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Abstract In this paper we address the problem of visualizing in a bounded region
a set of individuals, which has attached a dissimilarity measure and a statistical
value, as convex objects. This problem, which extends the standard Multidimen-
sional Scaling Analysis, is written as a global optimization problem whose objective
is the difference of two convex functions (DC). Suitable DC decompositions allow
us to use the Difference of Convex Algorithm (DCA) in a very efficient way. Our
algorithmic approach is used to visualize two real-world datasets.

Keywords Data Visualization · DC functions · DC algorithm · Multidimensional
Scaling Analysis

1 Introduction

In the Big Data era, Data Visualization is an area of interest to specialists from a
wide variety of disciplines, [18,19,30,31]. The information managed must be pro-
cessed and, what is even more important, understood. Data Visualization tech-
niques arise to respond to this requirement by developing specific frameworks to
depict complex data structures as easy-to-interpret graphics, [46,57].

Mathematical Optimization has contributed significantly to the development
of this area during recent years, see [17,34,48] and the references therein. Nowa-
days, complex datasets pose new challenges in order to visualize the data in such
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a way that patterns are captured and useful information is extracted. Special at-
tention is paid to represent the underlying dissimilarity relationships that data
may have. Although the most popular dissimilarity measures are those derived
from metrics, such as the Euclidean or Mahalanobis distance, there exist also non-
metric approaches, such as correlations, [14,37]. Classical dimensionality reduc-
tion techniques, such as Principal Component Analysis, [50], or Multidimensional
Scaling (MDS), [33,39,59], have been customized to deal with more complex data
structures, [1,5,20], and to make the interpretability of the results easier via, for
instance, sparse models, [10,11,22].

Apart from adapting existing methods, specific problems may call also for new
approaches. For instance, in addition to the dissimilarity measure, the data may
have attached a statistical variable, to be related with the size of each object in the
graphical representation of the dataset, [24]. This is the case for geographical data,
to be visualized on a map in which countries are resized according to, for instance,
population rates, but maintaining the neighboring relationships of countries. This
type of representations, known as cartograms, [58], leads to plots in which coun-
tries are replaced by geometrical objects, frequently circles or rectangles, while the
neighborhood relationships and the size of the objects are sought to be well repre-
sented. A key issue is how such problems are expressed as optimization programs,
and which optimization tools are available to cope with them. For uses of opti-
mization applied to cartograms construction and related visualization frameworks
we refer the reader to [6,12,13,24,25,32,35,54,56] and references therein.

In this paper we present a new mathematical programming framework to build
a visualization map, in which a set of N individuals are depicted as convex objects
in a region Ω ⊂ Rn, usually n ≤ 3. These objects must have a volume proportional
to a given statistical value associated with the individuals, ω = (ω1, . . . , ωN ), and
they should be placed accordingly to a dissimilarity measure also attached to the
individuals, δ = (δij)i,j=1,...,N . In order to locate the objects in Ω, a reference
object B is used, to be translated and expanded. However, since our final goal is
to obtain a visualization map which allows the analysts to understand the data
they are working with, a criterion which somehow controls the appearance of the
plot needs to be also considered. We will deal with this paradigm by focusing on
how the objects are spread out over Ω.

Leaving aside the statistical values ω, the purpose of representing dissimilarities
between individuals reminds to MDS, [5,20,22,33,39,40,44,59], which aims to rep-
resent the dissimilarity between individuals as empirical distances between points
in an unbounded space of lower dimension. Although our visualization model may
seem very close to MDS, it has the special feature of representing in the bounded
region Ω not only dissimilarities as distances between objects, but also the statis-
tical measure ω through the volumes of the objects in Ω. Our visualization tool is
able to rescale the dissimilarities between the individuals and the statistical values
associated to them to fit into Ω. Observe that fitting the objects into Ω may yield
representations in which the objects intersect if their sizes are not small enough,
but, on the other hand, too small objects obstruct the visualization of the sta-
tistical measure. Ideally the objects should be spread out across the visualization
region. This aim will be also taken into account when modeling the problem.

The methodology proposed in this paper has applications in fields other than
Data Visualization, such as for instance, Location Analysis or Distance Geometry.
In location problems, the facilities to be located are usually considered as points.
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However, a natural extension is to consider facilities as dimensional structures,
see [23], and difference of convex (DC) techniques have been specifically applied
to this generalization, [3,15]. Ours can also be seen as a problem in Distance
Geometry optimization, as carefully reviewed in [44]. In Distance Geometry, a
graph realization problem consists of finding a configuration of points such that
their (Euclidean) distances fit a given dissimilarity matrix. Among them is the
Sensor Network Location problem, [53,55,61,65], in which one assumes that some
individuals are anchors (their location is known) and the remaining ones are mobile
sensors, whose location is to be obtained so that their Euclidean distances fit
the dissimilarities. Thus, our method can also be applied to the Sensor Network
Location problem, in which sensors and anchors have a nonnegligible area.

In this paper, the construction of a visualization map with the three charac-
teristics mentioned above, namely the individuals are represented as geometrical
objects whose volumes are proportionals to a statistical variable, which are located
according to a dissimilarity measure and which are spread out in the visualiza-
tion region Ω, is written as a global biobjective optimization problem with convex
constraints. We show that the objective function of the aggregate problem can be
expressed as a DC function, and thus DC optimization tools can be used to solve
the optimization program, [43].

The rest of the paper is organized as follows. In Section 2 the biobjective
optimization program to build the visualization map is formalized. In Section 3,
structural properties of the optimization problem are analyzed. In Section 4, we
present our algorithmic approach. Numerical results for two datasets of different
size and nature are included in Section 5. Some conclusions and extensions are
presented in Section 6. Finally, the Appendix closes the paper with some technical
details.

2 The visualization model

Let us consider a set of N individuals, which have attached a statistical variable
ω ∈ RN+ and a dissimilarity matrix δ = (δij)i=1,...,N

j=1,...,N
. Let Ω ⊂ Rn be a compact

convex set and let B ⊂ Rn be a compact convex set, with nonempty interior, and
symmetric with respect to the origin (which belongs to B), called reference object.
Each individual i is associated with a set of the form ci + τriB, where ri ≥ 0 is
chosen so that the volume of riB is proportional to the statistical value ωi ≥ 0,
ci ∈ Rn is a translation vector and τ is a common positive rescaling for all objects.
We seek the values of the variables ci, i = 1, . . . , N , and τ so that objects ci+τriB
are contained in Ω. Figure 1 illustrates the previously described representation.

Hereafter, we deal with a biobjective optimization problem: the distances be-
tween the objects representing the individuals i and j must resemble the dissimi-
larities δij between such individuals, and the objects must be spread out in Ω to
make the visualization easier. The two criteria are formalized in what follows.

2.1 First objective: distances resemble dissimilarities

Regarding the first objective, a function d, which gives us a strictly positive dis-
tance between two non-intersecting objects representing individuals i and j and
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Ω

B

ci + τriB

ci

cj + τrjB
cj

ck + τrkB
ck

Fig. 1 Example in R2 of a visualization region Ω, a reference object B and three individuals
i, j and k defined through the translation vectors ci, cj and ck, which are scaled via τri, τrj
and τrk.

zero otherwise, needs to be considered. Thus, we define the function gij , which
assigns such distance to two individuals i and j, as follows

gij : Rn × Rn × R+ −→ R+

(ci, cj , τ) 7−→ d(ci + τriB, cj + τrjB).
(1)

Then, to quantify the resemblance between the distances in the visualization
map and the dissimilarities, the summation over all the individuals of the squared
differences between the distances and the rescaled dissimilarities through a positive
variable κ needs to be minimized. Thus, we consider as first objective the function
F1 defined as

F1 : Rn × . . .× Rn × R+ × R+ −→ R+

(c1, . . . , cN , τ, κ) 7−→
∑

i,j=1,...,N
i6=j

[gij(ci, cj , τ)− κδij ]2 .

Observe that for simplicity all pairs (i, j) are considered in the summation in
F1, but our analysis remains valid if only some pairs (i, j) are taken into consid-
eration, as done e.g. in [60].

2.2 Second objective: spread

To avoid that the objects collapse in a small subregion of Ω, we encourage objects
to be spread out all over Ω. There are several ways to model spread. For instance,
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we could use the overall volume covered by the objects, the amount of intersections
between them, or the distances between the objects. This last option is the one
analyzed in detail in this paper, and therefore, our aim is to maximize the sum
over all the individuals of the distances between the objects representing them.
Let F2 be a function which, given the translation vectors, ci, and the rescaling
parameter, τ , computes the spread of the visualization map in such way. Then,
written in minimization form, one has

F2 : Rn × . . .× Rn × R+ −→ R+

(c1, . . . , cN , τ) 7−→ −
∑

i,j=1,...,N
i6=j

g2ij(ci, cj , τ). (2)

Note that F2 does not distinguish between how much the objects intersect,
since it penalizes in the same way two objects one on top of the other and two
tangent objects. A possible way to quantify the amount of intersection between
two objects is by measuring the minimum-norm translation of such objects which
makes them not to intersect. This leads to the concept of penetration depth, [27,
49,63].

Let ‖·‖ be a norm, A1 and A2 two convex compact sets with nonempty interior,
and p a direction in Rn. Let int(·) be the interior of a set and ‘+’ the translator
operator. The penetration depth of A1 and A2 is defined as the minimum norm
vector p ∈ Rn such that A1 translated through the direction p, namely p+A1, is
disjoint with int(A2), i.e.

π(A1, A2) = min
p∈Rn

{‖p‖ : (p+A1) ∩ int(A2) = ∅} .

Computing the penetration depth between two sets is costly, in general. Nev-
ertheless, exact and heuristic algorithms exist for specific types of objects such as
discs and convex polytopes in R2 and R3, [7,45].

The amount of intersection between the objects in the visualization map can
be quantified as the sum over all the individuals of the squared penetration depth
between pairs of them, yielding the function FΠ2 defined as

FΠ2 : Rn × . . .× Rn × R+ −→ R+

(c1, . . . , cN , τ) 7−→
∑

i,j=1,...,N
i6=j

π2 (ci + τriB, cj + τrjB) . (3)

However, the penetration depth does not measure how separated the objects
are. Then, an alternative to the two previous spread criteria, namely F2 and FΠ2 ,
which does take into account both the amount of intersection and the separation of
the objects, consists of measuring the distance between the centers of the objects.
Maximizing the sum over all the individuals of the squared distances between the
centers gives an alternative spread criterion, namely

F c2 : Rn × . . .× Rn −→ R+

(c1, . . . , cN ) 7−→ −
∑

i,j=1,...,N
i6=j

‖ci − cj‖2. (4)
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2.3 Problem statement

The problem of building a visualization map in which a set of convex objects in
the form ci + τriB are represented in the region Ω, satisfying that the distances
between the objects resemble the dissimilarities between the individuals and the
map is spread enough, can be stated as a biobjective optimization problem. By
proceeding in the usual way, we consider the convex combination of the objectives
and solve the aggregate problem, see [26]. Thus, given λ ∈ [0, 1], the Visualization
Map problem, (VM)∗, is stated as follows

min
c1,...,cN ,τ,κ

λF1(c1, . . . , cN , τ, κ) + (1− λ)F ∗2 (c1, . . . , cN , τ)

s.t. ci + τriB ⊆ Ω, i = 1, . . . , N
τ ∈ T
κ ∈ K,

(VM)∗

where K,T ⊂ R+ and F ∗2 refers to either F2, FΠ2 or F c2 stated in (2), (3) and (4),
yielding the models (VM), (VM)Π or (VM)c, respectively.

3 Properties

In this section we study the structure of problem (VM)∗ for the three different
choices proposed as the spread criterion, namely the three possibilities for F ∗2
outlined in Section 2.2 and given in (2), (3) and (4). For each choice, we will prove
that their objective functions are DC, by considering distance functions d, defined
in the space of compact convex sets of Rn, which satisfy the following:

Assumption 1 The function d, defined on pairs of compact convex sets of Rn,
satisfies for any A1 and A2

(i) d ≥ 0 and d is symmetric
(ii) d(A1, A2) = d(A1 + z,A2 + z), ∀z ∈ Rn

(iii) The function dz : z ∈ Rn 7−→ d(z+A1, A2) is convex and satisfies for all θ > 0
that dz(θA1, θA2) = θd 1

θ
z(A1, A2).

Typical instances of d satisfying (i)-(iii) are

1. The infimum distance, defined as

d(A1, A2) = inf{‖a1 − a2‖ : a1 ∈ A1, a2 ∈ A2}. (d1)

2. The supremum distance, defined as

d(A1, A2) = sup{‖a1 − a2‖ : a1 ∈ A1, a2 ∈ A2}. (d2)

3. The average distance, defined as

d(A1, A2) =

∫
‖a1 − a2‖dµ(a1)dν(a2), (d3)

where µ, ν are probability distributions in Rn with support A1 and A2, [8,15,
16,38].
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4. The Hausdorff distance, defined as

d(A1, A2) = max

{
sup
a1∈A1

inf
a2∈A2

‖a1 − a2‖, sup
a2∈A2

inf
a1∈A1

‖a1 − a2‖
}
. (d4)

Checking that, indeed, (d1)−−(d4) above fulfill (i)−−(iii) is straightforward
from the definition of the functions (d1)−−(d4) and the algebra of convex func-
tions. Observe that, thanks to Assumption 1, the distance between two objects
representing individuals i and j, given by the function gij in (1), can be expressed
as

gij(ci, cj , τ) = τd 1
τ
(ci−cj)(riB, rjB), (5)

and thus gij is the perspective of the convex function fij(ci, cj) = dci−cj (riB, rjB).
Hence, gij is convex as well, see e.g. [36] for the proof.

Elementary tools of DC optimization enable us to show that objective function
in (VM), namely λF1 + (1− λ)F2, is DC, and a DC decomposition can be given.
The result is presented in Proposition 1 and the proof is included in the Appendix
for the sake of completeness.

Proposition 1 The function λF1 + (1 − λ)F2 is DC, λ ∈ [0, 1], and a decompo-
sition is given by

λF1 + (1− λ)F2 = u− (u− λF1 − (1− λ)F2) ,

where
u =

∑
i,j=1,...,N

i6=j

{
max{3λ− 1, 0}g2ij(ci, cj , τ) + 2λ(κδij)

2
}
.

In the same vein, we can prove that the objective functions in (VM)Π and
(VM)c are DC as well, as stated in the following results.

Proposition 2 Let hij be defined as the penetration depth between ci + τriB and
cj + τrjB, namely

hij : Rn × Rn × R+ −→ R+

(ci, cj , τ) 7−→ π (ci + τriB, cj + τrjB) .

Denoting as σB the support function of B, one has that hij is DC, and a decom-
position is given by hij = uij − (uij − hij), where

uij = max

max
ξ∈Rn
‖ξ‖=1

{
ξ>(cj − ci)− τ(ri + rj)σB(ξ)

}
, 0

 .

Proof See Appendix. �

Corollary 1 The function λF1 + (1− λ)FΠ2 is DC, λ ∈ [0, 1].

Proof The function F1 is DC. Indeed, it is sufficient to take λ = 1 in Proposition
1. FΠ2 is also DC by using Proposition 2 and Proposition 3.7 in [62]. Then, since
the summation of DC functions is also DC, the result holds. �
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Corollary 2 The function λF1 + (1− λ)F c2 is DC, λ ∈ [0, 1].

Proof Since the function F1 is DC (take λ = 1 in Proposition 1) and F c2 is concave,
since it is minus the summation of squares of a nonnegative convex function, the
result holds. �

Thus, DC decompositions for objective functions in (VM)Π and (VM)c are
readily available from the DC decomposition of F1 in Proposition 1 (λ = 1),
Proposition 2 and the concavity of F c2 .

Showing that a function is DC and giving explicitly a DC decomposition en-
ables us to use DC optimization algorithms. It is well known that the performance
of the procedures may strongly depend on the choice of the DC decomposition,
[2,4,28]. Particularly, we seek a DC decomposition involving a quadratic convex
separable function as those addressed in [42,52] for the special case where (d1)
is used. We will show in Section 4 that such alternative decomposition yields a
simple heuristic inspired by DC algorithm (DCA).

The following result, Proposition 3, states a different DC decomposition for the
objective function in (VM) from the one given in Proposition 1, when the infimum
distance given in (d1) is considered. In fact, this alternative decomposition involves
a quadratic convex separable function.

Proposition 3 The function λF1 + (1 − λ)F2, where d is the infimum distance
(d1), can be expressed as a DC function, λF1+(1−λ)F2 = u−(u−λF1−(1−λ)F2),
where the quadratic separable convex function u is given by

u = max{3λ−1, 0}·

 ∑
i=1,...,N

{
8(N − 1)‖ci‖2

}
+ τ2

∑
i,j=1,...,N

i6=j

βij

+2λκ2
∑

i,j=1,...,N
i6=j

δ2ij ,

where βij satisfies βij ≥ 2‖ribi − rjbj‖2 for all bi, bj ∈ B.

Proof See Appendix. �

Section 4 is mainly devoted to show how problem (VM) with the decomposition
given in Proposition 3 can be efficiently solved by means of a heuristic inspired in
DCA.

4 The algorithmic approach

Propositions 1-3 and Corollaries 1-2 show that (VM)∗ is an optimization problem
with a DC objective function with a DC decomposition available and simple con-
straints. Then, DC optimization tools can be used, either of exact nature for very
low dimensional problems, [2,3], or heuristics, as the DCA, [41,43,51]. The latter
is the approach we are following in this paper, and we refer the reader to [21,40]
for alternative mathematical optimization approaches to MDS.
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Roughly speaking, DCA consists of an iterative process in which a sequence
of convex programs are solved. Given a DC program of the form min{f(x) =
u(x) − v(x) : x ∈ X}, where X is a convex feasible region, at each iteration, the
concave part (−v(x)) is replaced by its affine majorization at a certain x0 ∈ X,
and the resulting convex problem is then solved. Let 〈·, ·〉 be an inner product in
Rn, and let ∂v(x0) the subdifferential of v at x0. A general scheme of DCA is
outlined in Algorithm 1.

Algorithm 1 DCA scheme, [43]

Input: x0 ∈ X.
1: t← 0
2: repeat
3: Compute some yt ∈ ∂v(xt);
4: Compute xt+1 ∈ arg min {u(x)− (v(xt) + 〈x− xt, yt〉) : x ∈ X};
5: t← t+ 1;
6: until stop condition is met.
Output: xt

However, running times would be dramatically reduced if a DC decomposition
of the objective function were available so that the convex optimization problems
to be solved in line 4 of Algorithm 1 were trivial, in the sense that an explicit
expression for the optimal solution is available. This idea has been studied in [42,
52] and it will be customized to problem (VM), considering the infimum distance
given in (d1), in what follows.

When the DCA scheme is applied to problem (VM) with the DC decomposition
given in Proposition 3, we see that the convex subproblems to be solved at line 4
of Algorithm 1 have the form

min
c1,...,cN ,τ,κ

 ∑
i=1,...,N

{
Mci‖ci‖2

}
+Mκκ2 +Mττ2 +

∑
i=1,...,N

{
ci
>qci

}
+ pκκ+ pττ


s.t. ci + τriB ⊆ Ω, i = 1, . . . , N

τ ∈ T
κ ∈ K,

for scalars Mci , Mκ, Mτ ∈ R+, which come from the coefficients that multiply
each term in the u part of the DC decomposition given in Proposition 3, and
vectors qci ∈ Rn and scalars pκ and pτ ∈ R, which come for the computation of
the subgradients at a given point of the u− λF1 − (1− λ)F2 part.

Such problem can be written as a summation of two separate problems,

min
κ∈K

{
Mκκ2 + pκκ

}
+ min
ci+τriB⊆Ω

τ∈T

 ∑
i=1,...,N

{
Mci‖ci‖2 + ci

>qci
}

+Mτ τ2 + pτ τ

 . (6)

The first problem in (6) is a quadratic problem in one variable, for which
a closed form can be given for its optimal value. The second problem in (6) is
separable in the variables ci if the linking variable τ were fixed at τ0. For this
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reason, an alternating strategy seems to be plausible, in which one alternates the
optimization of τ for c1, . . . , cN fixed (and this is a one-dimensional quadratic
problem and thus a closed formula for the optimal solution is readily obtained),
and then for τ fixed, the centers ci are to be optimized. This is done by solving
separately N optimization problems of the form

min
ci

{
Mci‖ci‖2 + ci

>qci
}

s.t. ci ∈ Ω − τriB.
(7)

In order to solve problem (VM), we propose an alternating procedure which
integrates a DCA strategy, to obtain c1, . . . , cN as stated in Algorithm 1, into
an outer loop to get τ and κ. The alternating scheme to solve (VM) is stated
in Algorithm 2: lines 3–8 contain the DCA as outlined in Algorithm 1 to find
c1, . . . , cN , which is embedded in a main loop to get κ and τ (lines 1–14). We
point out that line 6 in Algorithm 2 contains the convex optimization problems
to be solved in each iteration of DCA (line 4 of Algorithm 1), and explicit expres-
sions for the optimal solution of the optimization problems in lines 10 and 12 are
known. Therefore, if the optimal solution of the optimization problems in line 6 of
Algorithm 2 could be optimally computed without calling any external numerical
optimization routine, then each iteration of the inner DCA in lines 3–8 would be
computationally cheap.

Algorithm 2 Alternating scheme for (VM)

Input: c01, . . . , c
0
N ∈ Ω, κ0 ∈ K, τ0 ∈ T .

1: s← 0;
2: repeat
3: t← 0;
4: repeat

5: Compute Mci
t

and qci
t
, i = 1, . . . , N ;

6: Compute ct+1
1 , . . . , ct+1

N by solving (7) for τ fixed at τs;
7: t← t+ 1;
8: until stop condition is met.
9: Compute Mκs and pκ

s
;

10: Compute κs+1 by solving the first optimization problem in (6);

11: Compute Mτs and pτ
s
;

12: Compute τs+1 by solving the second optimization problem in (6) for c1, . . . , cN fixed
at ct1, . . . , c

t
N ;

13: s← s+ 1;
14: until stop condition is met.
Output: ct1, . . . , c

t
N , κ

t, τs

Two particular cases of (7) have an amenable structure, yielding a closed for-
mula for the optimal solution, and thus avoiding any call to external numerical
optimization routines in line 7 of Algorithm 2. Indeed, suppose Ω is a rectangle,
for simplicity taken as [0, 1]n, τ is fixed to a real positive value τ0, and B is the disc
centered at the origin with radius r0. Then, the constraint in (7) can be rewritten
as

τ0r0ri ≤ cij ≤ 1− τ0r0ri, j = 1, . . . , n,
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and thus (7) is expressed as∑
j=1,...,n

min
cij

{
Mcic2ij + qcij cij : τ0r0ri ≤ cij ≤ 1− τ0r0ri

}
(8)

In other words, (7) is decomposed into n one dimensional quadratic problems
on an interval, and thus a closed formula is readily obtained for the optimal solution
of each problem of the form (8), and thus also for (7).

Similarly, suppose Ω and B are discs centered at the origin of radius 1 and r0
respectively. Then, (7) is rewritten as

min
ci

{
Mci‖ci‖2 + ci

>qci
}

s.t. ‖ci‖ ≤ 1− τ0r0ri.
(9)

Karush-Kuhn-Tucker conditions immediately yield an expression for the optimal
solution of (9).

Summarizing, while the alternating strategy stated in Algorithm 2, which con-
tains a DCA scheme, could be applied to solve (VM)∗ for an arbitrary DC de-
composition of the objective function, we see that the DC decomposition given
in Proposition 3 for (VM) is particularly attractive. We have shown that some
convenient choices of Ω (a rectangle or a disc) and B (a disc) yield a closed formula
for the optimal solution of the subproblems to be addressed at each stage of the
inner DCA, thus avoiding the need of using numerical optimization routines. See
[42] for other problems in which this strategy has been successful.

5 Numerical illustrations

The methodology proposed in Section 4 is illustrated using two real-world datasets
of diverse nature, for which both the statistical values and the dissimilarities are
readily available in the literature. In particular, the dissimilarity measures come
from a correlation matrix and a shortest paths matrix in a directed graph, whereas
the statistical variables represent a proportion (continuous variable) and the out-
degree of a set of nodes (discrete variable), respectively.

The first dataset consists of N = 11 financial markets across Europe and Asia.
The statistical value ωi relates to the importance of market i relative to the world
market portfolio, [29], and the dissimilarity δij is based on the correlation between
markets i and j, [5]. The second dataset is a social network of N = 200 musicians,
modeled as a graph, where there is an arc connecting two nodes if one musician
was influential on the other, [24]. The statistical value ωi represents the outdegree
of node i and the dissimilarity between musicians i and j is based on the shortest
distance from node i to j, [24].

Algorithm 2 has been coded in C and the experiments have been carried out

in a Windows 8.1 PC Intelr Core
TM

i7-4500U, 16GB of RAM. We set λ = 0.9
and B equal to the circle centered at (0, 0) with radius equal to one. Since (VM)
is a multimodal problem and the our algorithm may get stuck at a local optimum,
100 runs of a multistart are executed. Initial values for c1, . . . , cN are uniformly
generated in Ω, whereas the initial values for κ and τ are chosen as the midpoint
of intervals K and T , respectively. At each run of the multistart procedure, index
s in Algorithm 2 takes a maximum value of 3 and index t a maximum value of 50.
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Fig. 2 Visualizing financial markets

Figure 2 plots the financial markets dataset on the visualization region Ω =
[0, 1]×[0, 1], with the scaling parameters ranging in the intervalsK = T = [0.4, 0.6].
Observe that, the European markets are clustered above the Asian ones, cover-
ing the upper half rectangle. These two clusters are represented with different
colours. Figure 3 plots the musicians’ social network taking a circular visualiza-
tion region, namely Ω = B, with the scaling parameters ranging in the intervals
K = [0.075, 0.100] and T = [0.015, 0.030], respectively. In the plot at the top, we
find all musicians. In the plot at the bottom, we have highlighted one of the most
influential nodes, the Rolling Stones, and the connected nodes: musicians influenc-
ing the Rolling Stones (respectively, those influenced by them) can be found in a
lighter (respectively darker) colour.

6 Concluding remarks and extensions

In this paper we have addressed the problem of representing, in a so-called visu-
alization region Ω, a set of individuals by means of convex objects so that the
distance between the objects fits as close as possible a given dissimilarity matrix,
the volume of the objects represents a statistical variable, and, at the same time,
the spread of the objects within Ω is maximized.

The problem has been formulated as a DC optimization problem, and a heuris-
tic inspired in the DCA has been proposed as solution approach. For particular
choices of the visualization region Ω (a rectangle and a disc), the reference ob-
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ject (a disc) and the function d (the infimum distance), closed formulas for the
optimal solutions of the DCA subproblems are obtained, thus avoiding the need
to use numerical optimization routines. The examples presented demonstrate the
usefulness of our approach.

Several extensions deserve further analysis.

In the algorithmic section, we have considered the infimum distance (d1). In-
stead, one can consider other classical distances in Cluster Analysis such as the
supremum distance (d2) or the average one (d3), [34]. It should be observed that
the average distance between two convex sets may not have an easy expression,
and thus approximations may be needed, [38,64].

We have assumed the reference object B to be convex, to guarantee the con-
vexity of the function giving the infimum distance and thus allowing us to express
(VM)∗ as a DC optimization problem. For arbitrary sets B the infimum distance
(d1) and the Hausdorff distance (d4) functions may not be DC, see [2]. However,
as discussed e.g. in [3], important classes of nonconvex sets (e.g. finite union of
convex sets) make the infimum distance a DC function, and thus the analysis
in this paper extends gracefully to such cases. It should be observed that if the
supremum distance or the average distance are used instead, then the distance
function is convex for arbitrary reference objects. This follows from the fact that
the supremum in (d2) and the integral in (d3) preserve the convexity of the norm
function used in their definitions. Thus, the objective function of (VM)∗ would
be DC regardless of the shape of B.

Another promising extension to be modeled is the case in which objects have
associated not a dissimilarity δ, but a time series of dissimilarities {δl : l =
1, . . . , L}. In this case, we seek each individual to be represented at each time
instant l = 1, . . . , L by an object so that distances between objects are as close
as possible to those in δl, but, at the same time, smooth transitions take place
between the representation at time l and l + 1, l = 1, . . . , L − 1. The approach
developed in this paper can be adapted to include such smoothness criterion too.

Regarding the optimization, we have proposed DCA as a plausible approach,
which can quickly handle problems of non-negligible size since, for convenient
choices of Ω and B, (costly) numerical routines are not needed to solve the sub-
problems at each stage of the DCA. Convergence of Algorithm 2 to the global
optimum is not guaranteed. A better performance can be obtained if instead of a
uniform multistart, a more guided strategy is used, or if DCA is plugged, as a local
search routine, within a strategy which avoids local optima, such as (continuous)
Variable Neighborhood Search, [9,47]. This extension, together with a detailed
study of convergence of Algorithm 2 using the convergence results of DCA [41,
43,51], calls for further analysis and testing.

Acknowledgements We thank the reviewers for their helpful suggestions and comments,
which have been very valuable to strengthen the paper and to improve its quality.
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Appendix

Proof of Proposition 1

λF1 + (1− λ)F2 =

=
∑

i,j=1,...,N
i6=j

{
λ [gij(ci, cj , τ)− κδij ]2 − (1− λ)g2ij(ci, cj , τ)

}

=
∑

i,j=1,...,N
i6=j

{
(3λ− 1)g2ij(ci, cj , τ) + 2λκ2δ2ij − λ(gij(ci, cj , τ) + κδij)

2
}

In Section 3, the convexity of the function gij was stated. Moreover, since
gij , λ, δij ≥ 0, then g2ij(ci, cj , τ), 2λκ2δ2ij and (gij(ci, cj , τ) + κδij)

2 are convex.

Finally, (3λ− 1)g2ij(ci, cj , τ) is convex for 3λ− 1 ≥ 0 and concave otherwise. �
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Proof of Proposition 2

For convex setsA1 andA2 with nonempty interior, the condition in the definition of
penetration depth stated in Section 2.2 is equivalent to the existence of a separating
hyperplane between the sets p+A1 and A2, i.e., of some ξ 6= 0, such that

ξ>(p+ a1) ≤ ξ>a2 ∀a1 ∈ A1,a2 ∈ A2.

Without loss of generality, we can consider ‖ξ‖ = 1 and thus we have

π(A1, A2) = min
p,ξ∈Rn

‖p‖

s.t. ξ>(p+ a1) ≤ ξ>a2 ∀a1 ∈ A1,a2 ∈ A2

‖ξ‖ = 1.

Thus, hij can be written as follows

hij(ci, cj , τ) = min
p,ξ∈Rn

‖p‖

s.t. ξ>(p+ ci + τrixi) ≤ ξ>(cj + τrjxj) ∀xi,xj ∈ B
‖ξ‖ = 1.

Equivalently, the first constraint, i.e.,

ξ>(p+ ci + τrixi) ≤ ξ>(cj + τrjxj) ∀xi,xj ∈ B,

can be written as follows,

ξ>(p+ ci) + τri max
x∈B

ξ>x ≤ ξ>cj + τrj min
x∈B

ξ>x.

Let σB be the support function of B, i.e.,

σB(z) = max
y
{y>z : y ∈ B}

Since B is assumed to be symmetric with respect to the origin, we have

max
x∈B

ξ>x = σB(ξ)

min
x∈B

ξ>x = −σB(ξ).

Hence, by replacing the expression of the support function in the constraint
above, one has

hij(ci, cj , τ) = min
p,ξ∈Rn

‖p‖

s.t. ξ>p ≤ ξ>(cj − ci)− τ(ri + rj)σB(ξ)
‖ξ‖ = 1.

For ξ fixed with ‖ξ‖ = 1, let η(ξ) = ξ>(cj − ci) − τ(ri + rj)σB(ξ). It follows
that the inner minimum in hij(ci, cj , τ), is the distance from the origin to the
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halfspace ξ>p ≤ η(ξ), and such distance equals 0, if 0 belongs to the halfspace,
i.e., if 0 ≤ ξ>(cj − ci)− τ(ri + rj)σB(ξ), and −η(ξ) else. Hence

hij(ci, cj , τ) = min
ξ∈Rn
‖ξ‖=1

max
{

0,−ξ>(cj − ci) + τ(ri + rj)σB(ξ)
}

= max

0, min
ξ∈Rn
‖ξ‖=1

{
−ξ>(cj − ci) + τ(ri + rj)σB(ξ)

}
But, for ξ fixed, the function (ci, cj , τ) 7−→ −ξ>(cj − ci) + τ(ri + rj)σB(ξ) is

affine, and thus the function (ci, cj , τ) 7−→ min
ξ∈Rn
‖ξ‖=1

{
−ξ>(cj − ci) + τ(ri + rj)σB(ξ)

}
is the minimum of affine functions, and is thus concave. Hence, hij is the maximum
between 0 and a concave function, which is DC, whose decomposition is

hij(ci, cj , τ) =

= max

0, min
ξ∈Rn
‖ξ‖=1

{
−ξ>(cj − ci) + τ(ri + rj)σB(ξ)

}
= max

− min
ξ∈Rn
‖ξ‖=1

{
−ξ>(cj − ci) + τ(ri + rj)σB(ξ)

}
, 0

+ min
ξ∈Rn
‖ξ‖=1

{
−ξ>(cj − ci) + τ(ri + rj)σB(ξ)

}

= max

max
ξ∈Rn
‖ξ‖=1

{
ξ>(cj − ci)− τ(ri + rj)σB(ξ)

}
, 0

− max
ξ∈Rn
‖ξ‖=1

{
ξ>(cj − ci)− τ(ri + rj)σB(ξ)

}
= uij(ci, cj , τ)− (uij(ci, cj , τ)− hij(ci, cj , τ)).

�

Proof of Proposition 3

Before giving the proof of Proposition 3, the following technical result is needed.

Lemma 1 Let βij ∈ R be such that βij ≥ 2‖ribi − rjbj‖2, ∀bi, bj ∈ B. Then, g2ij
can be expressed as a DC function, g2ij = uij − (uij − g2ij), where

uij(ci, cj , τ) = 2‖ci − cj‖2 + βijτ
2.

Proof

g2ij(ci, cj , τ) =

= min
bi,bj∈B

‖ci − cj + τ(ribi − rjbj)‖2

= min
bi,bj∈B

{
‖ci − cj‖2 + τ2‖ribi − rjbj‖2 + 2τ(ci − cj)>(ribi − rjbj)

}
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= min
bi,bj∈B

{
‖ci − cj‖2 + τ2‖ribi − rjbj‖2

+‖ci − cj‖2 + τ2‖ribi − rjbj‖2 − ‖ci − cj − τ(ribi − rjbj)‖2
}

= 2‖ci − cj‖2 + βijτ
2 + min

bi,bj∈B

{
−βijτ2 + 2τ2‖ribi − rjbj‖2 − ‖ci − cj − τ (ribi − rjbj) ‖2

}
= 2‖ci − cj‖2 + βijτ

2 + min
bi,bj∈B

{
τ2
(

2‖ribi − rjbj‖2 − βij
)
− ‖ci − cj − τ (ribi − rjbj) ‖2

}
= 2‖ci − cj‖2 + βijτ

2 − max
bi,bj∈B

{
‖ci − cj − τ (ribi − rjbj) ‖2 − τ2

(
2‖ribi − rjbj‖2 − βij

)}
Observe that taking βij ∈ R such that

2‖ribi − rjbj‖2 − βij ≤ 0 ∀bi, bj ∈ B,

the function

(ci, cj , τ) 7−→ ‖ci − cj − τ (ribi − rjbj) ‖2 − τ2
(

2‖ribi − rjbj‖2 − βij
)

is convex. Since the maximum of convex functions is convex, hence taking uij =
2‖ci − cj‖2 + βijτ

2, we have obtained a DC decomposition for g2ij as in the state-
ment. �

We prove now Proposition 3:

If λ <
1

3
, considering Proposition 1, one has

λF1 +(1−λ)F2 =
∑

i,j=1,...,N
i6=j

{
2λκ2δ2ij −

[
λ(gij + κδij)

2 − (3λ− 1)g2ij(ci, cj , τ)
]}
,

and thus u =
∑

i,j=1,...,N
i 6=j

2λκ2δ2ij holds.

If λ ≥ 1

3
, by using the DC decomposition for g2ij obtained in Lemma 1 and

Proposition 1, one has

λF1 + (1− λ)F2 =

=
∑

i,j=1,...,N
i6=j

{
(3λ− 1)g2ij(ci, cj , τ) + 2λκ2δ2ij − λ(gij(ci, cj , τ) + κδij)

2
}

=
∑

i,j=1,...,N
i6=j

{
2(3λ− 1)‖ci − cj‖2 + (3λ− 1)βijτ

2 + 2λκ2δ2ij −
[
λ(gij(ci, cj , τ) + κδij)

2

+ (3λ− 1) max
bi,bj∈B

{
‖ci − cj − τ (ribi − rjbj) ‖2 − τ2

(
2‖ribi − rjbj‖2 − βij

)}]}
=

∑
i=1,...,N

{
8(3λ− 1)(N − 1)‖ci‖2

}
+ (3λ− 1)τ2

∑
i,j=1,...,N

i6=j

βij + 2λκ2
∑

i,j=1,...,N
i6=j

δ2ij
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−
∑

i,j=1,...,N
i6=j

[
2(3λ− 1)‖ci + cj‖2 + λ(gij(ci, cj , τ) + κδij)

2

+ (3λ− 1) max
bi,bj∈B

{
‖ci − cj − τ (ribi − rjbj) ‖2 − τ2

(
2‖ribi − rjbj‖2 − βij

)}]
�
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