.4. Benefits of the Bayesian estimator

We estimate our model using a Bayesian estimator that exploits recent

advances in numerical computing [Markov chain Monte Carlo (MCMC), Gibbs

sampling, and posterior augmentation]. The estimation procedure is described

in detail in the Appendix. Essentially, our random effects model imposes a

particular structure on the covariance matrix. While this model could, in

principle, be estimated by classical maximum likelihood estimation (MLE) or

the minimum-norm quadratic unbiased estimation (MINQUE) of Rao (1972),

the Bayesian estimator offers several advantages. When the parameters of

16We cannot estimate fund-level risk loadings because we observe only one return per fund.
Even firm-level risk loadings are not feasible given the typical number of funds per firm. The
risk-adjustment issue is pervasive in the PE literature, and vintage-year fixed effects are also
used to control for systematic risk, for example, by Hochberg and Rauh (2013).
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interest are variances and functions of variances, classical estimators have

difficulty imposing non-negativity constraints on these parameters. It is also

difficult to derive the asymptotic distributions of variance parameters and

(nonlinear) functions of these parameters. The Bayesian estimator solves these

problems. In addition, it allows for correct small sample inference, and it

explicitly accounts for parameter uncertainty in the estimated parameters.

Finally, allowing for non-normal distributions is important in PE data, but

mixtures of normals models are difficult to estimate using MLE due to the

label-switching problem. The standard solution is to use an expectation

maximization (EM) algorithm, which uses data augmentation in a similar

fashion as the Bayesian approach. However, the EM algorithm is complex and

does not resolve the other issues with MLE-type estimators.

4. Results

4.1. IRR regressions

We first confirm the findings by Kaplan and Schoar (2005) using our

data. Table 3 (which follows the layout of Table VII in Kaplan and Schoar)

shows ordinary least squares (OLS) regressions of IRRi,N on IRRi,N−1 with

various controls, including further performance lags in some specifications. All

regressions have vintage year fixed effects and standard errors are clustered at

the firm level. In most specifications, the previous fund’s performance strongly

predicts the performance of the next fund. For example, the coefficient of 0.162

in the first specification shows that a fund with a 1% higher IRR predicts a

0.162% higher IRR for the next fund. The second specification suggests that

this effect is even stronger when controlling for the performance of fund N − 2,

although the coefficient on this second fund’s performance is negative (albeit

insignificant). These results are robust to controlling for the fund’s (log) size

and sequence number. The final six specifications in Table 3 show separate

estimates of the AR(1) model for each fund type. When estimated separately,

the VC results are similar to the full sample results, but the BO effects become
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slightly stronger. For Other funds, the coefficient is positive and significant

in Specification I but becomes smaller and insignificant when fund N − 2 is

included, although this weaker result could be due to the smaller sample size.

** TABLE 3: IRR REGRESSIONS **

In these specifications, even fund N − 2 can overlap with fund N , and the

positive coefficients can partly reflect the overlap instead of actual performance

persistence. Panel B of Table 3 shows estimates using a sample of only the

funds that are entirely nonoverlapping. This restriction further reduces the

sample size and leaves no remaining signs of persistence. However, this weaker

result could be due to the lower statistical power of the smaller sample.

A natural interpretation of the AR(1) results in Table 3 is that BO funds have

more persistence (they have the largest coefficients and R2, and the coefficient

remains statistically significant with fund N−2), followed by VC funds (smaller

coefficients and R2 than BO funds, but still significant with fund N − 2), and

that Other funds have the least persistence (the smallest coefficients and R2,

and insignificant with fund N − 2). This ranking of BO, VC, and Other funds

becomes more nuanced when we distinguish between the different forms of

persistence using our model

4.2. Long-term persistence

Table 4 reports estimates of our model for VC, BO, and Other funds. Panel A

shows the magnitudes of the three random effects as measured by their standard

deviations (σγ , ση, and σε).
17 The variances (100 × σ2

γ , 10 × σ2
η , σ2

ε and σ2
y )

are easier to interpret, and they are reported in Panel B. For each fund type,

17Though we use a Bayesian estimator, we discuss results using standard frequentist
terminology: our point estimate is the mean of the posterior distribution, and our standard
error is the standard deviation of the posterior distribution. A parameter is statistically
significant, at a given level, when zero is not contained in the corresponding symmetric credible
interval, as usually defined in Bayesian statistics. Our Bayesian estimator produces exact
small-sample inference, even for nonlinear transformations of the estimated parameters, and
all reported inference is calculated without asymptotic approximations.
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we use two specifications. In Specification I, Xiu contains only an intercept.

Specification II includes vintage year fixed effects.

** TABLE 4: PARAMETER ESTIMATES **

For VC funds, Specification I in Table 4 shows a total unconditional variance

(σ2
y) of 6.933. This variance is decomposed into three components, with 0.243

due to long-term persistence (100×σ2
γ), 0.675 due to the overlap effect (10×σ2

η),

and the remaining 6.015 due to idiosyncratic variance (σ2
ε).

We find that σ2
γ is statistically significant, consistent with the findings from

the AR(1) regressions.18 Denote the x th percentile of the γi distribution by

qγ(x). With the point estimate of σγ of 0.049, qγ(75%) = 3.30%, implying

that the marginal top quartile VC firm has an expected annual return that is

3.30% higher than the average VC firm (net-of-fees). The spread in the expected

returns of the marginal top and bottom quartile firms is qγ(75%)− qγ(25%) =

6.60%, annually. These percentiles are calculated from the point estimate of

the standard deviation, assuming it is perfectly estimated, but Specification I in

Table 4 shows that the estimate of σγ for VC funds has a standard error of 0.007.

Because our estimation procedure gives the full posterior distribution of σγ , we

can generate the corresponding posterior distribution of the spread qγ(75%) −

qγ(25%), accounting for parameter uncertainty. Table 4 reports that this spread

estimate is 6.59%, close to the 6.60% spread calculated from the point estimate

of σγ , which suggests that parameter uncertainty is a relatively small problem

for these spreads. Nevertheless, because the calculation is simple, all reported

gamma spreads in Panel C of Table 4 account for parameter uncertainty. The

table also reports the spread in expected returns between the median top and

bottom quartile PE firms, qγ(87.5%) − qγ(12.5%), which is estimated to be

11.24% annually.

These gamma spreads cannot be calculated by simply subtracting the

18Testing statistical significance of variance parameters is complicated by the one-sided
alternative hypothesis. We use a Bayes factor test to test H0 : σ2

γ = 0 against HA : σ2
γ > 0,

as discussed in the Appendix.
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observed IRRs of bottom quartile funds from those of top quartile funds. Top

quartile performance does not imply top quartile expected returns, and this

empirical difference confounds long-term persistence and noise. To illustrate,

consider the case in which performance is noisy, so σ2
ε is large, but little difference

exists between PE firms, so σ2
γ is small. In this case, there is little long-term

persistence and the spread qγ(75%) − qγ(25%) is small. Noisy performance,

however, still leads to large differences in observed fund IRRs, so the empirically

observed difference between top and bottom quartile funds can still be large,

but this is entirely due to noise. Conversely, the empirical difference could

understate actual long-term persistence. In periods when many particularly

high-quality (or low-quality) PE firms are active, the empirical difference could

be too small, because it is calculated from funds in a narrower range of the γi

distribution.

Panel B in Table 4 also shows that for BO funds the variance that is

due to long-term persistence (100 × σ2
γ) is 0.361, which is higher than for

VC funds. Hence, the gamma spreads are also higher, and for BO firms

qγ(75%) − qγ(25%) = 8.03% and qγ(87.5%) − qγ(12.5%) = 13.70% annually.

The variance due to the overlap (10 × σ2
η) is 0.216, which is smaller than for

VC funds, but the difference disappears when adding vintage year fixed effects

to the model. Importantly, BO funds have substantially smaller idiosyncratic

risk (σ2
ε) and are less noisy than VC funds. The smaller noise in the returns of

BO funds can also explain the stronger persistence results for BO in the AR(1)

regressions, as less noisy returns give stronger statistical power in the AR(1)

model.

For Other funds, the overlap and long-term persistence effects are largely

similar to those for VC and BO funds. Comparing Specification I for the various

fund types, the σγ estimates for Other and VC funds are similar, so their gamma

spreads are similar as well. Idiosyncratic volatility of Other funds, however, is

significantly less than the volatilities of both VC and BO funds, resulting in a

better signal-to-noise ratio for Other funds.

To summarize, long-term persistence, as measured by the gamma spreads,
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is greatest for BO funds and slightly lower for VC and Other funds, but the

difference in the gamma spread between the three fund types is modest. These

gamma spreads are calculated from the population distribution across PE firms.

To earn this spread, an LP must perfectly identify PE firms with the highest

and lowest gammas. Hence, these gamma spreads are upper bounds on the

outperformance LPs can earn by identifying PE firms with higher expected

returns. We return to this issue in Section 5.

4.3. Overlap effects

The returns of overlapping funds are correlated. In Table 4, Panel B,

Specifications I and II for VC funds show overlap effects of 0.675 and 0.386,

respectively. Without vintage year fixed effects, the ηiτ terms capture all

correlations between contemporaneous funds, including correlations arising from

common exposures to the market (and other common risk factors) during the

overlap period. To control for these shared exposures, Specification II includes

vintage year fixed effects, which capture market-wide movements and imply that

ηiτ terms capture deviations only from these market-wide movements that are

specific to a PE firm (e.g., due to the PE firm making similar decisions across its

contemporaneous funds). The resulting overlap effects are largest for BO funds

and smallest for Other funds. Generally, the variation in performance that is

due to the overlap effect exceeds the variation that is due to the difference in

expected returns.

The estimates in Table 4 allow us to quantify the effect of overlap on the

AR(1) regression coefficient for fund N on N−1. This coefficient can be positive

due to the overlap effect, even when there is no actual long-term persistence

and past performance does not predict future performance. Table 1 shows an

average overlap of subsequent funds of 5.8 to 6.8 years. Using Eq. (5), the

estimates in Table 4 imply that funds with such average overlaps have total

covariances of 0.37 to 0.64. But 25.8% to 61.7% of this covariance (with an

average across specifications of 43.6%) is due to the overlap, suggesting that the

AR(1) coefficients as a measure of performance predictability is biased upward
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by 34% to 168%. The overlap effect for Other funds is smaller, implying a

smaller upward bias in the AR(1) coefficients. Overall, when evaluating two

overlapping funds from the same PE firm that have both outperformed, their

shared outperformance is more likely due to their overlap than to the firm

generating persistently higher returns.

5. Learning and investable persistence

The estimates from section 4 show substantial differences in long-term

persistence across PE firms, but they do not show how difficult it is for LPs

to identify PE firms with higher expected returns. We quantify this investable

persistence in two ways. First, we estimate the speed of learning about γi using

the signal-to-noise ratio. This ratio is simple to calculate, it allows for a direct

comparison of different firm types, and it has a simple economic interpretation

based on the updating of beliefs about γi. The drawback is that it relies on

normal distributions. Second, we use the full mixtures-of-normals model to

evaluate how many past funds an LP must observe to estimate a PE firm’s

expected return with reasonable certainty. We find that the signal-to-noise ratio

is low, and it is difficult for LPs to identify PE firms with high expected returns

based on their past performance. An LP needs to observe an excessive number

of past funds to evaluate a firm’s expected return with reasonable certainty. In

practice, LPs therefore need additional information, such as detailed information

about individual deals and individual partners associated with these deals or a

firm’s internal organization and culture, to inform their investment decisions

(see Ewens and Rhodes-Kropf (2015); Jenkinson, Jones, and Martinez (2016);

Kuckertz, Kollmann, Rohm, and Middelberg (2015)).19

19An interesting issue is that estimating the hierarchical model using individual deal
performance (instead of aggregate fund performance) is not necessarily more informative.
Expected returns (i.e., differences in means) are no better measured with higher frequency
observations, as pointed out by Merton (1980). Moreover, the overlap problem still exists for
individual deals. The optimal aggregation of information about fund managers’ performance,
combining high and low frequency performance measures, is an interesting topic to pursue.
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5.1. Signal-to-noise

Our model contains two types of shocks. Transitory shocks are drawn

independently each period and given by the ηiτ and εiu terms. Persistent

shocks, given by γi, generate long-term differences in expected returns across

PE firms. The signal-to-noise ratio, sγ , is defined as the ratio of the variance of

the persistent shock relative to total variance.20

sγ =
100σ2

γ

σ2
y

(6)

This signal-to-noise ratio, which is bounded between zero and one, has a

simple economic interpretation. In a Gaussian learning model, an LP updates

beliefs about γi as follows. Let the LP’s beliefs about γi after observing N

funds be N
(
γi,N , σ

2
i,N

)
. After observing the performance of one additional

(non-overlapping) fund, the LP’s updated beliefs are N
(
γi,N+1, σ

2
i,N+1

)
, where

γi,N+1 = sγ ·
yi,N+1 −X ′i,N+1β

10
+ (1− sγ) · γi,N (7)

and

σ2
i,N+1 = (1− sγ) · σ2

i,N . (8)

Eq. (7) gives the mean of the LP’s updated beliefs, which is a combination of two

terms, weighted by the signal-to-noise ratio. The fraction in the first term is the

new information, specifically, the surprise performance of the new fund relative

to its expected performance. The greater the signal-to-noise ratio, the more

weight is placed on the new information and the faster the LP updates beliefs.

This also follows from Eq. (8), which shows the dispersion in the LP’s beliefs.

A larger signal-to-noise ratio means that the dispersion declines faster as new

information arrives, i.e., the LP learns faster. When the signal-to-noise ratio

is low, new performance is largely uninformative about the PE firm’s expected

20For example, Cochrane (1988) uses a similar variance ratio to evaluate the persistence of
GDP shocks.
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return. Because it is difficult for the LP to infer γi, more weight is put on the

prior belief, γi,N [the second term in Eq. (7)], and the dispersion in beliefs in

Eq. (8) declines only slowly.

Point estimates of sγ are reported in Panel B of Table 4. Fig. 4 plots the

posterior distributions of sγ for VC, BO, and Other firms, with and without

vintage year fixed effects. The signal-to-noise ratio is lowest for VC funds and is

larger for BO and Other funds. For VC funds, the large amount of noise makes

performance less informative. Other funds have the least amount of noise and

the highest signal-to-noise ratio, making it is easier for LPs to identify which

Other firms have higher expected returns.

** FIGURE 4: ESTIMATES OF SIGNAL-TO-NOISE RATIO **

5.2. Identifying PE firms

Using the full mixtures-of-normals model, Fig. 5 plots the probability that

top quartile performance implies top quartile expected returns. This probability

is Pr
[
γi ≥ qγ(75%) | 1

N

∑N
n=1 yi,n ≥ QN

]
, where QN is the average observed

performance of the marginal top quartile firm with N past funds. To interpret

Fig. 5, consider the limit with little long-term persistence, where σ2
γ converges to

zero. Top quartile performance is entirely due to luck, and the probability that

a PE firm with top quartile performance also has top quartile expected returns

is simply 25%. As long-term persistence increases and performance becomes

informative, this probability increases. At the other limit, when σ2
γ becomes

very large (relative to σ2
y), persistence dominates. In this case, top quartile

performance is entirely due to skill and perfectly identifies PE firms with top

quartile expected returns, and the probability converges to 100%. In practice,

for a realistic number of funds, the probability remains well below this limit.

For example, Fig. 5 shows that for VC firms with five past funds, having top

quartile past performance implies a 37% probability of also having top quartile

expected future returns, which is slightly better than the 25% probability in

the uninformative case. For BO and Other firms, with five past funds and top
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quartile performance, this probability increases to 47% and 51%, respectively.

These estimates are consistent with the signal-to-noise ratios, which also show

that Other funds have the most informative performance, followed by BO and

VC funds.

** FIGURE 5: LEARNING SPEED **

Fig. 5 shows the probabilities for up to 50 past funds. As Fig. 1 shows, no PE

firm has managed even close to 50 funds, so this is an upper bound on the ability

of LPs to discriminate between PE firms based on their past performance. Even

at this upper bound, just 53% of the VC firms with top quartile past performance

have top quartile expected future returns. Put differently, an LP that invests

in a portfolio of funds selected only on PE firms with historical top quartile

performance finds that only 53% of these firms continue to deliver top quartile

performance in the future.

5.3. Investable persistence

The previous analysis shows that LPs find identifying Other funds with

higher expected returns easier, but it does not account for the value of identifying

these funds. For example, Table 4 shows that Other funds have less long-term

persistence than BO funds, as measured by σ2
γ , which means that although

it is more difficult to identify the best BO funds, there is more to gain

from identifying them. Fig. 6 shows the combination of these two effects.

This figure plots the expected gamma for PE firms with top quartile past

performance, calculated among all PE firms with N past funds or, formally,

E
[
γi | 1

N

∑N
n=1 yi,n ≥ QN

]
. Initially, it is easier to identify Other firms, but the

value of identifying these firms is limited by their lower gamma spreads. For

BO firms, the gamma spread is larger, and after observing four to five funds,

BO firms are sufficiently well identified that, relative to Other firms, the benefit

of their greater gamma spreads outweighs the difficulty of identifying them.

For PE firms with five or more funds, BO funds have the greatest investable

persistence.
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** FIGURE 6: INVESTABLE PERSISTENCE **

VC firms have less investable persistence. Their signal-to-noise ratio is low,

so it is difficult to identify better VC firms. Moreover, the long-term persistence

and gamma spreads are also lower. They are similar to Other firms and below

the spread of BO firms, and the gains from identifying better VC firms are

therefore also lower. This overall lower investable persistence of VC firms shows

in Fig. 5 and 6, in which VC firms are below BO and Other firms. This result

is also consistent with the empirical evidence that VC funds have lower flow

performance sensitivities relative to BO funds [Kaplan and Schoar (2005) and

Chung, Sensoy, Stern, and Weisbach (2012)], as good VC fund performance

is more likely due to luck compared with BO and Other funds and therefore

induces lower capital flows.

The reported probabilities and results in this section were calculated based

on the assumption of nonoverlapping funds. All else equal, learning is slower

and investable persistence is lower with overlapping funds, as some fraction of

the correlation in subsequent fund returns is due to the overlap (η) not γ. This

reinforces our main conclusion that investable persistence is low, based on past

fund returns alone.

6. Subsamples

Table 5 reports model estimates for subsamples of the data. We estimate

each subsample independently. For example, when we compare the persistence

of small and large funds in Panel A of Table 5, the model is estimated twice,

once for large funds and once for small funds. PE firms that manage both small

and large funds are represented in both sets of estimates, possibly with different

gammas. These narrower samples help alleviate concerns about heterogeneity

in σ2
γ , σ2

η, σ2
ε , and risk factor loadings.21 The subsamples also provide a more

21The full sample results in Table 4 are robust to including fund size, sequence number,
and indicators for location and fund type as covariates in Xiu. Even when these covariates
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nuanced picture of persistence. Our general finding is that PE firms in more

developed and competitive markets, such as larger and more recent funds located

in the US, show less performance persistence.

** TABLE 5: SUBSAMPLES **

6.1. Fund size

Table 5 reports the long-term persistence of small and large funds. Panel A

shows that small funds have more long-term persistence and greater gamma

spreads than large funds, across VC, BO, and Other firms.22 This performance

difference is not simply due to their greater volatility, which shows in the larger

σ2
γ for small funds. Panel B of Table 5 also shows that their signal-to-noise ratios

are higher, implying that the performance of small funds is more informative

about the PE firm’s expected returns. Because fund size is strongly correlated

with firm age within each fund type, this evidence is also consistent with the

results in Chung, Sensoy, Stern, and Weisbach (2012) that funds with lower

sequence numbers have a stronger flow-performance sensitivity than later funds

of a given PE firm.

6.2. GP location

Table 5, Panel A, shows that PE firms located in the rest of the world have

more long-term persistence, followed by firms in Europe, while US-based firms

have the least persistence. Total volatility follows a different pattern, with ROW

being the most volatile, followed by the US, and then European funds. Panel B

shows that for VC and BO funds, the signal-to-noise ratio is substantially higher

for European funds. For Other funds, those in ROW have the most informative

performance. The performance of US-based funds is relatively less informative,

which is consistent with the US PE industry being more mature.

are included in the model, the variances are still constant across the entire sample, implying
that the various persistence measures are constant as well. To evaluate different degrees of
persistence for different fund types, the variances must be allowed to vary across fund types,
which is most easily achieved by estimating the model separately on subsamples of fund types.

22The number of funds for the small and large fund subsamples does not add up to the total
number of funds in Table 1, because fund size is not reported for 224 funds in the data set.
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6.3. Investment style

VC and Other funds can be further categorized by their investment styles,

as classified by Preqin. Table 5 shows that early stage VC funds have

lower long-term performance persistence and the least informative performance.

Generalist VC funds have the most long-term persistence, but late-stage funds

have the most informative performance.

For Other funds, we separately analyze the two major classes of funds:

real estate funds and fund-of-funds. These fund types are very different but

have surprisingly similar persistence characteristics. Fund-of-funds have slightly

greater long-term persistence than real estate funds, although their long-term

persistence is still well below the levels of VC and BO funds. Real estate funds

have more informative performance, however. In fact, the performance of real

estate is more informative than the performance of both VC and BO funds.

Consistent with this result, Chung, Sensoy, Stern, and Weisbach (2012) find

that the flow-performance relation is stronger for real estate funds than for

both VC and BO funds.

6.4. Time period

We confirm the findings by Braun, Jenkinson, and Stoff (2016) and Harris,

Jenkinson, Kaplan, and Stucke (2014b) that persistence has been declining.

Table 5 shows estimates for the early and late halves of our sample period.

Panel A shows that long-term persistence has declined substantially across

all fund types. Panel B shows that fund performance has also become less

informative. This decline is particularly pronounced for VC funds, and it is

more marginal for BO and Other funds.

7. Robustness: total value to paid-in capital

Another commonly used measure of fund performance is TVPI, which is the

total capital returned to LPs (net of fees) divided by the capital invested in the
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fund, without accounting for the timing of the cash flows.23 The TVPI is less

prone to produce outliers in situations in which capital is quickly returned to

LPs, which can distort the IRR calculation. Another advantage is that, unlike

the IRR, the TVPI always exists and is unique. TVPI is widely used in practice,

and it is available for a slightly larger sample of funds than the IRR. In this

section, we confirm that our results hold for the TVPI.

The distribution of TVPI for VC, BO, and Other funds is not surprising.

VC and BO funds have an average TVPI of 2.0, and BO has a higher median

(1.7, compared with 1.4 for VC). Other funds have lower TVPI, with an average

(median) of 1.7 (1.5). VC funds have the highest standard deviation of TVPI,

at 2.9, followed by BO (1.4) and Other (0.9) funds. The rank ordering of

TVPI means, medians, and standard deviations across types is the same as for

IRR. Our empirical specifications use ln(TVPI) as the dependent variable. For

brevity, we refer to this log measure as simply TVPI. The natural logarithm

reduces the skewness of the TVPI and makes it more consistent with our model

and easier to interpret. These are the same reasons for using the log IRR above.

Table 6 shows the model estimates using TVPI. Because the IRR and

TVPI are scaled differently, the magnitudes of the estimated coefficients are

not directly comparable, but the general patterns are broadly similar to the

IRR results in Table 4. As before, σ2
γ is largely the same for VC, BO, and

Other firms, meaning that the cross-sectional variance in performance due to

long-term persistence is similar for these three types of firms. The most notable

difference to the IRR results is that the TVPI estimates suggest that VC firms

have slightly more long-term persistence than BO or Other firms. Spurious

persistence estimates are similar across the three fund types (as they are in

the IRR results), with the largest σ2
η in Specification I for VC and the smallest

σ2
η in Specification II for Other firms. Finally, as for the IRR estimates, the

23For nonliquidated funds, the remaining NAV is typically added to the returned capital
in the numerator of the TVPI, which raises some issues about adjusting the remaining NAV
(which is gross of fees) for expected fees, to get the net-of-fee TVPI. Because we use only fully
liquidated funds, this adjustment is irrelevant.
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idiosyncratic variance is highest for VC funds, with σ2
ε about 2.3 times larger

than for BO funds and about 4.6 times larger than for Other funds.

** INSERT TABLE 6 NEAR HERE **

The TVPI and IRR are available for slightly different samples of funds. The

results are not affected by differences across these samples. We confirm in the

Appendix that the TVPI and IRR models give similar results for the common

subsample in which both measures are available.

Fig. 7 shows the speed of learning and investable persistence calculated from

the TVPI coefficients. The speed of learning (in Panel A) is unchanged when

performance is measured using TVPI, with Other firms having the fastest speed,

followed by BO and VC firms. The results on investable persistence (Panel B)

change slightly. Due to the higher long-term persistence for VC firms when

calculated using TVPI, it is more valuable, albeit still slower, to learn about

these firms. For about 15 VC funds, the precision in the LP’s inference about

the firms’ gamma coefficient becomes sufficiently precise, and the investable

persistence of VC overtakes that of BO and Other firms. In our sample, about

95% of VC firms manage five or fewer funds, so this reversal is of little practical

relevance.

** INSERT FIGURE 7 NEAR HERE **

8. Conclusion

We decompose the persistence of private equity performance into long-term,

investable, and spurious persistence. Across all types of PE firms, we find large

amounts of long-term persistence. The spread in expected returns between

top and bottom quartile PE firms is 7 to 8 percentage points, annually. In

contrast, we find low investable persistence. Past performance is noisy, with a

low signal-to-noise ratio, and LPs need to observe an excessive number of past

funds to identify PE firms with higher expected future returns with reasonable

certainty. Even after observing 50 past funds, only 53% to 61% of the PE firms
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that have generated top quartile past performance can be expected to continue

to generate top quartile performance. In practice, to evaluate investments in

PE funds, LPs need a substantial amount of information that goes well beyond

just the performance of past funds.

We find that smaller funds have greater long-term persistence than larger

funds. In particular, large VC funds have poor long-term and investable

persistence. We find the least long-term persistence for PE firms located in the

US, followed by Europe, and the greatest persistence for firms located in the

rest of the world, although the ROW firms also have more volatile performance.

Finally, we confirm the findings by Harris, Jenkinson, Kaplan, and Stucke

(2014b) and Braun, Jenkinson, and Stoff (2016) that persistence has declined

over our sample period. This decline is largest for VC firms, and BO and Other

funds still show substantial long-term persistence, even post-2000.

Our results have practical implications. The low investable persistence

can explain LPs’ increasing focus on collecting detailed information about PE

performance. For example, Ewens and Rhodes-Kropf (2015) study performance

using deal- and partner-level information, and we find that such detailed

information is necessary for LPs to evaluate PE investments. Our results provide

a new explanation for why persistence is not competed away. When identifying

top PE firms is as difficult as our results suggest, LPs with this ability can also

be scarce, and these LPs should earn rents, resulting in persistence in net-of-fee

returns.
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Appendix A. Estimation procedure

We implement the model as a Bayesian multilevel hierarchical model,

redefining the error terms to absorb the firm-specific random effects using

hierarchical centering, as recommended by Gelfand, Sahu, and Carlin (1995).

Matlab code for estimating the model is available on the authors’ personal pages.

The performance of fund u of firm i is

yiu = Xiuβ +

tiu+9∑
τ=tiu

ηiτ + εiu. (9)

The conditional distributions of the random effects are given as

ηiτ |γi ∼ N
(
γi, σ

2
η

)
(10)

and

γi ∼ N
(
0, σ2

γ

)
. (11)

The fund-specific error term distribution is i.i.d. (we consider the

mixture-of-normals specification below):

εiu ∼ N
(
0, σ2

ε

)
. (12)

We need to estimate the parameter vector θ ≡
(
β, σ2

γ , σ
2
η, σ

2
ε

)
, given a data set of

fund returns, {yiu}, the dates of inception and termination of each fund, and the

set of observed fund-level covariates, Xiu. We augment the parameter vector

with the latent γs and ηs, we and use a Bayesian estimation algorithm that

produces a set of draws from the posterior distribution, f (θ, {γi} , {ηit} |data),

using a Gibbs sampler [see Gelfand and Smith (1990) and Korteweg (2013) for

a detailed description]. By the Hammersley-Clifford theorem, we can divide the

posterior into five complete conditionals that are easy to sample from:

1. Latent firm-year random effects: f ({ηit} | {γi} , θ, data).

2. Variance of fund-specific error term and β coefficients:
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f
(
σ2
ε , β| {γi} , {ηit} , σ2

γ , σ
2
η, data

)
.

3. Latent firm random effects: f ({γi} | {ηit} , θ, data).

4. Variance of firm-year random effects: f
(
σ2
η| {γi} , {ηit} , β, σ2

γ , σ
2
ε , data

)
.

5. Variance of firm random effects: f
(
σ2
γ | {γi} , {ηit} , β, σ2

η, σ
2
ε , data

)
.

We sample from each distribution 1 through 5 in turn, conditional on the

most recent draw of the other parameters. After Step 5, we return back

to Step 1 and repeat. The resulting sequence of parameter draws forms a

Markov chain, the stationary distribution of which is exactly the posterior

distribution. Given a sample of draws of the posterior distribution, it is then

straightforward to numerically integrate out the latent variables and obtain the

marginal posterior of parameters, f(θ|data), or the distribution of the random

effects, f ({γi} |data) and f ({ηit} |data). We now discuss how to draw from

each conditional distribution.

A.1. Latent firm-year random effects

The firm-year random effects, ηit, are sampled using a Bayesian regression of

the fund returns on a set of year indicator variables, with known variance. This

is done on a firm-by-firm basis, as the random effects are assumed independent

across firms (and time). For each firm, i, the regression model takes the form

yi = Xiβ + Ziηi + εi, (13)

where yi is a vector of stacked fund returns for the Ui funds of firm i, and Xi is

the sub-matrix of the covariates
[
X

′

i1 . . . X
′

iUi

]′
in which each row corresponds

to a fund of firm i. The vector ηi contains the firm-year random effects for the

years in which firm i has at least one active fund. The length of the vector

ηi is denoted Ti and can vary by firm. The matrix Zi is a Ui × Ti matrix of

indicator variables. Each row represents a fund of firm i and contains ones in

the columns that correspond to the years that the fund is active and zeros in

all other columns.
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Given the prior in Eq. (10), and using the standard Bayesian regression setup

(e.g., Rossi, Allenby, and McCulloch (2005)), the posterior distribution is

ηi| {γi} , θ, data ∼ N
(
µη, σ

2
εΩ−1

)
, (14)

where

Ω =
σ2
ε

σ2
η

· ITi
+ Z ′iZi (15)

and

µη = Ω−1
(
γi ·

σ2
ε

σ2
η

· 1Ti
+ Z ′i(yi −Xiβ)

)
, (16)

with ITi denoting the Ti × Ti identity matrix, and 1Ti denoting a Ti × 1 vector

of ones.

A.2. Variance of fund-specific error term and β coefficients

Given the conditioning on the random effects, ηit, this step is a standard

Bayesian regression. With the conjugate prior

σ2
ε ∼ IG (a0, b0) (17)

and

β|σ2
ε ∼ N

(
µ0, σ

2
εΣ−10

)
, (18)

the posterior distribution is

σ2
ε | {ηi} , data ∼ IG (a, b) (19)

and

β|σ2
ε , {ηi} , data ∼ N

(
µ, σ2

εΣ−1
)
, (20)
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where

a = a0 +

N∑
i=1

Ui, (21)

b = b0 + e′e+ (µ− µ0) Σ0 (µ− µ0) , (22)

Σ = Σ0 +X ′X, (23)

and

µ = Σ−1 · (Σ0µ0 +X ′ (y − Zη)) . (24)

The vector y =
[
y

′

1 . . . y
′

N

]′
contains the fund returns stacked across the N

firms, X is the matrix of stacked Xi, and Z is the stacked Zi. The vector

e = y − Zη −Xµ contains the stacked error terms, using the stacked η vector

from the current iteration.

A.3. Latent firm random effects

Drawing the firm random effects, γi, is similar in spirit to simulating the

firm-year random effects in Step 1. Write the estimation problem as a regression

of the firm-year random effects on a set of indicator variables

η = Wγ + ν, (25)

where η = [η1 . . . ηN ]
′
, γ = [γ1 . . . γN ]

′
, and ν ∼ N

(
0, σ2

η · IN
)
. The matrix W

is a
∑N
i=1 Ti × N matrix of indicator variables. Each row of W represents a

firm-year and contains a one in the column of the corresponding firm, and zeros

in all other columns.

With the prior in Eq. (11), the posterior distribution is

γ| {ηit} , θ, data ∼ N
(
µγ , σ

2
ηA
−1) , (26)
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where

A =
σ2
η

σ2
γ

· IN +W ′W (27)

and

µγ = A−1 (W ′η) . (28)

A.4. Variance of firm-year random effects

The variance of the firm-year random effects, σ2
η, is the variance of the

residuals v = η −Wγ from the regression in Step 3. Using the inverse gamma

prior

σ2
η ∼ IG (c0, d0) (29)

yields the posterior distribution

σ2
η| {γi} , {ηi} , data ∼ IG

(
c0 +

N∑
i=1

Ti, d0 + v′v

)
. (30)

A.5. Variance of firm random effects

The variance of the firm random effects, σ2
γ , using the inverse gamma prior

σ2
γ ∼ IG (f0, g0) (31)

has posterior distribution

σ2
γ | {γi} , data ∼ IG (f0 +N, g0 + γ′γ) . (32)

A.6. Mixture-of-normals specification

For the mixture-of-normals specification we replace the distribution of the

fund-specific error term in Eq. (12) with a mixture of K normal distributions,

εiu ∼
K∑
k=1

pk · N
(
µk, σ

2
ε,k

)
. (33)
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Setting K = 1 reduces the model to the baseline normal specification in

Eq. (12). We drop the intercept in Xiu because it is absorbed by the error

term, which has unrestricted mean E [εiu] =
∑K
k=1 pkµk. This specification

is equivalent to the specification with an intercept in Xiu and zero mean

εiu, but it is easier to implement because it avoids enforcing cross-parameter

restrictions on µk. To estimate the mixture model by Gibbs sampler, the

procedure requires one additional latent variable, Iiu, that indicates which of

the K component distributions each observation is drawn from. This indicator

is sampled independently for each observation from a multinomial distribution

with the probability of drawing component k proportional to

pkφ

(
eiu − µk
σε,k

)
, (34)

where eiu = yiu − Ziuη − Xiuβ, and φ(·) is the standard normal probability

density function. The mixture probabilities, p = [p1 . . . pK ], have a Dirichlet

prior distribution with concentration hyperparameter δ. The posterior

distribution is also of the Dirichlet family, with concentration equal to δ + N ,

with N = [N1 . . . NK ] and Nk the number of observations for which Iiu = k.

The mean and variance of each mixture component have conjugate normal

and inverse gamma prior distributions that are identical for each component,

σ2
k ∼ IG (ak, bk) (35)

and

µk ∼ N
(
0, σ2

kV
−1) . (36)

Their posterior distributions are

σ2
k|{Iiu}, p, β, {ηit} , data ∼ IG

ak +Nk, bk +
∑

jε{Iiu=k}

(ej − ek)
2

(37)
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and

µk|σ2
k, {Iiu}, p, β, {ηit} , data ∼ N

(
Nkek
V +Nk

,
σ2
k

V +Nk

)
, (38)

where ek is the sample mean of the residuals eiu computed over the set of

observations for which Iiu = k.

Conditional on the indicators, Iiu, the Gibbs steps used to estimate the other

model parameters remain largely unchanged from the description above. See

West (1992), Diebolt and Robert (1994), and Chen and Liu (2000) for more

details on the estimation of mixture distributions.

A.7. Priors and starting values

Our Gibbs sampler uses 10,000 iterations for the initial burn-in phase,

followed by 100,000 iterations to simulate the posterior distribution. We save

every 10th draw of the simulation. During the burn-in phase, the parameters

converge quickly. We use diffuse prior distributions, so that our results are

driven by the data, not prior assumptions. First, we set a0 = 2.1 and b0 = 1.

This implies that our prior belief is that E[σε] = 0.854 and that σε is between

0.362 and 2.874 with 99% probability (this is for ten-year fund returns, so the

annualized volatility is about a factor three lower). Second, we set c0 = f0 = 2.1

and d0 = g0 = 0.152. Because both the γs and ηs are specified at the annual

level, this implies that E[σγ ] = E[ση] = 0.128 per year and that σγ and ση are

between 0.054 and 0.431 (annually) with 99% probability. Conditional on X,

the prior ten-year fund return variance, 100σ2
γ + 10σ2

η + σ2
ε , has an expected

value of 1.658 and is between 0.861 and 4.666 with 99% probability. Finally,

we set the prior mean for β equal to zero (µ0 = 0), implying a prior mean fund

return of zero. We set Σ0 equal to the identity matrix, so that the prior βs are

between -3.1 and +3.1 with 99% probability.

For the mixture-of-normals specifications, we set the prior of each mixture

component, 1, . . . ,K, equal to the prior of the error term ε in the normal model,

i.e., mean zero and inverse gamma prior parameters equal to a0 and b0. This
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ensures that the prior distribution of y is the same across all K, so that the Bayes

factor (see Subsection A.8) is a valid comparison across different mixtures. We

set V −1 = 1/10. For the prior distribution of the mixture probabilities, we use

δ = 1K ·10 , which implies that all distributions in the mixture have equal prior

mean probability, 1/K.

We start the algorithm with all γs and βs equal to zero (their prior means).

We initialize all variances (σ2
γ , σ2

η, and σ2
ε) at their prior means. For the mixtures

specification, we set the mixture probabilities to their prior mean, 1/K, and

randomly draw the initial indicators from this distribution. The starting means

and variances of the component distributions are also set equal to their prior

means. We do not need starting values for the ηs, as they are the first variables

we simulate.

A.8. Hypothesis tests

We consider two sets of hypothesis tests for our model. The first set of

tests determines the number of mixtures of normal distributions in εiu. This is

a Bayes factor test and relies on the marginal log-likelihood, which integrates

out all parameters from the likelihood function (Kass and Raftery (1995)). We

use the method of Chib (1995) to compute the marginal log-likelihood from

the MCMC output and the algorithm proposed by Berkhof, Van Mechelen, and

Gelman (2003) and Marin and Robert (2008) to deal with the well-known label

switching problem. Fig. A1 plots the marginal log-likelihood as a function of

the number of mixture distributions, by type and model specification (with and

without vintage year fixed effects). The optimal number of mixture distributions

used in the main results of the paper (as reported in Table 4) are those with

the highest marginal likelihood.

** INSERT FIGURE A1 NEAR HERE **

To test for the presence of the long-term persistence and overlap random

effects, we use Bayes factors to test H0 : σ2
γ = 0 against HA : σ2

γ > 0 and

H0 : σ2
η = 0 against HA : σ2

η > 0. Table A1 reports the Bayes factors for
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each type and model specification. The long-term persistence random effect is

significant for all types and models, except Other funds when vintage year fixed

effects are included. The random effect overlap term is not significant in many

cases, a perhaps surprising result given the posterior standard deviations on the

ση estimates. Though it does not affect the conclusions that we draw from the

paper, it does underscore the importance of performing proper hypothesis tests

in the presence of small samples and non-normal distributions.

** INSERT TABLE A1 NEAR HERE **

A.9. IRR and TVPI parameter estimates in common sample

To determine whether differences in IRR and TVPI model estimates are

driven by sample selection, we estimate the model on a sample of funds for which

both return measures are observed (the joint sample). Table A2 shows that the

parameter estimates for the joint sample are close to the full sample estimates of

Tables 4 and 6 (for IRR and TVPI, respectively), across specifications and fund

types. The most notable differences are in the ση estimates, which tend to be

slightly lower in the joint sample, resulting in somewhat higher signal-to-noise

estimates. This does not affect the conclusions of the paper. Moreover, the

relative ranking of fund types remains unchanged.

** INSERT TABLE A2 NEAR HERE **
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Table 1
Summary statistics

Descriptive statistics of the sample of private equity funds, by fund type [VC (venture
capital), BO (buyout), and Other]. The sample contains 1,924 fully liquidated funds raised
between 1969 and 2001, with at least $5 million in committed capital (in 1990 dollars) and
with non-missing returns data. The funds are raised by 831 individual private equity firms
(some firms manage funds of more than one type). Fund size is the committed capital in
millions of dollars. IRR is the fund’s internal rate of return, net of fees. The ten-year log
return is computed as 10 · ln(1 + IRR). Overlap is the number of years of overlap for funds
of the same firm and type that overlap. Source: Preqin.

Panel A: Broad fund categories
VC BO Other

Number of funds 842 562 518
Number of firms 409 285 197

Number of funds / firm
Mean 2.1 2.0 2.6
Median 1 1 2
Standard deviation 1.9 1.6 2.6
10th percentile 1 1 1
90th percentile 4 4 5

Fund size (millions of dollars)
Mean 206.9 694.1 373.3
Median 110.0 300.0 206.8
Standard deviation 276.1 1,035.6 517.1
10th percentile 27.0 52.6 33.0
90th percentile 500.0 1,823.6 863.0

IRR (percent)
Mean 17.7 16.9 13.9
Median 8.6 14.9 11.9
Standard deviation 54.8 18.6 12.9
10th percentile -10.4 -1.7 0.4
90th percentile 46.0 37.9 28.9

Ten-year log return
Mean 1.173 1.438 1.245
Median 0.825 1.385 1.124
Standard deviation 2.623 1.552 1.075
10th percentile -1.101 -0.170 0.040
90th percentile 3.786 3.216 2.542

Overlap (years)
Number of fund pairs 891 512 968
Mean 5.8 5.8 6.8
Median 6 6 7
Standard deviation 2.5 2.3 2.4
10th percentile 2 2 3
90th percentile 9 9 9
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Table 4
Parameter estimates

This table reports posterior means of parameters of the model described in the text.
Panel A shows the parameter estimates, and Panel B reports the variance decomposition
estimates for the same parameters. Panel C shows the spread in gammas across percentiles
of the posterior distribution. The model includes either a single intercept (Specification I) or
vintage year fixed effects, grouping the pre-1985 vintages into one bucket (Specification II).
The error term εiu is a mixture of K normal distributions, where K is chosen as the best
fit according to models’ marginal log-likelihood. The model is estimated separately for each
fund type [VC (venture capital), BO (buyout), and Other], by Markov chain Monte Carlo
(MCMC) using ten thousand burn-in cycles followed by 100,000 samples, saving every tenth
draw. Posterior standard deviations (Bayesian standard errors) are in brackets.

VC BO Other
I II I II I II

Panel A: Parameter estimates
σγ 0.049 0.055 0.060 0.056 0.049 0.049

(0.007) (0.008) (0.008) (0.008) (0.006) (0.006)

ση 0.258 0.193 0.142 0.203 0.202 0.135
(0.031) (0.037) (0.039) (0.043) (0.028) (0.028)

σε 2.449 2.326 1.359 1.225 0.807 0.865
(0.123) (0.121) (0.058) (0.073) (0.039) (0.050)

Vintage fixed effects No Yes No Yes No Yes
K 3 3 2 2 1 3
N 842 842 562 562 518 518

Panel B: Variance decomposition
100 · σ2

γ 0.243 0.309 0.361 0.316 0.244 0.246
(0.067) (0.087) (0.094) (0.089) (0.065) (0.061)

10 · σ2
η 0.675 0.386 0.216 0.432 0.416 0.189

(0.158) (0.141) (0.113) (0.160) (0.111) (0.076)

σ2
ε 6.015 5.426 1.852 1.505 0.654 0.751

(0.604) (0.567) (0.159) (0.180) (0.064) (0.087)

σ2
y 6.933 6.120 2.428 2.253 1.314 1.186

(0.596) (0.561) (0.152) (0.168) (0.084) (0.090)

Signal-to-noise 0.035 0.051 0.148 0.141 0.185 0.208
(0.010) (0.015) (0.037) (0.040) (0.045) (0.048)

Panel C: Gamma spread
qγ(75%)− qγ(25%) 6.59% 7.42% 8.03% 7.51% 6.61% 6.64%

(0.90%) (1.05%) (1.05%) (1.06%) (0.87%) (0.81%)

qγ(87.5%)− qγ(12.5%) 11.24% 12.66% 13.70% 12.81% 11.27% 11.34%
(1.54%) (1.78%) (1.79%) (1.81%) (1.49%) (1.40%)
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Table 6
Parameter estimates using total value to paid-in capital (TVPI)

This table reports posterior means of parameters of the model described in the text, using
the natural logarithm of TVPI as the dependent variable. Panel A shows the parameter
estimates, and Panel B shows the variance decomposition estimates for the same parameters.
Panel C shows the spread in gammas across percentiles of the posterior distribution. The
model and parameters are described in Table 4. VC = venture capital; BO = buyout.

VC BO Other
I II I II I II

Panel A: Parameter estimates
σγ 0.032 0.032 0.028 0.029 0.030 0.029

(0.003) (0.003) (0.002) (0.002) (0.002) (0.002)

ση 0.123 0.073 0.080 0.071 0.066 0.055
(0.013) (0.012) (0.010) (0.010) (0.008) (0.008)

σε 0.747 0.727 0.499 0.481 0.346 0.353
(0.030) (0.028) (0.030) (0.031) (0.020) (0.020)

Vintage fixed effects No Yes No Yes No Yes
K 2 2 2 2 2 3
N 970 970 624 624 563 563

Panel B: Variance decomposition
100 · σ2

γ 0.104 0.106 0.077 0.086 0.088 0.083
(0.018) (0.018) (0.011) (0.012) (0.014) (0.013)

10 · σ2
η 0.154 0.055 0.066 0.051 0.044 0.030

(0.032) (0.017) (0.015) (0.014) (0.011) (0.009)

σ2
ε 0.559 0.529 0.250 0.233 0.120 0.125

(0.044) (0.041) (0.031) (0.031) (0.014) (0.014)

σ2
y 0.816 0.690 0.393 0.369 0.252 0.125

(0.041) (0.039) (0.030) (0.030) (0.018) (0.014)

Signal-to-noise 0.127 0.154 0.196 0.233 0.349 0.348
(0.022) (0.026) (0.029) (0.034) (0.046) (0.045)

Panel C: Ln(TVPI) spread due to firm effect
qγ(75%)− qγ(25%) 0.432 0.438 0.373 0.394 0.399 0.388

(0.038) (0.038) (0.027) (0.028) (0.032) (0.030)

qγ(87.5%)− qγ(12.5%) 0.738 0.747 0.636 0.671 0.680 0.662
(0.064) (0.064) (0.047) (0.048) (0.055) (0.051)
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Table A1
Model specification tests

This table shows tests of the model specification. Column 1 reproduces Specification I
of Table 4, which includes an intercept but no vintage year fixed effects. Column 2 drops
the transient firm effect, η, from the model, and Column 3 drops the long-run firm-specific
effect, γ. Columns 4 to 6 show the same for Specification II of Table 4, which includes vintage
year fixed effects. The Bayes factor represents the ratio of marginal likelihoods, indicating
the weight of evidence of each model, relative to the full model specification in Column 4. A
Bayes factor of one indicates that the two models have equal support in the data. For each
model, the number of distributions in the error term (K) is chosen to find the best model fit
by marginal log-likelihood. Posterior standard deviations (Bayesian standard errors) are in
brackets. VC = venture capital; BO = buyout.

(1) (2) (3) (4) (5) (6)
Panel A: VC
σγ 0.049 0.042 0.055 0.040

(0.007) (0.004) (0.008) (0.004)

ση 0.258 0.313 0.193 0.268
(0.031) (0.023) (0.037) (0.025)

σε 2.449 2.604 2.431 2.326 2.465 2.316
(0.123) (0.107) (0.114) (0.121) (0.115) (0.123)

σ2
y 6.933 6.971 6.906 6.120 6.255 6.106

(0.596) (0.562) (0.553) (0.561) (0.572) (0.567)
Vintage fixed effects No No No Yes Yes Yes
K 3 3 2 3 3 3
N 842 842 842 842 842 842
Marginal log-L -1,829.5 -1,755.4 -1,823.6 -1,703.8 -1,669.2 -1,727.4
Bayes factor 0.000 0.000 0.000 N/A 1.0E+15 0.000

Panel B: BO
σγ 0.060 0.043 0.056 0.044

(0.008) (0.005) (0.008) (0.005)

ση 0.142 0.277 0.203 0.279
(0.039) (0.034) (0.043) (0.020)

σε 1.359 1.542 1.261 1.225 1.469 1.196
(0.058) (0.051) (0.065) (0.073) (0.054) (0.071)

σ2
y 2.428 2.567 2.373 2.253 2.359 2.217

(0.152) (0.163) (0.121) (0.168) (0.163) (0.167)
Vintage fixed effects No No No Yes Yes Yes
K 2 2 1 2 2 2
N 562 562 562 562 562 562
Marginal log-L -1,054.6 -1,039.7 -1,054.6 -1,031.6 -1,019.7 -1,035.0
Bayes factor 0.000 0.000 0.000 N/A 1.4E+05 0.033

Panel C: Other
σγ 0.049 0.039 0.049 0.037

(0.006) (0.004) (0.006) (0.004)

ση 0.202 0.245 0.135 0.199
(0.028) (0.022) (0.028) (0.017)

σε 0.807 1.059 0.793 0.865 1.038 0.848
(0.039) (0.033) (0.041) (0.050) (0.037) (0.050)

σ2
y 1.314 1.272 1.234 1.186 1.217 1.119

(0.084) (0.075) (0.079) (0.090) (0.081) (0.087)
Vintage fixed effects No No No Yes Yes Yes
K 1 2 1 3 3 3
N 518 518 518 518 518 518
Marginal log-L -787.8 -777.6 -781.7 -776.9 -771.3 -774.5
Bayes factor 0.000 0.491 0.008 N/A 256.185 10.677
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Table A2
Parameter estimates in sample with both internal rate of return (IRR) and total value to
paid-in capital (TVPI)

This table reports posterior means of parameters of the model described in the text. Panels
A and C use the ten-year log return as the performance metric (computed from the IRR), and
Panels B and D use the natural logarithm of TVPI. Panels A and B include vintage year fixed
effects, whereas Panels C and D do not. The full sample is the original sample with funds
that report IRRs (Panels A and C) or TVPI (Panels B and D). For example, the columns
labeled “Full sample” in Panel A replicate the results in Table 4 Specification II, and in Panel
B they replicate the result in Table 6 Specification II. The joint sample is the subsample
of funds that report both the IRR and TVPI metrics. The error term εiu is a mixture
of K normal distributions, where K is chosen as the best fit according to models’ marginal
log-likelihood. Posterior standard deviations (Bayesian standard errors) are in brackets. VC
= venture capital; BO = buyout.

VC BO Other
Full Joint Full Joint Full Joint

sample sample sample sample sample sample
Panel A: Ten-year log return, with vintage year fixed effects
σγ 0.055 0.055 0.056 0.057 0.049 0.053

(0.008) (0.008) (0.008) (0.008) (0.006) (0.007)

ση 0.193 0.179 0.203 0.197 0.135 0.128
(0.037) (0.044) (0.043) (0.040) (0.028) (0.029)

σε 2.326 2.346 1.225 1.237 0.865 0.835
(0.121) (0.129) (0.073) (0.073) (0.050) (0.051)

Signal-to-noise 0.051 0.051 0.141 0.144 0.208 0.244
(0.015) (0.015) (0.040) (0.039) (0.048) (0.057)

Vintage fixed effects Yes Yes Yes Yes Yes Yes
K 3 3 2 2 3 3
N 842 793 562 548 518 459

Panel B: Ln(TVPI), with vintage year fixed effects
σγ 0.032 0.033 0.029 0.030 0.029 0.030

(0.003) (0.003) (0.002) (0.002) (0.002) (0.002)

ση 0.073 0.074 0.071 0.064 0.055 0.056
(0.012) (0.013) (0.010) (0.009) (0.008) (0.008)

σε 0.727 0.657 0.481 0.461 0.353 0.307
(0.028) (0.028) (0.031) (0.029) (0.020) (0.020)

Signal-to-noise 0.154 0.188 0.233 0.260 0.348 0.420
(0.026) (0.031) (0.034) (0.037) (0.045) (0.052)

Vintage fixed effects Yes Yes Yes Yes Yes Yes
K 2 2 2 2 3 3
N 970 793 624 548 563 459

Panel C: Ten-year log return, no vintage year fixed effects
σγ 0.049 0.051 0.060 0.062 0.049 0.059

(0.007) (0.007) (0.008) (0.008) (0.006) (0.008)

ση 0.258 0.256 0.142 0.125 0.202 0.157
(0.031) (0.032) (0.039) (0.035) (0.028) (0.031)

σε 2.449 2.468 1.359 1.373 0.807 0.855
(0.123) (0.129) (0.058) (0.058) (0.039) (0.045)

Signal-to-noise 0.035 0.038 0.148 0.159 0.185 0.264
(0.010) (0.011) (0.037) (0.038) (0.045) (0.061)

Vintage fixed effects No No No No No No
K 3 3 2 2 3 3
N 842 793 562 548 518 459
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Table A2 (continued)

Panel D: Ln(TVPI), no vintage year fixed effects
σγ 0.032 0.034 0.028 0.028 0.030 0.032

(0.003) (0.003) (0.002) (0.002) (0.002) (0.003)

ση 0.123 0.119 0.080 0.071 0.066 0.065
(0.013) (0.014) (0.010) (0.009) (0.008) (0.009)

σε 0.747 0.694 0.499 0.484 0.346 0.297
(0.030) (0.031) (0.030) (0.029) (0.020) (0.018)

Signal-to-noise 0.127 0.154 0.196 0.220 0.349 0.432
(0.022) (0.027) (0.029) (0.031) (0.046) (0.051)

Vintage fixed effects No No No No No No
K 2 2 2 2 2 2
N 970 793 624 548 563 459
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Panel A: VC
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Panel C: Other
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Fig. 1. This figure depicts histograms of the number of funds per firm, by fund type [VC

(venture capital), BO (buyout), and Other]. For firms that manage different types of funds,

the histograms count only the number of funds of the particular type indicated.
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Panel C: Other
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Fig. 2. Internal rates of return (IRRs) and vintage year fixed effects. The striped lines are

the average fund IRR (per annum) in each vintage year, by fund type. The solid lines are the

posterior means of the vintage year fixed effects from specification II in Table 4. The vintage

year fixed effects are transformed to IRR equivalents (annualized and in percent). The shaded

bands represents the (1%, 99%) Bayesian credible interval (confidence bounds). VC = venture

capital; BO = buyout.
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Fig. 3. Fund overlap and covariance. The figure shows the covariance between total fund

returns as a function of the overlap (in years) between two funds managed by the same firm,

using the variance estimates for Specification II in Table 4. VC = venture capital; BO =

buyout.
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Panel A: VC
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Panel C: Other
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Fig. 4. Estimates of signal-to-noise ratio. The figure depicts posterior distribution of the

signal-to-noise ratio, sγ , by fund type, from the specifications reported in Table 4. The solid

line is the kernel plot for Specification I (without vintage year fixed effects), and the striped

line is the kernel plot for Specification II in Table 4 (with vintage year fixed effects). VC =

venture capital; BO = buyout.
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Fig. 5. Speed of learning. The figure shows the posterior probability that a fund is in the

top quartile of funds. Probabilities are calculated from 100,000 simulations of a panel of one

hundred firms, each with a different gamma that is drawn from the top 25% of the distribution.

Each firm produces a sequence of 50 nonoverlapping fund returns. Reported probabilities are

averages of the posterior mean probability across the simulated firms after observing a given

number of realized fund returns for each firm (“fund history”). The figure uses the parameter

estimates from Table 4 Specification II (with vintage year fixed effects). VC = venture capital;

BO = buyout.
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Fig. 6. Investable persistence. This figure shows the expected (true) gamma of investing in

funds raised by private equity firms with top quartile performance as observed after a given

number of realized fund returns for each firm (“fund history”). Calculations are based on

100,000 simulations of a panel of fund histories for one hundred firms, using the parameter

estimates from Table 4 Specification II (with vintage year fixed effects). VC = venture capital;

BO = buyout.
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Panel A: Speed of learning
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Panel B: Investable persistence
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Fig. 7. Speed of learning and investable persistence using total value to paid-in capital

(TVPI). Panels A and B replicate the speed of learning and investable persistence graphs

in Figs. 5 and 6, respectively, using TVPI to measure fund performance. VC = venture

capital; BO = buyout.
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Panel C: Other
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Fig. A1. This figure plots the marginal log-likelihood as a function of the number of normal

mixtures in the error term distribution, by fund type [VC (venture capital), BO (buyout),

and Other]. The solid line represents Specification I of Table 4 (which has no vintage year

fixed effects), and the striped line represents Specification II (with vintage year fixed effects).
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