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Abstract

We present a new framework for the identification of competing risks models, which

also include Roy models. We show that by establishing a Hicksian-type decomposition, the

direction of covariate effects on the marginal distributions of the competing risks model

can be identified under weak restrictions. Our approach leaves the marginal distributions

and their joint distribution completely unspecified, except that the latter is invariant in

the covariates. Results from simulations and two data examples suggest that our method

often outperforms existing comparable approaches in terms of the range of durations for

which the direction of the covariate effect is identified, particularly for long duration.
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1 Introduction

A feature of the competing risks model is that only the transition to one risk (or failure because

of one cause of death) is observed. This is the risk with shortest realised duration. The latent

duration for the other risks are therefore not observed. The non-identifiability of the competing

risks model means that observed data alone do not contain sufficient information to identify the

marginal distributions of the latent durations (Cox, 1962; Tsiatis, 1975). This identification

problem is closely related to the identification problem of the Roy model (Roy, 1951), where

an individual faces different potential wage distributions in different economic sectors but only

the wage in the chosen sector (maximum potential wage) is being observed.

The joint distribution of the latent durations can be viewed as a copula function of the

marginal distributions (Schweizer and Sklar, 1983). Most previous studies focus on the identi-

fiability of the marginal distributions. Peterson (1976) in his seminal paper derives bounds for

the marginal distributions in absence of any knowledge about them and the copula function.

These bounds are typically too wide for informative results, particularly for longer durations as

their width (difference between the upper and lower bound) increases with duration. When the

copula is known, Zheng and Klein (1995) show that the marginal distributions are nonparamet-

rically identified. Given that full knowledge about the copula is a strong requirement, many

existing studies consider an intermediate approach. In particular, the copula is unknown but

independent of the covariates (the copula invariance assumption). In this scenario identification

results are obtained by exploiting linkages between variations in covariates and variations in the

observed durations. The copula invariance assumption ensures that by changing the covariates,

changes in observed durations stem solely from changes in the marginal distributions but not

from changes in the copula function. By relying on exclusion restrictions or considering certain

classes of regression models that restrict the effect of covariates on the marginal distributions,

a number of studies have derived widely regarded identification results. For instance, Heckman

and Honoré (1989) show for proportional hazard models and accelerated failure time models

that marginal distributions are identified semiparametrically, provided that the variations in-

duced by the covariates are sufficiently large. Heckman and Honoré (1990) establish this result

for a corresponding Roy model. Abbring and van den Berg (2003) derive similar results for

the semiparametric mixed proportional hazard model. In their model the copula function be-
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longs to a Laplace transform of an unknown mixture distribution. Using the accelerated failure

time model, Honoré and Lleras-Muney (2006) obtain bounds for the marginal effect of discrete

covariates on latent durations. Lee and Lewbel (2013) show that the accelerated failure time

model is identified provided that a certain rank condition is satisfied. Relying on exclusion

restrictions, Henry and Mourifie (2014) derive bounds for the marginal distributions in the Roy

model. Park (2015) identifies the joint distribution of the latent outcome variables in the Roy

model when an instrumental variable is available. Apart from theoretical studies, the copula

invariance assumption is also commonly made in empirical economic analysis. The most popu-

lar example is the mixed proportional hazard model using finite mass point specification for the

unknown mixture distribution (Heckman and Singer, 1984), see e.g. Butler et al. (1989), Car-

ling et al. (1996), Meghir and Whitehouse (1997), Dolton and van der Klaauw (1999), Steiner

(2001), D’Addio and Rosholm (2005), Alba-Ramirez et al. (2007). Other empirical studies

using the copula invariance assumption include the independent risks model and parametric

copula models. See for example Carling et al. (1996), Mealli and Pudney (1996), and Burda

et al. (2015).

We consider a more general model in this paper than the above mentioned studies, although

we maintain the copula invariance assumption. First, the marginal distributions in our model

are nonparametric and therefore it is not limited to specific classes of duration models such

as the proportional hazard models or the accelerated failure time model. This is a practical

advantage as these models impose parametric restrictions on the marginal distributions, which

may be violated in applications. Second, our model does not rely on exclusion restriction nor

requires instrumental variables which could be either difficult to justify or might not be available

in an application.

In this paper we establish a Hicksian-type decomposition of covariate effects on marginal

distributions. We develop a general link between the observable sign of covariate effects on

subdistributions (cumulative incidence functions, CIF) and the unobservable sign of covariate

effects on the marginal distributions. We show that under rather weak restrictions the sign of

covariate effects on the marginal distributions is identifiable for some set of durations.

Definition 1 The identification set is defined as the set of durations for which the sign of a

covariate effect on the marginal distributions is identified. Identification set A is larger (smaller)

than identification set B if B ⊂ A (A ⊂ B).
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At a glance our approach shares some similarities with the approach proposed by Bond and

Shaw (2006). Under the copula invariance assumption they derive bounds for the covariate-time

transformation (CTT). These bounds can be used to identify the sign of the covariate effect.

However, there are three major differences between our decomposition approach and the CTT.

First, these two methods produce different identification sets. In order to make the difference

apparent, we restate Bond and Shaw’s approach using our analytical framework. Second, the

width of the bounds for the CTT increases with duration. This implies that, similar to the

Peterson bounds, the bounds for the CTT tend to be less informative at longer durations, but

this is not the case for our approach. Third, the bounds for the CTT require an additional non-

testable order assumption which restricts the role of covariates on the marginal distributions

in a non-trival way. This order assumption implies that the propensity of one risk will either

increase or decrease for all durations when a covariate changes. In the context of the Roy

model, this implies that the utility for one state increases more or decreases less than that for

the other state irrespective of the level of outcome variables when a covariate changes. As a

by-product of rewriting Bond and Shaw’s (2006) approach, we accommodate a feature of our

approach into their model which obviates their order assumption.

In our simulation studies and two real-data illustrations, our proposed decomposition ap-

proach tends to produce the largest identification set among the considered methods. We

illustrate that a proposed combination of the various methods is even more appealing for em-

pirical research if the direction rather than the magnitude of the covariate effect is of main

interest. Our real-data illustration also provides evidence for changes in the sign of covariate

effects at different durations, highlighting the importance of using a more flexible model rather

than the proportional hazard and accelerated failure time model for the marginal distributions.

These findings are useful for empirical research that utilises competing risks models as well as

the Roy model.

The structure of this paper is as follows: Section 2 introduces the model and presents the

identification results. Section 3 explores the performance of the considered approach by means

of simulations. Section 4 investigates the empirical performance with two data examples.
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2 Identifiability

We consider a model with two latent competing random variables T1 and T2 ∈ R+. T1 and

T2 are latent durations to events 1 and 2 respectively. A competing risks model with more

than two risks is considered in Section 2.2. X ∈ RK is a vector of continuous covariates xk,

k = 1, ..., K. A model with discrete X is considered in Section 2.1. The marginal survival

function (latent survival) of Tj is Sj(t;x) = Pr(Tj > t|x), with X = x. The joint survival

distribution of the latent durations is S(t1, t2;x) = Pr(T1 > t1, T2 > t2|x). Let T = min(T1, T2)

be the observed minimum and δ = arg minj{Tj} be the risk indicator. When δ = 1, latent

duration T2 is censored by T1, and vice versa. Define the cumulative incidence function (CIF)

as Qj(t;x) = Pr(T ≤ t, δ = j|x), the cause-specific crude hazard function as λj(t;x) =

lim∆→0 Pr(t ≤ T ≤ t + ∆, δ = j|T ≥ t,x)/∆ for risk j = 1, 2 and the survival function of T

(overall survival) as S(t;x) = Pr(T > t|x) = 1−Q1(t;x)−Q2(t;x).

Assumption 1 Sj(t;x) : [0,∞] → [0, 1] and S(t;x) : [0,∞] → [0, 1] are continuous and

strictly decreasing in t for all j with inverses denoted by S−1
j and S−1 respectively. Qj(t;x) is

continuous and strictly increasing in t for all j with inverse denoted by Q−1
j . Sj, S

−1
j , S, S−1,

Qj, and Q−1
j are differentiable with respect to x.

Definition 2 The copula function C(u1, u2) = Pr(U1 ≤ u1, U2 ≤ u2) : [0, 1]
2 → [0, 1] is a joint

distribution of two uniform random variables (U1, U2) with density function κ(u1, u2).

See Nelsen (2006) for more details on copulas.

According to Sklar’s theorem (Schweizer and Sklar, 1983), the joint distribution of the latent

durations T1 and T2 can be represented by a copula function of the latent survivals , i.e.

S(t1, t2;x) = Pr(T1 > t1, T2 > t2|x)

= Pr(S1(T1;x) ≤ S1(t1;x), S2(T2;x) ≤ S2(t2; x)|x)

= C(S1(t1;x), S2(t2;x);x). (1)

The copula function characterises the dependence structure between the latent survivals.

Definition 3 Let u2 = ζ1(u1;x) = S2(S
−1
1 (u1; x);x) : [0, 1] → [0, 1] be a continuous and

strictly increasing link function, which uniquely defines the relationship between u1 = S1(t;x)
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and u2 = S2(t;x) for all t and x. The link function is differentiable with respect to x with its

inverse defined as u1 = ζ2(u2;x) = ζ−1
1 (u2;x).

Continuity, monotonicity, uniqueness, and differentiability of the link function are guaran-

teed by Assumption 1. The link function plays the role of determining the propensity of risk

1 such that Pr(T1 ≤ T2;x) = Pr(S−1
1 (U1;x) ≤ S−1

2 (U2;x);x) = Pr(U2 ≤ ζ1(U1;x);x) =
∫ 1

0

∫ ζ1(u1;x)

0
κ(u1, u2;x)du2du1. In the context of the Roy model, the link function can be

viewed as a nonlinear and nonseparable selection equation (Henry and Mourifie, 2014) in which

uj = Sj(t;x) is the utility function of the outcome variable Tj.

The copula is unknown but assumed to satisfy the following condition.

Assumption 2 C(u1, u2;x) = C(u1, u2) for all x, u1, and u2,

Given (1) and Assumption 2 the competing risks model is fully characterised by the following

system of equations:

S(t;x) = Pr(T > t;x) = Pr(U1 ≤ S1(t;x), U2 ≤ S2(t;x))

=

∫ S1(t;x)

0

∫ S2(t;x)

0

κ(u1, u2) du2 du1 = C(S1(t;x), S2(t;x)); (2)

Q1(t;x) = Pr(T ≤ t, δ = 1;x) = Pr(U1 > S1(t;x), U2 ≤ ζ1(U1;x))

=

∫ 1

S1(t;x)

∫ ζ1(u1;x)

0

κ(u1, u2) du2 du1. (3)

A graphical presentation of the problem using the unit square is given in Figure 1. A similar

graphical presentation of the competing risk model can be found in Zheng and Klein (1995)

and for the Roy model in Henry and Mourifie (2014).

In our model (T, δ,x) are observed and S(t;x), Qj(t;x) and λj(t;x) are identified non-

parametrically. Sj(t;x), S(t1, t2;x), ζ1(·;x), C(u1, u2), and κ(u1, u2) are unknown and not

identified but somehow restricted due to Assumptions 1 and 2. Instead of considering the

identifiability of these functionals we focus on the identifiability of the sign of a covariate ef-

fect on Sj(t;x). The idea of our approach is to use the observable direction of the covariate

effect on Qj(t;x) to identify the sign of the covariate effect on Sj(t;x). One can see from

Q1(t;x) = Pr(T ≤ t, T1 ≤ T2;x) = Pr(U1 > S1(t;x), U2 ≤ ζ1(U1;x)) that a covariate effect on
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Figure 1: Graphical presentation of a competing risks model.

the cumulative incidence function is driven by both the changes in S1(t;x) and ζ1(u1;x) for all

u1 ∈ [S1(t;x), 1]. It is possible that a negative covariate effect on Sj results in a negative effect

on Qj, when the negative effect driven by the link function overrides the positive effect driven

by the negative covariate effect on Sj. Therefore, an identified sign of the covariate effect of

Qj is not immediately informative about the sign of the covariate effect on Sj. We propose

a Hicksian-type decomposition approach of the covariate effect which makes the relationship

between the sign of the covariate effect of Sj and Qj tractable. For this purpose, we refor-

mulate the competing risks models characterised by (2) and (3) as the following constrained

maximisation problem (compare also Figure 2):

(S1(t;x), S2(t;x)) = arg max
(u1,u2)

u1 + u2 (4)

subject to: (i) C(u1, u2) ≤ S(t;x) and (ii) u2 = ζ1(u1;x).
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Intuitively, risks 1 and 2 are two groups that compete for survival by time t. The competition

Figure 2: Latent survivals under a given copula function and link function.

is subject to two constraints. First, there is a maximum level of overall survivor c = S(t;x)

such that C(S1(t;x), S2(t;x)) is no greater than c. Second, for a given copula, the composition

of non-survivor for risk 1 and 2 at each t is fixed by the link function, and thus S2(t;x) =

ζ1(S1(t;x);x). These two constraints together determine the value of survival for each risk

at each t. When x changes, it changes the value of the maximum level of overall survivor

c = S(t;x) for each given t and the link function ζ1(·;x) simultaneously. Thus, S1(t;x) and

S2(t;x) also attain new values. We consider the partial effect of a covariate xk in the following

and suppress the index k for convenience.

Definition 4 Let ∆xSj(t;x) = ∂Sj(t;x)/∂x be the covariate effect of x on the latent survival

Sj at t given x .

Definition 5 Let ∆xζ1(t;x) = ∂ζ1(u1;x)/∂x be the covariate effect of x on the link function

at u1 = S1(t;x) given x.
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Definition 6 The duration function D(c;x) is defined by the minimum duration time to keep

the value of the overall survival no greater than c ∈ [0, 1] given x, i.e.

D(c;x) = inf{v ∈ R+ : S(v;x) ≤ c}. (5)

Due to Assumption 1 the inverse of S(t;x) exists. This implies that D(c;x) exists and is

unique. Since S(t;x) is differentiable w.r.t. x, D(c;x) is also differentiable w.r.t. x.

Definition 7 The Hicksian latent survival function, S∗
j (c(t);x), is defined by the value of the

latent survival function when S is held constant at c(t) = S(t;x), i.e.

S∗
j (c(t);x) = Sj(D(c(t);x);x). (6)

Differentiating both sides of (6) with respect to x and rearranging, we obtain

∂Sj(t;x)

∂x
=

∂S∗
j (c(t);x)

∂x
−

∂Sj(t;x)

∂t

∂D(c(t);x)

∂x
. (7)

The covariate effect on the latent survival Sj can therefore be decomposed into two parts by

isolating the effect on the link function and the overall survival. We call the first part the link

function effect. This is the change in the Hicksian latent survival S∗
j due to the change in the

link function while holding c(t) = S(t;x) constant.

Definition 8 Let ∆l
xSj(t;x) = ∂S∗

j (c(t);x)/∂x be the link function effect of a change in x on

latent survival of risk j at t given x.

The link function effect can be thought of as a compensated substitution effect between risks 1

and 2. A movement from x0 to x1 will change the value of overall survival from c = S(t;x0) to

S(t;x1). An adjustment of the duration time from t to D(c;x1) is necessary to ‘compensate’

the induced change in the overall survival in order to hold the value of the overall survival

constant.

The second part is called the duration effect, which is the change in the latent survival Sj

due to moving the duration time that is required to push the level of overall survival to the

new level while holding the link function constant.
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Definition 9 Let ∆d
xSj(t;x) = −∂Sj(t;x)/∂t × ∂D(c(t);x)/∂x be the duration effect of a

change in the covariate x on the latent survival of risk j at t given x.

A graphical illustration of the decomposition for a move from x0 to x1 is given in Figure 3.

Figure 3: Decomposition of Covariate Effect

Let sign |z| be the sign operator of z. This means that it is +1, 0, or -1 if z is positive, zero,

or negative respectively.

Lemma 1 Under Assumptions 1 and 2 the following holds for the competing risks model char-

acterised by equations (2)-(3):

1. There is a unique decomposition of the covariate effect on Sj(t;x) for all t and x and

j = 1, 2:

∆xSj(t;x) = ∆l
xSj(t;x) + ∆d

xSj(t;x). (8)

2. sign |∆l
xS1(t;x)| = − sign |∆l

xS2(t;x)| = − sign |∆xζ1(t;x)| for all t and x.
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3. sign |∆d
xS1(t;x)| = sign |∆d

xS2(t;x)| for all t and x.

4. sign |∆xSj(t;x)| for at least one risk j can be determined by sign |∆l
xS1(t;x)| and sign |∆

d
xS1(t;x)|

for all t and x.

We provide a sketch of the proof in Appendix A.I.

Lemma 1.4 suggests that the direction of the covariate effect can be identified when it

is known that the link function effect and the duration effect do not have opposite signs.

Although the sign of the link function effect and the duration effect are unknown, we show

next that the link function (duration) effect of the latent survivals can be identified by the link

function (duration) effect of the CIF for some subsets of t. For this reason we define a similar

decomposition for Qj.

Definition 10 The Hicksian cumulative incidence function, Q∗
j(c(t);x), is defined by the value

of the cumulative incidence function when the value of the overall survival is fixed at c(t) =

S(t;x), i.e.

Q∗
j(c(t);x) = Qj(D(c(t);x);x). (9)

Analogously to equation (7), the covariate effect on Qj can be decomposed into two parts.

Definition 11 Let ∆l
xQj(t;x) = ∂Q∗

j(c(t);x)/∂x be the link function effect of a change in the

covariate x on the cumulative incidence function for risk j at t given x.

Definition 12 Let ∆d
xQj(t;x) = −∂Qj(t;x)/∂t × ∂D(c(t);x)/∂x be the duration effect of a

change in the covariate x on the cumulative incidence function for risk j at t given x.

Since the duration effect comes solely from the change in the duration while holding the link

function constant, and, under Assumption 1, Sj(t;x) is a decreasing function in t and Qj(t;x)

is an increasing function in t, it is immediately clear that the sign of the duration effect of the

latent survival is always opposite to the sign of the duration effect of the cumulative incidence

function.

Lemma 2 Under Assumptions 1 and 2 and for j = 1, 2 we have for the competing risks model

characterised by equations (2)-(3): sign |∆d
xSj(t;x)| = − sign |∆d

xQj(t;x)| for j = 1, 2 and for

all t and x.
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The equivalent result can be established for the link function effect but it requires an

additional monotonicity assumption.

Assumption 3 The link function is a monotonic function in x, i.e. ∆xζ1(t;x) < 0 or > 0 for

all t and x.

Given Lemma 1.2, Assumption 3 implies that the link function effect on Sj has the same

direction for all t. Specifically, ∆l
xS1(t;x) < 0 for all t implies ∆xζ1(t;x) > 0 for all t and vice

versa. As the effect of the covariate on the two arguments of Q∗
1(c;x) = Pr(U1 > S∗

1(c;x), U2 ≤

ζ1(U1;x)) leads to the same direction of the change in Q∗
1(c;x), the sign of ∆l

xQ1(t;x) can be

unambiguously determined. This can be summarised as follows:

Lemma 3 Under Assumptions 1, 2 and 3 and for j = 1, 2, we have for the competing risks

model characterised by equations (2)-(3):

1. sign |∆l
xSj(t;x)| = − sign |∆l

xQj(t;x)| for all t and x.

2. sign |∆xSj(t;x)| can be determined by sign |∆l
xQj(t;x)| and sign |∆d

xQj(t;x)| for at least

one of the risks for all t and x.

The proof can be found in Appendix A.I.

Intuitively speaking, Assumption 3 is similar to the monotonicity assumption in the Roy

model as discussed by Park (2015). It implies that the propensity of risk 1 will either increase

or decrease for all t ∈ IR+ when a covariate changes. It can be shown that some popular

duration models, e.g. the accelerated failure time model, are compatible with the restrictions

of Assumption 3. While convenient, Assumption 3 is rather restrictive in applications. For

instance, unemployment research has found that the hazard rate of being recalled to the previ-

ous employer and the hazard for taking up a new job have very different patterns of duration

dependence (see e.g. Alba-Ramirez, Arranz, and Munoz-Bullon, 2007). Specifically, as unem-

ployment duration increases, the hazard of finding a new job remains relatively high, but the

recall hazard rate drops quickly and becomes very low. Different individual and job characteris-

tics will affect the relative propensity of recall and new job in different directions depending on

the length of unemployment duration. This then violates Assumption 3. While Assumption 3
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is the key identification assumption in Park (2015), a relaxation of Assumption 3 in our model

will only restrict the validity of Lemma 3 from the entire support of t to some subsets of t.

Relaxing Assumption 3 implies that the link function can change direction at some t. We

define the sequence of zero-cutting point(s) of the link function as follows.

Definition 13 Let {ṫk} for k = 1, 2, 3, . . . be a sequence of t such that ṫ1 = 0 and, for all k > 1,

∆xζj(ṫk;x) = 0 and there exists some ǫ > 0 such that ∆xζj(s;x) 6= 0 for all s ∈ [ṫk − ǫ, ṫk).

These conditions imply that if ∆xζj(t;x) = 0 for all t ∈ [ta, tb] for some tb > ta ≥ 0, only the

left end point of this interval ta enters the sequence {ṫk}.

This sequence is the same for all j because the covariate effect on the link function is zero for

both j at {ṫk} due to Lemma 1.2. Since the link function is unidentified, {ṫk} is unidentified.

But for ∆l
xQj(t;x), its zero cut-off point(s) and first local turning (maximum or minimum)

point(s) after the zero cut-off point(s) are all identified. These observable quantities can be

used to identify the direction of the link function effect on Sj for some subset of t.

Definition 14 (i) Let {t́k} for k = 1, 2, 3, . . . be a sequence of t such that ∆l
xQj(t́k;x) = 0

and there exists some ǫ > 0 such that ∆l
xQj(s;x) 6= 0 for all s ∈ (t́k, t́k + ǫ]. These conditions

imply that if ∆l
xQj(t;x) = 0 for all t ∈ [ta, tb] for some tb > ta ≥ 0, only the right end point

of this interval tb enters the sequence {t́k}. (ii) Let {t̀j,k} for k = 1, 2, 3, . . . be a sequence of

t such that t̀j,k = inf{t ∈ (t́k, t́k+1) : ∆
l
xQj(t;x) ≥ ∆l

xQj(s;x) or ∆l
xQj(t;x) ≤ ∆l

xQj(s;x) for

all s ∈ [t− ǫ, t+ ε] for some ǫ, ε > 0}. (iii) IIj,k = [t́k, t̀j,k] and IIj =
⋃

k≥1 IIj,k for j = 1, 2 and

k = 1, 2, 3, ....

The sequence {t́k} is the same for all j because the link function effect on Qj is zero for both

j at {t́k} due to Lemma 1.2 and Lemma 3.1. Since ∆l
xQj(t;x) is identified, {t́k}, {t̀j,k}, IIj,k,

and IIj are identifiable. The following lemma establishes that in absence of Assumption 3 the

validity of Lemma 3 is restricted to t ∈ IIj.

Lemma 4 Under Assumptions 1 and 2 and for j = 1, 2, we have for the competing risks model

characterised by equations (2)-(3):

1. For k = 1, 2, 3, ..., IIj,k is a subset in the interval [ṫl, ṫl+1] for some l.

2. sign |∆l
xSj(t;x)| = − sign |∆l

xQj(t;x)|, for all t ∈ IIj.
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Each set IIj,k is contained in one of the interval [ṫl, ṫl+1] for l = 1, 2, 3, . . .. However, not every

interval in the sequence [ṫl, ṫl+1] will contain an element in the sequence IIj,k. For more details

see the remark on Lemma 4.1 in Appendix A.I. The proof of Lemma 4 can be found in Appendix

A.I.

Let us denote ∆xQj(t;x) = [∆l
xQj(t;x),∆

d
xQj(t;x)]

′ for j = 1, 2. ∆xQj(t;x) 
 0 means

that both of ∆l
xQj(t;x) and ∆d

xQj(t;x) are non-negative but that at least one is non-zero.

∆xQj(t;x) � 0 is defined analogously.

Definition 15 IDj consists of all t such that ∆l
xQj(t;x)×∆d

xQj(t;x) ≥ 0.

Then IDj consists of all t such that ∆l
xQj(t;x) and ∆d

xQj(t;x) do not have the opposite sign.

Definition 16 Gj = IIj
⋂

IDj.

We now state our main identification result for the identification set Gj.

Proposition 1 Under Assumptions 1 and 2 and for j = 1, 2, the sign of the covariate effect

on Sj is identified in the competing risks model characterised by equations(2)-(3) for all t ∈ Gj:

sign |∆xSj(t;x)| =



















−1 if ∆xQj(t;x) 
 0;

0 if ∆xQj(t;x) = 0;

+1 if ∆xQj(t;x) � 0.

(10)

Proposition 1 follows directly from Lemmas 1, 2, and 4.

2.1 Increasing the identification set

In this section we consider approaches to increase the set of durations for which the direction

of the covariate effect is identified:

1. Reversed application of our decomposition approach.

2. Bounding unknown functionals without copula invariance (Peterson, 1976).

3. Bounding unknown functionals with copula invariance (Bond and Shaw, 2006).
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The considered approaches are appealing because they do not require additional restrictions

on the model. Since these are only applicable for discrete covariates, we focus in the following

on the partial effect of a discrete xk moving from X = x0 to X = x1. Again, we suppress the

index k for the ease of notation. We restate a number of definitions in analogy to Section 2.

Definition 17 For a change in x inducing a movement from x0 to x1

• the covariate effect on Sj (compare Definition 4) is ∆xSj(t;x0) = Sj(t;x1)− Sj(t;x0),

• the covariate effect on the link function (compare Definition 5) is ∆xζ1(t;x0) = ζ1(S1(t;x0);x1))−

ζ1(S1(t;x0);x0),

• the duration function (compare Definition 6) to keep the overall survival at c = S(t;x0)

is D(S(t;x0);x1),

• the link function effect (compare Definition 8) is ∆l
xSj(t;x0) = Sj(D(S(t;x0);x1);x1)−

Sj(t;x0),

• the duration effect (compare Definition 9) is ∆d
xSj(t;x0) = Sj(t;x1)−Sj(D(S(t;x0); x1);x1),

• the link function effect of Qj (compare Definition 11) is ∆l
xQj(t;x0) = Qj(D(S(t;x0);x1);x1)−

Qj(t;x0),

• the duration effect of Qj (compare Definition 12) is ∆d
xQj(t;x0) = Qj(t;x1)−Qj(D(S(t;x0);x1);x1).

It is straightforward to restate Proposition 1 for the case of discrete covariates and a presentation

is therefore omitted. Instead, we focus on how the identification set can be increased.

(1) Decomposition of the reversed covariate effect A simple expansion of the identifi-

cation set can be achieved by applying our proposed decomposition to the reversed covariate

effect.

Definition 18 The reversed covariate effect on Sj for a discrete movement from x0 to x1 is

∆−xSj(t;x0) = Sj(t;x0)− Sj(t;x1) = −∆xSj(t;x0). (11)
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Clearly, ∆−xSj(t;x0) has the opposite sign than ∆xSj(t;x0). It is also obvious that Proposition

1 can be carried over to the reversed covariate effect by exchanging the notation x1 and x0.

We denote this property as independence of the decomposition route. Let Gj(x) and Gj(−x)

be the identification sets for sign |∆xSj(t;x0)| and sign |∆−xSj(t;x0)| respectively. We obtain

the following useful result:

Corollary 1 Gj(x) 6= Gj(−x).

The proof is given in Appendix A.I. We show in the proof that there exists some set of t for

which the sign of the covariate effect is unidentified, while the sign of the reversed covariate

effect is identified. Corollary 1 suggests that it is always better to compute both decomposition

routes and take the union of the two identification sets.

The identification set can be further enlarged by applying an approach that relies on bounds

for unknown functionals.

(2) Peterson Bounds. Peterson bounds can be constructed by applying the Fréchet-Hoeffding

bounds for the joint survival distribution in (1), i.e.

W (S1(t1;x), S2(t2;x)) ≤ C(S1(t1;x), S2(t2;x);x) ≤ M(S1(t1;x), S2(t2;x)), (12)

with W (s1, s2) = max{s1 + s2 − 1, 0} is the lower Fréchet-Hoeffding bound for the copula

function and M(s1, s2) = min{s1, s2} is the upper Fréchet-Hoeffding bound. The lower (upper)

Fréchet-Hoeffding bound corresponds to the case where S1 and S2 are perfectly negatively

(positively) correlated. The corresponding bounds for the latent survivals in (2)-(3) are the

Peterson bounds, i.e.

S(t;x) ≤ Sj(t;x) ≤ 1−Qj(t;x). (13)

The upper (lower) bound in (13) is attained when the copula attains its upper (lower) Fréchet-

Hoeffding bound and the copula attains its lower (upper) Fréchet-Hoeffding bound and they

do not require Assumption 2. C is therefore allowed to vary freely in x. Thus, competing risks

may be perfectly positively correlated with one value of x while they are perfectly negatively

correlated at another value of x.
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For a discrete movement from x0 to x1, the Peterson bounds for ∆xSj(t;x0) are given by

−∆xQj(t;x0)−Qi(t;x0) ≤ ∆xSj(t;x0) ≤ −∆xQj(t;x0) +Qi(t;x1), (14)

for i 6= j. Equivalent bounds for the covariate effect of continuous x cannot be derived.

Definition 19 Let IPj be the identification set for sign |∆xSj(t;x0)| obtained by the Peterson

bounds. IPj consists of all t for which −∆xQj(t;x0)−Qi(t;x0) > 0 or −∆xQj(t;x0)+Qi(t;x0) <

0 for j 6= i or the two former being equal to zero.

One characteristic of the Peterson bounds in (14) is that the difference between the lower and

upper bound, i.e. −∆xQj(t;x0)+Qi(t;x1)− (−∆xQj(t;x0)−Qi(t;x0)) = Qi(t;x1)+Qi(t;x0),

is an increasing function of t. This implies that the bounds in (14) tend to be less informative for

greater values of t. In contrast, the identification set in Proposition 1 is a function of ∆l
xQj(t;x)

and ∆d
xQj(t;x), which are generally not monotonic in t. Thus there are no mechanics which

make our decomposition approach less informative for greater t. However, it is possible that

some subsets of IPj are not included in Gj(x). For instance, consider some t ∈ IP1∩IP2 such that

sign |∆xSj(t;x0)| is identified as positive for both j = 1, 2; but from Lemma 1, the sign of only

one risk can be identified with our decomposition approach. This appears to be a limitation

of our decomposition approach. However, by applying the reversed decomposition there may

be some durations for which the sign of the covariate effect is identified for either risk. An

example is illustrated with simulations in Section 3.

(3) Bounds for Covariate Time Transformation. Bond and Shaw (2006) consider the so-

called covariate-time transformation for a discrete movement from x0 to x1 under Assumptions

1 and 2.

Definition 20 The covariate-time transformation (CTT) is φj(t;x0) = S−1
j (Sj(t;x0);x1).

The difference between φj(t;x0) and t can be interpreted as the Sj(t;x0)-quantile treatment

effect on the latent duration. The sign of this difference also corresponds to the direction of the

covariate effect, i.e. sign |∆xSj(t;x0)| = sign |φj(t;x0)− t|. But as the Sj’s are not identified,

the CTT are also unidentified. Bond and Shaw (2006) show that the CTT can be bounded

provided that the following order assumption holds:

17



Assumption 4 φ2(t;x0) < φ1(t;x0) or φ2(t;x0) > φ1(t;x0) for all t ≥ 0.

The following result establishes the equivalence of this order assumption and the monotonicity

of the link function (Assumption 3).

Lemma 5 ζ1(u1;x0) < ζ1(u1;x1) iff φ2(t;x0) > φ1(t;x0) at any u1 = S1(t;x0), and vice versa.

According to Lemma 5, the order assumption has the same implication for the competing risks

model and the Roy model as Assumption 3 (see above for the discussion of Assumption 3).

Bounds for the CTT can then be derived by using Assumption 3 and by exploiting the link

between the observable changes in the Qj’s and the changes in the unobservable Sj’s. Suppose

that φ2(t;x0) ≤ φ1(t;x0) for all t and thus ζ1(u1;x1) ≤ ζ1(u1;x0) for all u1, we have

Q1(φ1(t;x0);x1) =

∫ 1

S1(φ1(t;x0);x1)

∫ ζ1(u1;x1)

0

κ(u1, u2) du2 du1

≤

∫ 1

S1(t;x0)

∫ ζ1(u1;x0)

0

κ(u1, u2) du2 du1 = Q1(t;x0); and (15)

S(φ1(t;x0);x1) =

∫ S1(φ1(t;x0);x1)

0

∫ ζ1(S1(φ1(t;x0);x1);x1)

0

κ(u1, u2) du2 du1

≤

∫ S1(t;x0)

0

∫ ζ1(S1(t;x0);x0)

0

κ(u1, u2) du2 du1 = S(t;x0). (16)

The bounds for the CTT are therefore

S−1(S(t;x0);x1) ≤ φ1(t;x0) ≤ Q−1
1 (Q1(t;x0);x1) (17)

Q−1
2 (Q2(t;x0);x1) ≤ φ2(t;x0) ≤ S−1(S(t;x0);x1). (18)

For a given t the sign of the covariate effect on Sj may be obtained as follows: If the minimum

of Q−1
j (Qj(t;x0);x1) and S−1(S(t;x0);x1) is greater than t, one can conclude that φj(t;x0) > t

and thus S−1
j (Sj(t;x0);x1) > t. It follows that Sj(t;x0) < Sj(t;x1) which implies a positive

covariate effect on Sj. Similarly, the covariate effect on Sj is negative when the maximum

of Q−1
j (Qj(t;x0);x1) and S−1(S(t;x0);x1) is smaller than t. Otherwise the direction of the

covariate effect on Sj is not identified. Compared with our decomposition approach this ap-

proach has two disadvantages: First, similar to the Peterson bounds, the difference between
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the bounds for the CTT increase when t becomes greater, making it less likely that the sign

of the covariate effect can be identified. Specifically, when t approaches infinity, the lower (up-

per) bound of φ1(t;x0) (φ2(t;x0)) approaches infinity. Second, (15) and (16) are only valid

under the restrictions of Assumption 3 which cannot be verified in an application. While it

is possible to detect some rejections of the order assumption, an observed rejection does not

constitute a sufficient condition. In particular, whenever the values of Q−1
1 (Q1(t;x0);x1) and

Q−1
2 (Q2(t;x0);x1) in (17) and (18) change their order at some observed t∗, it can be certain that

the order assumption is violated at some t < t∗. But, the mere fact that Q−1
1 (Q1(t;x0);x1) and

Q−1
2 (Q2(t;x0); x1) do not change their order before t∗ does not imply that there is no violation

at some t < t∗.

In what follows we propose a modification of the approach by Bond and Shaw which does

not require Assumption 3. Instead it uses the observation that the order assumption is not

violated for t ∈ [0, t̀j,1]. This is a consequence of Lemma 5, keeping Definitions 13 and 14 in

mind. The set of t for which the sign of the covariate effect is identified is then:

Definition 21 Let IBj(x) be the identification set for which sign |∆xSj(t;x0)| is identified by

the modified Bond and Shaw’s approach under Assumptions 1 and 2. IBj(x) consists of all t ∈

[0, t̀j,1] s.t. min{Q−1
j (Qj(t;x0);x1), S

−1(S(t;x0);x1)} > t or max{Q−1
j (Qj(t;x0);x1), S

−1(S(t;x0);x1)} <

t or the former two being equal to zero. Similarly, let IBj(−x) be the identification set for

sign |∆−xSj(t;x0)| derived by the modified Bond and Shaw’s approach.

To sum up we have now defined five identification sets for risk j: IPj , IBj(x), IBj(−x), Gj(x)

and Gj(−x). The overall identification set is obtained by taking their union:

Definition 22 For j = 1, 2 let U j be the set of t for which the sign of the covariate on Sj is

identified by at least one of the approaches:

U j = U j(x)
⋃

U j(−x) with

U j(x) = IPj

⋃

IBj(x)
⋃

Gj(x)

U j(−x) = IPj

⋃

IBj(−x)
⋃

Gj(−x).

In Sections 3 and 4 we explore with simulations and data examples how the size of the sets IPj ,

IBj, and Gj compare in practice and whether the size of U j is large enough to obtain practically
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informative results.

2.2 Identifiability in a multi-risks model

In this subsection we extend the model of Section 2 to a model with a finite number of risks

J(> 2). The observed failure time becomes T = min(T1, . . . , TJ) and the indicator function

is δ = arg minj{Tj}. The link function is defined as ui = ζi,j(uj;x) = Si(S
−1
j (uj;x);x).

Equations (2)-(3) becomes

S(t;x) = CJ(S1(t;x), . . . , SJ(t;x));

Qj(t;x) =
∫ 1

Sj(t;x)

∫ ζ1,j(uj ;x)

0
. . . ,

∫ ζj−1,j(uj ;x)

0

∫ ζj+1,j(uj ;x)

0

. . .
∫ ζJ,j(uj ;x)

0
κ(u1, . . . , uJ) duJ . . . duj+1 duj−1 . . . du1 duj.

(19)

The J-copula is

CJ(u1, . . . , uJ) = Pr(S1(T1;x) ≤ u1, . . . , SJ(TJ ;x) ≤ uJ). (20)

To carry over the identification results for the model with J = 2, we follow the risk pooling

approach by Lo and Wilke (2010). Suppose that we want to identify the sign of the covariate

effect on the j’th risk. By conceptually pooling all other risks into a single risk, we generate an

unobserved new variable T−j = min(T1, . . . , Tj−1, Tj+1, . . . , TJ). This is then a two risks model

with a 2-copula

C2(uj, u−j) = Pr(Sj(Tj ;x) ≤ uj, S−j(T−j;x) ≤ u−j). (21)

The unknown marginal survival function for the pooled variable T−j is S−j(t;x) = Pr(T−j >

t;x). The observed failure time is unaffected as T = min(Tj, T−j), and the indicator function

is modified as δj = j if δ = j and δj = −j if δ 6= j. For any J-copula in (20), the existence of a

2-copula in (21) is guaranteed under the following assumption (Nelsen, 2006).

Assumption 5 In the competing risks model defined by (19), the copula belongs to the Archimedean

class.
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In this case the multi-risk model can be reduced into a two risks model as (2)-(3):

S(t;x) = C2(Sj(t,x), S−j(t;x));

Qj(t;x) =
∫ 1

Sj(t;x)

∫ ζ−j,j(uj ;x)

0
κ(u−j, uj)du−j duj,

(22)

with u−j = ζ−j,j(uj;x) denotes the link function between Sj(t;x) and S−j(t;x). For more

details see Lo and Wilke (2010). The identification approaches for the two risks model in

Section 2 can therefore be subsequently applied to (22) for j = 1, . . . , J , where the order of

application does not matter. Note, however, that only the non-pooled risk is of interest in the

pooled risks model as a pooled risk is generally uninformative.

3 Simulation Study

In this section we explore the practical performance of the methods outlined in Section 2 with

the help of a simulation study. We consider a two risks model with a known closed form

representation of the entire competing risks model. This means Qj, S, Sj and C for j = 1, 2

are fully known. We consider the closed form expression given in Rivest and Wells (2001) for

an Archimedean copula generator with parameters θ, φθ(s), and the known cause-specific crude

hazard functions, λj(t; x), j = 1, 2. For simplicity, we consider a model with one binary x. We

have S(t; x) = exp
[

−
∫ t

0
λ1(u; x) + λ2(u; x) du

]

and Qj(t; x) =
∫ t

0
λj(u; x)S(u; x) du, and

Sj(t; x) = φ−1
θ

[

−

∫ t

0

φ′
θ[S(u; x)]S(u; x)λj(u; x) du

]

. (23)

We consider two one-parameter copulas in our simulations: Frank and Clayton (see e.g.

Nelsen, 2006, for details). These copulas are characterised by different tail dependencies: the

Frank copula has no upper and lower tail dependence, while the Clayton copula has lower

tail dependence. The copula generators φθ are given in Table 1. We consider four simulation

designs in which θ of these copulas is chosen such that Kendall’s τ equals to the following four

values: -0.8, -0.4, 0.4 and 0.8.

We consider three specifications of the cause-specific crude hazard functions:

(i) Odd-rate transformation model (Dabrowska and Doksum, 1988) with Weibull baseline
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Table 1: Copula generators of Frank and Clayton copula.

Copula Copula generator Support of parameter

Frank φθ(s) = − ln((exp(−θs)− 1)/(exp(−θ)− 1)) θ ∈ (−∞,∞) \ {0}
Clayton φθ(s) = (s−α − 1)θ θ > 0

Table 2: Parameters of the simulated competing risks model.

Models Parameters Risk j =1 Risk j = 2

x = x0 x = x1 x = x0 x = x1
Odd-rate transformation model (νj , ρj , γj) (1, 10, 1) (1,2,2) (0.5, 1,1) (1.5, 2, 2)
Log-logistic proportional odds model (νj , ρj) (2, 2) (5,1.8) (2, 2.5) (3, 1.5)
Log-normal accelerated failure model (νj , ρj) (1.2, -0.5) (1,-0.5) (1.2, 1) (1.3, 1.5)

such that λj(t; x) = νjρjt
(ρj−1)(1 + γjνjt

ρj)−1 with νj, ρj ∈ R+ and γj ∈ R,

(ii) Log-logistic proportional odds model such that λj(t; x) = νjρj(νjt)
(ρj−1)(1 + (νjt)

ρj)−1

with νj, ρj ∈ R+, and

(iii) Log-normal accelerated failure time model such that λj(t; x) = (f((log t− ρj)/νj)(νjt(1−

F((log t− ρj)/νj)))
−1) with ρj ∈ R, and νj ∈ R+ where f and F are the probability and

the cumulative density function of the standardized normal distribution respectively.

Table 2 gives the parameters for the models that we use in our simulations. Since we know

the true S, Sj and Qj for all j, we can easily assess the performance of the different consid-

ered identification approaches by comparing their identification sets. We compute ∆l
xQj(t; x),

∆d
xQj(t; x), ∆

l
xSj(t; x), ∆

d
xSj(t; x) and ∆xSj(t; x) for t ∈ {0, 0.005, 0.01, . . . , 1.995, 2.000} and

the sequences {t́k}, {t̀j,k}.

Figure 4 presents the results for the Frank copula using the odd-rate transformation model

with τ = 0.4. Panels (a) and (b) show the covariate effect (∆xSj(t; x)), the link function

effect of the CIF (∆l
xQj(t; x)), the duration effect of the CIF (∆d

xQj(t; x)), and the Peterson

bounds (PBj). They also report the identification set derived from the Peterson bounds (IPj),

the modified Bond and Shaw approach (IBj(x)), the decomposition approach (Gj(x)), and

their union (U j(x)). The set IPj is marked as horizontal lines in grey color at the value of

the vertical axis of -1.2, while unmarked intervals indicate the range of duration in which the

sign is unidentified. Similarly, the identification sets IBj(x), Gj(x), and U j(x) are marked as

horizontal lines in different grey colors at -1.3, -1.4, and -1.6 respectively. The Figure also
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reports the direction of the identified sign for t in U j(x). When the sign is identified as

positive, zero, or negative at t, ISj(x) (identified sign) is marked as the horizontal lines at

1, 0, -1, respectively at that t. Panels (c) and (d) report equivalent results for the reversed

covariate effect ∆−xSj(t; x). This includes the corresponding link function effect (∆l
−xQj(t; x)),

the duration effect (∆d
−xQj(t; x)), and the identification sets using the Peterson bounds (IPj), the

modified Bond and Shaw approach (IBj(−x)), the decomposition approach (Gj(−x)) and their

union (U j(−x)). Panels (e) and (f) present the union of the various identification approaches

in different directions. This means IBj = IBj(x)
⋃

Bj(−x), Gj = Gj(x)
⋃

Gj(−x), U j =

U j(x)
⋃

U j(−x), and ISj = ISj(x)
⋃

ISj(−x).

Figure 4(a) shows that the upper and lower Peterson bounds (PB1) contain the value zero at

all t and thus IP1 is an empty set (unmarked). The identification set for the modified Bond and

Shaw approach, IB1(x) (compare Definition 21), is restricted to t ∈ [0, t̀1,1]. This is confirmed

in Panel (a). IB1(x) does not contain values of t greater than t̀1,1, this is the time at which the

maximum of the link function effect ∆l
xQ1 occurs in the interval [t́1, t́2]. In contrast, the sign of

the covariate effect is also identified for t ∈ [t́2, t̀1,2] when the decomposition approach is used.

For this reason, Gj(x) includes values of t in [0, t̀1,1]
⋃

[t́2, 2] for which ∆l
xQ1(t) and ∆d

xQ1(t)

have the same direction. Panel (a) shows that the decomposition approach provides the largest

identification set and coincides with the union U j(x).

Panel (c) shows the same upper and lower Peterson bounds (PB1) as in Panel (a), as

the Peterson bounds are identical in the reversed direction. In contrast ∆l
−xQ1 and ∆d

−xQ1

differ compared to Panel (a). The computed identification sets for the modified Bond and

Shaw approach (IB1(−x)) and the decomposition approach (G1(−x)) are therefore different

from those in Panel (a). This illustrates the usefulness of Corollary 1. Similar to Panel (a), the

identification set of the decomposition approach in Panel (c) is the largest. Panel (e) shows that

combining U 1(x) and U 1(−x) produces larger identification sets U 1 and IS1. This illustrates

the usefulness of combining the three approaches.

Panel (b) shows the results for risk 2. It can be seen that IP2(x) and IB2(x) consist of

some t which are not contained in G2(x). This is the set of t for which the link function and

the duration effect have different directions. At the same time, G2(x) includes some set of t

which is not included in IP2(x) and IB2(x). Similarly, Panels (d) and (f) show that the three

approaches partly complement each other. Notably, the decomposition approach is particularly
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Figure 4: Identified sign (IS) of the covariate effect in a known two risks model using Frank
copula and odd-rate transformation model with τ = .4: Risk 1 (left) and Risk 2 (right).
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useful for identifying the sign of the covariate effect at longer durations. The application of the

decomposition and the reversed decomposition in Figure 4 did not generate sets of durations

at which the sign of the effect is identified for both risks at the same time. This means the sets

G1 and G2 are disjoint.

We also show the results for a Clayton copula and log-logistic proportional odds model in

Figure S1 in the supplementary material. The result patterns are similar to those in Figure 4

but there is an overlap of the sets G1 and G2 for t ∈ [.18, .22], meaning that the direction of

the covariate effect is identified for both risks in this interval.

Table 3 summarises the results using different combinations of copulas and marginal dis-

tributions with τ = .4. Tables S1-S3 in the supplementary material show more results for

τ = −0.8, τ = −0.4 and τ = 0.8. In these tables, the relative size of the identification set using

each approach is measured as the size of the respective identification set divided by the size of

IT (IT is the support on which the model has been evaluated, see below for details). This is the

share of IT identified by the respective approach. The relative size of the identification set that

is uniquely identified by each approach is measured by the size of the subset of the respective

identification set that is not contained in the identification sets of the other methods (unique

of IT ). The latter shows the additional contribution of each of the approaches to the union of

identification sets. If the latter is zero, it means that there is no additional gain from using

this method when the other methods have already been applied. Since the support of T has

no upper limit, we define set IT as the set of duration from 0 to the value at which one of the

Sj becomes very flat, particularly when Sj decreases by less than 1× 10−6 when t increases by

0.05. The tables show that the order of the relative size of the identification sets using different

approaches is quite robust in the choice of τ and C. More specifically, in almost all cases our

proposed decomposition approach produces the largest identification set. In the case it does

not generate the largest set, it is only marginally smaller than the largest set. Moreover, in all

of the cases our proposed decomposition approach makes the largest additional contribution

among all methods. It is therefore the method that provides the most distinctive information.
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Table 3: Relative size of identification sets in simulated competing risks models (τ = 0.4).

Frank Copula Clayton Copula
Share of T∗ Unique of T∗∗ Share of T∗ Unique of T∗∗

Odd-rate

transformation model

IT [0,3.59] [0,3.03]
Risk j = 1
IP1 0% 0% 0% 0%
IB1 12.5% 0% 14.8% 0%
G1 84.1% 71.6% 81.2% 66.4%
U 1 84.1% 81.2%
Risk j = 2
IP2 16.4% 2% 14% 4.2%
IB2 12.4% 0% 14.7% 0%
G2 15.7% 7.4% 18.6% 8.7%
U 2 23.8% 28.2%

Log-logistic

proportional odds model

IT [0,5.805] [0,2.71]
Risk j = 1
IP1 6.5% 2% 14% 4.2%
IB1 4.6% 0% 9.7% 0%
G1 91.2% 87.7% 81.2% 71.5%
U 1 93.2% 85.5%
Risk j = 2
IP2 7.8% 1.2% 16.8% 2.6%
IB2 1.5% 0% 3.1% 0%
G2 10.9% 5.8% 23.4% 12.3%
U 2 13.6% 29.1%

Log-normal

accelerated failure model

IT [0,24.59] [0,19.945]
Risk j = 1
IP1 1.9% 0% 2.6% 0%
IB1 94% 0.1% 91.8% 0.2%
G1 92.6% 0.2% 89.8% 0.4%
U 1 94.2% 92.1%
Risk j = 2
IP2 0% 0% 0% 0%
IB2 8% 0% 11% 0%
G2 8.2% 0.2% 11.3% 0.3%
U 2 8.2% 11.3%

*: size of respective identification set divided by the size of T.
**: size of the subset of the respective identification set that is not contained in the identification sets
of the other methods divided by the size of T. Measure of additional contribution.
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4 Data Examples

We illustrate the usefulness of the proposed decomposition approach with the help of two data

examples. The sets IPj and IBj (and the associated signs of the covariate effect) can be easily

determined using the estimatedQj. The set Gj is estimated by a multiple-step procedure. First,

Qj(t;x) and S(t;x) are estimated with a consistent estimator. See for example Kalbfleisch

and Prentice (2002) for nonparametric estimation in stratified samples for discrete x. For

continuous x, nonparametric kernel estimator can be applied. See for example Fermanian

(2003). These estimates are then plugged into the population equations of Section 2 to obtain

their sample analogues. The estimate for Gj and the direction of the covariate are obtained

from the sample analogues of the relevant equations. The estimation procedure is outlined

step by step in Appendix A.II. A discussion of asymptotic properties and a bootstrap based

inference procedure can be found in the discussion paper version of this paper (Lo and Wilke,

2011).

We use two samples of unemployment durations and consider the effect of various discrete

covariates on the probability of taking up employment. All other exit states are pooled into

a second risk using the method discussed in Section 2.2. Results for the second risk are not

presented because it does not have a direct interpretation. The first sample we use is the illus-

trating data for competing risks models in the textbook of Cameron and Trivedi (2005). These

data have been originally used in the study by McCall (1996) and come from the U.S. Cur-

rent Population Survey’s Displaced Worker Supplement. They contain monthly information on

three destination states for the displaced jobless individual. We only consider transitions into

the risk ”full-time employment”. In addition to observed transitions there is independent cen-

soring because not all joblessness periods were terminated by the time of the interview. There

are 3,343 observations with 1,073 transitions into full-time employment and 913 transitions

into the pooled risk. We report results only for the first 24 months as there are hardly any

transitions for longer durations. We consider the effect of three dummy variables: receipt of

unemployment insurance (ui), being married (married) and being female (female). The second

sample is extracted from German administrative labour market data. In particular, we use a

sample of the scientific use file version of the sample of the integrated labour market biogra-

phies (SIAB) 1975-2010 of the Institute for Employment Research (IAB), Germany. These
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administrative data are a 2% random sample of the workforce in Germany that contributed to

the social insurance in the period 1975-2010. The SIAB contains daily information about pe-

riods of dependent employment and claim periods for unemployment compensation along with

basic information about the individual (such as gender, wage, age and employment history)

and the employing firm (such as business sector and location). For more information on the

SIAB see Dorner et al. (2010). From these data we extract all unemployment benefit claim

periods starting in 2007 and 2008. We define unemployment benefit duration as receipt of un-

employment benefits (Arbeitslosengeld) from the German Federal Employment Agency. This

leaves us with a sample of 95,271 observations. We only consider transitions into employment

(with contributions to the social insurance). We observe 56,843 transitions into employment

and 38,428 transitions into the pooled risk. There is no censoring. We report results only

for the first 730 days as there are hardly any transitions to employment beyond that point.

For these data we consider the effect of five dummy covariates: unemployment starts during

winter period, i.e. November-February (winter), unemployment starts in calendar year 2008

(year2008 ), a previous unemployment period of the unemployed had been terminated by a

recall to the former employer (previous recall), the person has been unemployed in the past

(previous unemployment) and gender (female).

We present estimation results in Table 4 and Figure 5. The table summarises the results for

all variables by providing information about the relative size of the identification sets and their

uniqueness. It can be seen that the decomposition approach produces the largest identification

set in almost all cases. It is also apparent that the decomposition approach in most cases

produces the largest additional contribution. These observations confirm the findings of the

simulations.

Figure 5 presents more detailed insights for two variables: ui (receipt of unemployment

insurance, McCall data) and winter (SIAB). In particular, it shows plots for the estimated

nonparametric cumulative incidence functions (Q̂1) in the left panel. The right panel contains

the estimated sign of the covariate effects on the marginal distribution of job finding (ES1),

and the estimated identification sets ÎP 1, ÎB1, Ĝ1, and Û 1. ES1 is plotted as horizontal lines

at 0.6, 0 and -0.6 when the effect is estimated as positive, zero, and negative, respectively.

ÎP 1, ÎB1, Ĝ1, and Û 1 are plotted at -0.7, -0.8, -0.9, and -1 respectively. For comparison these

plots also report the estimated covariate effects under the assumption of independent competing
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Figure 5: Cumulative incidence for job finding (left) and estimated sign of covariate effects on
the marginal distribution (right).
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Û1

unemployment benefit duration (in months)

pp

 

 

ES1
ˆPB1

P̂1

B̂1(x) ∪ B̂1(−x)
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risks (Kaplan-Meier estimator, K-M) and under the assumption of independent competing risks

and parametric restrictions on the marginal survivals (Cox-proportional hazards model, Cox).

The K-M estimator and Cox model are very frequently applied in empirical research and it is

therefore of interest to see how the imposition of stronger restrictions leads to changes in the

results.

It is apparent from the left panel of Figure 5 that the estimated Qj change considerably in

the two variables. The cumulative incidence for ui=1 is lower for all durations. This suggests

that unemployment insurance claimants have lower incidences of taking up a job irrespective

of the length of unemployment. The cumulative incidence for winter=1 is lower for shorter
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Table 4: Relative size of estimated identification sets in the data examples.

McCall data SIAB
Risk: Full-time employment Risk: Employment

IT = [0, 24] (months) IT = [0, 730] (days)
Share of T∗ Unique of T∗∗ Share of T∗ Unique of T∗∗

Covariate ui winter

IP1 32% 32% 0% 0%
IB1 0% 0% 45.6% 10%
G1 36% 36% 36.5% 0.1%
U 1 68% 46.6%

Covariate married year2008

IP1 0% 0% 0% 0%
IB1 44% 0% 41.7% 0%
G1 96% 52% 57.7% 16%
U 1 96% 57.7%

Covariate female previous recall

IP1 0% 0% 28.7% 0%
IB1 0% 0% 99.4% 0%
G1 32% 32% 99.8% 0.2%
U 1 32% 99.8%

Covariate previous unemployment

IP1 0% 0%
IB1 99.0% 0%
G1 99.8% 0.8%
U 1 99.8%

Covariate female

IP1 0% 0%
IB1 1.4% 1.4%
G1 94.6% 94.6%
U 1 96%

*: size of respective identification set divided by the size of T.
**: size of the subset of the respective identification set that is not contained in the identification sets
of the other methods divided by the size of T. Measure of additional contribution.

30



durations but is higher for longer durations. This implies that winter affects the incidence of

reemployment differently at different lengths of unemployment duration. But it remains to be

seen whether the estimated directions of the covariate effects on the latent survival distribution

of reemployment follow the same patterns.

Regarding the effect of ui, the Peterson bounds in the right panel Figure 5 reveal a positive

covariate effect at shorter durations. This means that the receipt of unemployment insurance

decreases the reemployment rate at unemployment duration between 2 to 8 months. The de-

composition approach identifies a positive effect at long durations, More specifically, the receipt

of unemployment insurance decreases the reemployment rate between 16 and 24 months of un-

employment duration. The modified Bond and Shaw procedure does not provide informative

results in this case. This example illustrates clearly that the decomposition approach produces

the most distinctive information compared to the other approaches. Namely, the decomposition

approach is particularly useful for identification at longer duration. When the decomposition

approach is not employed, one cannot identify the effect of ui on long-term unemployment (16

to 23 months) without making assumptions on the copula function (K-M ) or the latent survival

function (Cox ). This distinctive feature of the decomposition approach could be particularly

relevant for empirical applications in which the covariate effect at longer duration is of ma-

jor interest, for instance, when the impact of a policy on curbing long-term unemployment is

examined.

Another interesting observation can be made for the variable winter in Figure 5. The

results for the sets IB1 and G1 show that the estimated direction of the covariate effect changes

in duration. The re-employment rate for a short-term unemployed individual (< 90 days) is

lower for those who started unemployment in the winter. But their re-employment rate during

medium-term unemployment (110 - 370 days) is higher. In contrast, the Cox model, due to its

restriction implied by the proportionality of hazards, does not reveal this pattern of duration

dependence but suggests a negative effect for all durations. Indeed, the estimated partial effect

of the Cox model is not even located within the Peterson bounds for short durations. This

highlights the practical relevance of using a model with less parametric restrictions on the role

of the covariates for marginal survival distributions.

The Kaplan-Meier estimator, although it does not require parametric restrictions on the la-

tent survival distribution, does require that the competing risks are independent. It is therefore
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a special case and included in the Peterson bounds. Indeed, in Figure 5 the Kaplan-Meier based

estimates locate near the center of the Peterson bounds. For the variable winter, the Kaplan-

Meier based estimate coincides with the results of the decomposition approach for short-term

(< 90 days) and medium-term (90 - 370 days) unemployment. While it also suggests a positive

effect for long-term unemployment (> 370 days), the decomposition approach does not provide

evidence of such an effect. This shows that the K-M estimator based results for long-term

unemployment are not robust with respect to the degree of dependence (τ) in this example.

These results have shown that our proposed decomposition method produces useful insights

into the direction of the covariate effect. The estimated sign is robust to the functional form

of the latent survival distribution as well as the degree of dependence between the competing

risks.
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Appendix

A.I: Proofs

Proof of Lemma 1:

Lemma 1.1 is a direct result of (7) and Definitions 8 and 9. The uniqueness is guaranteed by the

uniqueness of D(c;x), which is ensured by Assumption 1. The first equality of Lemma 1.2 can

be proved by differentiating the copula function C(S∗
1(c;x), S

∗
2(c;x)) = c with respect to x while

keeping c constant. This results in ∂C
∂S∗

1

∂S∗

1

∂x
+ ∂C

∂S∗

2

∂S∗

2

∂x
= 0 and thus

∂S∗

2

∂x
/
∂S∗

1

∂x
= − ∂C

∂S∗

1

/ ∂C
∂S∗

2

< 0.

The second equality of Lemma 1.2 can be proved by differentiating S∗
2(c;x) = ζ1(S

∗
1(c;x);x)

with respect to x, such that
∂S∗

2

∂x
= ∂ζ1

∂S∗

1

∂S∗

1

∂x
+ ∂ζ1

∂x
|u1=S∗

1
. After rearranging, we have ∂ζ1

∂x
|u1=S∗

1
=

∂S∗

2

∂x
− ∂ζ1

∂S∗

1

∂S∗

1

∂x
. Since ∂ζ1(u)

∂u
> 0 and sign |

∂S∗

2

∂x
| = − sign |

∂S∗

1

∂x
|, we have the result. Lemma 1.3

follows from Assumption 1 that Sj is decreasing in t. Lemma 1.4 follows directly from Lemmas

1.1, 1.2 and 1.3. For example, if both ∆d
xS1(t;x) and ∆l

xS1(t;x) are positive (negative), this

implies from 1.2 and 1.3 that ∆d
xS2(t;x) > (<)0 and ∆l

xS2(t;x) < (>)0. In such case ∆xS1(t;x)

is positive (negative) and the sign of ∆xS2(t;x) cannot be determined. Similarly, if ∆d
xS1(t;x) <

(>)0 and ∆l
xS1(t;x) > (<)0, the sign of ∆xS1(t;x) is undetermined while ∆xS2(t;x) is negative

(positive). Second, if ∆d
xS1(t;x) > (<)0 and ∆l

xS1(t;x) = 0, this implies from 1.2 and 1.3

that ∆d
xS2(t;x) > (<)0 and ∆l

xS2(t;x) = 0. In this case, ∆xS1(t;x) and ∆xS2(t;x) are

positive (negative). Similarly, if ∆d
xS1(t;x) = 0 and ∆l

xS1(t;x) > (<)0 , ∆xS1(t;x) is positive

(negative) while ∆xS2(t;x) is negative (positive). Third, if both ∆d
xS1(t;x) and ∆l

xS1(t;x)

are zero, ∆d
xS2(t;x) and ∆l

xS2(t;x) are also zero, the sign ∆xS1(t;x) and ∆xS2(t;x) are then

known to be zero. To conclude, the sign of one risk can be determined in the first case, while

in cases 2 and 3 the sign of both risks can be determined. �
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Proof of Lemma 3:

We prove Lemma 3.1 by differentiating Q∗
1(c(t);x) =

∫ 1

S∗

1
(c(t),x)

∫ ζ1(u1;x)

0
κ(u1, u2)du2du1 w.r.t.

x:

∂Q∗
1(c(t);x)

∂x
=

∫ 1

S∗

1
(c(t);x)

∂

∂x
ζ1(u1;x)κ(u1, ζ1(u1;x))du1

−
∂

∂x
S∗
1(c(t);x)

∫ ζ1(S∗

1
(c(t),x);x)

0

κ(S∗
1(c(t);x), u2)du2. (24)

According to Assumption 3 and Lemma 1.2, sign | ∂
∂x
ζ1(u1;x)| = − sign | ∂

∂x
S∗
1(c(t);x)| for all

u1 ∈ [S∗
1(c(t);x), 1], or, equivalently, for all t1 ∈ [0, t]. We have therefore

sign |∆l
xQ1(t;x)| = − sign |∆l

xS1(t;x)| × sign

∣

∣

∣

∣

∣

∫ 1

S∗

1
(c;x)

κ(u1, ζ1(u1;x))du1

+

∫ ζ1(S∗

1
(c,x);x)

0

κ(S∗
1(c;x), u2)du2

∣

∣

∣

∣

∣

(25)

for all t ∈ R+. Since the integrals in (25) are positive, the proof for risk 1 is complete. For

risk 2 it suffices to prove the following: Since S(t;x) = 1 − Q1(t;x) − Q2(t;x), we have

∂Q∗

1
(c(t);x)

∂x
= −

∂Q∗

2
(c(t);x)

∂x
. Substituting this and Lemma 1.2 in (25), we have sign |∆l

xQ2(t;x)| =

− sign |∆l
xS2(t;x)|. Lemma 3.2 is a direct result from Lemmas 1.4, 2 and 3.1. �

Lemma 6 Under Assumptions 1 and 2 and for k = 1, 2, ..., we have for the competing risks

model characterised by equations (2)-(3):

1. ∆l
xSj(t;x) = 0 for all t ∈ {ṫk}.

2. Either sign |∆l
xSj(t;x)| ≥ 0 or sign |∆l

xSj(t;x)| ≤ 0 for all t ∈ (ṫk, ṫk+1).

3. sign |∆l
xSj(m;x)| = − sign |∆l

xSj(n;x)| for all m ∈ (ṫk, ṫk+1) and n ∈ (ṫk+1, ṫk+2).

4. sign |∆l
xAj(ṫk, t;x)| = − sign |∆l

xSj(t;x)| for all t ∈ (ṫk, ṫk+1) with

Aj(t1, t2;x) =

∫ Sj(t2;x)

Sj(t1;x)

∫ ζj(uj)

0

κ(u1, u2)du−jduj (26)

for any t2 > t1 ≥ 0 and ∆l
xAj(t1, t2;x) as the link function effect of Aj(t1, t2;x).
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Proof of Lemma 6:

Lemmas 6.1, 6.2 and 6.3 follow directly from Definition 13 and Lemma 1.2. We prove Lemma

6.4 as follows: For any t ∈ (ṫk, ṫk+1), rewrite Qj(t;x) in (3) as

Qj(t;x) = Qj(ṫk;x) + Aj(ṫk, t;x). (27)

The link function effect of (27) becomes

∆l
xQ1(t;x) = ∆l

xQ1(ṫk;x) + ∆l
xA1(ṫk, t;x), with (28)

∆l
xA1(ṫk, t;x) =

∫ S∗

1
(c(ṫk);x)

S∗

1
(c(t);x)

∂

∂x
ζ1(u1;x)κ(u1, ζ1(u1;x))du1

−
∂

∂x
S∗
1(c(t);x)

∫ ζ1(S∗

1
(c(t),x);x)

0

κ(S∗
1(c(t);x), u2)du2. (29)

Equation (29) holds because of Lemma 1.1. From Lemma 1.2, sign |∆xζ1(t;x)| = − sign |∆l
xS1(t;x)|

for all t ∈ (ṫk, t). The sign of (29) equals to

sign |∆l
xA1(ṫk, t;x)| = − sign |∆l

xS1(t;x)| × sign

∣

∣

∣

∣

∣

∫ S∗

1
(c(ṫk);x)

S∗

1
(c(t);x)

κ(u1, ζ1(u1;x))du1

+

∫ ζ1(S∗

1
(c(t),x);x)

0

κ(S∗
1(c(t);x), u2)du2

∣

∣

∣

∣

∣

= − sign |∆l
xS1(t;x)|. (30)

This completes the proof. �

Proof of Lemma 4:

We first prove Lemma 4.1. For any k > 0, assume without loss of generality that t́k ∈ [ṫl, ṫl+1]

for some l > 0. We have from (28) and Definition 14

∆l
xQj(t́k;x) = ∆l

xQj(ṫl;x) + ∆l
xAj(ṫl, t́k;x) = 0. (31)
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For all t ∈ (t́k, ṫl+1], we have therefore

∆l
xQj(t;x) = ∆l

xQj(t́k;x) + ∆l
xAj(t́k, t;x) = ∆l

xAj(t́k, t;x). (32)

The first turning point t̀j,k is located in (t́k, ṫl+1) if ∆l
xAj(t́k, t; x) is a non-monotonic (non-

increasing or non-decreaseing) function in t ∈ (t́k, ṫl+1). Otherwise t̀j,k = ṫl+1 if ∆l
xAj(t́k, t;x)

is monotonic (increasing or decreasing) in t ∈ (t́k, ṫl+1). This is because sign |∆l
xAj(ṫl+1, t;x)| =

− sign |∆l
xAj(t́k, ṫl+1;x)| in ∆l

xQj(t;x) = ∆l
xAj(t́k, ṫl+1;x)+∆l

xAj(ṫl+1, t;x) for all t ∈ (ṫl+1, ṫl+2),

and ∆l
xQj(t;x) changes direction at ṫl+1. To conclude, we have [t́k, t̀j,k] ∈ [ṫl, ṫl+1] in all cases.

This completes the proof of Lemma 4.1.

Next, we prove Lemma 4.2. According to Definition 14, we have for t ∈ (t́k, t̀j,k),

∆l
xQj(t́k;x) < ∆l

xQj(t;x) < ∆l
xQj(t̀j,k;x) if ∆l

xQj(t̀j,k;x) > 0

∆l
xQj(t́k;x) > ∆l

xQj(t;x) > ∆l
xQj(t̀j,k;x) if ∆l

xQj(t̀j,k;x) < 0.

Since ∆l
xQj(t́k;x) = 0 and by writing ∆l

xQj(t̀j,k;x) = ∆l
xQ1(ṫk;x) + ∆l

xA1(ṫk, t̀j,k;x), we have

0 < ∆l
xQj(t;x) < ∆l

xQ1(ṫk;x) + ∆l
xA1(ṫk, t̀j,k;x) if ∆l

xQj(t̀j,k;x) > 0

0 > ∆l
xQj(t;x) > ∆l

xQ1(ṫk;x) + ∆l
xA1(ṫk, t̀j,k;x) if ∆l

xQj(t̀j,k;x) < 0.

∆l
xQj(t;x) is zero at t́k with t́k ∈ (ṫk, t̀j,k). Thus ∆l

xQj(ṫk;x) and ∆l
xQj(t̀j,k;x), which are

non-zero, must have different directions. It follows that

0 < ∆l
xQj(t;x) < ∆l

xA1(ṫk, t̀j,k;x) if ∆l
xQj(t̀j,k;x) > 0

0 > ∆l
xQj(t;x) > ∆l

xA1(ṫk, t̀j,k;x) if ∆l
xQj(t̀j,k;x) < 0.

Using Lemma 6.4 we have for all t ∈ [t́k, t̀j,k] and for all k = 1, 2...

sign |∆l
xQj(t;x)| = sign |∆l

xAj(t́k, t;x)| = sign |∆l
xSj(t;x)|. (33)

This completes the proof of Lemma 4.2. �
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Remark on Lemma 4.1:

It is possible that there is more than one zero cut-off point in [ṫl, ṫl+1] for some l such that all

IIj,k, IIj,k+1, ..., IIj,k+m are included in [ṫl, ṫl+1] for some k, l = 1, 2, ... and m = 1, 2, .... It is also

possible that there exists no zero cut-off point in [ṫl, ṫl+1] for some l. For example, we assume

without loss of generality that IIj,k ∈ [ṫl, ṫl+1] for some k and l and consider the location of IIj,k+1.

If |∆l
xAj(ṫl+1, t;x)| < |∆l

xAj(t́k, ṫl+1;x)| in ∆l
xQ1(t;x) = ∆l

xAj(t́k, ṫl+1; x) +∆l
xAj(ṫl+1, t;x) for

all t ∈ (ṫl+1, ṫl+2), the negative (positive) value of ∆
l
xAj(ṫl+1, t;x) is not large enough to counter-

balance the positive (negative) value of ∆l
xAj(t́k, ṫl+1;x). In this case there is no zero cut-off

point in [ṫl+1, ṫl+2], and thus Ij,k+1 can only be located in [ṫl+m, ṫl+m+1] for some odd integer

m > 1. To conclude, there is no particular restriction on the values of k and l in IIj,k ∈ [ṫl, ṫl+1].

Proof of Corollary 1:

It suffices to show an example in which the sign of the covariate effect is identified while the

reversed covariate effect is not. Consider the case of crossing link functions at ṫ1 = 0, some ṫ2,

and ṫ3 such that ζ1(S1(t;x0);x1) > ζ1(S1(t;x0);x0) for all t ∈ (0, ṫ2) and ζ1(S1(t;x0);x1) <

ζ1(S1(t;x0);x0) for all t ∈ (ṫ2, ṫ3). Suppose also there exists a t
∗ such that S1(t

∗;x0) > S1(ṫ2;x0)

and S1(D(S(ṫ2;x0);x1);x1) > S1(t
∗;x1), and thus

D(S(ṫ2;x0);x1) < t∗ < ṫ2. (34)

Given Definition 6 and the continuity of S(t;x), S1(D(S(ṫ2;x0);x1);x1) = S1(ṫ2;x0), we have

therefore from (34) S1(t
∗;x1) < S1(D(S(ṫ2;x0);x1);x1) = S1(ṫ2;x0) < S1(t

∗;x0) which implies

a negative covariate effect on S1(t
∗;x0). We will show the case that the decomposition approach

identifies the sign of the covariate effect for risk 1 at t∗, but the reversed covariate effect is not

identified at t∗.

From (34), we have S(D(S(t∗;x0);x1),x1) = S(t∗;x0) > S(ṫ2;x0) = S(D(S(ṫ2;x0);x1);x1),

and thusD(S(t∗;x0);x1) < D(S(ṫ2;x0);x1). Together with (34), we have t∗ > D(S(t∗;x0);x1).

This implies that the duration effect is negative, i.e. ∆d
xS1(t

∗;x0) < 0. Under the as-

sumption that ζ1(S1(t,x0),x1) > ζ1(S1(t,x0),x0) for all t ∈ (0, ṫ2) and from (34) t∗ < ṫ2,

we have ∆xζ1(t
∗;x) < 0. Given Lemma 1.2, the link function effect is also negative, i.e.
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∆l
xS1(t

∗;x0) < 0. The sign of the covariate effect is therefore identified. Next, we consider the

sign of the reversed covariate effect from a movement from x1 to x0.

From (34), we have S(D(S(t∗;x1);x0),x0) = S(t∗;x1) < S(D(S(ṫ2;x0);x1);x1) = S(ṫ2;x0),

we have D(S(t∗;x1);x0) > ṫ2. Together with (34), we have D(S(t∗;x1);x0) > t∗. This implies

that the duration effect is positive, i.e. ∆d
−xS1(t

∗;x0) > 0. However, under the assumption that

ζ1(S1(t,x0),x1) < ζ1(S1(t,x0),x0) for all t ∈ (ṫ2, ṫ3), we have from Lemma 1.2 that the link

function effect is negative, i.e. ∆l
−xS1(t

∗;x0) < 0. And thus the sign for the reversed covariate

effect is unidentified. �

Proof of Lemma 5:

From Definitions 3 and 20:

φ2(t;x0) < φ1(t;x0) ⇐⇒

S−1
2 (S2(t;x0);x1) < S−1

1 (S1(t;x0); x1) ⇐⇒

S2(t;x0) > S2(S
−1
1 (S1(t;x0); x1); x1) ⇐⇒

ζ1(S1(t;x0);x0) > ζ1(S1(t;x0);x1).

This holds vice versa and completes the proof. �
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A.II: Estimation of Gj and the sign of the covariate effect.

We apply the following multiple-step estimation procedure in the data examples in Section 4

to estimate the effect of a discrete covariate.

1. Define an equally spaced time grid {t1, t2, . . . , tM}.

2. Estimate Q̂j(t;xk) and Ŝ(t;xk) for j = 1, 2 and k = 0, 1 nonparametrically at all t in

{t1, t2, . . . , tM}.

3. Compute D̂(S(t;x0);x1) in Definition 17 by solving the sample analogue of equation (5)

for all t in {t1, t2, . . . , tM}.

4. Compute ∆̂l
xQj(t;x0) and ∆̂d

xQj(t;x0) by plugging D̂(S(t;x0);x1) into Q̂j(t;x) according

to Definition 17 for all t in {t1, t2, . . . , tM}.

5. Compute ÎIj from the estimated sequences {t́k} and {t̀j,k} according to Definition 14 by

using ∆̂l
xQj(t;x0) for all j.

6. Compute ÎDj by using ∆̂l
xQj(t;x0) and ∆̂d

xQj(t;x0) for all j.

7. The sign of the covariate effect at t ∈ Ĝj is then determined by the sample analogue of

Proposition 1.

This procedure is applicable to both directions of the decomposition ∆ and ∆−x, which provides

Ĝj(x) and Ĝj(−x) for each risk. There are two modifications to improve the finite sample

performance: Sampling variation in Q̂j(t;x) also imply some random variation in ∆̂l
xQj(t;x).

For this reason, the estimated sequence {t̀j,k} has also some random variation. In particular

since ∆̂l
xQj(t;x) is not smooth and has some peaks created by sampling errors, the estimated

first local extreme value between {t́k} and {t́k+1} is likely to occur before the actual value

of {t̀j,k+1}. This implies that the estimated {t̀j,k+1} as well as the size of the identification

region are likely downward biased in small samples. We suggest two alternative procedures to

overcome this issue:

• Employ a smoothing technique for Q̂j(t;x) in step 5 to eliminate small peaks in ∆̂l
xQj(t;x).

Although it can eliminate peaks due to random sampling, it can also eliminate the true
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extreme values if the chosen degree of smoothing is too large. As with any smoothing

technique there is some arbitrariness involved and it is difficult to determine the optimal

degree of smoothing.

• Impose an additional assumption that there are no multiple extreme values of ∆̂l
xQj(t;x)

between {t́k} and {t́k+1}. In this case, we recommend in step 5 using the estimated global

extreme value between {t́k} and {t́k+1} as an estimator for the sequence of {t̀j,k}. This

method produces good results if the true link function effect does not have multiple local

extreme values. Otherwise, the estimated {t̀j,k} is upward biased.
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