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Abstract

This paper investigates the presence of habit formation in household consumption, using
data from the Panel Study of Income Dynamics. We develop an econometric model of inter-
nal habit formation of the multiplicative specification. The restrictions of the model allow for
classical measurement errors in consumption without parametric assumptions on the distri-
bution of measurement errors. We estimate the parameters by nonlinear generalized method
of moments and find that habit formation is an important determinant of household food-
consumption patterns. Using the parameter estimates, we develop bounds for the expectation
of the implied heterogeneous intertemporal elasticity of substitution and relative risk aver-
sion that account for measurement errors, and compute confidence intervals for these bounds.
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1 INTRODUCTION

Since the early 1980s, a growing body of literature has recognized the potential for intertem-

poral nonseparabilities in preferences to address a variety of stylized facts in economics. The

success of these nonseparability specifications has led economists to investigate their empirical

validity. For the majority of empirical studies, habit formation is the dominant specification of

intertemporal nonseparability in preferences, and consumption is the dominant economic process

studied. Whereas aggregated consumption data largely support habit formation (e.g., Ferson and

Constantinides 1991; Heaton 1995; Fuhrer 2000; Chen and Ludvigson 2009; Smith and Zhang

2007), the literature on testing for the existence of habit formation using micro data is sparse and

inconclusive. The studies of Carrasco, Labeaga, and Lopez-Salido (2005) and Browning and Col-

lado (2007) find support for habit formation in individual consumption, whereas those of Meghir

and Weber (1996) and Dynan (2000) do not. Yet, if it exists, habit formation leads to a number

of important quantitative and qualitative implications for the intertemporal elasticity of substitu-

tion (IES) and relative risk aversion (RRA). Habit-forming preferences generate smaller IES and

larger RRA than their counterparts generated by time-separable utility specifications (Constan-

tinides 1990; Campbell and Cochrane 1999). Habit formation in preferences can also generate

individual heterogeneity in the IES and RRA through their dependencies on past consumption

experience, where the level of dependence is governed by the strength of habit formation.

In this paper, we empirically investigate the presence of internal habit formation in household

food consumption using data from the Panel Study of Income Dynamics (PSID). We exploit the

structure of the implied Euler equation to develop a nonlinear generalized method of moments

(GMM) estimator that accounts for classical measurement errors in observed consumption. The

theoretical restrictions of our model allow us to do so without imposing parametric restrictions

on the distribution of measurement errors. We prove identification and estimate all preference pa-

rameters, including the strength of habit formation. We derive the IES and RRA that are implied

from our model specification and use our estimated parameters to investigate the magnitudes and

individual variations in these key economic quantities.

We construct the estimator under the assumption that habit formation takes a multiplicative

(or ratio) form introduced in Abel (1990), where consumption services are given by Ct/Cα
t−1. The

main alternative to this specification is the difference model of habit, where consumption services
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are given by, for example, Ct −αCt−1. Two related points motivate the choice of the multiplicative

specification. First, individual consumption data are more volatile than aggregate consumption

data. As a result, whereas the restriction of positive consumption services is relatively easy to

satisfy in difference models when using aggregated data, it is likely to be violated when using

micro data. The multiplicative specification of consumption services satisfies the positivity con-

straint on consumption services for any pair (Ct ,Ct−1), thus making it more appropriate when

using micro-data. Second, a fraction of the volatility in observed consumption may be due to the

existence of measurement errors. Under the multiplicative specification, the resulting economet-

ric model derived from the consumption Euler equation allows for classical measurement errors

in consumption without imposing parametric assumptions on their distribution. Our nonlinear

GMM estimator extends Alan, Attanasio, and Browning (2009), who propose two exact nonlin-

ear GMM estimators for the consumption Euler equation without intertemporal nonseparability

in preferences. To the best of our knowledge, this paper presents the first exact Euler equation

nonlinear GMM method that is developed to investigate the existence of habit formation with-

out imposing parametric assumptions on the distribution of measurement errors. The empirical

results suggest habit formation is an important determinant of food-consumption patterns. We

also find the estimates of the structural parameters are robust across various specifications, and

ignoring measurement errors significantly weakens the evidence of habit formation.

Our approach to investigating the heterogeneity in the intertemporal elasticity of substitution

and relative risk aversion implied by habit-forming preferences constitutes another novelty of

the paper. The literature uses other methods, where the dominant approach in evaluating hetero-

geneity in the RRA and IES is to apply iso-elastic utility models to different economic units (e.g.,

Attanasio and Weber 1993; Vissing-Jorgenssen 2002; Crossley and Low 2011). The advantage of

our approach is that in habit-formation frameworks, individual- and time-varying IES and RRA

are determined by preference parameters that are not functions of the economic environment,

thus making these models more suitable for counterfactual policy analysis. However, unlike the

preference parameters of the model, the conditional expectations of the IES and RRA are not

point identified when observed consumption is contaminated by measurement errors, even when

the distribution of measurement errors is parameterized. To facilitate the inference, we develop

bounds on the conditional expectations of the IES and RRA that allow for measurement errors
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in observed consumption. We construct confidence intervals for these bounds using the method

developed in Chernozhukov, Hong, and Tamer (2007). Although these bounds are not sharp,

they are informative for investigating the level of biasedness introduced by the assumption of

log-normal measurement errors, an assumption often imposed in the literature. In particular, we

find the 95% confidence interval for the unconditional expectation of the IES is [0.06, 0.11], and

the corresponding 95% confidence interval for the unconditional expectation of the RRA is [9.4,

15.5]. The corresponding confidence intervals of the IES and RRA under the assumption of log-

normally distributed measurement errors are [0.11, 0.15] and [6.6, 9.0], respectively. The finding

that the confidence intervals do not overlap suggests the log-normality assumption on measure-

ment errors in observed consumption may be too strong. We find the constructed 95% confidence

intervals for the bounds on the expectations of the IES and RRA conditioned on education, age,

income groups, and family size are not informative for investigating heterogeneity in the IES and

RRA.

The remainder of the paper is as follows. Section 2 sets up the theoretical model. Section

3 develops the econometric model. Section 4 discusses identification of the parameters of in-

terest, and section 5 provides the definition of the estimator, outlines asymptotic properties, and

discusses the small-sample properties. Section 6 describes the data sample used in estimation.

Section 7 presents the empirical results, and section 8 examines the implications for the relative

risk aversion and intertemporal elasticity of substitution. Section 9 concludes. The proofs and

detailed derivations are presented in the Appendix.

2 THEORETICAL FRAMEWORK

Household i chooses a sequence of consumption {Cis,s = t, · · · ,T} to maximize its expected

lifetime utility, given by

Eit

T

∑
s=t

βs−tϕis
C̃1−γ

is −1
1− γ

, (2.1)

where the expectation is conditional on all information relevant to household i at time t, β ∈ (0,1)

is the time-discount factor, γ is the utility curvature parameter, and C̃it denotes consumption

services in period t. Consumption services are defined as the geometrically weighted ratio of
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current consumption expenditures to past consumption expenditures,

C̃it =
Cit

Cα
it−1

,

where 0 ≤ α ≤ 1 measures the strength of habits, with α = 1 denoting the strongest habit and

α = 0 indicating no habit in consumption. This habit-formation specification was originally

introduced by Abel (1990), and further used, among others, in a general theoretical analysis

of the preferences in Caroll (2000), in theoretical justification of growth-to-savings causation

by Caroll, Overland, and Weil (2000), and for empirical analysis with aggregate data by Smith

and Zhang (2007). The main alternative to this specification is the difference model of habit

formation used in Ferson and Constantinides (1991), Heaton (1995), Campbell and Cochrane

(1999), Dynan (2000), and Chen and Ludvigson (2009), among others. In this case, consumption

services are given by, for example, C̃t = Ct −αCt−1 with analogous restrictions on the habit-

formation parameter α.

The household-specific taste shifters ϕit affect the household’s utility (2.1). Researchers have

widely accepted the importance of augmenting the individual utility function with individual-

specific taste shifters in the estimation of optimal consumption choices using micro data (Banks,

Blundell, and Tanner 1998; Attanasio, Banks, Meghir and Weber 1999; Dynan 2000; Alan, At-

tanasio, and Browning 2009). Household-specific taste shifters ϕit are given by

ϕit = exp(δwit +ωi),

where wit ∈ W ∈ ℜdw is the dw-dimensional vector of exogenous time-varying observed house-

hold characteristics and ωi is a household fixed effect.

We assume household i is not subject to a liquidity constraint and has rational expectations.

The first-order necessary condition for the household’s optimization problem is

E [β(1+ rit+1)MUit+1 −MUit |zit ] = 0, (2.2)

where rit+1 is the rate of return on savings of household i between periods t and t +1, zit denotes
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the set of all information that is available to household i at time t, and MUit is given by

MUit =
ϕit

Cit

(
Cit

Cα
it−1

)1−γ
−αβ

ϕit+1

Cit

(
Cit+1

Cα
it

)1−γ
. (2.3)

Note that if α= 0, MUit in equation (2.3) reduces to the marginal utility of time-separable models.

For α > 0, consumption services are negatively related to past consumption levels. This property

is shared with difference models of habit formation. However, in the case of the multiplicative

model, α > 0 is not sufficient to characterize habit formation. The multiplicative model also

requires γ > 1 for preferences to exhibit habit formation. Indeed, as long as both α > 0 and γ > 1,

the household’s marginal utility of consumption in period t is an increasing function of period

t − 1 consumption, yielding complementarity in consumption over time (Constantinides 1990;

Heaton 1995; Kocherlakota 1996).

Substituting equation (2.3) into equation (2.2) obtains the following consumption Euler equa-

tion:

E

[
β(1+rit+1)

(
ϕit+1
Cit+1

(
Cit+1

Cα
it

)1−γ
−αβ ϕit+2

Cit+1

(
Cit+2
Cα

it+1

)1−γ
)
− ϕit

Cit

(
Cit

Cα
it−1

)1−γ
+αβ ϕit+1

Cit

(
Cit+1

Cα
it

)1−γ∣∣∣zit

]
=0. (2.4)

3 ECONOMETRIC MODEL

To derive an estimator for the parameters of interest from equation (2.4), we address two key

issues: potential household-specific effects in preferences, and measurement errors in consump-

tion.

3.1 Consumption growth

Transforming the Euler equation (2.4) into the one expressed in terms of consumption growth

instead of levels has several advantages. Consumption growth may be stationary even though

consumption is not. Habit formation in consumption generates positive serial correlation in con-

sumption over time, as does household-specific heterogeneity in preferences. As a result, not

accounting for household-specific heterogeneity in preferences will bias the estimates in favor

of finding evidence of habit formation. The transformation of equation (2.4) into consumption
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growth rates eliminates unobserved household-specific effects in the taste shifters, ωi. Further-

more, the growth-rate transformation allows for weaker conditions on the distribution of mea-

surement errors, a point we address in the next section.

Let cit = Cit/Cit−1, and φit = ϕit/ϕit−1 = exp(δ∆wit). Because Cit , Cit−1, wit , and ωi are

known to household i in period t, so is (ϕit/Cit)
(
Cit/Cα

it−1
)1−γ, which is strictly positive for all

values of Cit , Cit−1, wit , and ωi. Thus, dividing equation (2.4) by this quantity leads to

E

[
β(1+rit+1)

φit+1
cit+1

(
cit+1

cα
it

)1−γ(
1−αβφit+2

(
cit+2
cα
it+1

)1−γ)
−
(

1−αβφit+1

(
cit+1

cα
it

)1−γ)∣∣∣∣∣zit

]
= 0. (3.1)

3.2 Measurement error

Given a set of appropriate instruments and the absence of measurement errors, consistent estima-

tors of the parameters α, β, γ, and δ can be obtained based on the moment condition in equation

(3.1). However, the estimation of nonlinear rational-expectations models using micro data is

complicated by the problem of measurement errors in consumption, which, if ignored, will likely

result in inconsistent estimation of the key parameters of interest.

Define zo
it to be a subset of the information set available to household i in period t and observ-

able to the econometrician. Then, by the law of iterated expectations, equation (3.1) implies

E

[
β(1+rit+1)

φit+1
cit+1

(
cit+1

cα
it

)1−γ(
1−αβφit+2

(
cit+2
cα
it+1

)1−γ)
−
(

1−αβφit+1

(
cit+1

cα
it

)1−γ)∣∣∣∣∣zo
it

]
= 0. (3.2)

Let true consumption, Cit , be measured with a multiplicative error, ηit , so that observed con-

sumption is given by Co
it = Citηit , where ηit > 0. Define co

it = Co
it/Co

it−1 and vit = ηit/ηit−1, so

that co
it = citvit . Define xt+2

it = (rit+1,∆wit+1,∆wit+2,cit ,cit+1,cit+2) and vt+2
it = (vit ,vit+1,vit+2).

The following assumption imposes restrictions on the joint distribution of
(
xt+2

it ,vt+2
it ,zo

it
)
.

Assumption 3.1. For each household, i, and t = 2, · · · ,T −2, vt+2
it is stationary and independent

from xt+2
it and zo

it .

We maintain that neither (ci2, · · · ,cit) nor (vi2, · · · ,vit) are observable to the econometrician,

and hence not subsets of zo
it . Therefore, the independence restriction of Assumption 3.1 requires

that (co
i2, · · · , co

it) is not a subset of zo
it . Assuming the growth in measurement errors is independent

of the growth in consumption, the first difference in taste shifters, and the rate of interest does not
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imply measurement errors are independent of consumption, taste shifters, and the rate of interest.

For example, our independence assumption allows for permanent unobservables in measurement

errors that occur if some individuals persistently under- or over-report their levels of consumption

(by the same amount). The assumption also allows for this tendency to under- or over-report to

be correlated with other factors such as income. The stationarity restriction of Assumption 3.1

does not imply ηit is stationary. It allows for some (but not all) forms of time trends in reporting

consumption, such as the case in which the bias in the reported consumption decreases over time

because of experience in reporting. The stationarity assumption also allows for serial correlation

in the mistakes made in reporting consumption expenditures, which occur if the respondent has

a tendency to over-correct past mistakes.

The following theorem states that under Assumption 3.1, the moment condition in equation

(3.2) can be transformed into a moment condition expressed in terms of the observed consump-

tion growth.

Theorem 3.2. Suppose Assumption 3.1 is satisfied; then positive constants A1, A2, and A3 exist

such that equation (3.2) implies

E

[
β(1+rit+1)

φit+1
co
it+1

(
co
it+1
coα
it

)1−γ(
A−1

1 −αβA−1
2 φit+2

(
co
it+2

coα
it+1

)1−γ)
−
(

1−αβA−1
3 φit+1

(
co
it+1
coα
it

)1−γ)∣∣∣∣∣zo
it

]
= 0, (3.3)

where

A1 = E

[
1

vit+1

(
vit+1

vα
it

)1−γ
]
,

A2 = E

[
1

vit+1

(
vit+1vit+2

(vitvit+1)
α

)1−γ
]
, and

A3 = E

[(
vit+1

vα
it

)1−γ
]
. (3.4)

Proof. See Appendix A.

Equation (3.3) is the main equation of interest in this paper. It forms the basis of estimat-

ing the preference parameters of the model without imposing distributional assumptions on η.

The three additional parameters, A1, A2, and A3, in equation (3.3) rescale the terms in the Euler

equation expressed in terms of observed consumption growth to equate them to the terms in the
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true Euler equation (3.2). This transformation relies on the multiplicative and power-function

representation of the habit-formation component in consumption services, and is not directly ap-

plicable if the difference specification of habit formation is assumed. However, as discussed in

the introduction, the multiplicative specification of habit formation is more appropriate for inves-

tigating habit formation in micro data because, unlike the difference specification, consumption

services are always positive. Furthermore, as discussed in the previous section, theoretical and

empirical investigations of intertemporal nonseparabilities in consumption often assume multi-

plicative habit formation. The parameters, A1, A2, and A3, are functions of the joint distribution

of vt+2
it , the curvature parameter, γ, and the habit-formation parameter, α. Without parametric

assumptions on the distribution of measurement errors, these terms do not have a closed-form

representation and are treated as nuisance parameters to be estimated along with the preference

parameters.

Estimation of the parameters of interest using equation (3.3) is not informative if one is in-

terested in evaluating the variation in observed food consumption due to measurement errors,

because the variance of measurement errors is not identified without additional assumptions. To

this end, we will make the following functional-form assumption as an alternative specification:

Assumption 3.3. For each household, i, and for t = 1, · · · ,T , the measurement errors in con-

sumption are serially independent and log-normally distributed, lnηit ∼ N(µi,σ2), and condi-

tional on µi, ηit is independent of (ris,wis,Cis,zo
is), s = 1, · · · ,T .

Equation (3.3) remains the same under the additional restriction of Assumption 3.3. However,

under the parametric restriction of Assumption 3.3, direct calculation shows the constants A1, A2,

and A3 in equation (3.4) take the following forms:

A1 = exp{σ2 (α2(1− γ)2 + γ2 −αγ(1− γ)
)
},

A2 = exp{σ2 (α2(1− γ)2 + γ2 +(1− γ)(1+α)
)
}, and

A3 = exp{σ2 ((1+α+α2)(1− γ)2)}. (3.5)

We reiterate that identification and estimation of the preference parameters do not require functional-

form restrictions on the distribution of the measurement errors. We impose Assumption 3.3 as

an alternative specification in order to investigate the degree to which measurement errors ex-
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plain variation in observed consumption, and to analyze the degree of bias introduced by the

log-normal measurement errors assumption.

4 IDENTIFICATION

In this section, we discuss identification of the structural parameters of the model: the time-

discount factor, the utility curvature parameter, and the habit-formation parameter. We also

discuss identification of the nuisance parameters introduced by measurement errors. Equation

(3.3) is the focus of the analysis; however, we will also discuss identification of the variance of

measurement errors, σ2, under the functional-form restriction imposed by Assumption 3.3.

Define co,t+2
it = (co

it ,c
o
it+1,c

o
it+2), c̃o,t+2

it = (lnco
it , lnco

it+1, lnco
it+2), ∆wt+2

it+1 = (∆wit+1,∆wit+2),

xo,t+2
it =(rit+1,∆wt+2

it+1,co,t+2
it ), and zo

it = (wit ,zo
1it), where zo

1it is a vector of “excluded” instruments.

Let θ = (γ,α,δ,β,A1,A2,A3) ∈ Θ, and let the true parameter vector be θ0 = (γ0,α0,δ0,β0,A10,

A20,A30) ∈ Θ. Under Assumption 3.3, let σ2
0 be the true variance of measurement errors. Define

also κ1 = A2/A1, κ2 = A2, κ3 = A2/A3, and

ρ(xo,t+2
it ,θ)=β(1+rit+1)

φit+1
co
it+1

(
co
it+1
co,α
it

)1−γ
(

κ1−αβφit+2

(
co
it+2

co,α
it+1

)1−γ
)
−

(
κ2−αβκ3φit+1

(
co
it+1
co,α
it

)1−γ
)
. (4.1)

Assumption 3.1 along with following assumption are sufficient for identification of θ0.

Assumption 4.1. (i) Θ is compact and for at least one t ∈ {2, · · · ,T −2} and for any measurable

function a(xo,t+2
it ,zo

it), E[a(xo,t+2
it ,zo

it)|zo
it ] = 0 implies a(xo,t+2

it ,zo
it) = 0 almost surely.

(ii) For t = 2, · · · ,T −2, Rank{E[(1,rit+1,∆wt+2
it+1, c̃

o,t+2
it )′(1,rit+1,∆wt+2

it+1, c̃
o,t+2
it )]}= 5+2dw.

Assumption 4.1.i is completeness in zo
1it of the conditional distribution of xo,t+2

it given zo
it (see

Newey and Powell 2003). The completeness assumption restricts the admissible families of con-

ditional distributions that obtain identification of the parameters of the model. Note, however,

the completeness assumption needs to hold only for one period in {2, · · · ,T − 2}. Chen and

Ludvigson (2009) used this assumption to identify the preference parameters in their semipara-

metric habit-based asset-pricing model. Chen, Chernozhukov, Lee, and Newey (2014) investigate

identification of a model similar to Chen and Ludvigson (2009) using the weaker condition of

bounded completeness. Bounded completeness is too weak to identify the parameters of our

10



model, because observed consumption is not theoretically bounded, and ρ(xo,t+2
it ,θ) in equation

(4.1) is not bounded in observed consumption. Even if one is willing to assume true consump-

tion is bounded, restricting observed consumption growth to a bounded set implicitly restricts the

family of admissible distributions of measurement errors, which excludes typical distributions

such as the log-normal distribution.

Assumption 4.1.ii is a rank condition that requires linearly independent variation in interest

rates in period t + 1 and the log of observed consumption growth over periods t to t + 2. This

condition is satisfied in general by exogenous variation in interest rates, and household-time–

specific shocks to true consumption, such as shocks to household income or wealth. Beyond the

first difference in the taste shifters containing variation exogenous to consumption growth and

interest rates, Assumption 4.1.ii implies the taste shifters cannot include the following: time-

invariant random variables, such as gender and race; random variables that change by a fixed

amount over time, such as age and time; and random variables whose first differences are either

constant over time or change by a fixed amount over time, such as age times education or age

squared. Assumption 4.1.ii also excludes from taste shifters variables that are the same for all

individuals in any given period of time, such as aggregate effects.

Identification of θ0 is stated in the following theorem.

Theorem 4.2. Suppose Assumptions 3.1 and 4.1 are satisfied. If α0 = 0, then (γ0,α0,δ0,A
−1
10 β0,

A20) is identified, and if Assumption 3.3 also holds, then (θ0,σ2
0) is identified. On the other hand,

if α0 > 0, then θ0 is identified, and if in addition Assumption 3.3 holds, then σ2
0 is also identified.

Proof. See Appendix B.

The intuition behind identification of the parameters in the habit-formation model is as fol-

lows. Internal habit formation links consumption in period t − 1 to consumption in period t + 1

in our period t Euler equation in a similar way as two adjacent Euler conditions do in Alan,

Attanasio, and Browning (2009). The term that links these observations of consumption over

time is α0β2
0, the product of the habit-formation parameter and the two-periods-ahead discount

factor. The Euler equation also implies that because of habit formation, optimal consumption in

period t not only adjusts to shocks in the previous-period consumption, but also to anticipated

shocks to the next-period consumption. The habit-formation parameter and the utility curvature

parameter, γ0, govern these rates of adjustments. Therefore, independent variation in period t −1
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consumption, due to shocks to period t −1 interest rates and income, for example, and indepen-

dent variation in period t +1 consumption identifies α0 and γ0, which consequently identifies the

discount factor. Independent variation in ∆wit identifies the parameters δ0, which govern the taste

shifters. Given identification of the preference parameters, the nuisance parameters are identified

from the discrepancy between rate of response of optimal true consumption to shocks in period

t interest rates and the corresponding rate of response of observed consumption. Finally, under

Assumption 3.3, the only unknown term in A10, A20, and A30 defined in equation (3.5) is σ2
0.

In time-separable models, failure to identify the discount factor separately from the measure-

ment error term without distributional assumptions on measurement errors in consumption is a

standard result (see a discussion in Alan, Attanasio, and Browning 2009). What is not standard

in the literature is identifying the discount factor when specific distributional assumptions are

imposed. Under no habit formation and log-normally distributed measurement errors, our esti-

mator becomes similar to the estimator proposed by Ventura (1994). The additional source of

identification in this paper relative to Ventura (1994) comes from the completeness assumption,

which allows us to exploit variation in period t + 1 interest rates to identify the variance of the

distribution of measurement errors.

5 THE ESTIMATOR: DEFINITION, ASYMPTOTIC, AND

SMALL-SAMPLE PROPERTIES

Define the q-dimensional vector mit(θ) = m(xo,t+2
it ,zo

it ,θ) = zo′
it ρ(xo,t+2

it ,θ), where ρ(xo,t+2
it ,θ) is

defined in equation (4.1), q is a dimension of zo
it , and the corresponding q(T − 3)-dimensional

moment vector mi(θ) := (m′
i2(θ), · · · , m′

iT−2(θ))
′. Then equation (3.3) implies

m(θ0) = E[mi(θ0)] = 0. (5.1)

Define yit = (rit ,wit ,Co
it ,z

o
it) and yi = {yit , t = 1, · · · ,T}, and let Fy be the joint distribution of yi.

Assumption 5.1. A sample of n independent realizations of y are drawn from Fy. For each

i = 1, · · · ,n, yi is observed.

Let m̂(θ) := ∑n
i=1 mi(θ)/n and Ω̂(θ) := ∑n

i=1 mi(θ)m′
i(θ)/n. Then our estimator for the pa-
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rameters of interest θ̂ minimizes

m̂′(θ)Ω̂(θ)+m̂(θ)

over Θ, where Ω̂(θ)+ is the generalized inverse of Ω̂(θ).

As suggested by Hansen, Heaton, and Yaron (1996), we apply continuous updating GMM

(CUGMM) to obtain estimates of the structural parameters. Although CUGMM is known to be

somewhat difficult to implement, it has the advantage of being pertinent. Note that by setting

δ = 0, γ = 1, and αβ = κ1 = κ2/κ3, the moment equation (5.1) is trivially satisfied. As Hansen,

Heaton, and Yaron (1996) stated, CUGMM eliminates this trivial solution.

Let M = E[∂mi(θ0)/∂θ], Λ = E[mi(θ0)mi(θ0)
′], and Σ = (M′ΛM)−1.

Theorem 5.2. Suppose the conditions of Theorem 4.2 and Assumption 5.1 are satisfied. Then

θ̂ p−→ θ0, and
√

n(θ̂−θ0)
p−→ N(0,Σ).

The proof of Theorem 5.2 is standard and not reproduced here. See Newey and McFadden

(1994) for example.

In Appendix C, we investigate the finite sample performance of the above estimator in re-

covering the parameters of interest. We also investigate the performance of the approximated

log-linearized habit-formation model. The simulation exercise shows the proposed estimator

performs well in recovering the parameters of interest, and that not accounting for measurement

errors leads to underestimation of the discount factor and the strength of habits. The simulation

exercise also shows that estimating the log-linearized version of the model (as opposed to the

exact non-linear model) results in a significant downward bias in the estimate of α even without

measurement errors in consumption.

6 DATA

Data on food consumption, income, and household demographic characteristics are available

from the Panel Study of Income Dynamics (PSID). Although it is the longest panel study, and

one of the most comprehensive sources of information for studying life-cycle processes, and

poverty and welfare dynamics, its use for studying consumption involves one drawback: con-

sumption data are available only for food. Fortunately, data on food consumption are particularly
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suitable for testing whether this category of consumption can be habit-forming, because food is

a perishable good. The annual frequency of observation is also advantageous. Dynan (2000)

argues that if durability has any effect on food consumption, it is not likely to last more than a

few months.

Consumption of households consists of expenditures on food consumed at home, away from

home, and the value of food stamps. Data on food consumed at home and the value of food stamps

are deflated using the consumer price index (CPI) for food at home. Data on food consumed away

from home are deflated using the CPI deflator for food away from home. All CPI data are taken

from the CPI releases of the Bureau of Labor Statistics. Food-consumption data are deflated

according to the month and year when the interview occurred, whereas food stamps and data on

income are deflated using the CPI for the end of the year before the interview was conducted. In

addition, total consumption expenditures are adjusted by the size of household using the square

root of family members as a per-adult equivalence scale (for recent examples of this treatment,

see Bick and Choi 2013, Guvenen and Smith 2014).

As in Shapiro (1984), Runkle (1991), and subsequent studies, we construct the household-

specific real after-tax interest rate as rit+1 = Rt(1− τit+1)− πt+1, where Rt is the average 12-

month Treasury bill for the first half of the preceding year, τit+1 is the household marginal tax

rate as reported in the PSID, and πt+1 is the CPI deflator for the period of the interview.

To construct a data sample suitable for estimation of the model, we take observations on

households from the nationally representative sample of households in the PSID covering 13

years from 1975 through 1987. The data availability motivates the time interval for the sample:

the household marginal tax rate used in the construction of the household-specific real after-tax

interest rate is only available after 1975, whereas data on food consumption are not available

for several years after 1987. Our theoretical model applies to a liquidity-unconstrained house-

hold with no drastic household composition changes. Therefore, we apply the data-restriction

criteria that the studies on estimation of life-cycle consumption models with the PSID routinely

follow, including those previously referenced, such as Runkle (1991), Dynan (2000), and Alan,

Attanasio, and Browning (2009).

From the PSID, we obtain an unbalanced panel of 3,182 households in which the head is

between 22 and 65 years old, for whom consumption is available over at least four consecutive
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periods, and for which we have no missing observations on income and demographic charac-

teristics such as family size and age. We exclude observations for which consumption grew by

more than 300% or shrank by more than 66% from the previous period. The extreme outliers in

consumption growth rate that we observe in the untrimmed data are likely due to measurement

errors. Thus, the estimated magnitude of the variance of the measurement errors in consump-

tion is to be considered a lower bound after this data trimming. We further exclude households

whose marital status changed over the observed period, which leaves us with 2,507 households.

Finally, to exclude liquidity-constrained households for whom the Euler equation (2.2) does not

hold, we keep only the households that report positive savings over the sample period. With these

restrictions, we have an unbalanced panel of 1,944 liquidity-unconstrained households covering

13 years from 1975 through 1987.

7 EMPIRICAL RESULTS

We address several issues while discussing the results obtained from the estimation. In particular,

we examine the strength of habit formation in household consumption and the importance of

accounting for measurement errors in consumption data. The main conclusions are that (i) habit

formation plays an important role in explaining household food-consumption patterns, and (ii)

not accounting for measurement errors in observed consumption results in a downward bias in

the estimates of the habit-formation parameter and the discount factor.

Table 1 presents the estimation results for various specifications of the model. We report our

main findings in columns (1) and (2), where column (1) shows the results for the baseline model

and column (2) reports the results under the assumption of log-normal measurement errors in con-

sumption. Recall that the habit-formation parameter alone is not sufficient to characterize habit

formation; the multiplicative model of habit-formation requires that the curvature parameter γ is

greater than one for habit formation to exist. Both the baseline results and the results under the

log-normality assumption in measurement errors show the estimate of γ is significantly greater

than one and the estimate of α is significantly greater than zero. The estimates of the baseline

model and the model with parametric measurement errors support the existence of habit forma-

tion in household food consumption. Our estimates of the strength of habit formation compare

well to the aggregate data estimates in the multiplicative habit-formation models. For example,
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Table 1: Estimation of the Euler equation with habit formation

Parameters Nonparametric ME Parametric ME Ignoring ME Approx.GMM
(1) (2) (3) (4)

γ 3.563 3.098 3.168
(0.404) (0.209) (0.217)

β 0.948 0.927 0.509
(0.035) (0.043) (0.049)

α 0.761 0.747 0.213 -0.190
(0.095) (0.082) (0.100) (0.120)

σ2 0.099
(0.019)

J statistic 36.8 29.2 96.9 15.5
p value 0.697 0.957 0.001 0.000

NOTE: Number of time periods T = 13, number of households N = 1,944. The instrument set includes
current and past Treasury bill rates (specific to the month and year of the PSID interview), family size,
age of household head, and a constant. Standard errors are in parenthesis. The measurement error
parameters A1, A2, and A3 for nonparametric measurement error specification in column (1) and the
taste-shifter parameter δ on family size for all specifications are estimated but not reported. The full
results are available from the authors upon request. For approximated GMM on column (4), the F-
test for excluded instruments (dummies for lagged income and hours growth rates, and a dummy for
whether the head of the household lost a job in previous period) is reported instead of the J-test. Here,
seven households were lost due to missing observations on the dummy for whether the head of the
household lost a job in previous period.

Fuhrer (2000) and Smith and Zhang (2007) estimate a habit-formation parameter between 0.80

and 1.04, which implies a somewhat stronger habit formation than the one found in our micro-

data estimation. Dynan (2000) indicates that serial correlation in aggregate consumption growth

likely induces an upward bias in the estimates of the strength of habit formation. Our results

suggest a substantial yet more moderate strength of habit formation in consumption compared to

the findings with aggregate consumption data.

Relative to the baseline model, the point estimates of γ, β, and α are slightly smaller for the

specification with log-normal measurement errors. The assumption of log-normal measurement

errors allows us to evaluate the magnitude of the measurement-error contamination in the ob-

served consumption, estimated as the variance of the measurement noise. The estimate of σ2 is

statistically significant and provides additional evidence of a substantial measurement-error issue
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in the observed consumption data, an empirical regularity originally quantified in Runkle (1991)

and subsequently in empirical studies of Alan, Attanasio, and Browning (2009) and Alan and

Browning (2010). Our estimate of noise in the observed consumption data suggests that about

53% of the variance of the observed log-consumption can be attributed to the measurement errors,

which is consistent with the consensus that the PSID food-expenditure measure is considerably

noisy.

For the remainder of this section, we discuss various specifications and robustness checks in

order to investigate the reliability of our estimates. In particular, we investigate the bias intro-

duced in our estimates when measurement errors are ignored, we investigate the performance of

the log-linearized model in recovering the habit-formation parameter, and we discuss the effect

of external habit, aggregate shocks, and intra-temporal nonseparabilites in preferences.

Columns (3) and (4) of Table 1 report the results of two additional model specifications. Col-

umn (3) presents the estimation results in which measurement errors in observed consumption

data are ignored. Our estimation results using real data are complemented by investigating the

issue of not accounting for measurement errors while they are present in the data, using the arti-

ficial data in the Monte Carlo experiment (see Appendix C). In this experiment, we contaminate

consumption with the errors and estimate the model accounting for and ignoring the presence of

measurement errors. The Monte Carlo experiment shows our estimator performs well when the

measurement errors in consumption are present in the data and accounted for in estimation. At the

same time, we also demonstrate that not accounting for measurement errors results in biased pa-

rameter estimates. The Monte Carlo experiment suggests that if measurement errors are ignored,

the habit-formation parameter and the discount factor are estimated with downward biases. We

conduct the same experiment with the real data, estimate equation (3.3) ignoring the presence

of measurement errors in consumption, and report the results in column (3) of Table 1. Consis-

tent with the Monte Carlo exercise, we find significant downward biases in the habit-formation

parameter and the discount factor. In particular, the habit-formation parameter is only modestly

significantly different from zero. Based on both the Monte Carlo experiment and the real data

estimation, we can conclude that not accounting for measurement errors biases the results against

finding habit formation in food consumption.

Column (4) of Table 1 reports the estimation results for the approximated log-linearized
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model of habit formation. The objective here is to investigate the performance of estimation

based on the log-linear approximation to the Euler equation relative to the exact non-linear esti-

mation method. We again complement our analysis by investigating the issue of log-linearization

using the artificial data in the Monte Carlo experiment (see Appendix C). Hayashi (1985), Muell-

bauer (1988), and Dynan (2000) developed and estimated the linear approximation models of

additive habit formation. Using assumptions of a constant interest rate and infinitely lived in-

dividuals, maintained in these studies, we derive a comparable estimator for the multiplicative

habit-formation model (equation (C.1) in Appendix C) and estimate it using the two-stage instru-

mental variable estimator. Following Dynan (2000), our choice of instruments includes dummies

for the ranges of lagged growth in income and hours worked, and a dummy for whether the head

of the household lost a job in the previous period. The results in column (4) show the estimate

of the habit-formation parameter is not significantly different from zero at the 5% level of sig-

nificance. We conclude the estimates from the linearized model are biased against finding habit

formation in food consumption. This finding is also consistent with the findings in the Monte

Carlo experiment reported in Table 4 in Appendix C, where the habit-formation parameter is es-

timated with a large downward bias regardless of whether consumption is measured precisely or

with errors. Overall, our findings indicate that in estimation, relying on the exact Euler equation

is important, an assertion that Carroll (2001) also shares.

The estimates in Table 1 may be sensitive to various misspecifications of the baseline model

for a number of reasons. We address three concerns that could influence the baseline estimates:

internal habit versus external habit, the effect of aggregate shocks, and nonseparabilites in pref-

erences over food and other consumption goods. We do not report the estimation results for these

robustness checks, but they are available in the earlier versions of the paper and from the authors

upon request.

The baseline model is specified to be consistent with habit being internal to the household:

the household’s period-specific utility depends on its past consumption and not the past consump-

tion of others. As a robustness check, we incorporate external habits by allowing consumption

services to depend on past aggregate consumption of the household’s income group. We find

that internal habit formation plays the dominant role, whereas external habit formation has a

significant but small effect on household consumption patterns.
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Our next robustness check addresses the effect of aggregate shocks in the expectation errors

on the baseline estimates. As Chamberlain (1984) pointed out, the time average of the expecta-

tions errors converges to zero as time, not the number of households, increases unboundedly. We

address this issue by examining whether 13 time periods is sufficiently long to expect the induced

bias to be small. The Monte Carlo exercise presented in Appendix C suggests it is. This finding is

also consistent with Alan, Attanasio, and Browning (2009) who show the exact nonlinear GMM

estimator of the consumption Euler equation performs well even with a relatively short panel

with 15 time periods. To account for aggregate effects in the expectations errors, we estimate

the model with time indicators, although this treatment provides only an approximate solution to

accounting for aggregate shocks in the expectation errors (see Altug and Miller 1990). We find

no significant differences compared to the baseline results.

Finally, Meghir and Weber (1996) suggest nonseparabilites in preferences over food and other

consumption goods might explain the finding of habit formation in food consumption. Carrasco,

Labeaga, and Lopez-Salido (2005) point out that Meghir and Weber’s conclusion might be due to

the presence of time-invariant unobserved heterogeneity that Meghir and Weber do not account

for, because of the short panel used in their estimation. Our estimation method does control for

time-invariant heterogeneity. Furthermore, if nonseparabilites in preferences over food and other

consumption goods represent a significant misspecification in our model, this misspecification

would likely be detected in the J-test, similarly to the specification that ignores measurement

errors.

8 INTERTEMPORAL ELASTICITY OF SUBSTITUTION

AND RELATIVE RISK AVERSION

As discussed in the introduction, habit formation generates intertemporal elasticities of substi-

tution and relative risk aversions that are functions of past consumption. Therefore, the habit-

formation model has a property of generating the IES and the RRA that vary across individu-

als and over time. In this section, we analyze the IES and RRA that the estimates presented

in previous section imply. Because heterogeneity in the IES and RRA is generated internally

through the habit-forming preference specification, models with habit-forming preferences pro-
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vide an internally consistent method for analyzing the degree of heterogeneity in these economic

quantities. By contrast, studies investigating heterogeneity in the IES or RRA typically adopt

iso-elastic preferences and either analyze them for different economic units, or explicitly take

heterogeneity into account during estimation. Attanasio and Weber (1993), Vissing-Jorgenssen

(2002), and Crossley and Low (2011) undertake the former approach to analyze heterogeneity in

the IES, and Alan and Browning (2010) undertake the latter approach to analyze heterogeneity in

the RRA. Other approaches include survey-based analysis (Barsky, Kimball, Juster, and Shapiro

1997; Eisenhauer and Ventura 2003; Guiso and Paiella 2006) and experiment-based elicitation

(Andersen, Harrison, Lau, and Rutström 2010).

The inverse IES and the RRA derived under multiplicative habit-formation preferences take

the following form (see Appendix D for details):

1
IESit(θ)

= γ−
αβ(1− γ)φit+1

(
cit+1
cα

it

)1−γ

1−αβφit+1

(
cit+1
cα

it

)1−γ −
α2β(1− γ)φit+2

(
cit+2
cα

it+1

)1−γ

1−αβφit+2

(
cit+2
cα

it+1

)1−γ , (8.1)

RRAit(θ) =
γ− (1+α(1− γ))αβφit+1

(
cit+1
cα

it

)1−γ

1−αβφit+1

(
cit+1
cα

it

)1−γ . (8.2)

For the IES and RRA to be defined, the denominators in equations (8.1) and (8.2) must not equal

to zero. A sufficient condition for this restriction is that MUit , as defined in equation (2.3), is

strictly positive for t = 2, · · · ,T −1, in which case αβφit+1(cit+1/cα
it)

1−γ < 1 for t = 2, · · · ,T −1.

We maintain this condition for the rest of our analysis.

Three important observations about the IES and RRA can be made by examining equations

(8.1) and (8.2). First, holding the utility curvature constant, the inverse IES and the RRA are

higher for habit-forming consumers than for non-habit-forming consumers, as long as γ > 1.

Second, the model with habit formation implies heterogenous IES and RRA. Third, the habit-

formation model breaks the tight inverse relationship between the IES and the RRA implied by

the iso-elastic preference specification. Therefore, the habit-formation model can explain varying

IES and RRA across groups of individuals in ways time-separable utility models cannot.

If true consumption is observed, the IES and RRA in equations (8.1) and (8.2) can be readily

computed. However, when measurement errors contaminate consumption, the IES and RRA are
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not observed. Furthermore, the conditional expectations of the inverse IES and the RRA do not

conform to the transformation used in Theorem 3.2 to transform the Euler equation in terms

of true consumption to a moment condition that is a function of observed consumption. This

transformation is key in obtaining point identification of the preference parameters. Therefore,

the expectations of the (inverse) IES and the RRA are in general not directly recoverable from

equations (8.1) and (8.2). However, constructing bounds for the conditional expectation of these

quantities is possible given the set of instruments.

The true inverse IES and RRA are those presented in equations (8.1) and (8.2) evaluated at

the true parameter values, θ0. The next theorem presents bounds for the conditional expectations

for the true IES and RRA that are defined as functions of observed consumption.

Theorem 8.1. Suppose Assumption 3.1 holds, γ > 1, and A−1
30 α0β0φ0it+1(co

it+1/coα0
it )1−γ0 < 1

almost surely for t = 2, · · · ,T −1, where A30 is defined in equation (3.4). Then
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Proof. See Appendix D.

The condition A−1
30 α0β0φ0it+1(co

it+1/coα0
it )1−γ0 < 1 is analogous to the denominator restriction

for equations (8.1) and (8.2). Provided the measurement error term, A30, is at least one, this

restriction rules out violations due to severe measurement errors in observed consumption. In
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our simulation exercise, this condition holds for 93.5% of the observations for which the IES and

RRA are defined. The bounds on the IES and the RRA presented in Theorem 8.1 are typically not

sharp. To understand why, consider the inverse IES in equation (8.1). The proof of the bounds

on the IES exploits the convexity of the inverse IES in the terms α0β0φ0is+1
(
cis+1/cα0

is
)1−γ0 for

s = t, t + 1. The inverse IES is strictly convex in these terms, and as a result, the inequalities

in equation (8.3) are indeed strict. The bounds for the RRA are not sharp for the same reason.

However, as we show later in this section, these bounds are informative, at least in terms of

investigating the level of biasedness in the IES and RRA induced by assuming the distribution of

the measurement errors is log-normal.

We use the results in Theorem 8.1 to construct 95% confidence intervals for the bounds on

the unconditional expectations of the IES and RRA. To further investigate the existence and sig-

nificance of heterogeneity in the IES and the RRA, we also construct 95% confidence intervals

for the bounds on the conditional expectations of the IES and RRA, conditioned on eight dis-

crete categories of households. The method used to compute the confidence regions is developed

in Chernozhukov, Hong, and Tamer (2007). Other recent papers concerning estimation of con-

fidence regions for parameter sets include Romano and Shaikh (2008, 2010), Khan and Tamer

(2009), Andrews and Guggenberger (2009), Andrews and Barwick (2012), Chernozhukov, Lee,

and Rosen (2013), and Andrews and Shi (2013). The approach implemented in this section is

similar to Example 1 of Chernozhukov, Hong, and Tamer (2007), except that in our case, the

estimates of the bounds depend on the nuisance parameters θ̂. For self-containment, we outline

the details of the computation. In what follows, we outline the construction of the confidence

intervals for E[IESit(θ0)|zo
it ]. The confidence intervals for E[RRAit(θ0)|zo

it ] are constructed anal-

ogously.

Let z̄ denote a discrete category of households. Let E[IESit(θ0)|z̄]l and E[IESit(θ0)|z̄]u denote

the lower and upper bound on E[IESit(θ0)|z̄] defined in equation (8.3). Let En[IESit(θ)|z̄]l and

En[IESit(θ)|z̄]u be E[IESit(θ0)|z̄]l and E[IESit(θ0)|z̄]u with θ0 replaced with θ and the population

expectations replaced with their sample analogs. The identified interval for E[IESit(θ0)|z̄] is

C(θ0) = [E[IESit(θ0)|z̄]l,E[IESit(θ0)|z̄]u]. Define

Cn(c; θ̂) =
[
En[IESit(θ̂)|z̄]l −

√
c/n, En[IESit(θ̂)|z̄]u +

√
c/n
]
, (8.5)
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where c≥ 0. Under the conditions of Theorem 5.2, and because E[IESit(θ)|z̄]l and E[IESit(θ)|z̄]u
are bounded and continuously differentiable in θ over Θ, it can be shown that Cn(0; θ̂) p→C(θ0)

and

√
n

En[IESit(θ̂)|z̄]l −E[IESit(θ0)|z̄]l
En[IESit(θ̂)|z̄]u −E[IESit(θ0)|z̄]u

 d−→

Wl(θ0)

Wu(θ0)

= N(0,Ω). (8.6)

Let Cn(θ̂)=max[n(En[IESit(θ̂)|z̄]l−E[IESit |z̄])2
++n(En[IESit(θ̂)|z̄]u−E[IESit |z̄])2

−] in E[IESit |z̄]

over C(θ0), and C (θ0)=max[(Wl(θ0))
2
+,(Wu(θ0))

2
−], where (x)+ :=max[x,0] and (x)− :=max[−x,0].

Then, equation (8.6) implies Cn(θ̂)
d→ C (θ0). An estimator of the 0.95 quantile is ĉ = inf{c ≥ 0 :

P{Cn(θ̂) ≤ c} ≥ 0.95}, in which case, Cn(ĉ, θ̂) is our estimator of the 95% confidence interval

for the conditional expectation of the IES. Chernozhukov, Hong, and Tamer (2007) suggest ĉ can

be estimated by subsampling. Accordingly, we estimate ĉ using Bn = 100 draws of subsamples

of size n∗ = 972. For each draw i ∈ {1, · · · ,Bn}, we re-estimate θ0, denoted by θ∗i , and use these

parameter estimates to compute Cn∗(θ∗i ). The estimate, ĉ, is then computed as the 0.95 quantile

of the distribution of {Cn∗(θ∗i ), i = 1, · · · ,Bn}. The asymptotic properties of the confidence region

in Chernozhukov, Hong, and Tamer (2007) are derived under different conditions from those re-

quired in our case, because of, for example, the sampling error from our first-stage estimator for

θ0. We analyze the performance of the proposed estimator by Monte Carlo methods. The details

of, and results from the Monte Carlo exercise are presented in Appendix C.

The values of the IES under habit-forming preferences implied by the estimated bounds re-

ported in Table 2 are substantially lower than the values of the IES reported for time-separable

utility specifications (e.g., Attanasio and Weber 1993, 1995; Vissing-Jorgensen 2002). Our re-

sults are also consistent with the findings in Naik and Moore (1996), who in the habit-formation

framework, find values of the IES slightly larger than our values but lower than those reported

in Attanasio and Weber (1993, 1995) and Vissing-Jorgensen (2002). Our results indicate the

IES is substantially less than one and quantitatively close to the small values of IES found in

Hall (1988) and more recently in Pakoš (2011). Relative to the values reported in the survey-

based literature, our bounds on the IES are considerably more narrow. Indeed, Barsky, Kimball,

Juster, and Shapiro (1997) report a lower bound of 0.007, compared to ours of 0.062 for the

unconditional mean of the IES estimated under the baseline specification with non-parametric
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Table 2: 95% confidence intervals for the IES and RRA

Nonparametric ME
IES RRA

Unconditional mean [0.062, 0.109] [9.373, 15.503]
High school graduate [0.060, 0.107] [9.558, 15.905]
College graduate [0.061, 0.110] [9.052, 15.228]
Age ≤ 40 years [0.063, 0.110] [9.297, 15.135]
Age > 40 years [0.060, 0.109] [9.449, 15.873]
Lagged income ≤ $31K [0.062, 0.110] [9.315, 15.474]
Lagged income > $31K [0.062, 0.108] [9.432, 15.534]
Family size ≤ 3 [0.061, 0.110] [9.143, 15.368]
Family size > 3 [0.062, 0.109] [9.463, 15.555]

Log-normal ME
IES RRA

Unconditional mean [0.108, 0.153] [6.624, 9.049]
High school graduate [0.108, 0.153] [6.611, 9.058]
College graduate [0.104, 0.152] [6.709, 9.405]
Age <= 40 years [0.109, 0.154] [6.631, 9.004]
Age > 40 years [0.107, 0.153] [6.618, 9.095]
Lagged income ≤ $31K [0.108, 0.153] [6.629, 9.086]
Lagged income > $31K [0.108, 0.154] [6.619, 9.012]
Family size ≤ 3 [0.104, 0.151] [6.829, 9.576]
Family size > 3 [0.110, 0.155] [6.538, 8.820]

measurement errors, and an upper bound of 0.36, compared to ours of 0.11.

Similarly, the estimated bounds for the RRA reported in Table 2 are more narrow relative to

the range of values of the RRA obtained in the literature. Values of the RRA between 2 and 16

are reported in survey-based studies (e.g., Barsky, Kimball, Juster, and Shapiro 1997; Eisenhauer

and Ventura 2003; Guiso and Paiella 2006), and between 1 and 15 for the empirical consumption

study of Alan and Browning (2010), which for the greatest part accommodate the bounds we

find. Yet, our values for the unconditional mean of the RRA under the baseline specification

in the range [9.4, 15.5] are clustered at the upper end of the range reported in the literature.

According to the overview of the literature on consumption-based estimates of the RRA in Alan

and Browning (2010), usually the estimates of the RRA range between 1 and 3 and are typically

obtained using time-separable utility specifications. Our findings on the larger values of the RRA
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are, therefore, consistent with the larger RRA implied by the habit-formation preferences.

By inspecting the bounds under the log-normal distribution of the measurement errors, Table

2 conveys another important result. Our bounds suggest the log-normality assumption, so often

imposed on the distribution of the measurement errors in consumption, may be far from ideal.

Although our estimation results for nonparametric and log-normal measurement-error specifica-

tions, reported in columns (1) and (2) of Table 1, largely agree on the magnitude of the estimated

parameters, the implied bounds for the IES and the RRA in Table 2 do not. The confidence inter-

vals for RRA across the two model specifications intersect for only one group (households with

head having a college degree) and they only narrowly overlap for the IES. This finding suggests

the log-normality assumption on measurement errors in observed consumption should be used

with caution.

Table 2 reports 95% confidence intervals for the conditional expectations of the IES and RRA,

conditioned on eight discrete categories of households, two groups for education, age, income,

and family size. We focus on the confidence intervals of our baseline model of Table 2, that is,

results with nonparametric measurement errors. The group-specific confidence intervals overlap

in all cases for both the IES and RRA, indicating our confidence intervals are not so informative

for investigating heterogeneity in the IES and RRA.

9 CONCLUSION

Studies have adopted habit formation in preferences to explain a wide variety of macroeconomic

phenomena. However, at the level of micro data, evidence of habit formation in consumption

is mixed. Previous related micro studies impose arguably strong assumptions to obtain an esti-

mating equation, and misspecifications due to these assumptions are likely to result in significant

biases in the estimates. Our simulation exercise supports this intuition. The simulation exercise

also confirms that our new exact nonlinear GMM estimator for estimation of the intertemporal

consumption choice when consumption is habit-based, performs well in recovering the prefer-

ence parameters, even when measurement errors with an unknown distribution contaminate ob-

served consumption. Our results strongly suggest habit formation is an important determinant of

food-consumption patterns. This evidence is robust to various alternative specifications, namely,

external habit formation in preferences, aggregate shocks in expectations errors, and nonsepara-
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bility in preferences over food and other consumption goods.

Under the studied habit-formation specification, we derive the intertemporal elasticity of sub-

stitution and relative risk aversion to investigate the magnitudes and individual variations in these

key economic quantities. However, the derived IES and RRA can only be computed when mea-

surement errors in the data are not an issue. If measurement errors contaminate consumption, the

IES and RRA under internal habit formation cannot be point identified. To facilitate the inference,

we develop bounds on the conditional expectations of the IES and RRA and compute confidence

intervals for these bounds. Our findings are consistent with the smaller IES and larger RRA gen-

erated by the habit-formation framework. We also find our confidence intervals are more narrow

relative to the findings in empirical consumption models and survey-based literature.

The model presented in this paper has extensions that future work can pursue. One such

consideration is to allow for richer model specifications of internal habits. The current model

assumes internal habit is a function of only the previous period’s consumption. The model and

estimation method can be extended to include additional lags, but at the cost of a smaller number

of time periods to recover the preference parameter. Another potentially fruitful direction for

future work is to estimate the model using better-quality consumption data taken, for example,

from administrative sources, where the issue of measurement errors is eliminated, with the possi-

ble extension to consumption goods and services other than food consumption. One would then

be able to investigate the degree of heterogeneity in the IES and RRA across groups of consumers

and across different categories of consumption.

Nonetheless, this paper provides new evidence in favor of micro-level intertemporal nonsep-

arabilities in preferences over consumption services. We present a novel approach to estimating

Euler equations implied from habit-forming preferences, in which we allow for the existence of

measurement errors without imposing parametric specifications on their distribution. We also

propose a novel approach to analyzing the IES and RRA. Our findings warrant further analy-

sis because of their implications for idiosyncratic consumption and savings responses to various

economic policy interventions.
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APPENDIX A: PROOF OF THEOREM 3.2

Proof. To obtain an expression in terms of observed consumption, we consider equation (3.2)

piece by piece and express observed consumption in terms of true consumption and measurement

errors, as stated above. We start with the first term:
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where the third and fourth equalities are obtained from Assumption 3.1, and
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Hence,
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The second and the third terms are transformed similarly to get
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The moment condition (3.2) for (unobserved) true consumption is therefore transformed into a

moment condition for observed consumption:
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APPENDIX B: PROOF OF THEOREM 4.2

Proof. Recall that

ρ(xo,t+2
it ,θ)=β(1+rit+1)

φit+1
co
it+1

(
co
it+1
co,α
it

)1−γ
(
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Equation (3.3) implies E[ρ(xo,t+2
it ,θ0)|zo

it ] = 0. Suppose another set of parameters θ ∈ Θ ex-

ists that satisfies E[ρ(xo,t+2
it ,θ)|zo

it ] = 0. Then E[l(xo,t+2
it ,θ,θ0)|zo

it ] = 0, where l(xo,t+2
it ,θ,θ0) =

ρ(xo,t+2
it ,θ)−ρ(xo,t+2

it ,θ0). This equality and Assumption 4.1.i imply

l(xo,t+2
it ,θ,θ0) = ρ(xo,t+2

it ,θ)−ρ(xo,t+2
it ,θ0) = 0 (B.1)

almost surely. For the remainder of this proof, we drop the o superscript on consumption for ease

of exposition.
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First, suppose α0=0. Then if α> 0, holding (rit+1,∆wit+1,∆wit+2,cit ,cit+1) constant, ρ(xo,t+2
it ,θ0)

is constant while ρ(xo,t+2
it ,θ) varies monotonically with cit+2, violating equation (B.1). There-

fore, if α0 = 0, then α= 0. Suppose α0 > 0. Then if α= 0, holding (rit+1,∆wit+1,∆wit+2,cit ,cit+1)

constant, ρ(xo,t+2
it ,θ) is constant while ρ(xo,t+2

it ,θ0) varies monotonically with cit+2, violating

equation (B.1). Therefore, if α0 > 0, then α > 0. If α = α0 = 0, then equation (B.1) implies

κ1β(1+ rit+1)φit+1c−γ
it+1 −κ2 = κ10β0(1+ rit+1)φ0it+1c−γ0

it+1 −κ20, (B.2)

almost surely, where φ0it+1 = exp(δ0∆wit+1). Differentiating equation (B.2) with respect to rit+1,

taking logs, and gathering terms obtains

ln(κ1β/κ10β0)+∆wit+1(δ−δ0)− (γ− γ0) lncit+1 = 0 (B.3)

almost surely. By differentiating equation (B.3) with respect to lncit+1, we have γ = γ0. This

result and equation (B.3) imply

ln(κ1β/κ10β0)+∆wit+1(δ−δ0) = 0, (B.4)

almost surely. Under Assumption 4.1.ii, and the fact that every subset of a linearly independent

set is also linearly independent, equation (B.4) implies κ1β = κ10β0 and δ = δ0. Substituting

these equalities into equation (B.2) gives κ2 = κ20. Recall that κ20 = A20 and κ10 = A20/A10.

Then, from identification of A20 and κ10β0, A−1
10 β0 is identified. If Assumption 3.3 is sat-

isfied, then σ0 is identified from the identification of γ0, α0, and A20, along with the equal-

ity A20 = exp{σ2
0
(
α2

0(1− γ0)
2 + γ2

0 +(1− γ0)(1+α0)
)
}, which in turn implies identification of

A10 = exp{σ2
0
(
α2

0(1− γ0)
2 + γ2

0 +α0γ0(1− γ0)
)
} and A30 = exp{σ2

0
(
(1+α0 +α2

0)(1− γ0)
2)}.

Finally, identification of A10 and A−1
10 β0 imply identification of β0.

Suppose α > 0 and α0 > 0. Taking the derivative of equation (B.1) with respect to cit+2 and

cit then obtains

(αβ(1− γ))2ψit+2c−α(1−γ)−1
it c−γ−α(1−γ)

it+1 c−γ
it+2

− (α0β0(1− γ0))
2ψ0it+2c−α0(1−γ0)−1

it c−γ0−α0(1−γ0)
it+1 c−γ0

it+2 = 0 (B.5)
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almost surely, where ψit = exp((∆wit+1 +∆wit+2)δ) and ψ0it = exp((∆wit+1 +∆wit+2)δ0). Tak-

ing logs of equation (B.5) and collecting terms obtains

µ+(∆wit+1 +∆wit+2)(δ−δ0)− [α(1− γ)−α0(1− γ0)] lncit

− [γ+α(1− γ)− γ0 −α0(1− γ0)] lncit+1 − (γ− γ0) lncit+2 = 0 (B.6)

almost surely, where µ = ln([αβ(1 − γ)/α0β0(1 − γ0)]
2). Differentiating equation (B.6) with

respect to lncit+2 obtains γ = γ0. Using this result and differentiating equation (B.6) with respect

to lncit obtains α = α0. These two results and equation (B.6) imply

µ+(∆wit+1 +∆wit+2)(δ−δ0) = 0 (B.7)

almost surely. Equation (B.7) and Assumption 4.1.ii imply δ= δ0, and µ=0. From γ= γ0, α=α0,

and µ = 0, we have that β = β0. Substituting these results into equation (B.1) obtains

(κ1−κ10)β0(1+rit+1)
φ0it+1
cit+1

(
cit+1
c
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it
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+(κ3−κ30)α0β0φ0it+1
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c
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it
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+(κ20−κ2)=0 (B.8)

almost surely. Differentiating equation (B.8) with respect to 1+rit+1 implies κ1 = κ10. Substitut-

ing this result into equation (B.8) and differentiating with respect to cit+1 obtain κ3 = κ30, which

in turn implies κ2 = κ20. Identification of (A10,A20,A30), and therefore θ0, is then obtained from

(κ10,κ20,κ30). Finally, if Assumption 3.3 is satisfied, then σ0 is identified from the identification

of θ0 and the equality A20 = exp{σ2
0
(
α2

0(1− γ0)
2 + γ2

0 +(1− γ0)(1+α0)
)
}.

APPENDIX C: MONTE CARLO EXPERIMENT

In this section, we investigate the finite-sample performance of the estimator developed in section

3, as well as the performance of the approximated log-linearized habit-formation model. We do

so by conducting a Monte Carlo simulation in which the life-cycle model presented in section 2 is

solved under labor income and interest rate uncertainty. The details of the solution and simulation

methods are standard for the intertemporal utility optimization framework and available from the

authors upon request. The structural parameter values are set as follows: γ = 5, α = 0.85, β =
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Table 3: Estimation of the Euler equation with habit formation, using simulated data

Parameters Truth No ME Log-normal ME Nonparametric ME Ignoring ME
(1) (2) (3) (4) (5)

γ 5.00 4.93 5.73 5.16 13.22
[4.89] [4.98] [5.00] [13.32]
(0.33) (2.65) (1.03) (2.03)

β 0.95 0.95 0.94 0.95 0.74
[0.95] [0.95] [0.95] [0.74]
(0.01) (0.07) (0.01) (0.05)

α 0.85 0.85 0.85 0.85 0.55
[0.85] [0.85] [0.85] [0.55]
(0.01) (0.03) (0.01) (0.05)

σ2 0.04 0.04
[0.03]
(0.04)

NOTE: In estimation, we reduce the time dimension of the artificial data panel to 13 years. The instrument set
includes current and past interest rates and current income. Standard errors are in parentheses. Medians are in
square brackets.

0.95. The interest-rate series is a stationary AR(1) process with a mean of 0.05 and autoregressive

coefficient of 0.6. We solve the model for 40 periods; however, in estimation, we only use

the 13 middle periods in order to match the length of the artificial panel with the one used in

the empirical analysis. Additionally, due to this trimming, starting and ending effects of the

artificial consumption series are not an issue. Consumption paths are simulated to obtain 100

samples of 1,700 households observed over 13 periods. Next, the simulated consumption data

are contaminated by measurement errors drawn independently over households and time from a

log-normal distribution with variance equal to 75% of the variance in consumption.

Table 3 presents results from the Monte Carlo investigation of the estimator developed in

section 3. Column (1) gives the true values of the preference parameters that we aim to recover

using the proposed estimator. Column (2) shows the estimator performs well in the absence of
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Table 4: Estimation of equation (C.1) using the simulated data

Parameters No ME Nonparametric ME
(1) (2) (3) (4)

β0 (Constant) 0.042 -0.005 0.175 0.094
[0.041] [-0.006] [0.175] [0.094]
(0.040) (0.039) (0.047) (0.048)

α (∆ lnCo
it−1) 0.170 0.197 0.106 0.163

[0.171] [0.197] [0.105] [0.161]
(0.015) (0.015) (0.020) (0.021)

β1 (Age) 0.0001 -0.0004 -0.013 -0.012
[0.0001] [-0.0003] [-0.013] [-0.011]
(0.004) (0.004) (0.004) (0.005)

β2 (Age2/1000) -0.091 -0.077 0.204 0.194
[-0.097] [0.082] [0.192] [0.180]
(0.101) (0.099) (0.121) (0.120)

β3 (ln(1+ rt)) — 1.121 — 1.540
[1.112] [1.525]
(0.149) (0.243)

NOTE: The instrument set includes the first two lags of income growth and lagged interest rate. In columns (2) and
(4), ln(1+ rt) is treated as endogenous. Standard errors are in parentheses.

consumption measurement errors. The results also show the estimator performs well when the

distribution of measurement errors is known to be log-normal (column 3) and when the distribu-

tion of measurement errors is unknown (column 4). Column (5) shows that not accounting for

measurement errors results in upward bias in γ and downward bias in α and β.

With the simulated data in hand, we investigate the performance of estimation of the lin-

ear approximation models developed in Hayashi (1985), Muellbauer (1988), and Dynan (2000).

The derivation of the estimator for the additive habit-formation model assumes (i) interest rates

do not vary across individuals or over time, (ii) individuals live for an infinite period, and (iii)

∆ ln(Ct −αCt−1) ≈ ∆ lnCt −α∆ lnCt−1. We derive a comparable estimator for which the first
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two assumptions are maintained. As Muellbauer (1988) shows, the third assumption requires

that consumption does not vary significantly over time. In the multiplicative habit model, this

assumption and the first two assumptions imply instrumental variable estimation of

∆ lnCo
it = β0 +α∆ lnCo

it−1 +β1aget +β2age2 + εt (C.1)

should yield α = 0.85. The instruments for ∆ lnCo
it−1 are the first two lags of income growth and

the lagged interest rate.

Table 4 reports two sets of results from the Monte Carlo investigation of this estimation

method. The first two columns are the results for the case of the absence of consumption mea-

surement errors, and the last two are for the case when consumption is measured with errors. The

results show significant downward bias in the estimate of α even without consumption measure-

ment errors. These results suggest the assumptions made to obtain equation (C.1) are substantial.

The bias is more severe when consumption is measured with errors.

Lastly, we perform a Monte Carlo exercise to investigate the accuracy of the estimated confi-

dence interval for the mean IES, presented in equation (8.5), and the analogously estimated con-

fidence interval for the mean RRA. Specifically, we use the simulated consumption data without

measurement errors to compute the simulated mean IES and RRA. The simulation exercise ob-

tains the mean IES of 0.072 and the mean RRA of 13.05. Next, we use the simulated data samples

of consumption contaminated with measurement errors to compute their 95% confidence inter-

vals by implementing the bootstrap approach presented in section 8. We find the simulated mean

IES falls within the estimated confidence intervals in 96% of the replications, whereas the simu-

lated mean RRA falls within the estimated confidence intervals in 92% of the replications.

APPENDIX D: PROOF OF THEOREM 8.1

Proof. The individual-specific intertemporal elasticity of substitution can be found from:

1
IESit

=
∣∣∣∂ ln MUit

MUit+1

∂ ln Cit+1
Cit

∣∣∣, (D.1)

33



where
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Taking logs of (D.2) and partial derivatives with respect to lncit+1 = ln(Cit+1/Cit), we obtain
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Recall that under Assumption 3.1,
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Note also that
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Because α0β0φ0it+1(cit+1/cα0
it )

1−γ0 < 1, the inverse IES is convex in α0β0φ0it+1(cit+1/cα0
it )

1−γ0

and α0β0φ0it+2(cit+2/cα0
it+1)

1−γ0 . Therefore, Jensen’s inequality, along with equations (D.3) and
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(D.4), obtain
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Also, because the IES is concave in α0β0φ0it+1(cit+1/cα0
it )

1−γ0 and α0β0φ0it+2(cit+2/cα0
it+1)

1−γ0 ,

Jensen’s inequality, along with equations (D.3) and (D.4), obtains
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To derive an upper bound for the inverse IES, note that equation (D.3) has the following

representation:
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,

which is a valid representation because the assumption of positive marginal utility implies each

term in the infinite sum is between 0 and 1. For the same reason, the dominated convergence

theorem applies and we find
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Next, for each j, we have
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Because j ≥ 1, Jensen’s inequality implies
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Therefore, equations (D.5) and (D.6) obtain
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Substituting equation (D.7) into equation (D.5) obtains
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which is finite by assumption of the theorem. Therefore, under the conditions of the theorem and

by the dominated convergence theorem, the inequality in equation (D.8) is also given by
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Again, by Jensen’s inequality, we have (E[1/IESit(θ0)|zo
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Turning to the RRA, the individual-specific relative risk aversion is defined as
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Consequently, the risk-aversion parameters implied by our model are given by
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Because RRAit is convex in α0β0φ0it+1(cit+1/cα0
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On the other hand, using the same method and conditions as used to compute the inverse IES,
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