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The curse of the first-in-first-out queue discipline∗

Trine Tornøe Platz1 Lars Peter Østerdal2

March 7, 2017

Abstract

We consider a game in which a large number of identical agents choose

when to queue up at a single server after it opens. Agents are impatient for

service and also incur a cost proportional to time spent in the queue. We show

that the first-in-first-out queue discipline and the last-in-first-out queue disci-

pline both lead to a unique equilibrium arrival distribution. However, among

all work-conserving queue disciplines, the first-in-first-out performs the worst

in terms of equilibrium utility and welfare, while the last-in-first-out performs

the best.
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1 Introduction

In many situations, people wish to be served by a facility that opens at some

specified point in time but has limited service capacity. In such situations, each

person must decide when to “arrive” at the facility, taking into account at which

time he prefers to be served and the waiting time he expects to face upon arrival.

Often the person also faces the additional restriction that it is not possible to queue

up at the facility before it opens. This is, for example, often the case when patients

are calling the doctor in the morning, when passengers at a gate in the airport are

boarding a flight, or when an audience is exiting a venue after a concert. A large

scale example is the yearly release of the tax assessment notices of 4.5 million Danish

residents. The notices are released on the website of the Danish tax authorities on

a publicly announced date. A queueing system has been implemented to handle

the heavy traffic on the website after the release, but it is not possible to queue up

before the release.

In this paper, we consider a facility that serves agents with a fixed capacity

from a given point in time. Agents are impatient for service and decide themselves

when to queue up at the facility, but they cannot queue up before service begins.

We analyze the game of a large number of identical agents choosing arrival times in

such situations, and we explore the equilibrium welfare implications of employing

specific queue disciplines.

The first-in-first-out (FIFO) queue discipline (also known as first-come-first-

served), according to which agents are served in order of arrival and as soon as

capacity becomes available, is the most commonly analyzed queue discipline in the

literature on queueing with endogenous arrival times. FIFO is considered “fair” by

most and is the default discipline in many everyday situations, such as queueing at

a grocery store or post office, as well as under more critical circumstances such as

in the provision of medical treatment to patients on the waiting list.

It is well known that controlling access to a facility using a queue discipline

(such as FIFO) will entail a welfare loss, compared to the socially optimal situation

in which people arrive at a rate equal to capacity and there is no queueing. The

socially optimal situation is however not obtainable when agents choose themselves
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when to queue up. It is therefore of interest to compare equilibrium welfare under

different queue disciplines. In particular, as an opposite to FIFO we consider the

last-in-first-out (LIFO) queue discipline according to which agents are served in

reverse order of arrival to the extent that capacity is available.

We show that when the value of being served is decreasing over time, and the cost

of queueing is proportional to time, both the FIFO and the LIFO queue discipline

lead to a unique equilibrium arrival distribution. However, among all stochastic

work-conserving queue disciplines, FIFO is the worst in terms of equilibrium utility

and welfare. The LIFO queue discipline is the best, though it does not induce

socially optimal behavior. Thus, these two queue disciplines provide an upper and

a lower bound for equilibrium utility and welfare for a general family of stochastic

queue disciplines.

Our setting is related to the classical bottleneck model of Vickrey (1969) that

models congestion arising from the existence of a single bottleneck in the context

of morning commute and trip timing. The original model was further analyzed and

extended by Arnott et al. (1993) and others, see de Palma and Fosgerau (2011)

and references therein. Existing literature dealing with Vickrey’s bottleneck model

has largely assumed FIFO. An interesting exception is de Palma and Fosgerau

(2013) who consider risk-averse agents and a family of stochastic queue disciplines

that gives priority to early arrivals (to a vanishing degree), ranging from FIFO to

service in random order. They define a “no residual queue” property, which means

that there is no queue at the time when the last user arrives at the queue, and they

prove that this property holds in equilibrium under all the queueing regimes that

they consider. Remarkably, all queue disciplines within this family provide the same

equilibrium utility and welfare. In this literature, it has commonly been assumed

that the bottleneck facility is open at all times, while agents have a preferred time

for passing the bottleneck and will incur a cost from being early or late. In contrast

to these models, we consider a setup in which the service facility opens at a specific

point in time, and where agents are not able to queue up before service opens.

Another strand of literature on queueing with strategic agents is based on the

model from the seminal paper by Naor (1969). In this model, agents with expo-
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nentially distributed service times arrive according to a Poisson distribution at a

service facility that serves agents according to the FIFO discipline. At arrival they

observe the length of the queue and decide whether to join the queue or balk. If

they balk, they cannot return. In this somewhat different setting, Hassin (1985)

provides arguments to show that the LIFO queue discipline (in contrast to FIFO)

results in socially optimal behavior, see Hassin and Haviv (2003, Ch. 2).1 Within

this literature, equilibrium arrival patterns to a server with opening (and closing)

times were studied in Glazer and Hassin (1983). Subsequent extensions and varia-

tions include Juneja and Jain (2009), Jain et al. (2011), Juneja and Shimkin (2013),

Hassin and Kleiner (2011), and Haviv (2013). In line with Hassin and Kleiner and

Haviv (2013), we consider a setup in which early arrivals are not allowed.

The paper is organized as follows. In section 2, the model and assumptions are

presented. Section 3 contains the results: section 3.1 presents some preliminary

findings, and in section 3.2 the FIFO discipline is considered, while 3.3 concerns the

LIFO discipline. Section 4 contains concluding remarks.

2 Model

2.1 Basics

Suppose that at time 0 a facility opens where agents can be serviced by a single

server, and service continues until all agents have been served and have exited the

system. We assume that there is a continuum of agents with a total “mass” of 1,

and that the capacity use of each agent is negligible. The service capacity of the

server is k per unit of time. In what follows, we let T denote the earliest time within

which it is possible to serve all agents. Thus, T = 1/k.

A cumulative arrival distribution (CAD) is a cumulative distribution function

R on [0,∞[, such that for each t, R(t) is the share of agents that have arrived at the

service facility at latest at time t. The CAD thereby summarizes the arrival behavior

of a population of agents who choose arrival times according to (non-symmetric)

1See also the discussion in the Jerusalem Report article from July 6, 2009,

http://math.tau.ac.il/˜hassin/J Rep.pdf.
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pure strategies.2 R is non-negative, non-decreasing, and limt→∞R(t) = 1. Let

It = R(t)−lims→t− R(s) and note that It is positive if R jumps at t and 0 otherwise.

We assume that R is piecewise differentiable.3 At any time t where R does not jump,

we interpret the right-derivative R′+(t) as the rate (“speed”) at which agents arrive.

If R jumps at t, we interpret It as the share of the entire population that arrives

at t. Figure 1 shows an example of a CAD reflecting an arrival distribution where

one third of the agents arrive at time zero, there is a second jump at time t1, and

the arrival rate increases at t2 during a period of smooth arrivals. By t3 all agents

have arrived.

R(t)

t

1

Tt1 t2 t3

Figure 1: Example of a CAD

The cumulative exit probability for time s arrival is a function Ss on [0,∞[ such

that for any t, Ss(t) is the probability that an agent arriving at time s is served at

latest at time t. We assume that Ss takes values in [0, 1], is non-decreasing, and

that Ss(t) = 0 for all t < s. A profile of cumulative exit probabilities (one for each

possible arrival time s ≥ 0) is denoted {Ss}s≥0.

For a CAD R and a profile {Ss}s≥0, we define a cumulative exit distribution C.

For any t, C(t) provides the cumulative share of agents served by time t:4

C(t) =

∫ t

0
Ss(t)dR(s) =

∑
0≤s≤t

Is · Ss(t) +

∫ t

0
R′+(s)Ss(t)ds.

2For a review of the general theory of large games, we refer to Khan and Sun (2002).
3Since R is non-decreasing, it is differentiable almost everywhere. However, to ensure an intu-

itive interpretation of the CAD, we limit ourselves to consider only piecewise differentiable CADs.
4All integrals in this paper are Lebesgue integrals.
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2.2 Feasibility and queue disciplines

A profile {Ss}s≥0 is feasible with respect to a CAD R, if the total mass of agents

served during any time interval does not exceed serving capacity, that is, if C(0) = 0,

and C(y)− C(x) ≤ k(y − x) for any 0 ≤ x < y.

A queue discipline is a mapping that associates with any given CAD a feasible

profile {Ss}s≥0 of cumulative exit probabilities.

Given a CAD R, a queue discipline empties the queue at time t if Ss(t) = 1 for

all 0 ≤ s ≤ t. A queue discipline is work-conserving if, for any R, it empties the

queue whenever possible. That is, for any R, the set of times for which the queue is

empty is maximal. Note that since emptying the queue at some point in time never

makes it more difficult to empty the queue at a later time, such a maximal set is

uniquely defined.5 In particular, every work-conserving queue discipline will, for a

given CAD, empty the queue at the same points in time. Throughout the paper,

we limit ourselves to consider work-conserving queue disciplines.

2.3 Agent preferences

All agents have identical preferences. We assume that there is a queueing cost c for

each unit of time spent waiting in the queue. The value of being served at time t

is given by the bounded, continuous, and strictly decreasing function w on [0,∞[.

The utility of an agent arriving at time s ≥ 0 and being served at time t ≥ s after

queueing for t − s units of time therefore equals w(t) − c(t − s). In general, exit

time (i.e., the time where an agent is served and exists the queue) is stochastic

depending on R and the choice of queue discipline, and we assume that agents want

to maximize expected utility.

We denote the expected utility of an agent arriving at time s ≥ 0 and exiting

5To see this, let T1 and T2 be maximal sets under disciplines 1 and 2, respectively. These sets

are left-closed, so at each point in time we can identify which discipline is emptying the queue most

quickly. Define a discipline 3 which combines 1 and 2 such that for each arrival time s, it assigns

the agents arriving at s the cumulative exit probability that corresponds to the discipline that

empties the queue most quickly after or at s. Since the capacity use, as measured by the change

in C, is not higher than under disciplines 1 or 2 for any interval of time, discipline 3 is feasible,

and it empties the queue at T1 ∪ T2. Thus, if T1 and T2 are both maximal, then T1 = T2.
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according to Ss by U [Ss]R, or when no confusion arises, simply by U [Ss]. If t

denotes the point in time when an agent is served, then

U [Ss] = E[w(t)− c(t− s)|s] = E[w(t)− ct|s] + cs,

where the support of t under Ss is [s, s+ 1
k ]. Note that the expectation exists since

the discipline is work-conserving, implying that the agent has been served with

certainty at time s+ 1
k the latest.

2.4 Equilibrium and welfare

Recall that for a given CAD R, a queue discipline induces for each arrival time s

a cumulative exit distribution Ss (known to all agents) and hence, expected utility

U [Ss]R. Under a given queue discipline, a CAD R, is a (pure strategy Nash) equilib-

rium if no agent can unilaterally improve his expected utility by choosing another

arrival time s. That is, R is an equilibrium if U [Ss]R ≥ U [Ss
′
]R for all s > 0 where

R either jumps or R′+(s) > 0 and all s′ ≥ 0, s′ 6= s. Note that in equilibrium,

expected utility must be the same for all arrival times s for which R has a jump

or R′+(s) > 0. Thus, in equilibrium we can evaluate the welfare associated with

a given queue discipline by the equilibrium utility of a representative agent under

this queueing regime.

3 Results

3.1 Preliminary results

First we state some general observations about work-conserving queue disciplines

and equilibrium cumulative arrival distributions.

We start by noting that for any CAD that constitutes an equilibrium under

some queue discipline, agents arrive faster than they can be served, i.e., the share

of agents that have arrived at any time 0 < t < T exceeds the maximum share of

agents that can be served by time t.

Lemma 1. Let R be an equilibrium CAD under some work-conserving queue disci-

pline. Then (a) R(t) ≥ kt for all 0 ≤ t ≤ T , with strict inequality for all 0 < t < T ,

and (b) C(t) = kt, for 0 ≤ t ≤ T .
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Proof. Let R be an equilibrium CAD under the work-conserving queue discipline

A. Since R is an equilibrium, there does not exist a point in time t < T where

the queue is emptied. Indeed, if such a t exists, then U [St] = w(t) > U [St
′
] for

all t′ > t, and an agent arriving after t would be better off by arriving at t, where

he would be served immediately with certainty. Then, for R to be an equilibrium,

R(t) = 1 must hold. However, since the queue is emptied at t, this implies that

all agents must be served by t < T , and this contradicts that queue discipline A

assigns a feasible profile of cumulative exit probabilities to R. Therefore, if R is an

equilibrium, there exists no t < T such that the queue is emptied at t.

Next, suppose there is a time 0 < t < T , such that R(t) ≤ kt. We show that

this would imply the existence of an 0 ≤ s ≤ t such that the queue is emptied at

s, again contradicting that R is an equilibrium. To see this, consider the FIFO

discipline under which agents are served in order of arrival as soon a capacity

becomes available. Under FIFO, we know that if the queue is not empty for any

0 ≤ s ≤ t, then C(t) = kt. Thus, when applying FIFO to R, then since R(t) ≤ kt,

there must exist an 0 ≤ s ≤ t such that FIFO empties the queue at s. Since

queue discipline A is work-conserving too, it also empties the queue at time s.

This contradicts, however, that R is an equilibrium under A. Hence, in equilibrium

R(t) > kt for all 0 < t < T .

For the second part, let 0 ≤ t ≤ T . By feasibility, we have C(t) ≤ kt. Further-

more, since R(t) ≥ kt for 0 ≤ t ≤ T , it is possible to serve all agents with certainty

at latest at time T (for example using the FIFO discipline). Thus, since the queue

discipline is work-conserving, all agents will be served with certainty at latest at

time t = T . This implies that C(t) ≥ kt, and we are done.

We are interested in comparing equilibrium welfare under different queue dis-

ciplines. Two observations regarding comparison of equilibrium welfare under ar-

bitrary work-conserving queue disciplines are stated in the lemma below. First,

if the same CAD R is an equilibrium under two different queue disciplines, then

equilibrium welfare is the same under both disciplines. Second, if two different

CADs R and Q are equilibriums under different queue disciplines, and R is first

order stochastically dominated by Q, then welfare is higher under the discipline

8



associated with Q as under the discipline associated with R. Figure 2 illustrates

the type of situation considered in the second part of Lemma 2.

Lemma 2. Let R and Q be equilibrium CADs under the work-conserving queue

disciplines A and B respectively. Then (a) If R(s) = Q(s) for all s ∈ [0, T ], equi-

librium utility is the same under the two queue disciplines. (b) If R(s) ≥ Q(s) for

all s ∈ [0, T ], and the inequality is strict for some time interval, then equilibrium

utility is higher under discipline B than under discipline A.

Proof. Let {Ss}s≥0 be the profile of cumulative exit probabilities that queue disci-

pline A associates with R. For the proof of (a), we show that the average expected

utility over all agents is independent of the queue discipline and depends on R alone.

As noted in section 2.3, the expected utility of an agent arriving at time s ∈ [0, T ]

equals U [Ss] = E[w(t)− ct|s] + cs. Next, if we take the expectation of this expres-

sion with respect to s, thereby taking into account the distribution of arrivals, we

can by using the law of total expectation write the overall average expected utility

as:

E[E[w(t)− ct|s]] + E[cs]

= E[w(t)− ct] + cE[s]

=

∫ T

0
(w(t)− ct)dC(t) + c

∫ T

0
sdR(s),

From Lemma 1, C(t) = kt, so we can rewrite the average expected utility over all

agents as: ∫ T

0
(w(t)− ct)kdt+ c

∫ T

0
sdR(s). (1)

In equilibrium, expected utility is the same for all agents and equals average

expected utility. Thus, (1) provides an expression for equilibrium utility given

the equilibrium CAD R. We conclude that if Q(s) = R(s) for all s ∈ [0, T ],

then equilibrium utility is the same for both CADs. In fact, equilibrium utility is

independent of the queue discipline and equal to the expected utility of any agent

who arrives at time s where R either jumps or R′+(s) > 0.

For the proof of (b), note that since R(s) ≥ Q(s), and the inequality is strict

for some interval, we have
∫ T
0 sdR(s) <

∫ T
0 sdQ(s). It then follows from (1) that

equilibrium utility is higher with Q and hence, under discipline B.
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Note also that from (1), the average cost of queueing corresponds to c times the

area between the R curve and the capacity line kt.

t

Q(t)

R(t)1

T

Figure 2: R(t) ≥ Q(t) ≥ kt

In the following subsections we consider more specifically the FIFO and LIFO

disciplines.

3.2 First-in-first-out (FIFO) queue discipline

Consider the FIFO queue discipline under which agents are served in order of arrival

and as soon as capacity becomes available.

For an agent arriving at a time s ≥ 0 where R(s) has no jump, exit time is

deterministic. He will be served as soon as every agent in the existing queue has

been served, i.e., at R(s)
k . (Mathematically speaking, the cumulative exit probability

for time s arrival is a unit step function). For agents arriving at a time s where R

jumps, exit time is uniformly distributed over an interval,
[
R(s)−Is

k , R(s)
k

]
, starting

from the point in time, where all the agents that arrived previously have been

served.

Next, we turn to the analysis of equilibria under FIFO.

Lemma 3. Let R be an equilibrium under the FIFO queue discipline. Then R is

Lipschitz continuous.

Proof. We will first show that R does not jump for any s > 0, and then we show

that this implies that |R(s2)−R(s1)| ≤ k|s2 − s1| holds for all 0 < s1 < s2 ≤ T .
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First, since R is an equilibrium, it follows from Lemma 1 that R(T ) = 1. Also,

note that an R such that all agents arrive at the same time s > 0 cannot be an

equilibrium. To see this, assume on the contrary that Is = 1 for some s > 0. Then

there exists an ε > 0 such that U [Ss−ε]R = w(s − ε) > U [Ss]R, since an agent

arriving at s− ε is served immediately with certainty. Thus, all agents arriving at

s > 0 is not an equilibrium.

Next, consider s1, s2 ∈ [0, T ] where R jumps or R′+ > 0 and such that s1 < s2.

Since R is an equilibrium, U [Ss1 ]R = U [Ss2 ]R, implying that

U [Ss1 ]R = ESs1 [w(t1)− c(t1 − s1)] = ESs2 [w(t2)− c(t2 − s2)] = U [Ss2 ]R

⇒ cESs1 [(t1 − s1)]− cESs2 [(t2 − s2)] = ESs1 [w(t1)]− ESs2 [w(t2)] > 0,

where the inequality follows since s1 < s2 implies t1 < t2 under FIFO. Thus for R

to be an equilibrium, and since c > 0, we must have ESs2 [t2] − ESs1 [t1] < s2 − s1.

We show by way of contradiction that for this inequality to hold, R cannot contain

any jumps.

To arrive at a contradiction, assume that there is an arrival time s2 where R

jumps, that is Is2 > 0. The expected exit time for an agent arriving at s2 is then

ESs2 [t2] =
2R(s2)−Is2

2k . For an agent arriving at s1, 0 < s1 < s2, where R does not

jump, exit time is deterministic and equals R(s1)
k . Therefore, ESs2 [t2]− ESs1 [t1] =

R(s2)
k − Is2

2k −
R(s1)
k . However, for s1 → s2, R(s1) → R(s2) − Is2 implying that

ESs2 [t2] − ESs1 [t1] → R(s2)
k − Is2

2k −
R(s2)−Is2

k =
Is2
2k . But then for s1 sufficiently

close to s2, ESs2 [t2] − ESs1 [t1] < s2 − s1 no longer holds, contradicting that R is

an equilibrium. We therefore conclude that since R is an equilibrium, R does not

jump for any s > 0.

Next, consider s1, s2 with no jumps. In this case, exit times for agents arriving at

s1 and s2 are deterministic and equal to R(s1)
k and R(s2)

k respectively, and since R is

an equilibrium, it follows that R(s2)
k − R(s1)

k < s2−s1 implying that R(s2)−R(s1) <

k(s2 − s1). Hence, R is Lipschitz continuous.

Let R′+(t) denote the right-derivative of R. Since R is Lipschitz continuous (and

hence absolutely continuous), we have R(t) = R(0) +
∫ t
0 R
′
+(s)ds.

Considering the FIFO discipline, note that although Lemma 3 implies that R
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has no jumps for t > 0, we necessarily have R(0) > 0, i.e., a non-zero fraction of

the agents arrive at time 0.

We may even have an equilibrium in which all agents arrive at time 0, implying

R(0) = 1. However, for R with R(0) = 1 to be an equilibrium, the expected utility

of an agent arriving at time 0 must be higher than the utility from arriving at time

T and being served immediately. That is U [S0]R > w(T ) must hold.

In case not all agents arrive at time 0, the following result holds:

Lemma 4. Suppose R is an equilibrium under the FIFO queue discipline and

R(0) < 1. Then the last agent who arrives is served immediately (i.e., the “no

residual queue property” holds).

Proof. From Lemma 1, there exists a time t such thatR(t) = 1. Let r = min{t|R(t) =

1} be the earliest point in time, where all agents have arrived. Let R(0) < 1, and

assume that r < T . Then since R(0) < 1, and there are no jumps for t > 0, exit

time is deterministic and equal to T for a player arriving at r. This player could

therefore increase expected utility by postponing arrival until t = T , in which case

he would be serviced at time t = T while avoiding waiting time entirely. That is,

U [ST ]R = w(T ) > w(T )− c(T − r) = U [Sr]R for all r < T , which contradicts that

R is an equilibrium. Therefore, we must have r = T , and the last agent that arrives

is served immediately.

Thus, due to Lemma 4 and FIFO being work-conserving, we have R(T ) = 1,

and if R(0) < 1, then we have R(t) < 1 for all t < T .

Before we proceed, we establish existence of an equilibrium CAD under FIFO.

Lemma 5. There exists an equilibrium CAD under FIFO.

Proof. Suppose the queue discipline is FIFO. Let Q be the CAD for which Q(0) = 1.

Then, an agent that arrives at time t > 0 will be served at max{t, T}. Thus, either

the expected utility of arriving at time 0 is greater than the utility from arriving at

t = T , in which case Q is an equilibrium since no agent can profitably deviate, or the

opposite is true, and Q is not an equilibrium under FIFO. If Q is an equilibrium, we

are done. Assume therefore that Q is not an equilibrium. In this case, we provide

a constructive argument for the existence of an equilibrium.
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From Lemma 4, the expected utility of an agent arriving at time T is w(T ).

Let I be the fraction of agents that would have to arrive at time 0 in order for the

expected utility of these agents to equal w(T ). Since Q is not an equilibrium, note

that I < 1 exists and is uniquely determined.

Note also that an agent arriving immediately after time 0 will at best be served

at time I
k . For t sufficiently small, an agent arriving in the interval from 0 to t

could therefore increase expected utility by arriving at time 0 instead. This implies

that the jump at 0 will be followed by a period of time where the CAD is flat,

and no mass of agents arrives. Next, let t∗ between 0 and I/k be the point where

w(I/k)− c(I/k− t∗) = w(T ), i.e., we choose t∗ such that an agent obtains the same

expected utility from arriving at t∗ and being served at time I/k as from arriving

at time 0.

Now, for any s with t∗ ≤ s ≤ T , define x(s) such that s ≤ s+ x(s) ≤ T and

w(s+ x(s))− cx(s) = w(T ),

i.e., for an agent arriving at time s, x(s) is the queueing time that gives the agent

the same expected utility as the agents arriving at time 0. Note that x(s) exists

and is uniquely determined for each s. Moreover, x(s) is strictly decreasing and

continuous, s+ x(s) is strictly increasing, and x(s)→ 0 for s→ T .

Now, define R(s) such that R(s) = I for 0 ≤ s ≤ t∗, and R(s) = k(s+ x(s)) for

t∗ < s ≤ T. Then by construction R(s) is an equilibrium CAD.6

In equilibrium under FIFO, either every agent chooses to arrive at time 0, or

some fraction of the agents arrive at time 0 followed by a period (from 0 to t∗) where

the CAD is flat (no arrivals) and finally a period where agents arrive smoothly until

time T where R(t) = 1, see Figure 3. Though the two models differ, the equilibrium

CAD just described corresponds to the arrival profile found in Hassin and Kleiner

(2011).

Figure 3 shows an example of an equilibrium CAD under FIFO. Note that for

an agent arriving at time s > t∗, time spent in the queue is given by the horizontal

6If assuming e.g. a linear w function, it is straightforward to find explicit expressions for I, t∗

and x(s) and thereby for the equilibrium CAD, by following the steps outlined in the proof.
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R(t)

t

1

Tt∗

Figure 3: Equilibrium under FIFO

distance between the R(t) curve and the kt line that shows the cumulative number

of agents that have been served up until time t. The figure therefore also illustrates

how the queueing time decreases with t (from t∗) until it reaches zero at T .

Next, we address the question of whether there is a unique equilibrium CAD

under FIFO.

Lemma 6. There exists at most one equilibrium CAD under FIFO.

Proof. Let R and Q be two equilibrium CADs under FIFO. We need to show that

R(t) = Q(t) for all t.

To arrive at a contradiction, we assume on the contrary that Q(0) < R(0) ≤ 1

for t = 0. From Lemma 4 and the queue discipline being work-conserving, the

equilibrium utility of an agent arriving at time 0 is at least w(T ) if R(0) = 1

and exactly w(T ) if R(0) < 1. Therefore, since both Q and R are equilibria, and

Q(0) < R(0) ≤ 1, we must have U [S0]Q = w(T ) ≤ U [S0]R. However, Q(0) < R(0)

implies that U [S0]Q > U [S0]R, i.e., that the expected utility of an agent arriving at

0 is greater for Q than for R, a contradiction. Therefore, we must have R(0) = Q(0).

Now, if R(0) = Q(0) = 1, then we are done. Otherwise, given that R(0) = Q(0) < 1,

it readily follows that t∗ is the same for the two arrival profiles. Next, for agents

arriving at time s between t∗ and T , there is no jump at s but a positive arrival rate,

so exit time is deterministic and equal to Q(s)
k and R(s)

k for Q and R respectively.

Furthermore, for both Q and R the expected utility of every agent equals w(T ), and
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therefore it must be that R(t) = Q(t) for all t. Otherwise, two agents arriving at

time s between t∗ and T would experience different exit times, and hence, different

expected utilities.

Having established that there exists at most one equilibrium CAD under FIFO,

we move on to state the following negative result regarding the welfare properties

of the FIFO queue discipline.

Proposition 1. FIFO minimizes welfare among all work-conserving queue disci-

plines.

Proof. We distinguish between two cases for FIFO equilibrium: (a) all agents arrive

at time 0, and (b) some fraction of the agents arrive at time 0 followed by a period

where nobody arrives and then a period where agents arrive smoothly until time T

when the last agent arrives.

In case (a) total queueing time is the highest possible among work-conserving

queue disciplines. Thus, no other queue discipline can do worse, and FIFO therefore

minimizes welfare among work-conserving queue disciplines.

In case (b), r = min{t|R(t) = 1} = T , and it follows from Lemma 4 that

equilibrium utility is equal to w(T ). Under every work-conserving queue discipline,

all agents are served at latest at time T , in equilibrium. Thus, a player can always

choose to arrive at t = T and obtain utility w(T ). If, for some queue discipline

r < T , then this implies that equilibrium utility is at least w(T ), since otherwise a

player arriving at r could increase expected utility by postponing arrival to t = T .

Thus, for no queue discipline can equilibrium utility be strictly lower than w(T ),

and FIFO therefore minimizes equilibrium utility among work-conserving queue

disciplines.

Intuitively speaking, the problem with the FIFO discipline is that the strict

queue discipline gives the agents incentives to join the queue early, which in the

end will hurt all agents in equilibrium.
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3.3 Last-in-first-out (LIFO) queue discipline

As stated above, the FIFO queue discipline will induce people to queue up “too

early“ which in turn leads to lower equilibrium utility. In this section, we consider

the last-in-first-out (LIFO) queue discipline, which can be considered as an opposite

extreme to the FIFO discipline. We will show that not only is the LIFO queue dis-

cipline better than the FIFO discipline, it is in fact welfare optimal among all queue

disciplines that do not waste capacity. In our setting, the LIFO queue discipline

works as follows. It always gives highest priority to those agents who have arrived

the latest. When agents arrive continuously at a lower rate than capacity, they are

all served immediately. If they arrive continuously at a higher rate than capacity, a

fraction of agents are served immediately corresponding to capacity, while the rest

must wait to be served until those arriving later have all been served. In that case,

an arriving agent faces a lottery over exit times with two possible outcomes: either

the agent is served immediately at arrival, or he is served when everyone who arrives

later has been served. In case an agent arrives at a jump, he will face a probability

distribution over exit times, where the period of potential exit times starts when

capacity becomes available after all agents that have arrived (but arrived later than

the agent in question) have all been served.

Before turning to consider equilibrium utility under LIFO, we provide some

preliminary observations on equilibrium CADs under LIFO and prove uniqueness

and existence of an equilibrium under LIFO.

Lemma 7. Let R be an equilibrium CAD under LIFO, and let r = min{t|R(t) = 1}.

Then (a) R′+(t) > k for all 0 ≤ t < r where R does not jump, (b) R is Lipschitz

continuous on [0, r[, (c) R(0) = 0, and (d) r < T.

Proof. (a) First, note that R cannot jump at time r. If R jumps at time r such that

Ir > 0, then an agent arriving at r has an expected utility of U [Sr] = ESr [w(t∗)−

c(t∗ − r)] where t∗ ∈ [r, r + Ir
k ]. But then for ε > 0 sufficiently small, an agent

arriving at r could increase his expected utility by arriving instead at r + ε, where

he would be served immediately with certainty obtaining an (expected) utility of

U [Sr+ε] = w(r + ε) > U [Sr]. Then, since R(r) = 1, and there is no jump at r, an

agent arriving at time r is served immediately with certainty.
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Now, if there exists a 0 ≤ t < r such that R′+(t) ≤ k, then an agent arriving at

time t is also served immediately with certainty, whereby U [St] = w(t) > w(r) =

U [Sr], and the agent obtains higher utility than an agent arriving at time r. This

contradicts that R is an equilibrium CAD. Therefore, R′+(t) > k for all 0 ≤ t < r

where R does not jump.

(b) First, observe that R is continuous on [0, T ]. To see this, assume on the

contrary that the equilibrium CAD R has a jump at time t, such that It > 0. Then,

since R′+(t) > k for all 0 ≤ t < r where R does not jump, an agent arriving at t must

wait for service until all agents that arrive after him have been served, implying

that he will be served sometime during the interval [t+ 1−R(t)
k , t+ 1−R(t)

k + It
k ] and at

t+ 1−R(t)
k the earliest. However, if we consider some ε > 0 such that R′+(t+ ε) > k,

then we see that an agent arriving at t+ε will be served immediately with probability

pt+ε = k
R′+(t+ε)

> 0 and at time t + 1−R(t+ε)
k with probability 1 − pt+ε, implying

that for ε > 0 sufficiently small U [St+ε]R > U [St]R, which contradicts that R is an

equilibrium. Therefore, R is continuous on [0, T ].

Next, let b be a fixed constant, where 0 < b ≤ r, and let θ > 0 be such that

0 < b− θ < b. We show that R is Lipschitz continuous on [0, b− θ]. For this, note

that since R is continuous, R′+(s) exists for each s ∈]0, T ]. It is therefore sufficient

to show that R′+(s) is bounded. From (a) we know that R′+(t) > k for all 0 < t <

r, so it remains to be shown that R′+(s) is bounded from above, i.e., there is a

K > 0 such that R′+(s) < K for all s ∈ [0, b− θ]. For this, suppose on the contrary

that there is a sequence s1, s2, ... in [0, b − θ] such that R′+(s1) < R′+(s2) < ...

and R′+(sh) → ∞ for h → ∞. Since sh ≤ b − θ, an agent arriving at sh who is

not served immediately must wait for a period of time of at least θ to be served at

some time after r. Since the probability of being served immediately goes to 0 as

h → ∞, the expected utility of an agent arriving at time sh falls to a level below

that of an agent arriving at time r (who is being served immediately with certainty).

This contradicts that R is an equilibrium. Thus, R′+(s) is bounded from above on

[0, b− θ], and the conclusion follows.

(c) Follows readily from (b) by applying the argument under the first part of

(b) to the case of t = 0.
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(d) Since R is Lipschitz continuous (and hence absolutely continuous), we have

R(t) =
∫ t
0 R
′
+(s)ds. By (a), the desired conclusion follows.

Uniqueness and existence of an equilibrium is established in the following lem-

mas.

Lemma 8. There exists at most one equilibrium CAD under LIFO.

Proof. The proof is by contradiction. Let R and Q be equilibrium CADs, R 6= Q.

Let r = min{t|R(t) = 1} and q = min{t|Q(t) = 1}. We distinguish between three

cases:

(i) r < q: Since the agents arriving at time r in R and time q in Q are served

immediately, the equilibrium expected utility is w(r) and w(q) when agents arrive

according to R and Q respectively, and equilibrium utility it therefore greater with

R, since r < q. Now, let s = max{t|R(t) = Q(t), 0 ≤ t < q} be the latest point in

time at which the share of agents that have arrived is the same for the two CADs.

Since R(r) = 1 > Q(r), and Q and R are continuous functions, s is well defined.

Moreover, because r < q, and s is the latest point in time (before q) such that the

curves of the two CADS intersect, it follows that R′+(s) > Q′+(s), implying that

the probability of being served immediately if arriving at time s is lower with R

than with Q. However, an agent arriving at time s, who is not served immediately,

will be served at the same later time for both R and Q, thus contradicting that

expected utility is higher with R.

(ii) r = q: Since the agents arriving at time r in R and at time q(= r) in Q

are both served immediately, the expected utility in equilibrium is the same for

both CADs. However, since R 6= Q, R(0) = Q(0) = 0, and R(r) = Q(q), there

is some t such that (a) R(t) > Q(t) and R′+(t) < Q′+(t) or (b) Q(t) > R(t) and

Q′+(t) < R′+(t). If (a), then an agent arriving at t has a higher probability of

immediate service with R than with Q, and if the agent is not served when arriving

at t, then he will be served earlier with R than with Q since less people will arrive

later than him. This contradicts that R and Q provide the same ex ante utility in

equilibrium. A symmetric argument holds in case (b).

(iii) r > q: The case is symmetric to (i) and thus omitted.
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Lemma 9. There exists an equilibrium CAD under LIFO.

Proof. The method of proof is to define a family of CADs,
{
Qb
}
0<b<T

, where for

each b, Qb is constructed as the limit of a converging sequence of CADs, and show

that a member of this family is an equilibrium CAD. We start by providing some

useful notation.

Let b be a constant, 0 < b < T . For each s ∈ [0, b], let p1(s) be the (uniquely

determined) probability such that the expected utility of an agent who arrives at

time s and is served immediately with probability p1(s) and otherwise served at time

T with probability 1−p1(s) is equal to the utility of an agent arriving at time b who

is served immediately with certainty. Let r1(s) = k/p1(s) denote the corresponding

rate of arrival. Since w(s) is continuous, r1(s) and p1(s) are continuous too. Note

that r1(s) ≥ k for all s. Furthermore, let l denote the straight line with slope k

that goes through the point (b, 1). Then we define σb(1) as the smallest number s

where the graph of
s∫
0

r1(t)dt hits the line l if it hits the line for s < b, and let σb(1)

be b otherwise.

We are now ready to define a sequence of CADs Q1
b , Q

2
b ,... . We start by defining

Q1
b and then define Qhb recursively for h > 1.

First, define Q1
b such that

Q1
b(s) =

s∫
0

r1(t)dt

for s ∈ [0, σb(1)[; if σb(1) < b, then Q1
b(s) is identified with the segment of the line

l for s ∈ [σb(1), b[; finally, Q1
b(s) = 1 for s ≥ b, see Figure 4. By the Fundamen-

tal Theorem of Calculus, Q1
b is differentiable (and hence Lipschitz continuous) on

]0, σb(1)[.

Now, suppose that a CAD Qh−1b (s) and a point σb(h − 1) have been defined

such that 0 < σb(h− 1) ≤ b, Qh−1b (s) is differentiable on 0 ≤ s < σb(h− 1), and the

derivative on this domain is everywhere greater than or equal to k. Furthermore,

Qh−1b (s) is identified with the line l for σb(h − 1) ≤ s ≤ b, and Qh−1b (s) = 1 for

s ≥ b.

Next, for each s ∈ [0, b], let βh−1(s) denote the point in time where the straight

line from (s,Qh−1b (s)) with slope k meets the horizontal line connecting (0, 1) and
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(T, 1). Further, let ph(s) be the (uniquely) determined probability where the ex-

pected utility of an agent who arrives at time s and is served immediately with

probability ph(s) and otherwise served at time βh−1(s) with probability 1 − ph(s)

is equal to the utility of an agent arriving at time b who is served immediately with

certainty. Let rh(s) = k/ph(s).

Define σb(h) as the smallest number s such that the graph of
s∫
0

rh(t)dt hits the

line l if it hits the line for s < b. Otherwise, let σb(h) = b. We then define Qhb (s)

such that

Qhb (s) =

s∫
0

rh(t)dt,

and if σb(h) < b, then Qhb (s) is identified with the segment of the line l from the point

σb(h) up to b. Finally, Qhb (s) = 1 for s ≥ b. Since w(s) is continuous, and Qh−1b (s)

is continuous on [0, b[, rh(s) and ph(s) are continuous on [0, b]. Note that Qhb (s)

is non-decreasing and by the Fundamental Theorem of Calculus it is differentiable

(and hence Lipschitz continuous) on ]0, σb(h)[.

It follows from the recursive construction that σb(1) ≥ σb(2) ≥ ..., Q1
b(s) ≤

Q2
b(s) ≤ ... for all s ∈ [0, T ], and r1(s) ≤ r2(s) ≤ ... for all s ∈ [0, b]. We have

limh→∞ σb(h) > 0, since if limh→∞ σb(h) = 0, the highest value of the derivative of

Qhb (s) on [0, σb(h)] would go to infinity as h→∞, implying that the expected utility

of a h-sequence of agents in [0, σb(h)] at some point in the sequence would fall below

the utility of an agent who is arriving at b and served immediately, contradicting the

construction of Q1
b , Q

2
b , ... . Also, for each 0 ≤ s ≤ limh→∞ σb(h), limh→∞ r

h(s) is

finite, for the same reason as above. We now define Qb(s) by Qb(s) = limh→∞Q
h
b (s)

for each s ∈ [0, T ]. Let σb = limh→∞ σb(h).

So far, b has been fixed. We now make the following observations:

(i) For b sufficiently close to T , σb < b. This follows from the fact that Qhb (s) is

increasing in b.

(ii) For b sufficiently close to 0, σb = b. This follows (again) from the fact that

Qhb (s) is increasing in b (since it means it decreases when b goes to zero).

(iii) σb is continuous in b. This follows since w(s) is continuous and by the con-

struction of σb and Qb.
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Combining (i), (ii) and (iii), we get that there exists b = b∗ such that σb = b∗ and

Qb∗(s) is continuous on [0, T ]. By construction, with the CAD Qb∗(s) the expected

utility for an agent arriving at any time s with 0 ≤ s < b∗ is equal to the utility

of an agent arriving at b∗ (who is served immediately with certainty), and thus,

Qb∗(s) is an equilibrium CAD under LIFO.

t

Q1
b(s)

l

1

σb(1) b T

Figure 4: Illustration of a possible Q1
b

Having established existence and uniqueness of LIFO, we now move on to ana-

lyzing the welfare properties.

Lemma 10. Let R be an equilibrium CAD under LIFO, and let Q be an equilibrium

under some other queue discipline that gives higher welfare. Let q = min{t|Q(t) =

1} and r = min{t|R(t) = 1}. Then q < r, i.e., the latest arriving agent according

to Q arrives earlier than the latest arriving agent according to R.

Proof. An agent arriving at r under LIFO is served immediately. Then, since LIFO

gives lower welfare by assumption, the expected utility of an agent arriving at q

under the alternative discipline must be strictly greater than w(r). Therefore, this

agent must arrive earlier than r, as illustrated in Figure 5.

Lemma 11. Let R be an equilibrium CAD under LIFO, and let Q be an equilibrium

under some other queue discipline, such that Q(t) = R(t) for some t < T , and

Q(t) ≥ R(t) for all t ≤ t ≤ T with strict inequality for some interval of time. Then

the equilibrium utility (and welfare) is higher under LIFO.
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Q(t)

R(t) (LIFO)

1

T

Figure 5: LIFO and a possible equilibrium under another discipline giving higher

welfare

Proof. Since Q(t) = R(t), the share of agents arriving at t or later is the same for

the two CADs, see Figure 6. Under LIFO, all these agents will get priority over the

agents already in the queue at time t, and since no queue discipline can do better

than this, average utility for this group of agents under LIFO must be higher than

the average utility for the same group of agents under the queue discipline for which

the distribution Q is an equilibrium.

The situation from Lemma 11 is illustrated in Figure 6.

t

R(t) (LIFO)

Q(t)

1

Tt̄

Figure 6: Higher welfare under LIFO

Now, if there exists an equilibrium CAD under an alternative queue discipline

that fulfills the requirement of Lemma 10, then by Lemma 11 the equilibrium welfare
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will be higher under LIFO. Thus, it follows from Lemmas 10 and 11 that no queue

discipline induces an equilibrium giving higher welfare, and we can therefore state

the following proposition.

Proposition 2. LIFO maximizes welfare among all (work-conserving) queue dis-

ciplines.

Note that the LIFO queue discipline maximizes welfare not only among work-

conserving queue disciplines but on the class of stochastic queue disciplines in gen-

eral (work-conserving or non-work-conserving).7

3.4 Welfare properties

We are now ready to state the main result on the welfare effects of work-conserving

queue disciplines.

Theorem 1. Within the family of work-conserving queue disciplines, FIFO gives

the lowest equilibrium utility while LIFO gives the highest equilibrium utility. Hence,

the equilibrium utility (and welfare) of any work-conserving queue discipline is

bounded from above by the LIFO and from below by the FIFO queue discipline.

Proof. Follows immediately from Propositions 1 and 2.

While LIFO gives higher equilibrium welfare than other queue disciplines it

nevertheless does not impose socially optimal behavior. This is caused by agents

choosing arrival time without taking into account the adverse effect their arrival

has on those already waiting in line.

4 Concluding remarks

The results in this paper suggest that the commonly used FIFO queueing discipline

employed for example when impatient users wait in on-line queues, or when airport

passengers are waiting to board a flight, is welfare inferior to disciplines that gives

less strict priority to those who arrive first. Complementing the findings of Hassin

7To see this, observe that Lemmas 10 and 11 also hold if the queue discipline being compared

to LIFO is non-work-conserving.
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(1985), these results show that the traditional use of the FIFO queue discipline

may, counterintuitively perhaps, be a curse rather than a blessing.

However, while the LIFO discipline has some theoretically appealing properties,

logistical limitations and acceptability issues play an important role in practical

queueing discipline design, and in this respect implementation of LIFO features

some obvious challenges.

In terms of acceptability, LIFO might be considered less fair than FIFO due to

the cultural and traditional habit of using FIFO as the default queueing discipline.

However, as no agent is discriminated on the grounds of individual characteristics,

LIFO is arguably fair from an ex-ante perspective. From an ex-post perspective,

agents are treated differently (some will be served immediately at arrival while

others are forced to wait in the queue for longer periods of time), which may lead

to envy. People’s attitude toward - and actual arrival decisions under - the LIFO

discipline remains a behavioural issue for future research.8

In terms of implementing the LIFO discipline, some types of facilities would ob-

viously face difficulties in connection with the practical execution of service. These

would include low-tech queueing facilities where agents have to physically line up

like when people are exiting a building. In some situations, a compromise between

FIFO and LIFO, like service in random order, might be a preferred alternative. For

other types of service facilities LIFO is more easily implemented. Take for exam-

ple on-line queueing systems, as in the example of the release of tax assessment

notices, and telecommunication queues, as when customers call a support center,

or patients call their doctor to make an appointment in the period after the tele-

phones are opened. In such cases, the computer or phone support software could

easily be modified to serve the latest arriving customer rather than the first arriving

customer.

In the present model, we assume identical agents and a cost of queueing that

is proportional to queueing time. Therefore, an area for future research will be to

consider heterogeneous utility functions, for example, allowing for different agent

types in terms of differences in preferred time of service or queueing cost. The latter

8Breinbjerg et al. (2016) takes a first step towards uncovering such issues.
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approach was taken in Jain et al. (2011). Furthermore, generalized cost functions

could be considered, and in particular it seems relevant to consider cost functions

with increasing marginal costs of waiting in the queue. Existence and uniqueness

would be preserved for both FIFO and LIFO in such instances.9 However, the

comparison of welfare under different equilibrium CADs becomes more complex,

since Lemma 2 no longer holds. This implies that while LIFO will still perform at

least as good as FIFO in terms of equilibrium welfare, the two queue disciplines

may no longer provide a bound for equilibrium welfare.

Finally, it is worth bearing in mind that our model assumes a continuum of

agents and a continuous strategy space to approximate a queuing situation with

a fixed and very large number of identical agents. As discussed by Otsubo and

Rapoport (2008), it is common practise in the transportation science and economics

literature to use continuous models for analyzing phenomena that are essentially

discrete. They compare Vickrey’s (continuous) bottleneck model to a discretized

version, and their numerical (FIFO) equilibria computations indicate that as the

population size grows the difference between the continuous and discrete models

of traffic congestion diminishes and can safely be ignored. Likewise, Juneja and

Shimkin (2013) in their finite-user queueing model with tardiness costs, exponen-

tially distributed service time, early arrivals and no closing time, show convergence

of the (FIFO) equilibrium solution to that of the associated continuous model as

the number of users is increased. It is beyond the scope of this paper to compare

our results to those from a discretized model with a growing number of agents, but

a similar conclusion might be anticipated.10
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