

Closing the IT Development-operations Gap
The DevOps Knowledge Sharing Framework
Arentoft Nielsen, Pia; Winkler, Till J.; Nørbjerg, Jacob

Document Version
Accepted author manuscript

Published in:
Joint Proceedings of the BIR 2017 pre-BIR Forum, Workshops and Doctoral Consortium

Publication date:
2017

License
CC0

Citation for published version (APA):
Arentoft Nielsen, P., Winkler, T. J., & Nørbjerg, J. (2017). Closing the IT Development-operations Gap: The
DevOps Knowledge Sharing Framework. In B. Johansson (Ed.), Joint Proceedings of the BIR 2017 pre-BIR
Forum, Workshops and Doctoral Consortium CEUR. http://ceur-ws.org/Vol-1898/paper5.pdf

Link to publication in CBS Research Portal

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us (research.lib@cbs.dk) providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 04. Jul. 2025

http://ceur-ws.org/Vol-1898/paper5.pdf
https://research.cbs.dk/en/publications/685cde4e-a326-4b0d-9d04-e94675b4712a

Closing the IT Development-Operations Gap:

The DevOps Knowledge Sharing Framework

 Pia Arentoft Nielsen, Till J. Winkler and Jacob Nørbjerg1

1Copenhagen Business School, Department of Digitalization,

Howitzvej 60, 2000 Frederiksberg, Denmark

piaarentoftnielsen@gmail.com, tw.digi@cbs.dk, jno.digi@cbs.dk

Abstract. Although DevOps has been heralded as a novel paradigm to

overcome the traditional boundaries between IT Development (Dev) and IT

Operations (Ops) teams, many IT organizations lack guidance on how to

implement this paradigm in practice. This design research provides a

framework that can aid organizations assess not only their status in fulfilling

recommended DevOps principles, practices and tool use―given the central

role of knowledge sharing in software delivery, our framework also includes

required knowledge conversion between Dev and Ops teams by building on the

dimensions of the widely recognized SECI model [1]. We evaluated the

proposed DevOps knowledge-sharing framework (DOKS) in the context of a

small IT service firm and a large financial services company. Our findings

provide that the DOKS framework can help organisations by sensitizing the two

teams’ awareness for crucial DevOps elements. Moreover, we discuss how

DevOps implementation approaches may differ between smaller and larger IT

organizations.

Keywords: DevOps, Software engineering, Agile methodologies, Knowledge

sharing, Design research, Paired case evaluation.

1 Introduction

A good cooperation between IT Development and IT Operation teams is viewed to be

crucial in order to ensure successful deployment and operations of IT systems [2]. For

historical reasons, however, most IT organisations are characterised by clear

boundaries between these two teams, which have very different goals, mindsets and

culture [3]. This boundary can lead to several problems in the collaboration, for

example to an insufficient focus on non-functional requirements during development,

or to difficulties in fixing programming bugs in operational systems [2].

The recent interest in ‘DevOps’—a portmanteau of Development and Operations—

has its roots in the desire to overcome these traditional boundaries and improve the

cooperation between the two parts of an IT organisation [4]. The DevOps paradigm

promises “to close the gaps by aligning incentives and sharing approaches for

processes and tools [and] to broaden the usage of agile practices to operations to

foster collaboration and streamline the entire software delivery process in a holistic

mailto:piaarentoftnielsen@gmail.com
mailto:tw.digi@cbs.dk
mailto:jno.digi@cbs.dk

way” [4, p. xvi]. However, given that the practitioner-oriented literature on DevOps is

still emerging, and reliable academic research on the phenomenon is sparse, IT

organizations lack concrete guidance in how to approach the DevOps paradigm in

practice [e.g. 5]. This research therefore not only identifies the common DevOps

elements, but also aims to address the problem statement: How can companies or

teams that wish to move towards DevOps assess their fulfilment of important DevOps

elements?

We adopted a design research approach and reviewed the nascent practitioner and

academic literature related to DevOps (the knowledge base) to iteratively develop a

framework of principles, practices, and tools that constitute the DevOps paradigm.

Given that boundary issues in systems development can equally be understood as

procedural and knowledge-related issues [6], this framework embraces dimensions of

the widely recognized SECI model [1], which allows us to discriminate four

mechanisms of knowledge sharing between Dev and Ops teams (socialisation,

externalisation, internalisation, combination).

The proposed DevOps knowledge-sharing framework (DOKS) was evaluated with

IT teams at a small IT service firm and a large financial services company. Our

evaluation supports the general applicability of the DOKS framework in both

company cases: Both companies considered this assessment framework to provide

good input as it sensitized the stakeholders to the focus areas for the move towards

DevOps and continuous delivery. As a secondary contribution, we also discuss why

the management at larger IT organisations may require more formalized and top-

down change approaches when moving to DevOps and encourage better knowledge

sharing within IT.

2 Background and Theoretical Foundations

The DevOps paradigm builds on the principles of agile software development and

combines these with the use of cloud tools and technology [7]. The agile approach

was designed to improve the software development process by bringing programmers,

testers and quality assurance employees together to ensure closer collaboration as a

team as well as shorten the time between software releases from several months or

years to weeks [8]. The DevOps approach aims to take the agile approach one step

further by including IT Operations and create a seamless flow from programming

through deployment, operations and maintenance [4].

Prior research identified four important characteristics of DevOps: 1. Culture of

collaboration between all team members; 2. Automation of build, deployment, and

testing; 3. Measurement of process, value, cost, and technical metrics; and 4. Sharing

of knowledge and tools [9]. In a recent literature mapping study of the DevOps

concept [10], additional aspects of the DevOps concept were proposed, such as

services, quality assurance, structures and standards. This design research builds on

the elements provided by these key references when developing our framework.

The separation of development and operations in software companies dates back

several decades [3]. It was based on the need for task specialisation and different

goals and priorities in the two processes: The task of development is to produce

individual software solutions that meet customer or user expectations, while

operations must ensure the daily smooth operation of a complex and sometimes

highly interdependent portfolio of software. Developments in technologies such as

automatic testing, deployment and integration tools have contributed to blurring the

boundaries between development, deployment and operations [11]. However, a

successful transition to DevOps also requires that the knowledge and cultural

differences between development and operations staff must be replaced by shared

knowledge, culture and priorities as well [12].

The SECI Model [1, 13] describes how knowledge in organisations can be created

and shared across organisational units in a process which, when successful, leads to

new (combined) knowledge and improved practices. We propose to use the SECI

model to analyse and describe the knowledge-sharing practices within and between

development and operations teams in software development organisations.

The SECI model describes four modes of knowledge sharing: Socialisation,

Externalisation, Combination and Internalisation divided into two knowledge

dimensions. In the epistemological dimension, knowledge is very subjective based on

what an individual believes is true based on the individual’s experiences and driven

by a continual dialogue between explicit and tacit knowledge. Explicit knowledge is

formal and systematic and easy to store, process, communicate and share such as

documents, reports, contracts, specifications or databases. Tacit knowledge is of a

more personal quality and associated with organisational culture and procedures and

rooted in action, values, commitment and involvement. The ontological dimension

distinguishes between knowledge sharing on individual versus collective level and is

associated with the social interaction between individuals who share and develop

knowledge and might influence each other’s personal beliefs due to different

perspectives. New knowledge is created by individuals, but it is argued that the

organisation must provide a place for it known as ba in Japanese which can be either

a physical, virtual or mental space [14].

3 Design Research Approach

We adopted a design science research (DSR) approach [15–17] to develop a

conceptual framework that can serve the purpose of assessment. DSR provides a

methodological frame for constructive research in IS that “focuses on creating and

evaluating innovative IT artifacts that enable organizations to address important

information-related tasks” [16, p. 98]. Our artifact can be classified as an

organization-dominant artifact [17] of the type model [16], whose primary purpose is

organizational intervention.

We started the framework development by reviewing the existing literature (the

knowledge base) related to DevOps. We retrieved literature with a specific focus on

the principles and practices recommended for DevOps and structured these references

along a number of categories, which resulted in an initial framework. For example,

the collected practices were arranged along different process stages. In the course of

this analysis, we also decided to draw on the SECI model for describing knowledge-

sharing related practices.

In the sense of an iterative artifact building and evaluation process [17], we applied

the initial framework in a business environment [16] by assessing IT teams at two

case companies in Northern Europe. The companies (here labelled Alpha and Beta)

were willing to anonymously participate in this research and to disclose in-depth

information in a series of interviews. While the companies primarily participated due

to their common interest to introduce DevOps, they did exhibit very different profiles:

Alpha, a small IT services company with around 100 employees, provides tailor-made

and packaged software solutions as well as consulting services to the external market.

Beta is a large financial services company with over 2,000 employees, around 400 of

which are in the IT organisation.

Table 1. Overview of interviewees.

Role Alpha Beta

Senior IT Management IT Manager (1) IT Managers (3)

Software

delivery

Plan & Measure Product owner (1) Product owner (1)

Develop & Test Developer/Release Manager (1)

Tester (1)

Developer/Tester (1)

Specialist (1)

Application architect (1)

Release & Deploy IT Professional (1) Release manager (1)

Monitor & Optimise Specialists (2)

We conducted interviews with 15 different stakeholders (5 at Alpha, 10 at Beta)

including senior IT managers and IT staff in different roles along the entire software

delivery process, see Table 1. Our interview guides were role-specific and covered

three major topics: (1) company background, strategy, structure and standards (for

senior IT management); (2) experience with and expectations to DevOps and

knowledge sharing (for all interviewees); (3) practices and tools in software delivery

along the different stages (per operational role). Interviews lasted between 40 and 90

minutes and were audio recorded with the consent of the participants.

All interviews were transcribed and analysed guided by qualitative research

guidelines [18]. Coding categories and their elements were predefined based on the

initial conceptual framework and the SECI model, while we also allowed additional

elements to ‘emerge.’ From the analysis of the interviews followed both the

confirmation of elements of the framework, but also a rearrangement of some

elements and categories against the practical insights gained.

To evaluate whether this revised DevOps and knowledge-sharing framework

(DOKS) is fit for its purpose, we attempted an independent assessment of the two

case organizations. We first conducted an intensity analysis [19], where we assigned

to the quotations for each code per case one out of five levels to it depending on the

degree to which the specific DevOps principle, practice, or knowledge-sharing mode

was actually practiced (scale: not fulfilled, marginally fulfilled, partially fulfilled,

largely fulfilled, or fully fulfilled).

We then presented the results obtained with the DOKS framework at each of the

two companies for validating our assessment. This presentation was understood as an

organizational intervention [17]: We used small pie charts to indicate the degree to

which a specific DevOps recommendation was fulfilled (see later Figure 2). The study

participants and further management stakeholders had the opportunity to make

specific comments and clarify potential misunderstandings.

Finally, we conducted follow-up interviews in the companies about one year after

the initial assessment in order to study the effect of the assessment and

recommendations on further events in the companies. The reactions to the initial

presentations and the further actions in the companies indicate that the DOKS

framework served the purpose of assessing the organizations and provide actionable

advice, as we will present in the evaluation section.

4 Artifact: The DOKS Framework

Figure 1 provides a graphical representation of the DOKS framework, which follows

from our design research approach. For reasons of brevity, we will briefly walk

through this framework and make reference to the underlying references of the

knowledge base.

Principles IntegratedAgile Collaborative

Knowledge Sharing

Socialization

Internalization Combination

ExternalizationTacit
knowledge

Explicit
knowledge

From

Tacit knowledge Explicit knowledgeTo

Practices & Tools

Measure &
Plan

Develop &
Test

Monitor &
Optimise

Release &
Deploy

• Requirements management
• Early involvement of IT Operations
• Feedback about quality

requirements from IT Ops

• Production-like environments
• Version control
• Configuration management
• Continuous integration
• Continuous and automated

testing

• Frequent releases
• Automatic releasing
• Release planning
• Continuous deployment
• Automated deployment

• Performance monitoring
• Continuous monitoring
• Measurement metrics
• Continuous feedback
• Continuous improvement

• Continuous and frequent software delivery
• Close relationship between business and

development team
• Use of reflections and improvements

• Automation
• Use of tools
• Use of cloud services
• Use of best practices (CMMI, ITIL)

• Respect, trust and open communication
• Cross-functional product teams
• Job rotation
• Shared responsibility

Software delivery

OpsDev

Fig. 1. DevOps knowledge sharing framework (authors’ representation)

4.1 DevOps Principles

There are three overarching principles of the DevOps approach. Firstly, DevOps

builds on the agile principle with continuous and frequent software delivery. The

agile approach welcomes changing requirements, even late in the development

process, and thus the initial high-level requirements are refined through frequent and

close relationship between business people and development team [21]. Furthermore,

the agile approach makes extensive use of reflections through daily meetings and

retrospectives to facilitate learnings and improvements [6].

The second principle refers to collaboration. A good DevOps culture is based on

respect, trust and open communication in order to achieve good collaboration

between team members and facilitate discussions throughout the software delivery

process [21]. Trust is important to ensure that team members respect each other,

recognise each other’s contributions to the project and are open towards others

opinions (ibid). Collaboration can take place in cross-functional product teams

responsible for managing services throughout their software delivery process or

through meetings or job rotation [9]. The two teams should share knowledge, tools,

goals and incentives and the responsibility for delivering high-quality products to

have a holistic approach to the software delivery process [23]. Especially shared

responsibility is key to delivering new capabilities quickly and avoiding conflicting

interests. This also implies that successful releases are celebrated together [4] and that

key staff of both teams should take action if systems break down, instead of focusing

on whether the error was a development or an operational error [24].

The third DevOps principle relates to the integration of practices and tools. A

seamless integration is achieved through automation of tasks and “Infrastructure as

code,” referring to the provision of virtualised hardware resources via scripts (instead

of doing manual configuration work) [22]. Most activities in the software delivery can

be supported by the use of tools, such as Vagrant for creation of environments, Puppet

for configuration management or Subversion for version control. Here the DevOps

approach also goes hand in hand with the use of cloud services. An increasing number

of tools are available as Software-as-a-Service (SaaS); servers, data storage and

firewalls can be obtained as Infrastructure-as-a-Service (IaaS); and programming and

testing environments can build on Platform-as-a-Service (PaaS) [10]. Processes can

be integrated through the use of best practices. It is argued that the Capability

Maturity Model Integration (CMMI) describing practices for the software

development process and IT Infrastructure Library (ITIL) with best practices for

service management can benefit DevOps. Therefore both developers and operations

should be trained in these best practice frameworks to facilitate communication and

ensure a common ground [23].

4.2 DevOps Practices & Tools

The software delivery process can be divided in the four stages plan & measure,

develop & test, release & deploy, as well as monitor & optimise [24]. The

recommended practices across these stages closely relate to and implement the

DevOps principles.

During plan & measure it is important to have high focus on requirements

management through close relationship with the users to determine their needs and

quickly react on their feedback. Business plans should be adjusted accordingly in

order to avoid the risks associated with a lack of user involvement and

underfulfillment of user requirements [25]. Furthermore, it is argued that IT

operations must be involved early in the development process in order to address

operational considerations and requirements at this stage where the most important

design decisions are made [26, 2, 23]. Thereafter, IT Development should still

regularly request feedback about quality requirements from IT Operations [4]. This is

because IT Operations needs to have knowledge about future new functionalities early

in the process in order to be properly prepared [9].

During develop & test it is recommended to use virtualisation tools such as

Vagrant to manage production-like development environments in order to simulate the

behaviour, functionality and performance of the production system. Thereby

configuration errors can be eliminated early on, and IT Operations can see how their

environment supports the application [4]. Tools such as Git or Subversion can be used

for managing version control to ensure documentation and tracking of code changes

and synchronisation of environments [4], and a tool such as Puppet can be used for

configuration management to describe and execute a desired state of an environment.

Developers should make use of continuous integration, that is branch-out and merge-

back their work with the software mainline (the trunk) several times a day, in order to

discover integration risks as early as possible [26]. Continuous and automated testing

is also important, i.e. script-based testing early and throughout the software delivery

process, to reduce overall costs, shorten later testing cycles and ensure continuous

feedback on quality [27]. DevOps has high focus on quality and both IT Development

and IT Operations should carry out quality assurance and be responsible for test

automation [4].

During release & deploy, the use of frequent releases of smaller software packages

through automatic releasing is recommended in order to reduce the risk of failures,

ensure repeatability and gain fast feedback [4]. Tools such as Jenkins, Sonar or

Maven can perform the error-prone, repetitive and time-consuming tasks during the

release process so that employees can focus on tasks that require human action such

as selecting the release candidates, i.e. software versions that are nearly ready for

release (ibid). Release planning can be facilitated by giving all stakeholders access to

a shared collaboration portal with an overview of the release and its components

throughout the delivery pipeline which may reduce the need for coordination

meetings [28]. DevOps emphasises the use of continuous deployment, which means

deploying a number of smaller changes as soon as they are released instead of waiting

until a ‘full package’ of changes is ready and follows directly from the practice of

frequent releases. This allows users to benefit from the changes much earlier and

developers to see whether their changes work in practice [29]. In case of errors,

continuous deployment also makes it easier to locate the cause and solve the problem

or roll back a release [4]. Automated deployment of software to different

environments such as testing, system testing, staging and production is also an

important element of DevOps [11]. The automation enables backwards traceability to

source code with information about the machine on which it was run and who

authorised it; and it facilitates frequent, early and comprehensive testing of system

changes and reduces the risk of errors caused by manual processes [9].

An important element of monitor & optimise is performance monitoring of the

released application which should take place as continuous monitoring throughout the

software delivery process and provide data and metrics to all relevant stakeholders

[11]. It is important to define some useful measurement metrics such as cycle time,

meantime to detect, meantime to repair and quality at the source to measure whether

there is any improvement [30]. The software application and the monitoring solution

should be developed simultaneously to ensure that monitoring matches the needs [4].

Another goal of this stage is to ensure continuous feedback provided through the

monitoring process and the users. Users provide feedback, for example, through

tickets, change requests, complaints and surveys [27]. IT Operations must also

provide feedback to IT Development about system performance in production [4].

Monitoring information and user feedback can be used for the purpose of improving

the application and thereby enhancing the customer experience. Hence continuous

improvement is the major objective of the monitor and optimise stage.

4.3 Knowledge-sharing modes

Since collaboration and knowledge sharing is an important aspect of DevOps, the

use of the SECI dimensions can increase awareness of the different ways of sharing

knowledge when using agile methodology and DevOps within an IT organisation [6].

Socialisation refers to face-to-face interaction between individuals allowing them

to convert tacit knowledge such as experiences, feelings and emotions into new tacit

knowledge. In a software delivery context, this can be enabled by spending time

together and learning tacit skills through observation, as seen between mentors and

apprentices, through pair programming and developer rotation.

Externalisation takes place as collective and face-to-face interaction where tacit

knowledge of individuals is made explicit and shared with a group through dialogue.

This externalisation may take place using on-site customer representatives or by

having meetings between IT Development and IT Operations, scrum meetings and

project retrospectives.

Combination is based on collective and virtual interactions where explicit

knowledge of individuals is gathered from different sources, processed and integrated

into a new set of explicit knowledge. Examples may include the joint intranet

platforms or shared access to log files.

Internalisation is associated with organisational learning where individuals reflect

upon acquired explicit knowledge and start using it through “learning by doing” in an

iterative process until the knowledge becomes a part of their own tacit knowledge or

through cross-functional teams. Internalisation may take place through demonstration

of new technologies with a subsequent case study and group discussion.

5 Evaluation Results

Figure 2 provides the results of the assessment of Alpha and Beta along the different

elements. For brevity, we will describe the assessment results of both companies

jointly and thereby illustrate the application of this artifact in practice.

5.1 DevOps at Alpha and Beta

Both companies exhibit strong similarities in their varying emphasis of the different

DevOps principles. While being interested in moving to continuous delivery, none of

the two companies has implemented this principle; they work with traditional release

cycles of one month (Beta) to four months (Alpha). Culturally, however, both

companies are in good starting positions to move to continuous delivery in that they

fulfil other important agile and collaborative principles such as close relationship

between business and developers, reflections on lessons learned. Furthermore,

management in both companies encourages a good working environment and a

culture based on open communication, respect and trust. At Alpha, for example, they

“started to follow the agile methodology strictly.” Despite good starting positions,

none of the companies uses cross-functional teams, although Beta recently started to

focus on it.

There are still strict boundaries between Dev and Ops, as job rotation and shared

responsibility between Dev and Ops are very limited and (in case of Beta) even lead

to a culture of “us versus them.” One reason is spatial separation, as one Beta

employee puts it: “Why don’t we just sit close to the users so that we every day know

what is disturbing them? Then we could solve the burning things right on the spot.”

In terms of integration, automation and tool usage are emphasized as important

principles at both organizations and are planned to be increased. In the use of cloud-

based tools, IT operations at Beta are reluctant due to data and security requirements.

Both companies use best practices within development and operations (i.e., own

project models for development, and ITIL for operations), but there is no overarching

process model in place that would span both teams.

PRINCIPLES

Alpha Beta

KNOWLEDGE-SHARING

PRACTICES & TOOLS
Measure &
Plan

Requirements management / Early involvement of IT Operations /
Feedback about quality requirements from IT Operations

4/1/

2

4/1/

1

Develop & Test: Production-like environments / Version control / Configuration management
Continuous integration / Continuous and automated testing

4/4/4/
2/1

4/4/4/
1/1

Release: &
Deploy:

Frequent releases / Automatic releasing / Release planning
Continuous deployment / Automated deployment

2/1/4/
1/4

1/2/2
0/4

Monitor &
Optimise:

Performance monitoring / Continuous monitoring / Measurement metrics
Continuous feedback / Continuous improvement

0/0/0/
2/0

1/2/0/
2/0

Results

Agile: Continuous and frequent software delivery / Close relationship with business /
Reflections and improvements

0/4/

4

0/4/

4

Collaborative: Respect, trust and open communication / Cross-functional product teams /
Job rotation / Shared responsibility

4/0/
0/0

3/1/
0/0

Integrated: Automation / Use of tools /
Use of cloud services / Use of best practices

2/2/
2/4

2/0/
1/4

Socialisation:
Externalisation:
Combination:
Internalisation:

In Development / in Operations / across Dev and Ops
‘’ / ‘’ / ‘’
‘’ / ‘’ / ‘’
‘’ / ‘’ / ‘’

4/4/3
4/4/1
3/3/3
2/2/1

4/4/1
3/4/2
3/3/3
4/4/2

Scale: 0 not fulfilled 1Marginally fulfilled 2 Partially fulfilled 3 Largely fulfilled 4 fully fulfilled

Fig. 2. Summarized evaluation results along the DOKS framework

The companies also exhibit great commonalities in the practices and tools used

across the different software development stages. As a part of the plan & measure

stage, in both organizations, developers maintain close relationships with the users to

ensure alignment between business plans and needs. “We want to be close to our

customers and learn about their needs and requirements to our product and try to

establish a relationship with our customers and understand them and thus our

market” (Alpha). However, given the existing boundaries, the developers in both

companies involve operations only to a limited extent and consequently receive only

limited input about quality requirements from operations teams.

In development & testing, both Alpha and Beta make good use of automatic

configuration management, version control and production-like development and test

environments through virtualisation, but improvement is needed in regard to

continuous integration, continuous testing and automated testing. At Beta, there is

only little continuous integration and no continuous testing, as the testing processes

are primarily manual; the same applies to Alpha: As stated by one tester “the tester is

always the last person in the development process … we have to test everything in

half the time in case the development takes longer time than expected.”

Neither company has implemented frequent releases, and deployment is far from

being continuous, but most release & deploy procedures are partly automated.

Automation tools at Alpha allows for backwards traceability about changes to source

code (when, what and by whom) as well as the origin of the specific requirements.

Depending on the underlying technological platforms, Beta is able to use different

degrees of automation: a high automation of releases on the Windows server

platforms, while on the mainframe platform some processes include manual steps.

There is high tracking of source code and requirements facilitated by the version

control system. One interviewee emphasises that release and deployment processes

are “not a matter of making it very stringent and safe – [but] a matter of doing it

more often to keep it from being an event and remove the complexity.”

Neither of the companies has, as of the time of our analysis, a great focus on

monitoring and optimization. Monitoring at Alpha is largely the responsibility of the

customers, and there are no defined measurement metrics for continuous performance

monitoring. Beta uses performance monitoring and continuous monitoring, but mainly

related to errors and technical performance; there are no measurement metrics that

would allow for a continual service improvement. Users provide feedback mainly

through tickets, change requests and at Beta also through user surveys about their

satisfaction with the provided service. However, there is a lack of focus on continuous

improvement due to missing feedback in regard to user actions, user behaviour and

pain points. Development teams at both companies do not receive sufficient

information about application performance in production, which has raised some

concerns: “Maybe we actually need a feedback process so we know what to enhance

later on in the next project – I would like to know what I can do better […] and what

can we do to increase the performance or to avoid the bugs they [IT Ops] have

faced” (Alpha).

We find that much of the knowledge sharing takes place within the departments

(i.e., within development and operations), while there is more limited knowledge

sharing across. Both companies make extensive use of socialisation through social

interaction and face-to-face communication within the teams, for example in the

forms of pair programming, walk and talks, and different departmental events.

However, the lack of co-location especially at Beta hampers socialisation across the

two teams. As one developer at Beta formulates “we do a lot to get close to the

business and the final customers. We need to do the same exercise backwards towards

IT Ops to get closer to each other.”

A similar pattern is observable for knowledge externalisation. Within departments,

both companies use externalisation to discuss processes and areas for improvement,

for example at daily stand-up meetings, weekly retrospectives, and monthly

information meetings on either side. Beta also has cross-functional forums and

decision board meetings, and recently introduced a Tech event that “is a really good

way for sharing knowledge and launch new things” (Beta). However, none of the two

companies has a forum for externalisation between the two teams to exchange

requirements, align expectations and have a dialogue throughout the development

process to identify areas for improvement. There is a general desire for more

externalisation between the different teams as well as across Dev and Ops: “I think

that we (Dev) could benefit from telling each other exactly what kind of solutions we

are working on [and] “A monthly event where different people in IT Operations could

tell about current activities” (Beta).

Combination of knowledge at both companies mainly takes place via various

intranet tools. For example, at Alpha documents created during the software

development process are shared via a SharePoint intranet portal as well as through the

social collaboration platform Yammer; at Beta both departments also use a joint

intranet platform for storing explicit information gathered from different sources of

interest. Therefore, while these numerous tools are not perfect, there are, at least

technically, no major differences between within-department and across-department

knowledge combination. Interviewees at both companies, however, did indicate a

need for more guidelines for use of shared communication platforms for knowledge

combination: “We need to find out which channels to use for what and where to

gather knowledge … some guidelines are needed” (Alpha).

Internalization, i.e. the conversion of explicit into tacit knowledge, happens most

naturally through learning by reading the combined knowledge. Both companies

support internalization within teams through sporadic means such as e-learning

courses, a documented “project of the month”, or special events where developers

can learn hands-on. The employees (both Dev and Ops) would typically learn in their

own area and not cross-departmental, although the cross-functional meetings at Beta

provide some advantage here to internalize explicit knowledge.

5.2 Cross-case differences between Alpha and Beta

Despite the broad commonalities, which underline the applicability of our framework,

more subtle differences between the smaller company (Alpha) and the larger company

(Beta) emerged from our analysis. First of all, at Alpha, DevOps was a local initiative

without involvement of top management, whereas at Beta it is a prioritised IT area

with full support from top management. Second, while interviewees at Alpha are

generally satisfied with the handover from Dev to Ops, challenges at handover are

much bigger at Beta. There are also more cultural differences within the IT

Organisation at Beta with the most important one being “us vs. them.” This is why it

is important for Beta to focus on cross-collaboration and early involvement of IT

Operations in order to minimise handover challenges, whereas this is only a minor

desire at Alpha. Beta also makes less use of cloud computing compared to Alpha due

to high data integrity and security requirements. Socialisation and other cross-

departmental knowledge-sharing modes are less of an issue at Alpha due to the

smaller team size and number of people involved, as opposed to Beta where the

spatial separation of the teams aggravated the perceived boundary. Overall, although

our case evaluation suggests that the smaller company Alpha and the large company

Beta faced similar boundary-related DevOps challenges in moving to continuous

delivery, we can say that these challenges seemed to be more pronounced at the larger

company.

5.3 Evaluation feedback of Alpha and Beta

We received very positive feedback from the results presentations in the two case

companies as well as in the follow-up interviews the following year. The informants

and other stakeholders found the analysis valuable since it helped them identify the

critical DevOps elements and their challenges in moving forward. As one of the

management stakeholders affirmed after the presentation: “The analysis provides

good input and serves as inspiration for focus areas for the shift to DevOps” (Beta).

Particularly, the emphasis on knowledge sharing proved useful to break down the

different modes in which knowledge can be shared between Dev and Ops teams and

identify adequate improvement measures. In our follow-up interview, an Alpha

manager affirmed: “The analysis has prompted us to being aware of the importance

of cooperation of IT development and IT operations, but we have also recognized that

there is still a long way to go. We are actually just recently putting our focus more on

the ‘people’ aspect.”

The stakeholders at Alpha particularly appreciated being sensitized to the

importance of advancing in continuous and automated testing (develop & test stage),

to improve continuous feedback on system performance to developers (monitor &

optimise stage), and for more guidelines for the use of communication tools and the

need to share documentation between Dev and Ops on a continuous basis instead of

being limited to the handover. In the follow-up interviews, we learned that Alpha had

triggered a reorganisation shortly after our intervention to make product teams in IT

development responsible not only for development, but also for delivery and service.

The analysis also created awareness of the importance of cross-functional

collaboration between IT development and IT operations which has led to a major

initiative at Alpha: “We have just recently initiated a major internal communication

about exchanging experiences about development, coding standards and tools.”

Furthermore, following the recommendations from the analysis, Alpha has focused on

source control, creation of build and test environments and release management and,

at the time of writing this paper, is in the process of defining performance metrics.

The stakeholders at Beta especially appreciated the feedback on the critical

perception of the spatial separation (collaborative principle), the idea of a kick-off

including Dev and Ops people at project start (measure & plan stage), and the finding

about the general desire for more joint events between the two groups

(socialization/externalization). Beta has focused intensively on these and other areas

for moving forward towards DevOps. At the time of our analysis, Beta had already

started to introduce a ‘DevOps Process Improvement Wheel’ as a model that would

cover both development and operations. Few months later, a special DevOps team

was formed with resources both from development and operations teams, as a

common place to anchor all DevOps efforts and promote DevOps principles within

the IT organization. In our follow-up, a Beta manager explains that “since there

aren’t infinite resources available, this new team primarily focuses its efforts on

technological support of DevOps for other teams.” Thus, following the

recommendations from the analysis, Beta has also focused on tool support of DevOps,

to ensure automation and continuous delivery, also by increasing the use of cloud

services. Today, Beta is on a good way to establish a continuous delivery platform

that will help them deliver new versions of applications every day and thereby deliver

value to the business faster.

5.4 Limitations

The following limitations merit consideration: First, the evaluations at both

companies covered single development areas that had a prior predisposition to

implement DevOps. Second, since the operations team at the smaller firm (Alpha)

comprises one person, the majority of the interviews at Alpha were conducted with IT

development employees. Third, our framework and pie charts should not be

understood as a psychometrically validated measurement instrument, but as a

graphically appealing assessment that is part of our design artifact and serves the

purpose of organizational interventions. Fourth, the context of two northern European

IT/financial services companies should be considered when comparing our evaluation

findings to other companies in other regional contexts.

6 Discussion and Conclusions

Motivated by the challenges associated with the traditional knowledge boundaries

between development and operations teams in contemporary IT organizations and the

recent buzz around DevOps, this study took a design research approach to aid

companies or teams that wish to move towards DevOps assess their fulfilment of

important DevOps elements. Based on a comprehensive review of the knowledge base

and an iterative build and evaluation process involving two case organizations, we

developed DOKS, the DevOps Knowledge Sharing Framework (presented in

Figure 1). This framework, which integrates and extends prior conceptualizations of

DevOps [9, 10], strikes a balance between parsimony and understandability on the

one hand and completeness on the other.

The evaluation of DOKS in the context of two organizations of very different size

and strategic contexts (i.e., the more fast-moving small IT services company Alpha

versus the more stability-oriented large financial services company Beta) suggests

that the framework is generally applicable to very different types of firms that have IT

development and operations functions. Our evaluation also illustrates how the

framework can be applied in a structured assessment based on interviews with

employees in different roles along the entire software delivery cycle (see Figure 2).

Stakeholders at both companies considered the assessment results to provide good

inputs as they sensitized them to the different challenges and areas to focus on. The

various improvement initiatives triggered following on our intervention suggest that

the framework-based assessment had marked a starting point for both companies for

moving towards DevOps and improving knowledge sharing.

One important question emerging from this intervention is, whether an assessment

based on the DOKS framework always has to be conducted by an independent

external party, as it was the case in our evaluation procedure. Here we contend that

the fact of being external to the two companies certainly helped in conducting an

independent assessment and thus lent credibility to the results. In this sense, the

greatest practical value of DOKS might actually arise for consultancies and other

external parties who are specialized in qualitative analyses and organizational

interventions. However, we also believe that DOKS can be used as an internal tool for

assessment and discussion in companies, provided that this discussion ensures the

inclusion of the multiple perspectives from stakeholders in IT development,

operations, and senior management roles.

As a secondary contribution, this paired case evaluation also helps us identify

potential differences between companies of different size in moving towards

continuous delivery. Although the challenges faced by Alpha and Beta were very

similar, especially the boundary-related issues were more pronounced at the larger

company (Beta). Due to the higher number of employees involved in the software

delivery process, there was greater tendency to hang on to cultural differences and

thus a greater need to focus on the cross-functional collaboration at Beta. While this

finding on size differences is new to the nascent DevOps literature, it is consistent

with the broader software engineering literature that has emphasised that agile

methods have a better fit to smaller team sizes [e.g., 34]. While at Alpha the DevOps

initiative was driven by the employee-level, at Beta, it has been taken up by top

management and marked as a focus area for future organizational development. In

this sense, we can conclude that the required approaches to DevOps may differ

between smaller and larger companies: In contrast to smaller and more fast-moving

IT organizations, larger companies may need a more formalised plan to shift to

DevOps and ensure knowledge sharing between their IT teams. Hence, we believe

that a structured framework such as the developed DOKS framework may have even

greater value for large organizations such as Beta.

References

1. Nonaka, I.: A Dynamic Theory of Organizational Knowledge Creation. Organ. Sci. 5, 14–37

(1994).

2. Tessem, B., Iden, J.: Cooperation between developers and operations in software

engineering projects. In: Proceedings of the 2008 international workshop on Cooperative

and human aspects of software engineering. pp. 105–108. ACM (2008).

3. Swanson, E.B., Beath, C.M.: Departmentalization in software development and

maintenance. Commun. ACM. 33, 658–667 (1990).

4. Hüttermann, M.: DevOps for developers. Springer (2012).

5. Bob Violino: Real-world devops failures -- and how to avoid them,

http://www.infoworld.com/article/3087447/devops/real-world-devops-failures-and-how-to-

avoid-them.html.

6. Stettina, C.J., Kroon, E.: Is There an Agile Handover? An Empirical Study of

Documentation and Project Handover Practices Across Agile Software Teams. In: 19th ICE

& IEEEITMC International Conference, The Hague, Netherlands (2013).

7. Ernest Mueller: What Is DevOps?, https://theagileadmin.com/what-is-devops/.

8. Bonner, N.A., Teng, J.T.C., Nerur, S.: The Perceived Advantage of Agile Development

Methodologies By Software Professionals: Testing an Innovation-Theoretic Model. In:

Proceedings of 16h Americas conference on information systems (AMCIS 2010). , Lima,

Peru (2010).

9. Humble, J., Molesky, J.: Why enterprises must adopt DevOps to enable continuous delivery.

Cut. IT J. 24, 6 (2011).

10. Erich, F., Amrit, C., Daneva, M.: Report: DevOps Literature Review. , Retrieved on 5

December 2014 from http://www.utwente.nl/bms/iebis/staff/amrit/devopsreport.pdf (2014).

11. Fitzgerald, B., Stol, K.-J.: Continuous software engineering: A roadmap and agenda. J. Syst.

Softw. 123, 176–189 (2017).

12. Mueller, E.: Devops and the People Who Practice It: Winning Their Hearts and Minds. Cut.

IT J. 24, 6 (2011).

13. Nonaka, I.: The knowledge-creating company. Harv. Bus. Rev. 69, 96–104 (1991).

14. Nonaka, I., Toyama, R., Konno, N.: SECI, Ba and leadership: a unified model of dynamic

knowledge creation. Long Range Plann. 33, 5–34 (2000).

15. March, S.T., Smith, G.F.: Design and natural science research on information technology.

Decis. Support Syst. 15, 251–266 (1995).

16. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems

research. MIS Q. 28, 75–105 (2004).

17. Sein, M.K., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R.: Action design research.

MIS Q. 35, 37–56 (2011).

18. Miles, M.B., Huberman, A.M.: Qualitative data analysis: An expanded sourcebook, 2nd ed.

Sage Publications, Inc (1994).

19. Neuendorf, K.A.: The content analysis guidebook. Sage Publications, Inc (2002).

20. Fowler, M., Highsmith, J.: The agile manifesto. Softw. Dev. 9, 28–35 (2001).

21. Walls, M.: Building a DevOps Culture. O’Reilly Media, Inc. (2013).

22. Peuraniemi, T.: Review: DevOps, value-driven principles, methodologies and tools. Data-

and Value-Driven Softw. Eng. with Deep Cust. Insight. 43 (2014).

23. Phifer, B.: Next-generation process integration: CMMI and ITIL do devops. Cut. IT J. 24,

28 (2011).

24. Sharma, S.: DevOps for Dummies. John Wiley & Sons, Inc. (2014).

25. Arnuphaptrairong, T.: Top ten lists of software project risks: Evidence from the literature

survey. In: Proceedings of the International MultiConference of Engineers and Computer

Scientists. pp. 16–18 (2011).

26. DeGrandis, D.: Devops: So You Say You Want a Revolution? Cut. IT J. 24, 34 (2011).

27. Cockburn, A., Williams, L.: Agile software development: It’s about feedback and change.

Computer (Long. Beach. Calif). 36, 39–43 (2003).

28. Chau, T., Maurer, F.: Knowledge sharing in agile software teams. In: Logic versus

approximation. pp. 173–183. Springer (2004).

29. Feitelson, D., Frachtenberg, E., Beck, K.: Development and Deployment at Facebook. IEEE

Internet Comput. 1 (2013).

30. Edwards, D.: DevOps is an Enterprise Concern. Info Queue eMag. 4 (2014).

31. Boehm, B., Turner, R.: Using risk to balance agile and plan- driven methods. Computer

(Long. Beach. Calif). 36, 57–66 (2003).

