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Highlights

•We study how bivariate dominance can be decomposed into two elementary
operations.

• Suitable diminishing transfers and correlation-increasing switches are ex-
plicitly described.

• Our constructive algorithm determines how much mass has to be moved
by diminishing transfers.
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Decomposing bivariate dominance for social welfare comparisons∗

Tina Gottschalk Marling† Troels Martin Range‡ Peter Sudhölter§

Lars Peter Østerdal¶

June 6, 2018

Abstract

The principal dominance concept for inequality-averse multidimensional social welfare compar-
isons, commonly known as lower orthant dominance, entails less or equal mass on all lower hyper-
rectangles of outcomes. Recently, it was shown that bivariate lower orthant dominance can be char-
acterized in terms of two elementary mass transfer operations: diminishing mass transfer (reducing
welfare) and correlation-increasing switches (increasing inequality). In this paper we provide a con-
structive algorithm, which decomposes the mass transfers into such welfare reductions and inequality
increases.

JEL classification: C63, D63, I31

Keywords: social welfare, lower orthant dominance, first order dominance, algorithm, inequality aversion

1 Introduction

Dominance concepts are increasingly used for multidimensional comparisons of social welfare, inequality,

and poverty (see, e.g., Aaberge and Brandolini 2014).1 Such concepts are appealing, since they provide

comparisons of the overall attainment of groups, which are robust for broad classes of individual and

social preferences over the (multidimensional) outcomes.

An important and frequently used dominance concept for inequality-averse multidimensional social wel-

fare comparisons is lower orthant dominance. The idea of using orthant dominance – and related (less

restrictive) concepts – for inequality-averse social welfare comparisons was popularized by Atkinson and

∗The authors are grateful to an associate editor and two anonymous referees of this journal for their remarks that
helped to improve the paper. Support from Independent Research Fund Denmark (Grant-IDs: DFF–1327-00097 and DFF–
6109-000132) is acknowledged, and the third author acknowledges support from the Spanish Ministerio de Economı́a y
Competitividad under Project ECO2015-66803-P (MINECO/FEDER).

†SEF Energi A/S, F̊aborgvej 44, 5700 Svendborg, Denmark; Email: tgm@sef.dk
‡Hospital of South West Jutland, Finsensgade 35, 6700 Esbjerg, Denmark, and Department of Industrial Economics

and Technology Management, Norwegian University of Science and Technology, Alfred Getz veg 3, NO-7491, Trondheim,
Norway; Email: Troels.Martin.Range@rsyd.dk

§Department of Business and Economics, and COHERE, University of Southern Denmark, Campusvej 55, 5230 Odense
M, Denmark; Email: psu@sam.sdu.dk

¶Department of Economics, Copenhagen Business School, Porcelænshaven 16A, 2000 Frederiksberg, Denmark; Email:
lpo.eco@cbs.dk

1Stochastic dominance is not only useful in welfare economics, but also in many other fields. It is, for example, an impor-
tant tool in decision theory (see, e.g., Levy 1992 or Müller and Stoyan 2002), finance (see, e.g., Sriboonchita, Dhompongsa,
Wong, and Nguyen 2009), as well as in probability theory and statistics (see, e.g., Silvapulle and Sen 2011).
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Bourguignon (1982), and it has been significantly developed and refined in several articles (see, e.g.,

Bourguignon and Chakravarty 2003, Duclos, Sahn, and Younger 2006, Duclos, Sahn, and Younger 2007,

Gravel, Moyes, and Tarroux 2009, Gravel and Mukhopadhyay 2010, and Muller and Trannoy 2011).2

Suppose that there are multiple dimensions of welfare and that, for each dimension, a wellbeing indica-

tor can take a finite number of possible values.3 We can then describe a population distribution by a

probability mass function over the outcomes; i.e., by a function that assigns to each outcome the proba-

bility that a randomly selected individual obtains that outcome (or, put differently, it describes the share

of all individuals in the population obtaining that outcome). For two probability mass functions (i.e.,

population distributions) f and g, the function f lower orthant dominates g if

(1) the cumulative probability mass at f is smaller than or equal to that at g for every lower hyper-

rectangle.4

Until quite recently, a characterization based on elementary operations (i.e., conditions specifying exactly

which simple changes in a distribution are allowed to obtain another distribution which dominates it)

has been missing.5

This and a related gap were recently addressed and partially filled by Meyer and Strulovici (2011, 2015)

and Müller (2013). Indeed, for the bivariate case the former authors showed that one probability mass

function supermodular dominates another if and only if the former probability mass function can be ob-

tained from the latter probability mass function by increasing probability mass transfers and correlation-

increasing switches. An increasing probability mass transfer is simply a shift of mass from a worse to a

better outcome (i.e., such a transfer is a welfare improvement).6 A correlation-increasing switch consists

of two simultaneous transfers that move mass from intermediate outcomes to more extreme outcomes

without changing the marginal distributions. For example, Tchen (1980), Epstein and Tanny (1980),

Atkinson and Bourguignon (1982), Tsui (1999), Decancq (2012), and Sonne-Schmidt, Tarp, and Østerdal

(2016) argue that correlation-increasing switches are operations that increase inequality. Lower orthant

dominance may be expressed with the help of diminishing transfers (reducing welfare) and correlation-

increasing switches (increasing inequality). More precisely, Müller’s (2013) characterization of lower

orthant dominance for the general multivariate case directly implies, for the bivariate case, that (1) is

equivalent to

(2) a finite sequence of diminishing bilateral transfers and correlation-increasing switches exists such

that g can be obtained by f and where each intermediate transformation leads to a distribution.

In welfare terms, supermodular dominance corresponds to a population that is better off but the inequal-

ity is higher, whereas lower orthant dominance corresponds to a population that is better off and the

2Note that lower orthant dominance has sometimes been referred to as “first order dominance”, particularly in the welfare
economics literature. In order not to risk confusion with the usual stochastic order – the natural dominance concept for
multidimensional social welfare comparisons with ordinal data (see, e.g., Arndt et al. 2012, Østerdal 2010, and Range and
Østerdal 2017) – we use the term lower orthant dominance as customary in the probability theory literature (e.g. Shaked
and Shanthikumar 2007).

3Chakravarty and Zoli (2012) mention a number of applications in which a wellbeing indicator is discrete by nature.
4In the continuous bivariate case, it is well-known (Atkinson and Bourguignon 1982) that (1) holds if and only if the

average utility of f is at least as high as that of g for any non-decreasing utility function with negative cross derivative.
5For example, Moyes (2012) points out in his Footnote 13 that such characterization is missing, even though there are

results in the literature that are making steps in this direction.
6Indeed, the usual stochastic order is completely characterized by such transfers, as shown by, for example, Strassen

(1965) and Kamae, Krengel, and O’Brien (1977).
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inequality is lower, i.e., the latter concept provides a basis for making inequality-averse social welfare

comparisons.

The approach by Meyer and Strulovici (2010, 2015) is constructive, but it is not shown that a distribution

can be obtained after each elementary operation. In contrast, Müller (2013) shows the existence of such

sequences, where a distribution is obtained after each elementary operation, but an explicit construction

is not given.

The main contribution of this paper is to provide a constructive proof of the equivalence between (1) and

(2). The proof yields an algorithm that returns a set of diminishing transfers and correlation-increasing

switches whenever a lower orthant dominance relationship exists. The algorithm has quadratic time

complexity in the number of outcomes. We also mention that the results for upper orthant dominance

would be similar.

2 Basics

Let n,m ∈ N. For x, y ∈ Rm, x 6 (>) y denotes xi 6 (>) yi for all i = 1, . . . ,m, and x < (>) y means

x 6 (>) y and x 6= y. Similarly, for two functions f, g : D → R on an arbitrary domain D, we write

f > (6) g if f(x) > (6) g(x) for all x ∈ D, and f > (<) g if f > (6) g and f 6= g.

Denote X(n,m) = X = {x ∈ N2 | x 6 (n,m)} the rectangle of size n × m and F(n,m) = F = {f :

X → R+} be the set of all real-valued non-negative functions on the domain X . For ∅ 6= Y ⊆ X let

maxY = y ∈ X be the componentwise maximum defined by yi = max{xi | x ∈ Y } for i = 1, 2, and let

minY be the componentwise minimum defined analogously. Moreover, for x ∈ X , we denote the lower

set ↓x = {y ∈ X | y 6 x} as all elements of X having no component larger than the components of x.

In this paper we will use two fundamental operations. The first operation is a so-called diminishing

transfer7, while the second is a correlation-increasing switch. For f, g ∈ F we say that g results from f

• by a diminishing (bilateral) transfer if there exist x, y ∈ X such that x < y, g(x) − f(x) =

f(y)− g(y) > 0, and g(z) = f(z) for all z ∈ X \ {x, y} (the underlying transfer is a transfer from y

to x of size ε = g(x)− f(x)) and we use the notation g = fx←y
ε ;

• by a correlation-increasing switch if there exist x, y ∈ X such that f(x) − g(x) = f(y) − g(y) =

g(v)− f(v) = g(w) − f(w) > 0 and f(z) = g(z) for all z ∈ X \ {x, y, v, w}, where v = min({x, y})
and w = max({x, y}) (note that in this case x and y are incomparable; i.e., x 66 y 66 x, and that

the underlying switch transfers ε = f(x)− g(x) from each x and y to each v and w) and we use the

notation g = fx⇆y
ε .

Note that a diminishing transfer may be represented as a composition of even more elementary transfers,

where one only transfers mass “horizontally” and the other only “vertically”. However, we use the

current “composite” transfer because it is intuitive and simple and its decomposition into the mentioned

elementary transfers is straightforward. A diminishing transfer is illustrated in Figure 2.1, where mass is

transferred from y to x. It should be noted that a diminishing transfer can be decomposed into a sequence

of unit diminishing transfers from y = (y1, y2) to either (y1− 1, y2) or (y1, y2− 1). This decomposition is,

7Note that the term diminishing transfer has been used with another meaning by Lambert (2001, p. 62). We stick to
its current meaning in order to be consistent with Range and Østerdal (2015).
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however, not unique. A correlation-increasing switch is illustrated in Figure 2.2. As illustrated, mass is

transferred from x to v and a similar mass is transferred from y to w. A symmetric transfer exists where

mass is transferred from x to w and the same mass is transferred from y to v.

x

y

Figure 2.1: Diminishing transfer

x

v y

w

Figure 2.2: Correlation-increasing switch

The following notation is employed. For any f ∈ F(n,m) and x ∈ X(n,m) denote f̃(x) =
∑

y∈↓x f(y),

i.e., the accumulated mass below and left of the entry including the row and column in of the entry, and

f̃(0, i) = f̃(j, 0) = f(0, 0) = 0 for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. Furthermore, we will regard

the marginal distribution as the partial distribution of each dimension. The partial distributions are,

respectively, the f̃(n, i) and f̃(j,m). A diminishing transfer only moves mass in the direction towards

the origin (i.e., we only increase f̃ -values). A careful inspection of its definition shows that a correlation-

increasing switch preserves the marginal distributions.

Definition 2.1 Let n,m ∈ N and f, g ∈ F(n,m).

(1) We say that f lower orthant dominates g, written f �L g, if g̃(n,m) = f̃(n,m) and g̃ > f̃ .

(2) If there exist k ∈ N and f1, . . . , fk ∈ F(n,m) such that f = f1, g = fk, and, for all ℓ ∈ {2, . . . , k},
fℓ results from fℓ−1 by a diminishing transfer or by a correlation-increasing switch, then we write

that f D g and say that g arises from f by finitely many (here k − 1) diminishing transfers or

correlation-increasing switches.

Finally, let ≻L and ⊲ denote the respective strict relations.

Remark 2.2 Note that, for all f, g ∈ F(n,m), if f �L g or f D g, then
∑

x∈X(n,m) f(x) =∑
x∈X(n,m) g(x). Hence, all of the following statements on lower orthant domination or diminishing

transfers and correlation increasing-switches that refer to F(n,m) are also valid for F1(n,m) = {f ∈
F(n,m) | ∑

x∈X(n,m) f(x) = 1}, the set of probability distributions on X(n,m). In particular, in

Theorem 3.1, according to which f D g if and only if f �L g, the assumption f, g ∈ F(n,m) may be

replaced by the assumption f, g ∈ F1(n,m), i.e., f̃ and g̃ are cumulative distribution functions.

3 Disentangling lower orthant dominance

The key question is: If one distribution lower orthant dominates another distribution, can we then

disentangle the dominance into the two elementary operations of diminishing transfers and correlation-

increasing switches? Indeed, the two dominance relations given in Definition 2.1 can be proved to be

equivalent, as elegantly done by Müller (2013) using duality theory. This result is given in Theorem 3.1.

4



Theorem 3.1 Let n,m ∈ N and f, g ∈ F(n,m). f D g if and only if f �L g.

However, the proof given by Müller (2013) is not constructive and cannot be used directly to disentangle

the diminishing transfers and correlation-increasing switches. In this paper we will give a constructive

proof that can be used to explicitly disentangle the elementary operations.

We will proceed as follows: First we prove that if f �L g, then f D g. This proof is split into two parts.

The first part shows that we can (always) construct a distribution, h, that (a) still satisfies h �L g, (b)

arises from f by exclusively using diminishing transfers, and (c) has the same marginal contributions as

g. This part is the main result of the paper. In the second part we give an alternative proof of the result

obtained by Tchen (1980) and Decancq (2012), where it is shown that if f �L g and f and g have the

same marginal distributions, then f D g. Our two proofs are both constructive, and, as a consequence,

they yield a polynomial time complexity algorithm for disentangling lower orthant dominance into el-

ementary operations. For completeness we also provide a short proof for the straightforward direction

Proposition 3.5 of Theorem 3.1 (i.e., of the statement “if f D g then f �L g”).

3.1 Construction of distribution with identical marginals

In Proposition 3.2 we show that for any f and g with f �L g we can construct h resulting from f

by a sequence of finitely many (possibly zero) diminishing transfers such that h has the same marginal

distributions as g and satisfies h �L g.

Proposition 3.2 Let n,m ∈ N and f, g ∈ F(n,m) such that f �L g. Then there exists h ∈ F(n,m)

that arises from f by finitely many diminishing transfers such that h �L g and for all i ∈ {1, . . . ,m}
and all j ∈ {1, . . . , n},

h̃(j,m)− h̃(j, i) > g̃(j,m)− g̃(j, i),

h̃(n, i) = g̃(n, i) and

h̃(j,m) = g̃(j,m).

Indeed, the distribution h does not only lower orthant dominate g, but it also satisfies h̃(j,m)− h̃(j, i) >
g̃(j,m)− g̃(j, i).

With this intuition we prove the following technical lemma, which is useful for showing Proposition 3.2.

Lemma 3.3 Let i0 ∈ {1, . . . ,m} and f �L g such that

f̃(j,m)− f̃(j, i) > g̃(j,m)− g̃(j, i) ∀j ∈ {1, . . . , n− 1}, i ∈ {i0, . . . ,m} and (3.1)

f̃(n, i) = g̃(n, i) ∀i ∈ {i0, . . . ,m}. (3.2)

Then there exists h ∈ F that arises from f by finitely many diminishing transfers such that h �L g and

h̃(j,m)− h̃(j, i) > g̃(j,m) − g̃(j, i) ∀j ∈ {1, . . . , n− 1}, i ∈ {i0 − 1, . . . ,m} and (3.3)

h̃(n, i) = g̃(n, i) ∀i ∈ {i0 − 1, . . . ,m}. (3.4)

Proof of Lemma 3.3: Due to lower orthant dominance we have g̃(n, i0−1) > f̃(n, i0−1) and g̃(n,m) =

f̃(n,m),

f̃(n,m)− f̃(n, i0 − 1) > g̃(n,m)− g̃(n, i0 − 1). (3.5)

5



Step 1: We show that there exists h that arises from f by finitely many diminishing transfers such that

h �L g and

h̃(j,m)− h̃(j, i) > g̃(j,m)− g̃(j, i) (3.6)

for all j ∈ {1, . . . , n} and all i ∈ {i0 − 1, . . . ,m}.

Let

K(f) = K = {j ∈ {1, . . . , n} | f̃(j,m)− f̃(j, i0 − 1) < g̃(j,m) − g̃(j, i0 − 1)}
and k = |K|. We proceed by induction on k. If k = 0, then h = f fulfills (3.3). Assume that our

statement is correct whenever k < ℓ for some ℓ ∈ N. Now, if k = ℓ, we proceed as follows. Let

j0 = maxK. By (3.5), j0 < n. Moreover, because j0 is maximal, α := f̃(j0 + 1,m)− f̃(j0 + 1, i0 − 1) >
g̃(j0 + 1,m)− g̃(j0 + 1, i0 − 1) := β, we conclude that

(
α−

(
f̃(j0,m)− f̃(j0, i0 − 1)

))
−
(
β −

(
g̃(j0,m)− g̃(j0, i0 − 1)

))

>
(
g̃(j0,m)− g̃(j0, i0 − 1)

)
−

(
f̃(j0,m)− f̃(j0, i0 − 1)

)
,

that is,

m∑

i=i0

(
f(j0 + 1, i)− g(j0 + 1, i)

)
>

(
g̃(j0,m)− g̃(j0, i0 − 1)

)
−
(
f̃(j0,m)− f̃(j0, i0 − 1)

)
=: ε > 0. (3.7)

Let A = {i ∈ {i0, . . . ,m} | f(j0+1, i) > g(j0+1, i)}. There exist εi > 0, i ∈ A, such that
∑

i∈A εi = ε and

f(j0+1, i)−εi > g(j0+1, i) for all i ∈ A. Let h arise from f by transferring εi from (j0+1, i) to (j0, i) for

all i ∈ A (i.e., h arises from f by a sequence of |A| diminishing transfers). As g̃(j0, i0 − 1) > f̃(j0, i0 − 1),

(3.1) applied to j = j0 yields g̃(j0, i) > f̃(j0, i)+ ε for all i = i0, . . . ,m. As h̃(j0, i)− f̃(j0, i) 6 ε for i ∈ A

and h̃(j, i) = f̃(j, i) for all other pairs (j, i), we conclude that h �L g. Moreover, K(h) ⊆ K(f) \ {j0}
by construction. Finally, as only transfers from the right-hand to the left-hand side are employed, (3.6)

is still satisfied for all i ∈ {i0, . . . ,m} by (3.1). Hence, by the inductive hypothesis, this step is complete.

Step 2: We now finish the proof by showing (3.4). By Step 1 we may assume that f̃(j,m)− f̃(j, i0− 1) >
g̃(j,m)− g̃(j, i0 − 1) for all j = 1, . . . , n. Let g̃(n, i0 − 1)− f̃(n, i0 − 1) = ρ(f) = ρ > 0. If ρ = 0, we may

choose h = f . Hence, we assume that ρ > 0. Let

L(f) = L = {j ∈ {1, . . . , n} |f(j, i0) > g(j, i0)} ,

and ℓ = |L|. Now, f̃(n, i0) = g̃(n, i0) by (3.2) so that ρ = g̃(n, i0 − 1)− g̃(n, i0)− f̃(n, i0 − 1)+ f̃(n, i0) =∑n
t=1

(
f(t, i0)− g(t, i0)

)
. We conclude that ℓ > 0 (and, hence, i0 > 1). Assume now that (3.4) is already

proven whenever ℓ < r for some r ∈ N. If ℓ = r, then let j1 = maxL and ε = min{f(j1, i0)− g(j1, i0), ρ}.
Let h result from f by the diminishing transfer from (j1, i0) to (j1, i0 − 1) of size ε. Then h ≻L g and

either ρ(h) = 0 (if ε = ρ(f)) or |L(h)| < |L(f)|. As
∑j

t=1

(
f(t, i0)− g(t, i0)

)
> 0 for all j ∈ {j1, . . . , n}

by construction, (3.6) is still satisfied by (3.1) for all i ∈ {i0, . . . ,m}, so that the proof is finished by an

inductive argument. q.e.d.

Lemma 3.3 reveals the construction of the maximal sequence of diminishing transfers and is used in the

following proof.

Proof of Proposition 3.2: The mapping f satisfies the conditions of Lemma 3.3 for i0 = m. Hence,

applying the aforementioned lemma successively to i0 = m, . . . , 1 yields a mapping h that arises from f

by a finite number of diminishing transfers with h �L g such that, by (3.3),

h̃(j,m)− h̃(j, i) > g̃(j,m)− g̃(j, i) ∀j ∈ {1, . . . , n− 1}, i ∈ {0, . . . ,m}.
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Hence, applying this inequality to i = 0 yields h̃(j,m) > g̃(j,m) for all j ∈ {1, . . . , n − 1}. As h �L g,

h̃(n,m) = g̃(n,m) and g̃ > h̃ so that h̃(j,m) = g̃(j,m) for all j ∈ {1, . . . , n}. Finally, by (3.4), h̃(n, i) =

g̃(n, i) for all i ∈ {1, . . . ,m}. q.e.d.

Using Lemma 3.3 allows us to construct a finite sequence of diminishing transfers to obtain the function h

of Proposition 3.2. In Algorithm 1 we provide an algorithmic description of how to obtain h. The actual

diminishing transfers are given in lines 16 and 27. Observe that the sequence constructed in Lemma 3.3

exists if dominance prevails, and, consequently, if the sequence does not exist, then f does not dominate

g. This is exactly what is given in lines 5-8. The complexity of Algorithm 1 to identify the diminishing

transfers is O(n log n m).

Algorithm 1: Construction of distribution with identical marginals

1 for i0 = m to 1 do
2 Step 1:

3 K = {{j ∈ {1, . . . , n}} | f̃(j,m)− f̃(j, i0 − 1) < g̃(j,m)− g̃(j, i0 − 1)}
4 j0=maxK;
5 if j0 = n then
6 Print ”There is no dominance”;
7 exit;

8 end
9 while K 6= ∅ do

10 A = {i ∈ {i0, . . . ,m} | f(j0 + 1, i) > g(j0 + 1, i)};
11 ε = g̃(j0,m)− g̃(j0, i0 − 1)− (f̃(j0,m)− f̃(j0, i0 − 1));
12 for i = 1 to m do
13 εi = min{f(j0 + 1, i)− g(j0 + 1, i), ε−∑m

t=i0
εt};

14 end
15 foreach i ∈ A do
16 Transfer εi from (j0 + 1, i) to (j0, i);
17 end
18 Remove j0 from K;
19 j0=maxK;

20 end

21 Step 2:

22 ρ = g̃(n, i0 − 1)− h̃(n, i0 − 1);

23 L = {j ∈ {1, . . . , n} | ∑j
t=1 f(t, i0) >

∑j
t=1 g(t, i0)};

24 while L 6= ∅ do
25 j1 = max{j ∈ L | f(j, i0) > g(j, i0)};
26 ε = min{f(j1, i0)− g(j1, i0), ρ};
27 Transfer ε from (j1, i0) to (j1, i0 − 1);
28 ρ = ρ− ε;

29 end

30 end

3.2 Using correlation-increasing switches to obtain the distribution

So far, we have shown that if f �L g we can obtain a function h from f by finitely many diminishing

transfers that still satisfies h �L g and, additionally, has the same marginal distributions as g. Tchen

(1980) and Decancq (2012) show that g can be obtained from an arbitrary h by correlation-increasing

switches if and only if g and h have coinciding marginal distributions and h �L g. To enable a
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description of our algorithm and in order to make the paper self-contained we include the following short

proof that proceeds by induction on m and may be illustrated as follows. We construct correlation-

increasing switches that successively create a new function h �L g such that h(j, 1) = g(j, 1) for all

j ∈ {1, . . . , n}, so that we may delete the first row and apply an inductive argument. Within this row

we proceed recursively by first selecting the maximal j with f(j, 1) < g(j, 1), which we denote by j0,

and secondly selecting the minimal j > j0 (denoted by j1) such that when we subtract the aggregate

weights of {j0, . . . , j} of g from f , this difference is nonnegative. We then move the difference of the

aggregate weights of {j0, . . . , j1 − 1} via correlation-increasing switches from (j1, 1) to elements (j, 1)

with j0 6 j < j1, so that either j0 or j1 becomes smaller. For the precise definition of these correlation-

increasing switches, we refer to the proof.

The following notation is useful. For f ∈ F denote

Ff = {g ∈ F | f �L g, g̃(j,m) = f̃(j,m), g̃(n, i) = f̃(n, i)∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}}.

This means that Ff contains all lower orthant dominated distributions having marginal distributions

coinciding with the marginal distributions of f . Let g ∈ Ff and f D h. Then h D g if and only if

h arises from f by a sequence of finitely many correlation-increasing switches and g ∈ Fh. Moreover,

denote

j0(f, g) = j0 = max{j ∈ {1, . . . , n} | f(j, 1) < g(j, 1)},

where max ∅ = 0 is used in this context, and

j1(f, g) = j1 = min



j ∈ {j0 + 1, . . . , n}

∣∣∣∣∣∣

j∑

t=j0

(
f(t, 1)− g(t, 1)

)
> 0



 .

Note that j1 exists because g̃(j0 − 1, 1) > f̃(j0 − 1, 1) and g̃(n, 1) = f̃(n, 1). Also note that if j0 = 0, then

f(j, 1) = g(j, 1) for all j ∈ {1, . . . , n}. The following technical lemma is useful.

Lemma 3.4 Let g ∈ Ff such that j0(f, g) > 0. Then there exists f ⊲ h such that h �L g and

j0(h, g) < j0(f, g).

Proof: Let j0 = j0(f, g), j1 = j1(f, g), and denote

X ′(f, g) = X ′ = {(j, i) ∈ X | j0 6 j < j1, i > 1, f(j, i) > g(j, i)}.

Thus X ′(f, g) contains all (j, i) ∈ X in the interval between j0 and j1 where it is feasible to move mass

into, since f has more mass here than g.

Let ε =
∑j1−1

t=j0

(
g(t, 1)− f(t, 1)

)
. Note that, by the definitions of j0 and j1, j0 > 0 implies ε > 0. Hence,

f(j1, 1)− g(j1, 1) > ε. As f̃(j,m) = g̃(j,m) in particular for j = j0 − 1 and j = j1 − 1, the equations

f̃(j1 − 1,m) = f̃(j0 − 1,m) +

j1−1∑

j=j0

f(j, 1) +

m∑

i=2

j1−1∑

j=j0

f(j, i) and

g̃(j1 − 1,m) = g̃(j0 − 1,m) +

j1−1∑

j=j0

g(j, 1) +

m∑

i=2

j1−1∑

j=j0

g(j, i),

imply that
∑m

i=2

∑j1−1
j=j0

(
f(j, i)− g(j, i)

)
= ε, hence X ′(f, g) 6= ∅. By a recursive argument it suffices to

construct h such that f ⊲ h �L g and either
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• j0(h, g) < j0 or

• j0(h, g) = j0 and j1(h, g) < j1 or

• j0(h, g) = j0, j1(h, g) = j1 and |X ′(h, g)| < |X ′|.

For this purpose let i′ ∈ {2, . . . ,m} be minimal such that there exists (j, i′) ∈ X ′. Moreover let j′ ∈
{j0, . . . , j1 − 1} be maximal such that (j′, i′) ∈ X ′. Now we define ε′ = min{ε, f(j′, i′) − g(j′, i′)} and

consider h = f
(j1,1)⇆(j′,i′)
ε′ and verify that h �L g. If ε′ = ε, then we have moved ε to the element

(j′, 1) so that
∑j1−1

j=j0
h(j, 1) =

∑j1−1
j=j0

f(j, 1) + ε =
∑j1−1

j=j0
g(j, 1). If j′ = j0 and ε = g(j0, 1)− f(j0, 1), we

have j0(h, g) < j0. If j
′ 6= j0 or ε < g(j0, 1)− f(j0, 1), we have j0(h, g) = j0 and j1(h, g) < j1. Finally, if

ε′ < ε, then we have j0(h, g) = j0, j1(h, g) = j1, and X ′(h, g) = X ′(f, g) \ {(j′, i′)} so that the proof is

complete. q.e.d.

We apply Lemma 3.4 iteratively to obtain Algorithm 2, which either constructs a finite sequence of

correlation-increasing switches or shows that the sequence does not exist. Recall that correlation-

increasing switches preserve the marginal distribution, and as a consequence, if we cannot find the

distribution h from Lemma 3.4, then f does not lower orthant dominate g. The complexity of Algo-

rithm 2 to identify the correlation-increasing switches is O(n2m2).

Algorithm 2: Sequence of Correlation-Increasing Switches

1 for i0 = 1 to m− 1 do
2 while f(j, io) 6= g(j, io)∀j ∈ {1, . . . , n} do
3 j0 = max{j ∈ {1, . . . , n} | f(j, i0) < g(j, i0)};
4 j1 = min

{
j ∈ {j0 + 1, . . . , n} | ∑j

t=j0

(
f(t, i0)− g(t, i0)

)
≥ 0

}
;

5 if j1 does not exist then
6 Print ”There is no dominance”;
7 exit;

8 end

9 ε =
∑j1−1

t=j0

(
g(t, i0)− f(t, i0)

)
;

10 while ε > 0 do
11 X ′ = {(j, i) ∈ X | j0 ≤ j < j1, i > i0, f(j, i) > g(j, i)};
12 i′ = min{i ∈ {i0 + 1, . . . ,m} | ∃(j, i′) ∈ X ′};
13 j′ = max{j ∈ {j0, . . . , j1 − 1} | ∃(j′, i′) ∈ X ′};
14 ε′ = min{ε, f(j′, i′)− g(j′, i′)};
15 Transfer ε′ from (j1, i0) to (j′, i0) and ε′ from (j′, i′) to (j1, i

′);
16 ε = ε− ε′;
17 end

18 end

19 end

3.3 Equivalence of dominance concepts

We now collect the results from the previous sections to prove the two directions of Theorem 3.1 separately.

We start with the straightforward direction.

Proposition 3.5 Let n,m ∈ N and f, g ∈ F(n,m). If f D g, then f �L g.
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Proof: Let f, g ∈ X(n,m). If g results from f by a diminishing bilateral transfer from y to x or by a

correlation-increasing switch from x to min{x, y} and y to max{x, y}, then g̃(n,m) = f̃(n,m) and it is

straightforward to show that g̃ ≥ f̃ . Therefore, Proposition 3.5 follows by induction on k, the number of

functions f1, . . . , fk ∈ F such that f1 = f , fk = g, and fℓ results from fℓ−1 by a diminishing transfer or

a correlation-increasing switch for each ℓ ∈ {2, . . . , k}. q.e.d.

Proposition 3.6 Let n,m ∈ N and f, g ∈ F(n,m). If f �L g, then f D g.

Proof: By Corollary 3.2 we may assume that g ∈ Ff . Successively applying Lemma 3.4 if necessary we

may also assume that j0(f, g) = 0, i.e., f(j, 1) = g(j, 1) for all j ∈ {1, . . . , n} so that the proof is finished

by induction on m. q.e.d.

Proof of Theorem 3.1: By combining Proposition 3.5 and Proposition 3.6 the proof of our main result

follows. q.e.d.

As mentioned earlier, our constructive proof yields an algorithm. We need to follow each step in the

proof, and this means that we have to make sets and define variables as described in the proof. There

is only one place where the proof does not give us unique transfers, namely in the first step in the

diminishing transfer part. Here, we can decide in the algorithm in which order transfers should be made.

One possibility is to choose the lexicographical order. When we follow the algorithm it is possible to

track every transfer made. The complexity of the entire algorithm will thus be O(n2m2), as Algorithm 2

has the largest leading term.

4 Example

To illustrate the algorithm we give a 4× 4 example. Let f and g be given by Figures 4.1 and 4.2.

0 0 0 0

0.1 0 0.1 0.1

0.1 0 0 0.2

0.1 0.1 0.1 0.1m

n

0 0 0 0

0.1 0.1 0.2 0.3

0.2 0.2 0.3 0.6

0.3 0.4 0.6 1m

n

Figure 4.1: The probability mass function f (left) and f̃ (right)

The first part of the algorithm employs diminishing transfers to obtain equal marginal distributions.

The computation of sets and values appears from the proof. An overview of the algorithm may also be

obtained from inspecting the pseudo codes of Algorithm 1 (see Section 3.1) and Algorithm 2 (see Section

3.2). As an example for i0 = 4 we find the set K of indices j where f̃(j, 4) − f̃(j, 3) < g̃(j, 4) − g̃(j, 3).

This is only true for j = 1, where f̃(1, 4)− f̃(1, 3) = 0.3− 0.2 = 0.1 and g̃(1, 4)− g̃(1, 3) = 0.4− 0.2 = 0.2.

As we only have one element in K this will also be the largest element, so j0 = 1. Now we know which

column we need to move mass to, so now we need to check what row, i ∈ {i0, . . . ,m}, we can move mass

from (j0 + 1, i), i.e., which row index i satisfies f(j0 + 1, i) < g(j0 + 1, i). Since i0 = 4 we have i = 4,
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0.1 0 0.1 0

0.1 0 0 0.1

0 0 0.2 0

0.2 0 0 0.2m

n

0.1 0.1 0.2 0.2

0.2 0.2 0.3 0.4

0.2 0.2 0.5 0.6

0.4 0.4 0.7 1m

n

Figure 4.2: The probability mass function g (left) and g̃ (right)

i.e., A = {4}. Now we find ε = g̃(1, 4)− g̃(1, 3)− (f̃(1, 4)− f̃(1, 3)) = 0.4− 0.2 − (0.3 − 0.2) = 0.1 that

has to be distributed to all row indices of A. Since A is a singleton this task is simple. In the case that

A contains more elements there might be more ways to move the entire mass. In the example, we move

as much mass as possible for the lowest indices, and stop when the entire ε is moved. This gives us a

diminishing transfer in the horizontal direction. We then check whether transfers in the vertical direction

are necessary, i.e., transfers that ensure that f̃(n, i0 − 1) = g̃(n, i0 − 1). Since f̃(4, 3) = 0.6 = g̃(4, 3), no

such transfers are needed. For i0 = 3, K = ∅, but f̃(4, 2) = 0.3 6= 0.4 = g̃(4, 2) so that that L 6= ∅. We

find L as the set of indices j where
∑j

t=1 f(t, i0) >
∑j

t=1 g(t, i0) and conclude that L = {1, 2, 4) since
f(1, 3) = 0.1 > 0 = g(1, 3),

∑3
t=1 g(t, 3) = 0.2 > 0.1 =

∑3
t=1 f(t, 3) =

∑2
t=1 f(t, 3) > 0 =

∑2
t=1 g(t, 3),

and
∑4

t=1 f(t, 3) = 0.3 > 0.2 =
∑4

t=1 g(t, 3). We now find ρ = g̃(4, 2)− f̃(4, 2) = 0.4 − 0.3 = 0.1 and j1

which is the largest index j where f(j, 3) > g(j, 3) is true, f(4, 3) = 0.2 > 0 = g(4, 3) so j1 = 4. We are

then able to compute ε = min{f(4, 3)− g(4, 3), ρ} = min{0.2, 0.1} = 0.1 and transfer this amount. Now

ρ = ρ− ε = 0.1− 0.1 = 0. If ρ > 0 after the transfer, we would continue with a new j1 and find the new

ε. In the table the steps are also shown for i0 = 2 and i0 = 1.

i0 = 4 K = {1}, j0 = 1, A = {4}, ε = 0.1 = ε4 Diminishing transfer of 0.1 from (2, 4) to (1, 4)

L = ∅
i0 = 3 K = ∅

L = {1, 2, 4}, ρ = 0.1, j1 = 4, ε = 0.1 Diminishing transfer of 0.1 from (4, 3) to (4, 2)

i0 = 2 K = ∅
L = {3, 4}, ρ = 0.2, j1 = 4, ε = 0.1 Diminishing transfer of 0.1 from (4, 2) to (4, 1)

L = {3}, ρ = 0.1, j1 = 3, ε = 0.1 Diminishing transfer of 0.1 from (3, 2) to (3, 1)

i0 = 1 K = {3}, j0 = 3, A = {1, 3}, ε = 0.1 = ε1 Diminishing transfer of 0.1 from (4, 1) to (3, 1)

After having applied the diminishing transfers, the arising new f and f̃ are given by Figure 4.3. When

we have secured that the marginal distributions are equal we will continue with the second part where we

employ correlation increasing switches in order to obtain identical probability mass functions. Here i0 = i

means that the row i from the full probability mass functions is the bottom row in the present step. This

means that in our 4x4-example having i0 = 4 indeed means that we only consider the uppermost row from

the full probability mass functions, because the rest are already identical. We start with i0 = 1. Here

we find j0 = max{j ∈ {1, . . . , n}|f(j, 1) < g(j, 1)}. We have that f(1, 1) = 0 < 0.1 = g(1, 1), f(2, 1) =

0 = g(2, 1), f(3, 1) = 0.2 > 0.1 = g(3, 1) and f(4, 1) = 0 = g(4, 1), which means that j0 = 1. Then we
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0 0 0.2 0

0.1 0 0 0.1

0.1 0 0 0.1

0.2 0 0.1 0.1m

n

0 0 0.2 0.2

0.1 0.1 0.3 0.4

0.2 0.2 0.4 0.6

0.4 0.4 0.7 1m

n

Figure 4.3: The new probability mass function f (left) and f̃ (right)

find j1 = min{j ∈ {j0 + 1, . . . , n}|∑j
t=j0

(
f(t, 1) − g(t, 1)

)
≥ 0}, since ∑2

t=1

(
f(t, 1) − g(t, 1)

)
= −0.1

and
∑3

t=1

(
f(t, 1)− g(t, 1)

)
= 0 we have that j1 = 3. We have to compute the set X ′ = {(j, i) ∈ X |j0 ≤

j < j1, i > i0, f(j, i) > g(j, i)} this gives us X ′ = {(1, 3)}. This means that when we have to chose i′

minimal such that (j, i′) ∈ X ′ and j′ maximal such that (j′, i′) ∈ X ′ we will have (j′, i′) = (3, 1). We can

compute ε =
∑j1−1

t=j0

(
g(t, i0)−f(t, i0)

)
= (g(1, 1)−f(1, 1))+(g(2, 1)−f(2, 1)) = (0.1−0)+(0−0) = 0.1

and ε′ = min{ε, f(j′, i′)− g(j′, i′)} = min{ε, f(1, 3)− g(1, 3)} = min{0.1, 0.1− 0} = 0.1. So now we have

identified a correlation increasing switch. Since the row i = 1 is identical in f and g we are done with

this row. So we can discard it from the algorithm and look on the remaining rows. In the table the rows

i0 = 2 and i0 = 4 are blank because each of these rows already coincides with the row corresponding

to g when the algorithm for i0 = 1 and i0 = 3, respectively, has been applied already. Hence, it is not

necessary to employ any further correlation increasing switches.

i0 = 1 j0 = 1, j1 = 3, i′ = 3, j′ = 1, ε = 0.1, ε′ = 0.1

Correlation increasing switch of 0.1 from (3, 1) to (1, 1) and from (1, 3) to (3, 3)

i0 = 2

i0 = 3 j0 = 3, j1 = 4, i′ = 4, j′ = 3, ε = 0.1, ε′ = 0.1

Correlation increasing switch of 0.1 from (4, 3) to (3, 3) and from (3, 4) to (4, 4)

i0 = 4

5 Remarks on the multivariate case

We now consider d ∈ N, d > 2, n1, . . . , nd ∈ N, the discrete hyper-rectangle X = {x ∈ Nd | x 6
(nd, . . . , n1)}, and F = {f : X → R+}. The expressions lower orthant dominance, diminishing transfer,

and correlation increasing switch are easily generalized to this multivariate case by literally copying their

formal definitions provided in Section 2. It is straightforward to generalize the proof of Proposition 3.5

to obtain that f D g implies f �L g. Moreover, with the help of an example of Müller and Scarsini

(2000) it may be shown that the opposite implication does not hold, hence our main theorem does not

hold in the case d > 2.

Indeed, if the dimension is higher than 2, further elementary transfers have to be considered. Müller’s

(2013) general equivalence result employs so-called ∆-antitone transfers and shows that f �L g if and
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only if g can be obtained from f by a finite sequence of ∆-antitone k-transfers, where k = 1, . . . , d. Now,

∆-antitone 1-transfers and ∆-antitone 2-transfers are the diminishing transfers and correlation-increasing

switches, respectively. Moreover, Decancq’s (2012) result applies to the multivariate case: If f and g have

the same marginal distributions, then f �L g if and only if g arises from f by a finite sequence of ∆-

antitone k-transfers where k = 2, . . . , d. As our current approach does not aim to present an algorithm

that uses the aforementioned equivalence result, we do not mention further details, e.g., the definition of

∆-antitone k-transfers for k > 2, in the present paper.

6 Final remarks

As mentioned earlier, Theorem 3.1 was recently proven by Meyer and Strulovici (2010, 2015) and Müller

(2013). However, our approach is different. In particular, our proof is constructive and yields an al-

gorithm. The most important feature is that it allows us to decompose domination into diminishing

transfers and correlation-increasing switches. In other words, we can disentangle domination into welfare

deteriorations and inequality increases.

The algorithm is useful in several ways. First, the decomposition technique enables us to compare

lower orthant dominance to more restrictive stochastic dominance concepts, for example to first order

dominance, which allows only diminishing transfers, or to increasing interdependence (as in Tchen 1980,

Epstein and Tanny 1980, and Decancq 2012), allowing only correlation-increasing switches. Second, if

we measure the distance between two distributions by the amount of mass moved times the ℓ1 distance

it is moved, then the algorithm tells us how much the distributions differ, and, in particular, we can

decompose the difference to see how much mass is moved by diminishing transfers. Although the sequence

of diminishing transfers and correlation-increasing switches leading from one distribution to another is

generally not uniquely determined, the mass we have to move with diminishing transfers to obtain the

same marginal distributions is always the same.8 Thus, in terms of the measure of distance of mass

displacement through diminishing transfers, the welfare differences are uniquely determined and hence

meaningfully measured for comparison purposes.
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