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Abstract:  

The paper deals with benchmarking cases where highly aggregated decision making units are in 

the data set. It is shown that these units – consisting of sub-units which are not further known by 

the evaluator – are likely to receive an unjustifiable harsh evaluation, here referred to as aggrega-

tion bias. To counter this bias, we present an approach which allows to calculate the potential 

sub-unit efficiency of a decision making unit by taking into account the possible impact of its sub-

units’ aggregation without having disaggregated sub-unit data. Based on data envelopment analy-

sis, the approach is operationalized in several ways. Finally, we apply our method to the bench-

marking model actually used by the Brazilian Electricity Regulator to measure the cost efficiency 

of the Brazilian distribution system operators. For this case, our results reveal that the potential 

effect of the aggregation bias on the operators’ efficiency scores is enormous.  
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Measuring Potential Sub-Unit Efficiency  
to Counter the Aggregation Bias in Benchmarking 

 
 

1. Introduction 

In efficiency analysis, e.g., in Data Envelopment Analysis (DEA) that is addressed in this paper, 

it is customary to work with aggregated production data. Not only non-homogenous inputs and 

outputs are aggregated into a few input and output categories, but also spatially distributed pro-

duction entities as well as temporally consecutive production processes are aggregated, often into 

only one overall, consolidated unit to be evaluated. In the terminology of traditional activity 

analysis, this means that rows (variables) as well as columns (individual production enti-

ties/processes) are aggregated before the actual evaluation of the consolidated unit. While the 

latter is usually referred to as a decision-making unit (DMU), its individual production entities 

and production processes are hereinafter called sub-units.  

The abovementioned aggregations affect the evaluation. In the context of DEA, for example, we 

can usually identify more inefficiency the more we aggregate the variables, since this relaxes the 

mathematical programs defined to reveal inefficiency. However, especially the aspect of sub-unit 

aggregations has not received much attention in the efficiency analysis literature. Little is known 

about the magnitude of the aggregation impact, and little is known about how to measure this 

impact. The present paper aspires to shed some light on this issue, stressing in particular the pos-

sible bias resulting from the evaluation of consolidated DMUs.  

This bias occurs under the usual DEA assumption of convexity of the production possibility set. 

Here, a DMU can improve its overall profit by adjusting production to variations in prices over 

space and time, whereas its technical efficiency based on physical production data will deterio-

rate because a convex technology favours producing the average output using the average input. 

In other words, if a consolidated DMU operates several sub-units that serve different areas with 

different needs and characteristics, the DMU may easily appear inefficient, although it is in fact 

operating optimally in the different areas. Such a shortcoming, subsequently referred to as aggre-

gation bias, analogously applies for different time spans of a period that are to be served differ-

ently by a DMU. 

https://doi.org/10.24355/dbbs.084-201902081349-0
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A series of plausible examples can be found which are prone to the aggregation bias, ranging  

• from special area-related cases, such as the one of German savings banks whose local branch-

es have to cover an assigned region no matter how diverse the areas of this region may be 

(Ahn and Le 2015), 

• to the general case of companies that operate on diverse markets, e.g., worldwide with corre-

sponding international production sites, as well as 

• from special time-related cases, such as the one of Taiwanese design consultancies for which 

it has been shown that it is advantageous to match their the time-based business strategy with 

the actual conditions of the market environment (Sung, Lu and Ho 2010), 

• to the general case of companies that must adjust their production to seasonal fluctuations in 

demand, e.g., in the tourism industry. 

As a further example of where the aggregation bias matters, we will emphasise the regulatory 

context in the paper. On one hand, firms are regulated because they benefit from a regional mo-

nopoly. On the other hand, these firms must deal with the specifics of their particular market re-

gion. Such a region may be characterised by a significant heterogeneity of its individual service 

areas, e.g., due to variations of the production environment and customer structure. Consequent-

ly, a firm affected by this scenario (as a DMU) will develop different strategies for its different 

service areas (as sub-units) to maximise its overall profit. Due to the described aggregation bias, 

however, such a DMU is likely to receive an unjustifiable harsh evaluation by the regulatory au-

thority, which does not take into account the sub-unit structure.  

In addition to the negative impact of the aggregation bias on mere efficiency evaluation, at least 

two further issues arise:  

• Aggregated evaluations are difficult to reconcile with more detailed evaluations of other eval-

uators of the same production system: economists using aggregate data and engineers using 

detailed data may obtain conflicting results; marketing analysts can be impressed by a firm’s 

adaptability to changing market conditions, and yet, an aggregate evaluation may show defi-

cient allocative efficiency because of the underlying convex model. This impedes communica-

tion and trust between the respective stakeholders. 

• The aggregation bias induces adverse incentive effects. A contract with a DMU designed to 

improve technical and allocative efficiency (cf., e.g., Bogetoft and Otto 2011; Bogetoft 2012) 

may diminish responsiveness to variations in the market condition because adjustments to in-

https://doi.org/10.24355/dbbs.084-201902081349-0
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puts and outputs will manifest as increased technical inefficiency in the aggregated evaluation. 

Hence, contracting on technical efficiency may lead to lower profitability and, more generally, 

poorer goal fulfilment. It is important that incentive schemes take this problem into account. 

For example, leading regulators of electrical networks have made corresponding amendments 

to their revenue cap regulation (cf., e.g., the merger approach used by the Norwegian regulator 

as discussed in Bogetoft 2012). 

Against this background, the paper suggests an approach to counter the aggregation bias by eval-

uating the potential impact of sub-unit aggregations on a DMU’s DEA efficiency without actual-

ly possessing disaggregated sub-unit data. Under the condition that no knowledge about the sub-

units and their actual number exists, the approach involves hypothetical disaggregations to inves-

tigate whether the conclusions derived from the aggregate information could be significantly al-

tered by more detailed information.  

The impact our approach can have on efficiency analysis is verified based on data from the Bra-

zilian Electricity Regulator used in 2015 to measure the cost efficiency of Brazilian distribution 

system operators (DSOs). These DSOs are confronted with a – in particular geographically – het-

erogeneous business environment that is susceptible to the aggregation bias. Accordingly, our 

findings impressively indicate the relevance the aggregation bias may have. In comparison to the 

results of the Brazilian DSO model, the number of DSOs identified as efficient is clearly higher 

when using our approach. Furthermore, the particular efficiency scores substantially increase 

under our approach.  

The paper is organised as follows. After an overview of the related literature in Section 2, Section 

3 provides a conceptual introduction to the idea of distinguishing between disaggregated sub-unit 

efficiency and aggregated DMU efficiency. We provide simple examples of the aggregation bias, 

explain how this bias arises, and outline the measure of potential sub-unit efficiency (PSE) that 

serves to correct a biased evaluation of DMU efficiency. As a starting point to formalising the 

PSE concept, Section 4 discusses the condition under which the aggregation bias does not arise. 

On this basis, Section 5 focuses on the opposite case. After proposing a general approach to 

measure PSE referring to Farrell efficiency, we elaborate an operational PSE measure for the case 

of missing sub-unit information and also simplify the resulting mixed-integer program. In Section 

6, our model is applied to the case of Brazilian DSO regulation to investigate to what extent these 

DSOs may be affected by the aggregation bias. Final conclusions are provided in Section 7. 

https://doi.org/10.24355/dbbs.084-201902081349-0
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2. Literature Review 

We are not aware of papers that are directly related to the present study. There are, however, five 

lines of research with links to the issues we address.  

One line of studies relates to sensitivity analysis. To determine a simple, yet sufficiently detailed 

model, one may examine how sensitive the results (efficiency scores etc.) are to aggregations 

over space and time, respectively. This issue is clearly only one of several that can be addressed 

by a sensitivity analysis. For other applications in DEA models, see, for example, Charnes and 

Neralic (1990) as well as Charnes, Rousseau and Semple (1996). However, our approach does 

not calculate the consequences of given aggregations; rather, we seek to find the disaggregation 

that has the maximal effect on the results. We construct worst-case scenarios to put the evaluated 

DMUs in the best possible light. 

Another line of related research combines the methods from efficiency analysis, including the 

estimation of production models using observed productions, with those reported in the produc-

tion planning literature, including the use of linear programming to model networks of production 

processes. Based on the seminal paper of Färe and Grosskopf (2000a) about network DEA, a se-

ries of conceptual variations were provided. Broadly recognised, for example, is the contribution 

of Kao and Hwang (2008), who determine the efficiency of a production process as the product 

of sub-process efficiencies. For a recent contribution to network DEA, see, Ma and Chen (2018). 

Such approaches deviate from our approach by a) modelling multi-step production systems, 

whereas we exclusively look at parallel sub-processes, and b) assuming that data are available at 

the sub-process level, whereas we assume that such sub-process information is not available, thus 

investigating how this limitation could affect DEA efficiency scores.  

A third line of inquiry is that of DEA-based merger analysis. In a series of contributions, bench-

marking models were used to make ex ante predictions of the likely gains from mergers (cf., e.g., 

Bogetoft and Wang 2005); the approach suggested in the latter paper has been adopted by regula-

tors in the Netherlands and Norway to guide decision-making and incentive regulation in the con-

text of mergers in the hospital and the energy sector (cf. Bogetoft 2012). Furthermore, Andersen 

and Bogetoft (2007) as well as Bogetoft et al. (2007) examined the effect of allowing more gen-

eral reallocations of some of the resources and services within a large number of market partici-

pants. Whereas those studies progressed from less aggregated to more aggregated production 

https://doi.org/10.24355/dbbs.084-201902081349-0
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units, the present paper goes in the opposite direction by proceeding from aggregated to dis-

aggregated production units. We ask what bias may occur when DMUs are evaluated as if there 

were synergies, although such synergies do not in fact exist because of geographic or temporal 

barriers. Hence, whereas the merger literature studies hypothetical mergers, the present paper 

studies hypothetical disaggregations of consolidated DMUs. 

Another line of research investigates the aggregation of variables (rows in traditional activity 

analysis formulations) and shows how this may impact the efficiency scores (e.g., Tauer 2001; 

Färe, Grosskopf and Zelenyuk 2004). In contrast, we investigate the aggregation of sub-units 

(columns in traditional activity analysis formulations). Focusing on the problem of variable ag-

gregation, Färe and Zelenyuk (2002) show that aggregation may not matter, i.e., that aggregation 

is exact if and only if there is no allocative inefficiency in the sub-vector of aggregated inputs. 

Conceptually, the latter argument has similarities to our preliminary considerations in Section 4, 

where we assume that fully aligned sub-units lead to no additional inefficiency at the aggregate 

level. On this basis, we then for the first time investigate the possible impact of not fully aligned 

sub-units without having sub-unit data (see Section 5). 

To the best of our knowledge, the most similar paper to ours is Imanirad, Cook and Zhu (2013). 

These authors address a problem involving several sub-processes (possibly using a subset of in-

puts to produce a subset of outputs) that aggregates into the observable aggregate input usage and 

output production. They suggest to hypothetically split the inputs among sub-processes and to 

measure aggregate efficiency as a weighted average of sub-process efficiency. Their approach 

assumes a splitting of the total production into sub-processes, i.e., combinations of inputs that can 

produce combinations of outputs. The additional information about sub-processes provides a 

unique splitting of the outputs on different sub-processes, and the remaining issue is now how to 

split inputs that are used in different sub-processes. This is done endogenously to maximise the 

weighted efficiency of the sub-units where the weights reflect the relative share of inputs used. 

By contrast, our approach does not assume any knowledge of specific sub-processes transforming 

some input combination to a given output vector. Also, we do not allow the aggregation of inputs 

to be free. Rather, we assume that the sub-processes are best represented directly by the actual 

observations, with information about production at the aggregate level. Hence, compared to Ima-

nirad, Cook and Zhu (2013), we stick to the traditional DEA philosophy of letting present data 

speak, i.e., assuming no information in addition to the observed (aggregate) input-output vectors. 

https://doi.org/10.24355/dbbs.084-201902081349-0
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To sum up, we add an innovative aspect to the vast DEA literature. Yet, from a broader perspec-

tive, our paper can be viewed as part of the research stream of DEA under the condition of a so-

called centralised management (cf., e.g., Lozano and Villa 2004, and most recently, Afsharian, 

Ahn and Thanassoulis 2017). This notion covers contributions in which a central evaluator not 

merely puts every DMU in its best possible light but incorporates management control mecha-

nisms into the efficiency measurement. These mechanisms incentivise the DMUs (as agents) to 

make decisions in accordance with the goals of the regulator (as principal). In line with this, our 

approach applies such a mechanism that counters the aggregation bias, preventing large compa-

nies from reorganising into smaller units only because this would lead to higher efficiency scores. 

The underlying idea of distinguishing between disaggregated sub-unit efficiency and aggregated 

DMU efficiency is illustrated in the next section, using two motivational examples. 

 
3. Exemplary Description of the Aggregation Bias and its Quantification 

Most companies comprise individual sub-units that are operated in parallel over time. When these 

sub-units are described in aggregate terms, the adaptation to variations in supply and demand 

over space and time will be suppressed. As already outlined, actually favourable sub-unit adap-

tions may lead to unfavourable aggregate evaluations of the organisation as a whole. In such a 

setting, we can distinguish between two efficiency notions: 

• Sub-unit efficiency: Individual sub-units cannot be improved. 

• DMU efficiency: The aggregate of the sub-units cannot be improved. 

The issue we investigate is that an organisation may have fully efficient sub-units but still ap-

pears inefficient on an aggregate level – we call this the aggregation bias. 

A simple example is the so-called Fox paradox (cf. Fox 1999, 2012). One version of the phenom-

enon is illustrated in Table 1, which describes the case of two companies, e.g., electrical network 

firms, both serving rural and urban customers. DMU A serves 2 rural and 4 urban customers and 

spends 1 on the rural and 1 on the urban customers. The unit costs (UC) of the two types of con-

sumers are therefore 1/2 and 1/4, respectively. In total, DMU A has spent 2 to serve 6 customers, 

and the aggregate UC are 2/6. The other entries can be interpreted analogously. 

  

https://doi.org/10.24355/dbbs.084-201902081349-0
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Table 1  Fox paradox as example for the aggregation problem 

DMU Rural UC Urban UC Aggregate UC 

A 1/2 1/4 2/6 = 0.33 

B 1,5/2 21/80 22,5/82 = 0.27 

 

The interesting observation follows from the fact that DMU A has 

• lower rural unit costs (costs rural / rural customers) and 

• lower urban unit costs (costs urban / urban customers) but 

• higher overall unit costs (costs / customers). 

That is, sub-unit by sub-unit, DMU A is more efficient than DMU B, and yet, at the aggregate 

level, DMU B is the more efficient unit. The explanation is simple: The relatively more efficient 

activity of serving urban customers plays a larger part in DMU B than in DMU A. 

In some cases, we can consider this situation a resolvable allocation problem: DMU A allocates 

an excessively large share of its customers to the least efficient sub-unit. If customers are freely 

transferable, DMU A is indeed responsible for this misallocation, and the aggregate appraisal 

would be fair. The important point, however, is that in cases such as the electrical network indus-

try (and many others, as outlined in Section 1), companies cannot be held responsible for all allo-

cation problems. For example, they cannot freely reallocate the customers between rural and ur-

ban areas. In such a situation, the aggregate evaluation becomes biased. DMU A is blamed for 

performance aspects it cannot control, one of the most obvious mistakes in adequate performance 

evaluations. Indeed, DMU A should appear efficient because for no common composition of cus-

tomers can DMU B outperform DMU A. 

Färe and Grosskopf (2000b) describe how to conceptually avoid the Fox paradox by applying 

solely additive efficiency measures. However, this way to define efficiency is not compatible 

with the classical DEA approach addressed in this paper that applies a ratio efficiency measure. 

Hence, the aggregation bias remains a possible pitfall of DEA, as the following example illus-

trates. 

Imagine that there are 32 DMUs, each of which has used two inputs to produce the same amount 

of one output. Figure 1 illustrates these DMUs as numbered, filled points, and Table 2 lists the 

respective data set. We observe that all DMUs except for DMU 32 are fully efficient. 

https://doi.org/10.24355/dbbs.084-201902081349-0
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Fig. 1  Simple DEA example to describe the aggregation problem 

 
 

Table 2  Data set of the simple DEA example and input-oriented PSE scores  

DMU Input 1 Input 2 Output PSEI* score  DMU Input 1 Input 2 Output PSEI* score 
1 2.00 0.00 1.00 1.00  17 0.47 0.60 1.00 1.75 
2 1.90 0.03 1.00 1.00  18 0.43 0.70 1.00 1.57 
3 1.80 0.07 1.00 1.00  19 0.40 0.80 1.00 1.42 
4 1.70 0.10 1.00 1.00  20 0.37 0.90 1.00 1.30 
5 1.60 0.13 1.00 1.00  21 0.33 1.00 1.00 1.20 
6 1.50 0.17 1.00 1.00  22 0.30 1.10 1.00 1.11 
7 1.40 0.20 1.00 1.00  23 0.27 1.20 1.00 1.03 
8 1.30 0.23 1.00 1.00  24 0.23 1.30 1.00 1.00 
9 1.20 0.27 1.00 1.03  25 0.20 1.40 1.00 1.00 

10 1.10 0.30 1.00 1.11  26 0.17 1.50 1.00 1.00 
11 1.00 0.33 1.00 1.20  27 0.13 1.60 1.00 1.00 
12 0.90 0.37 1.00 1.30  28 0.10 1.70 1.00 1.00 
13 0.80 0.40 1.00 1.42  29 0.07 1.80 1.00 1.00 
14 0.70 0.43 1.00 1.57  30 0.03 1.90 1.00 1.00 
15 0.60 0.47 1.00 1.75  31 0.00 2.00 1.00 1.00 
16 0.50 0.50 1.00 2.00  32 1.00 1.00 1.00 1.00 

* PSEI: input-oriented potential sub-unit efficiency       
 

Input 1

Input 2

https://doi.org/10.24355/dbbs.084-201902081349-0
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Now, assume that we also consider all consolidated versions of the efficient DMUs, i.e., all sums 

of two efficient DMUs including the sum of one DMU with itself. When we also allow for 

downscaling by 1/2 to scale down the inputs of the consolidated units to give an output of 1, we 

obtain the other, unfilled points in Figure 1. 

Let us look at one example of these consolidated units: If we add 0.5*DMU 1 and 0.5*DMU 31, 

we obtain the input combination (1,1), producing an output of 1. These are precisely the same 

inputs and outputs that characterise DMU 32. If, therefore, DMU 32 is really a consolidated 

DMU, it might actually be sub-unit efficient although it is inefficient at the aggregated level. In 

fact, if we generalise this example, we can conclude that all unfilled points are potentially sub-

unit efficient.  

Therewith, our conceptual basis for measuring potential sub-unit efficiency (PSE) can be outlined 

as follows:  

1. A DMU may consist of sub-units, i.e., the DMU is an aggregation of its sub-units.  

2. This aggregation can have the effect that the DMU’s efficiency score is lower than the sub-

units’ efficiency.  

3. We focus on such cases where this effect can be driven by an aggregation bias. 

4. Assuming that the evaluator has no data about the sub-units, we propose a heuristic approach 

to counter the aggregation bias. 

5. This heuristic, which is formally described in Section 5, provides a corrected efficiency esti-

mation for the DMU, which we call potential sub-unit efficiency (PSE).  

6. To calculate (different versions of) this PSE score, we propose to use the observed best prac-

tices in a data set.  

The concept of PSE also takes super-efficiency into account. Concerning the numbered DMUs in 

our example above, e.g., the ones from 9 through 23 may represent super-efficient performance. 

Table 1 shows that their respective PSE scores are greater than 1 (calculated using the model pre-

sented in Section 5.2). Thus, these DMUs could have increased their inputs and still could have 

been the result of running two efficient sub-units. A PSE score of 1.20, for example, means that 

the corresponding DMU could have expanded the use of both inputs by 20% and still would have 

been potentially sub-unit efficient, i.e., it still could be considered an aggregation of efficient sub-

units. 

https://doi.org/10.24355/dbbs.084-201902081349-0
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An interesting observation that can be derived from our approach is that centrally located DMUs 

have larger aggregation corrections. The reason is that they are more likely to be the result of a 

consolidation of sub-units with rather different input-output profiles. The more extreme DMUs 

have a smaller correction, i.e., when evaluated as consolidated units, their aggregation bias is 

smaller because they are less likely to be the result of aggregating sub-units with very different 

input-output profiles. 

In the following section, we step-by-step formalise our PSE concept. As a starting point, the next 

section formulates and discusses the condition of sub-unit alignment under which the aggregation 

bias does not occur. 

 
4. Efficiency under the Condition of Sub-Unit Alignment 

Let us consider a DMU that uses m inputs 𝑥𝑥 ∈ ℝ+
𝑚𝑚\{0} to produce n outputs 𝑦𝑦 ∈ ℝ+

𝑛𝑛  \{0}. Let T 

be the production possibility set, with 𝑇𝑇 ∈ ℝ+
𝑚𝑚+𝑛𝑛. We assume that T is closed, convex and freely 

disposable. (x,y) ∈ T is weakly technically efficient (or strictly non-dominated) if 

(𝑥𝑥 − 𝑎𝑎,𝑦𝑦 + 𝑏𝑏) ∉ 𝑇𝑇 for all (𝑎𝑎, 𝑏𝑏) ∈ ℝ+
𝑚𝑚+𝑛𝑛 , (𝑎𝑎, 𝑏𝑏) ≫ 0 (1) 

where (a,b) >> 0 means that all coordinates of (a,b) are strictly positive. Let the set of weakly 

technically efficient productions in T be denoted W (T). We note that weak efficiency is weaker 

than the classical economic notion of efficiency that characterises a production as efficient when 

no output can be increased (input can be decreased) without decreasing (increasing) another out-

put (input). A production that can be improved in some but not all dimensions is weakly techni-

cally efficient. 

We shall also say that (x,y) ∈ T is allocatively efficient with respect to a price vector (𝑢𝑢, 𝑣𝑣) ∈

 ℝ+
𝑚𝑚+𝑛𝑛\{0} if and only if 

(𝑥𝑥, 𝑦𝑦) ∈ arg max
(𝑥𝑥´,𝑦𝑦´)∈𝑇𝑇

𝑣𝑣𝑦𝑦´ − 𝑢𝑢𝑥𝑥´.  (2) 

Note that allocative efficiency is often thought of in connection with given market prices of the 

inputs and outputs, but here we use it more generally by making allocative efficiency dependant 

on prices u and v, which are not determined yet. 

https://doi.org/10.24355/dbbs.084-201902081349-0
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In our theoretical analysis, it is advantageous to use the weak efficiency notion. First, the notion 

simplifies several of the results presented below for which we would have to assume unique solu-

tions or solutions with strictly positive prices if we would work with ordinary efficiency to avoid 

picking up points on horizontal and vertical segments of the production possibility frontier (cf., 

e.g., Bogetoft and Pruzan 1991, Appendix A). Second, with convex sets, the weakly technically 

efficient productions are all those that result from optimal economic behaviour (profit maximisa-

tion) for some non-negative and non-zero price vector. Finally, in the efficiency analysis litera-

ture, it is common to work with notions of efficiency that are weaker than the classical economic 

one.  

Referring to the last-mentioned aspect, the predominantly application of Farrell efficiency 

measures in DEA surely has an historical background. However, there are also practical reasons 

to justify their consideration. Compared to other approaches like, e.g., the slack-based measure of 

Tone (2001), it is easier for practitioners to interpreting them, i.e. to understanding the concept of 

radially measured efficiency scores. Furthermore, Farrell efficiency corresponds particularly well 

with findings in incentive theory. Imposing proportional changes, which is the very essence of 

Farrell, can under some circumstances be shown to be the optimal response of a principal who 

lacks information about the relative costs of different activities of his agents (see, e.g., Bogetoft 

2000). 

Returning to our assumptions, by disposability, W (T) constitutes the “North-West” boundary 

points of T. Moreover, since T is closed and convex, it is the intersection of all halfspaces {(x´,y´ ) | 

vy – ux ≤ r} containing T (cf. Rockafellar 1970, Theorem 11.5). Furthermore, it is well-known 

that any halfspace containing T has a normal (–u,v), where (u,v) is non-negative (see, e.g., 

Hackman 2010). From this follows the following basic observation, which is a version of the 

Koopmans-Gale price theorem (see, e.g., Frank 1969): A production (x,y) ∈ T is weakly techni-

cally efficient if and only if it is allocatively efficient with respect to some price vector (u,v) ∈

ℝ+
𝑚𝑚+𝑛𝑛\{0}. Hence, the weakly technically efficient productions are allocatively efficient under 

some (non-negative and non-zero) price vector and vice versa. 

Now, to investigate the aggregation problem, let us assume that the production of a DMU can be 

split into |H| sub-units, h ∈ H = {1,…,|H|}. For any h, let (xh,yh) ∈ ℝ+
𝑚𝑚+𝑛𝑛 be the production vec-

tor, let T 
h be the set of possible productions for h, and when applicable, let (uh,vh) ∈ ℝ+

𝑚𝑚+𝑛𝑛\{0} be 
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the non-negative prices of the inputs and outputs of h. For simplicity, we assume that inputs and 

outputs are freely disposable, i.e., for any T 
h we assume that (𝑥𝑥´,𝑦𝑦´) ∈ 𝑇𝑇ℎ, 𝑥𝑥´´ ≥ 𝑥𝑥´, 0 ≤ 𝑦𝑦´´ ≤ 𝑦𝑦´ 

⇒  (𝑥𝑥´´,𝑦𝑦´´) ∈ 𝑇𝑇ℎ. Furthermore, we assume that T 
h, h ∈ H, are closed and convex.  

We can now provide a necessary and sufficient condition for aggregations to create no evaluation 

biases. This necessary and sufficient condition for efficiency at the aggregate level is allocative 

efficiency at the sub-unit level with regard to the same set of prices – we call this the alignment 

condition. 

Theorem 1. If T 
h is convex for all h ∈ H, the aggregate production ∑ (𝑥𝑥ℎ ,𝑦𝑦ℎ)ℎ∈𝐻𝐻  is weakly tech-

nical efficient at the aggregate level 

∑ (𝑥𝑥ℎℎ∈𝐻𝐻 , 𝑦𝑦ℎ) ∈ 𝑊𝑊(∑ 𝑇𝑇ℎ)ℎ∈𝐻𝐻   (3) 

if and only if the sub-unit productions (xh,yh), h ∈ H, are allocatively efficient at the sub-unit level 

with the same rate of substitutions in all sub-units: 

∃(𝑢𝑢, 𝑣𝑣) ∈ ℝ+
𝑚𝑚+𝑛𝑛\{0}: (𝑥𝑥ℎ, 𝑦𝑦ℎ)  ∈  arg  max

(𝑥𝑥,𝑦𝑦)∈𝑇𝑇ℎ
 𝑣𝑣𝑦𝑦 − 𝑢𝑢𝑥𝑥  ∀ℎ ∈ 𝐻𝐻.  (4) 

Proof: When 𝑇𝑇ℎ is convex for all h ∈ H, so is ∑ 𝑇𝑇ℎℎ∈𝐻𝐻 . Therefore, when the aggregate production 

is efficient, ∑ (𝑥𝑥ℎℎ∈𝐻𝐻 ,𝑦𝑦ℎ) ∈ 𝑊𝑊(∑ 𝑇𝑇ℎℎ∈𝐻𝐻 ), we know from the basic observation that it is alloca-

tivly efficient with respect to some price vector  

∃(𝑢𝑢, 𝑣𝑣) ∈ ℝ+
𝑚𝑚+𝑛𝑛\{0}:∑ (𝑥𝑥ℎ, 𝑦𝑦ℎ)ℎ∈𝐻𝐻  ∈  arg  max

(𝑥𝑥,𝑦𝑦)∈∑ 𝑇𝑇ℎℎ∈𝐻𝐻
 𝑣𝑣𝑦𝑦 − 𝑢𝑢𝑥𝑥  (5) 

In turn, this relationship implies 

∃(𝑢𝑢, 𝑣𝑣) ∈ ℝ+
𝑚𝑚+𝑛𝑛\{0}: (𝑥𝑥ℎ, 𝑦𝑦ℎ) ∈  arg  max

(𝑥𝑥,𝑦𝑦)∈𝑇𝑇ℎ
 𝑣𝑣𝑦𝑦 − 𝑢𝑢𝑥𝑥  ∀ℎ ∈ 𝐻𝐻  (6) 

because had we used the same price vector as in (5) and (𝑥𝑥ℎ, 𝑦𝑦ℎ) does not solve max(𝑥𝑥,𝑦𝑦)∈𝑇𝑇ℎ𝑣𝑣𝑦𝑦 −

𝑢𝑢𝑥𝑥 for some h, there would have been a better solution to (5) obtained by substituting the solution 

into max(𝑥𝑥,𝑦𝑦)∈𝑇𝑇ℎ𝑣𝑣𝑦𝑦 − 𝑢𝑢𝑥𝑥 for the old (𝑥𝑥ℎ,𝑦𝑦ℎ) in (5). This finding shows that allocative efficiency 

at the sub-unit level with the same rate of substitution in all sub-units is a necessary (only if) con-

dition for aggregate efficiency. 

The sufficiency also follows from a contradiction. Let (𝑥𝑥ℎ ,𝑦𝑦ℎ)  ∈  arg  𝑚𝑚𝑎𝑎𝑥𝑥(𝑥𝑥,𝑦𝑦)∈𝑇𝑇ℎ𝑣𝑣𝑦𝑦 − 𝑢𝑢𝑥𝑥,

ℎ ∈ 𝐻𝐻 be a solution to (6). Now, if ∑ (𝑥𝑥ℎ,𝑦𝑦ℎ)ℎ∈𝐻𝐻  does not solve (5), there exists an alternative 
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solution ∑ (𝑥𝑥�ℎ, 𝑦𝑦�ℎ)ℎ∈𝐻𝐻  such that 𝑣𝑣 ∑ 𝑦𝑦�ℎ − 𝑢𝑢∑ 𝑥𝑥�ℎ > 𝑣𝑣 ∑ 𝑦𝑦ℎ − 𝑢𝑢∑ 𝑥𝑥ℎℎ∈𝐻𝐻ℎ∈𝐻𝐻ℎ∈𝐻𝐻ℎ∈𝐻𝐻 . Thus, for at 

least one h, we have 𝑣𝑣𝑞𝑞�ℎ − 𝑢𝑢𝑥𝑥�ℎ > 𝑣𝑣𝑦𝑦ℎ − 𝑢𝑢𝑥𝑥ℎ, which contradicts the fact that we had a solution 

(6) to begin with. Hence, a solution to (6) yields a solution to (5), and by the basic observation, 

the result is weak technical efficiency. This proves the sufficiency (if) part of the theorem. □ 

Theorem 1 shows that to attain technical efficiency at the aggregate level, it is not enough to be 

technical and allocatively efficient at the sub-unit level. Optimal profit-maximising behaviour 

does not ensure aggregate technical efficiency. We also need for the sub-units to be aligned by a 

common price vector in the sense that the rates of substitution are the same in all sub-units. In 

more organisational terms, we can conclude that it is not sufficient to have efficient sub-units; we 

need goal concordance among them as well.  

Note that goal concordance in this case is considered with respect to a common weighting of the 

inputs and outputs, which it is not necessarily advantageous. If prices differ, concordance regard-

ing the same weights is sub-optimal. In such a case, the alignment condition in Theorem 1, which 

implies that scale and scope effects do not come into play, causes a discrepancy between sub-unit 

performance and aggregated DMU performance. In other words: in addition to optimal behaviour 

in the different sub-units, we need price proportionality in the sub-units to aggregate information 

without obscuring the evaluations.  

One instance of Theorem 1 is particularly clear. If all sub-units are the same, T 
1 = T 

2 =…= T 
|H|, a 

necessary condition for technical efficiency at the aggregate level is that they all operate if not at 

the same point, then at least at the same facet, i.e., have the same supporting hyperplane. This 

follows immediately from the alignment condition in Theorem 1. Furthermore, if the technolo-

gies are strictly convex – at least in the relevant (efficient) part – we conclude that the aggregate 

production is efficient if and only if all sub-units are using exactly the same (efficient) produc-

tion. 

This situation illustrates how desirable adjustments to spatial/temporal variations in prices at the 

sub-unit level will tend to appear as technical inefficiencies at the aggregate level. Optimal eco-

nomic behaviour in the sub-units leads to aggregate inefficiency if prices over space/time are not 

accidentally proportional. It is fair to say, therefore, that aggregate efficiency is quite unlikely and 

certainly not always desirable; such efficiency may come at the cost of inadequate adaptions to 

local variations in prices or, more generally, to variations in demand and supply. 
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We note that these statements regard aggregate efficiency in an absolute sense, i.e., compared to a 

theoretical production model. In practice, a DMU’s efficiency is usually measured relative to 

other DMUs, and because they also may be “handicapped” by variations in the prices on the dis-

aggregated level, a DMU is more likely to be (relatively) as efficient as an aggregate unit. 

In the next section, we propose an approach to ensure fairer evaluations when DMUs cannot 

freely allocate production between different sub-units, i.e., when the condition of sub-unit align-

ment is not valid. 

 
5. Potential Sub-Unit Efficiency 

5.1. A PSE Approach Based on Farrell Efficiency 

In practice, it is uncertain if inefficiency at the aggregate level is the result of slack in the sub-unit 

productions or the result of an aggregation of non-aligned but efficient sub-units. We may, how-

ever, ask if a DMU’s observed inefficiency is sufficiently small to be explained by unobserved 

but potentially desirable adjustments of its sub-unit productions to local or temporal variations in 

prices. Taking this perspective a bit further, we may ask how much of aggregate inefficiency we 

can explain merely by the aggregation of sub-units. 

If the observed aggregate production can be expressed as an aggregation of efficient sub-unit 

productions, we say that the aggregate production is characterised by potential sub-unit efficiency 

(PSE). More precisely, we say that (x,y) ∈ T is potentially (𝑇𝑇ℎ,ℎ ∈ 𝐻𝐻) sub-unit efficient (PS effi-

cient) if and only if 

∃(𝑥𝑥ℎ,𝑦𝑦ℎ) ∈ 𝐸𝐸𝐸𝐸𝐸𝐸(𝑇𝑇ℎ),ℎ ∈ 𝐻𝐻: 𝑥𝑥 ≤ ∑ 𝑥𝑥ℎ ,𝑦𝑦 ≥ ∑ 𝑦𝑦ℎℎ∈𝐻𝐻ℎ∈𝐻𝐻   (7) 

where 𝐸𝐸𝐸𝐸𝐸𝐸(𝑇𝑇ℎ) is the efficient production in T 
h. Hence, a PS efficient aggregate production of a 

DMU is one that results from aggregating efficient – but not necessarily aligned – sub-unit produc-

tions. To test such an aggregate production, we let the sub-units be hypothetical and construct sub-

unit productions that put a DMU in the best possible light. On this basis, we can evaluate whether 

a production (x,y) is possibly sub-unit efficient and also measure the corresponding PSE score.  

As always, efficiency can be operationalised in different ways. To convey our idea in a simple 

way, we here refer to Farrell’s idea of determining input efficiency (E) and output efficiency (F) 

by means of proportional input and output adjustments, respectively. Based on this easy to inter-
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pret concept, we can measure the PSE of (x,y) on the input side, PSEI (x,y), as 

𝑃𝑃𝑃𝑃𝐸𝐸𝐼𝐼(𝑥𝑥, 𝑦𝑦) = max{𝐸𝐸|𝐸𝐸𝑥𝑥 ≤ ∑ 𝑥𝑥ℎ ,𝑦𝑦 ≥ ∑ 𝑦𝑦ℎ, (𝑥𝑥ℎ ,𝑦𝑦ℎ) ∈ 𝐸𝐸𝐸𝐸𝐸𝐸(𝑇𝑇ℎℎ∈𝐻𝐻 ),ℎ ∈ 𝐻𝐻}ℎ∈𝐻𝐻 .  (8) 

The interpretation of this program is straightforward: We seek the largest possible expansion of 

the inputs used in (x,y) such that the resulting production still uses no more inputs to produce at 

least the same output as some combination of efficient sub-units. A score of PSEI (x,y) = 1 de-

notes the case that (x,y) is PS efficient. If PSEI (x,y) is greater than 1, (x,y) is in fact super-PS effi-

cient. If PSEI (x,y) is less than 1, even when we take limitations of an alignment between the sub-

units into account, there are some savings to be made in the production (x,y).  

Likewise, we can measure PSE on the output side by 

𝑃𝑃𝑃𝑃𝐸𝐸𝑂𝑂(𝑥𝑥,𝑦𝑦) = min{𝐹𝐹|𝑥𝑥 ≤ ∑ 𝑥𝑥ℎ,𝐹𝐹𝑦𝑦 ≥ ∑ 𝑦𝑦ℎ, (𝑥𝑥ℎ ,𝑦𝑦ℎ) ∈ 𝐸𝐸𝐸𝐸𝐸𝐸(𝑇𝑇ℎℎ∈𝐻𝐻 ),ℎ ∈ 𝐻𝐻}.ℎ∈𝐻𝐻   (9) 

The interpretation of this program is again simple: We seek the largest possible contraction of the 

outputs produced in (x,y) such that the resulting production still uses no more inputs to produce at 

least the same output as some combination of efficient sub-units. A score of PSEO (x,y) = 1 de-

notes the case that (x,y) is PS efficient. If PSEO (x,y) is less than 1, (x,y) is super-PS efficient be-

cause there exists a combination of efficient sub-units that produce less than y using at least the 

same inputs x. If PSEO (x,y) is greater than 1, there is some potential to expand the outputs in 

(x,y), even when we allow for limitations of an alignment between the sub-units. 

5.2. Operational PSE Measures in Case of Missing Sub-Unit Information 

In many evaluation settings, detailed information about the sub-units is not available. We do not 

know the set of sub-units H or the production possibilities in these units, Th. We shall now dis-

cuss how to measure PSE when such sub-unit information is missing. 

Taking a usual benchmarking study as a starting point, we assume that each of K DMUs, 

DMU1,...,DMUK have used inputs 𝑥𝑥𝑘𝑘 ∈ ℝ+
𝑚𝑚 to produce outputs 𝑦𝑦𝑘𝑘 ∈ ℝ+

𝑛𝑛 . Let T be the underlying 

production possibility set, and let T* be an estimate of T based on {(𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘)|𝑘𝑘 ∈ 𝐾𝐾}. If, for ex-

ample, we assume convexity, free disposability and weakly increasing (non-decreasing) returns to 

scale (i.e., (𝑥𝑥,𝑦𝑦) ∈ 𝑇𝑇 and 𝑘𝑘 ≥ 1 implies (𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦) ∈ 𝑇𝑇), the minimal extrapolation estimate of T 

using DEA would be 

𝑇𝑇∗ = {(𝑥𝑥,𝑦𝑦) ∈ ℝ+
𝑚𝑚+𝑛𝑛|𝑥𝑥 ≥ ∑ 𝜆𝜆𝑘𝑘𝑥𝑥𝑘𝑘,𝑦𝑦 ≤ ∑ 𝜆𝜆𝑘𝑘𝑦𝑦𝑘𝑘,∑ 𝜆𝜆𝑘𝑘 ≥ 1, 𝜆𝜆𝑘𝑘 ∈ ℝ0}𝑘𝑘∈𝐾𝐾𝑘𝑘∈𝐾𝐾𝑘𝑘∈𝐾𝐾   (10) 
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To cope with missing information about the sub-unit production possibilities T 
h, we propose us-

ing the basic idea of non-parametric benchmarking, namely relying on observed best practices. 

One simple approach is to project the original observations on the efficient frontier of T* and to 

only use combinations of these observations in the evaluation of PSE. To this end, let the Farrell 

input efficiency of DMUk be 

Ek = min{E | (E𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘) ∈ T 
*} (11) 

and consider 

Eff (T 
h) = {(Ekxk,yk), k ∈ K} ∀ℎ ∈ 𝐻𝐻.  (12) 

That is, we let the efficient outcomes of sub-unit h be the efficient versions of the original DMU 

observations. Thereby, an observation (xk,yk) is PS efficient if it is the sum of efficient versions of 

the actual observations. This direct aggregation approach leads to a PSE measure, which is 

based on a minimum of speculations regarding what is feasible and is easy to interpret. The 

greater Eff (T 
k), the more PS efficient the DMUs will appear, i.e., we will obtain larger PSEI and 

smaller PSEO scores. We can therefore say that the approach of relying solely on the efficient 

versions of the original observation is cautious in the sense that it does not lead to excessively 

good PSE evaluations. 

Using the described approximation of the efficient sub-unit outcomes, the calculation of PSEI can 

be outlined in four steps: 

Step 1:  Compute the Farrell input efficiencies Ek of each of the original observations (xk,yk), k ∈ K. 

Step 2:  Determine the efficient sub-unit outcomes as  

Eff (T 
h) = {(Ekxk,yk), k ∈ K} ∀ℎ ∈ 𝐻𝐻.  (13) 

Step 3:  Determine the PSE reference technology as all possible additions of efficient observations  

𝑇𝑇� = {(∑ 𝑥𝑥�ℎℎ∈𝐻𝐻 ,∑ 𝑦𝑦�ℎℎ∈𝐻𝐻 )|(𝑥𝑥�ℎ,𝑦𝑦�ℎ) ∈ 𝐸𝐸𝐸𝐸𝐸𝐸(𝑇𝑇ℎ) ∀ℎ ∈ 𝐻𝐻}.  (14) 

Step 4:  Determine the PS input efficiency of the original observations as  

𝑃𝑃𝑃𝑃𝐸𝐸𝐼𝐼(𝑥𝑥, 𝑦𝑦) = max{𝐸𝐸|𝐸𝐸𝑥𝑥 ≤ �̅�𝑥,𝑦𝑦 ≥ 𝑦𝑦�, (�̅�𝑥,𝑦𝑦�) ∈ 𝑇𝑇�}.  (15) 

This formulation of the direct aggregation approach can be simplified. The last three steps essen-

tially correspond to the solution of the mixed-integer program 
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𝑃𝑃𝑃𝑃𝐸𝐸𝐼𝐼(𝑥𝑥,𝑦𝑦) = max𝐸𝐸,𝜆𝜆1,…,𝜆𝜆𝐾𝐾 𝐸𝐸  

𝑠𝑠. 𝑡𝑡.    𝐸𝐸𝑥𝑥𝑖𝑖 ≤ ∑ 𝜆𝜆𝑘𝑘𝐸𝐸𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘 ,     𝑖𝑖 = 1, … ,𝑚𝑚𝐾𝐾
𝑘𝑘=1   

𝑦𝑦𝑗𝑗 ≥ ∑ 𝜆𝜆𝑘𝑘𝑦𝑦𝑗𝑗𝑘𝑘,            𝑗𝑗 = 1, … ,𝑛𝑛𝐾𝐾
𝑘𝑘=1   

𝜆𝜆𝑘𝑘 ∈ {0,1,2,3, … },         𝑘𝑘, … ,𝐾𝐾  

∑ 𝜆𝜆𝑘𝑘𝐾𝐾
𝑘𝑘=1 ≤ |𝐻𝐻|.           (16) 

In this program, we look for a combination of efficient productions (Ekxk,yk), k = 1,..., K such that 

the combination uses more inputs to produce less outputs than (Ex,y). 

Of course, the procedure outlined above can also be executed using projections in the output di-

rection in Steps 2 and 4: 

Step 2*: Determine the efficient sub-unit outcomes as  

Eff (T 
h) = {(xk, Fkyk), k ∈ K} ∀ℎ ∈ 𝐻𝐻.  (17) 

Step 4*: Determine the PS output efficiency of the original observations as 

𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜(𝑥𝑥,𝑦𝑦) = min {𝐹𝐹|𝑥𝑥 ≤ �̅�𝑥,𝐹𝐹𝑦𝑦 ≥ 𝑦𝑦�, (�̅�𝑥,𝑦𝑦�) ∈ 𝑇𝑇�}. (18) 

The mixed-integer program solving PSEO becomes 

𝑃𝑃𝑃𝑃𝐸𝐸𝑜𝑜(𝑥𝑥,𝑦𝑦) = min𝐹𝐹,𝜆𝜆1,…,𝜆𝜆𝐾𝐾 𝐹𝐹  

𝑠𝑠. 𝑡𝑡.    𝑥𝑥𝑖𝑖 ≤ ∑ 𝜆𝜆𝑘𝑘𝐹𝐹𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘 ,         𝑖𝑖 = 1, … ,𝑚𝑚 𝐾𝐾
𝑘𝑘=1   

𝐹𝐹𝑦𝑦𝑗𝑗 ≥ ∑ 𝜆𝜆𝑘𝑘𝑦𝑦𝑗𝑗𝑘𝑘,          𝑗𝑗 = 1, … , 𝑛𝑛𝐾𝐾
𝑘𝑘=1   

𝜆𝜆𝑘𝑘 ∈ {0,1,2,3, … },          𝑘𝑘, … ,𝐾𝐾  

∑ 𝜆𝜆𝑘𝑘𝐾𝐾
𝑘𝑘=1 ≤ |𝐻𝐻|.           (19) 

In applications, the number of underlying sub-units H to consider may be uncertain. Then, we 

have different options. One possibility is to choose the most restrictive option and only allow 

DMUs to be hypothetically decomposed into two sub-units, i.e., H = 2. This option leads to cau-

tious results in the sense that it yields the smallest set of PS efficient outcomes and therefore the 

smallest scores of the PSEI measure and the largest scores of the PSEO measure. The DEA exam-

ple in Section 3 was explained using this version of the direct aggregation approach.  
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Another possibility is to choose the most flexible option and say that we allow DMUs to be hypo-

thetically decomposed into any number of sub-units, i.e., H = any natural number. This option 

yields the largest set of PS efficient outcomes and therefore the largest scores of the PSEI meas-

ure and the smallest scores of the PSEO measure. 

5.3. A Simplified (relaxed) Approach 

The aggregation approach is conceptually simple because it directly constructs possible PS effi-

cient outcomes by adding together efficient versions of actual outcomes. Still, computationally, 

this approach may seem complicated because it involves mixed-integer programming. It may 

therefore be interesting to study the following simplified version of the mixed-integer program: 

𝑃𝑃𝑃𝑃𝐸𝐸𝐼𝐼(𝑥𝑥,𝑦𝑦) = max𝐸𝐸,𝜆𝜆1,…,𝜆𝜆𝐾𝐾 𝐸𝐸  

𝑠𝑠. 𝑡𝑡.    𝐸𝐸𝑥𝑥𝑖𝑖 ≤ ∑ 𝜆𝜆𝑘𝑘𝐸𝐸𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘 ,     𝑖𝑖 = 1, … ,𝑚𝑚𝐾𝐾
𝑘𝑘=1   

𝑦𝑦𝑗𝑗 ≥ ∑ 𝜆𝜆𝑘𝑘𝑦𝑦𝑗𝑗𝑘𝑘,            𝑗𝑗 = 1, … ,𝑛𝑛𝐾𝐾
𝑘𝑘=1   

𝜆𝜆𝑘𝑘 ∈ ℝ0,                          𝑘𝑘, … ,𝐾𝐾  

∑ 𝜆𝜆𝑘𝑘𝐾𝐾
𝑘𝑘=1 ≥ 1.            (20) 

This problem is relaxed by allowing the 𝜆𝜆 values to be real numbers as opposed to integers and 

by removing the upper constraint on the sum of these values.  

The program is again straightforward to interpret. It involves performing an output-oriented DEA 

efficiency analysis of (x,y) in which we assume convexity, increasing (non-decreasing) returns to 

scale (IRS), and free disposability. Furthermore, the inputs and outputs are reversed, i.e., the in-

puts x are treated as outputs and outputs y are treated as inputs. 

Because the relaxation leads to slightly larger scores of PSEI, the efficiency measures calculated 

in this manner may exceed the scores calculated using the direct aggregation approach. Hence, 

the DMUs will tend to appear more efficient. As we will observe, however, the relaxation may be 

modest. In fact, in the example presented in Section 6, the relaxed problem leads to the same 

scores yielded by the direct aggregation approach with H = 2.  

Instead of considering the relaxed formulation as an approximation, it is possible to motivate the 

formulation in its own right. One approach could be to assume that the underlying technology is 

an IRS technology. The weighted sum of efficient sub-units can now be rewritten as follows: 
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(∑ 𝜆𝜆𝑘𝑘𝐸𝐸𝑘𝑘𝑥𝑥𝑘𝑘 ,∑ 𝜆𝜆𝑘𝑘𝑦𝑦𝑘𝑘) = (∑ 𝛼𝛼𝑘𝑘𝑟𝑟𝑘𝑘𝐸𝐸𝑘𝑘𝑥𝑥𝑘𝑘 ,∑ 𝛼𝛼𝑘𝑘𝑟𝑟𝑘𝑘𝑦𝑦𝑘𝑘𝐾𝐾
𝑘𝑘=1 )𝐾𝐾

𝑘𝑘=1
𝐾𝐾
𝑘𝑘=1

𝐾𝐾
𝑘𝑘=1   (21) 

where 𝑟𝑟𝑘𝑘 = ceiling(𝜆𝜆𝑘𝑘) ∈ {1,2,3, … } and 0 ≤ αk = 𝜆𝜆𝑘𝑘/𝑟𝑟𝑘𝑘 ≤ 1 for all k=1,…,K. Here, the ceiling 

function ceiling(z) is the smallest integer not less than z. Hence, the reference unit used to evalu-

ate the PSE can be interpreted as the result of two operations:  

• Downscaling: The efficient versions of the original observations can be downscaled, making 

them possibly super-efficient by the increasing return to scale assumption. 

• Aggregation: The reference unit can be any direct aggregation of a finite number of efficient 

and possibly super-efficient sub-units. 

Hence, if we accept the IRS assumption (as in the following example), the simplified approach is 

conceptually easy to motivate on its own.  

 
6. Application to the Brazilian DSO Model 

6.1. Motivation 

The Brazilian distribution system operators (DSOs) are regulated on the basis of a DEA model 

with weight restrictions to determine efficient cost levels (cf. ANEEL 2015). This example not 

only serves to illustrate our approach based on real-world data but also sheds some light on actual 

issues of benchmarking in the Brazilian energy distribution sector. 

First, the mere size of the Brazilian DSOs entails a heterogeneous business environment for de-

livering their services. In particular, the DSOs benchmarked by the Brazilian regulator can be 

found in areas that range from quite flat to very hilly, from really dry to extremely humid and from 

landscapes with sparse vegetation to those covered by woods. Facing these considerably different 

geographical conditions, it is likely that many of the DSOs should in fact be regarded as consoli-

dations of diverse sub-DSOs that have limited possibilities to create synergies. If this is the case, 

the evaluations based on the Brazilian DSO model may be affected by the aggregation bias. 

Second, the fact that weight restrictions are used in the Brazilian DSO model may mitigate the 

heterogeneity problem because the resulting isoquants attain a lower curvature (this can be intui-

tively seen by looking at Figure 1: the more linear the isoquants, the smaller the set of PSE 

points). Therefore, although the aggregation bias is a reasonable presumption, its importance can 

only be evaluated by a numeric analysis based on our new approach.  
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6.2. The Brazilian DSO Model 

The Brazilian DSO regulation is in many ways in line with the international literature on regula-

tory benchmarking. Corresponding models typically apply a series of indicators of the capacity 

provided, the transport work undertaken and the customer services delivered as cost drivers. The 

respective input and outputs used in the Brazilian DSO model are shown in Table 3, which also 

indicates the tasks covered by the different cost drivers and provides a basic explanation of them. 

Table 3  Brazilian DSO model variables 

Model variables Covered task Variable explanation 
Input Saving of …  

x_OPEX_adjusted 
OPEX =  
operational 
expenditure 

Sum of expenses, including personal, materials, specific 
taxes and insurances, outsourced services as well as other 
expenses, adjusted by the regional salary level  

Output Provision of …  

y_Underground_all_tension_levels  Physical assets Total length of underground electricity distribution lines, 
irrespective of their voltage level 

y_Air_distribution_network  Physical assets Total length of overhead electricity distribution lines with 
low voltage level 

y_High_network  Physical assets Total length of overhead electricity distribution lines with 
high voltage level 

y_Averaged_market Transport  
service 

Sum of MWh provided, weighted by the respective share 
of controllable costs 

y_Consumers_number  Customer  
service Number of consumers served  

z_Neg_non_technical_losses_adjusted  Quality Max (losses due to theft or fraud – respective regulatory 
target; 0) ⋅ low tension supply 

z_Neg_interruption_adjusted  Quality Max (average interruption duration – respective average 
benchmark target; 0) ⋅ number of customers 

 

The use of physical assets to capture capacity provision is quite common in regulatory practice; 

although these assets are rather a means to provide the ultimate services, they can serve as relia-

ble cost drivers, since it is unlikely that they are considerably manipulated “to play the regula-

tion”. It is also noteworthy that the model does not contain direct information about the character-

istics of service areas, such as precipitation and vegetation, although these conditions vary con-

siderably from DSO to DSO as well as across the areas serviced by the individual DSOs.  
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Another remarkable feature of the Brazilian DSO model is the inclusion of quality indicators as 

negative outputs. This direct consideration of quality differs from the usual approaches that han-

dle quality issues indirectly by second-stage corrections or add-on regulatory instruments. It is 

worth mentioning that ANEEL explicitly refers to the quality indicators as positive non-

controllable inputs, but just models them as negative outputs (ANEEL 2015, p. 12 and 48). 

Mathematically, this is the same (Bogetoft and Otto 2011, pp. 119-120). Hence, the DEA model 

applied by ANEEL (and therefore adopted by us) with negative outputs provides the same results 

as would have been provided by the respective model with non-controllable inputs. Even though 

the latter would include three inputs, we would still measure cost efficiency, as still only the cost 

input would be reduced by the respective input-oriented Farrell model. 

The Brazilian DSO model also differs from common regulatory benchmarking models by the use 

of restrictions on the dual weights of the respective DEA problem. In total, seven such re-

strictions are used, as shown in Table 4. The two restrictions A and C limit the possible rate of 

substitution between outputs, whereas the remaining five restrict the output costs for individual 

outputs compared to the input OPEX (operational expenditure). The first two constraints are so-

called Type I assurance regions, whereas the latter five are Type II assurance regions.  

Table 4  Weight restrictions used in the Brazilian DSO model 

Restriction Lower limit  Ratio 
 

Upper limit 

A 1 < y_Underground_all_tension_levels/y_Air_distribution_network < 2 

B 0.58 < y_Air_distribution_network/x_OPEX_adjusted < 2.2 

C 0.4 < y_High_network/y_Air_distribution_network < 1 

D 0.001 < y_Averaged_market/x_OPEX_adjusted < 0.06 

E 0.03 < y_Consumers_number/x_OPEX_adjusted < 0.145 

F 0.01 < z_Neg_Non_technical_losses_adjusted/x_OPEX_adjusted < 0.15 

G 0 < z_Neg_interruption_adjusted/x_OPEX_adjusted < 0.002 
 

Weight restrictions can be considered either as an expression of preferences or as an expression 

of partial information about rates of substitutions. For example, the last restriction listed in Table 

4 can be an expression of the fact that the value of avoiding an hour of electricity loss cannot ex-

ceed 0.002 kBRL, i.e., that the value of an hour of lost electricity cannot exceed 2 BRL. Alterna-

tively, the restrictions can be an expression that the actual costs of cutting down on the hours of 

interruption is never higher than 2 BRL per hour. Note that it is not known whether the re-
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strictions are actually expressions of regulatory preferences or of specific knowledge of cost ef-

fects (Bogetoft and Lopes 2015). 

6.3. Findings 

The use of weight restrictions is interesting with respect to the aggregation bias because these 

restrictions lead to more linear isoquants, which one would expect to limit the bias. In that re-

spect, it can be determined that the constraints have a non-trivial impact on the Brazilian DSO 

model results, i.e., the constraints actually matter. For the 61 DSOs of our data set, this is illus-

trated in Figure 2. Here, the model results obtained using weight restrictions (the monotonically 

increasing black points) are compared with the pure IRS scores obtained without weight re-

strictions (the upper series of grey points). 

Fig. 2  Impact of weight restrictions in the Brazilian DSO model 

 
 

Next, we have calculated the PSEI scores of the Brazilian DSOs using our simplified (relaxed) 

approach. The results are shown in Figure 3. Here, the DSOs are sorted from the smallest to larg-

est PSEI score. As explained above, such a PSE value quantifies the increase in costs (i.e., the 
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expansion factor we can multiply on actual costs) that is possible on condition that the respective 

DMU remains sub-unit efficient. We observe that a large share of the DSOs can in fact be con-

sidered as PS efficient. Only 13 of the 61 DSOs remain inefficient, with a PSEI score less than 1, 

which means that 48 DSOs are classified as fully PS efficient (and many of them are super-

efficient). By means of the Brazilian DSO model, only 8 DSOs were classified as efficient. We 

also observe that nearly half of the DSOs have PSEI scores greater than 1.5, suggesting that they 

could in fact have increased their OPEX by 50% and that it would still be possible to consider 

them as sub-unit efficient. 

Fig. 3  PSEI scores 

 
The effects of applying our approach are dramatic. Most DSOs obtain significantly better scores 

when we consider them as consolidated units and investigate whether they could in fact be de-

composed into fully efficient sub-units. This finding is illustrated in Figure 4, in which we com-

pare the Brazilian DSO model efficiencies (the monotonic series of black points) with the PSEI 

efficiencies derived from the simplified approach (the upper series of non-monotonic grey 

points). 
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Fig. 4  Comparison of efficiency scores: the Brazilian DSO model versus the PSE model 

 
 

It is obvious that the derived PS efficiency scores are very lenient on the DSOs. This suggests 

that one should consider restricting the number of sub-units H in which the PSE analysis is al-

lowed to hypothetically disaggregate the DSOs. However, our goal was to demonstrate that the 

aggregation of data at the DSO level can have a huge impact on the results, i.e., that the potential 

aggregation bias can be enormous. 

 
7. Conclusions 

In this paper, we have argued that the presence of highly aggregated organisational units in a 

benchmarking study may skew the results. Such DMUs are likely to receive excessively harsh 

evaluations. We have illustrated this aggregation bias and reflected upon the condition under 

which the bias does not occur, namely the alignment condition. Only with aligned productions of 

a DMU’s sub-units, an aggregation of these productions does not affect the efficiency analysis of 

the DMU. Basically, price proportionality with respect to the sub-units is needed to allow for an 

exact aggregation of their productions without obscuring the evaluation at the DMU level.  
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As explained in the paper, this condition may be problematic in many real-world cases where 

DMUs have to manage sub-units with different business environments resulting from, e.g., dif-

ferent locations or periods. For such cases, we propose a DEA-based approach for compensating 

for the possible aggregation bias by calculating a DMU’s potential sub-unit efficiency – PSE. 

This concept allows to measuring the extent to which the respective DMU can be viewed as an 

aggregation of efficient sub-units. If an input-oriented PSE score, on which we focused on, has a 

value less than one, it indicates that activities are not performed efficiently, even accounting for 

given limitations of an alignment between the sub-units. To address this effect, we elaborated 

how to determine PSE scores under different assumptions. 

As an example, we applied the PSE concept to the DEA model used by the Brazilian Electricity 

Regulator in 2015 to measure the cost efficiency of the Brazilian distribution system operators 

(DSOs). Because of the size of these DSOs and the heterogeneity of their service areas, it is high-

ly likely that many of the DSOs are in fact subject to biased evaluations. Our numerical results 

showed that the biases may be considerable. In comparison to the results of the Brazilian DSO 

model, the number of DSOs classified as efficient significantly increased, along with a substan-

tial increase in many of the efficiency scores. 

The implications of our findings are twofold. From the perspective of a central evaluator, e.g., a 

regulator, it is important to be aware of a possible aggregation bias. It seems necessary to investi-

gate whether there are good reasons that the DMUs to be analysed operate sub-units in different 

business environments that require different strategies for performing optimally. In this case, in-

corporating the PSE concept into the particular efficiency analysis is a helpful control mechanism 

to address that issue, resulting in fairer and broader accepted evaluations.  

Our findings can also be of great relevance to particular DMUs under evaluation, since the im-

pact of the aggregation bias on efficiency scores was shown to be potentially enormous. On the 

one hand, it might be in the interest of affected companies to prove that a benchmarking analysis 

without addressing the bias would be flawed. On the other hand, companies may also react stra-

tegically, since our findings imply that ‘playing the regulation’ by reorganising into smaller sub-

units may have a considerable payoff. 

As a possibility for further research, our findings could be associated with bootstrapping in DEA 

(cf. the seminal paper of Simar and Wilson 1999). We speculate that uncertainty, as estimated by 
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bootstrapping, is largely inversely related to the extent of the consolidation bias. Although we 

outlined in Section 3 that the aggregation bias tends to increase from more to less extreme types 

of DMUs, the bias correction that can be derived from a bootstrapping exercise has the opposite 

tendency. This finding indicates that DMUs that involve more uncertainty in a typical efficiency 

analysis are less likely to have a large aggregation bias. Vice versa, DMUs that involve less un-

certainty in the technical evaluations are more likely to have a large aggregation bias. A thorough 

investigation of this topic might be fruitful. 

 

References 

Afsharian M, Ahn H, Thanassoulis, E (2017) A DEA-based incentives system for centrally man-

aged multi-unit organisations. Eur J Oper Res 259: 587–598 

Ahn H, Le MH (2015) DEA efficiency of German savings banks: evidence from a goal-oriented 

perspective. J Bus Econ 85:953–975 

Andersen J, Bogetoft P (2007) Gains from quota trade: theoretical models and an application to 

the Danish fishery. Eur Rev Agric Econ 34:105–127 

ANEEL (Agẽncia Nacional De Energia Elétrica) (2015) Metodologia de custos operacionais [op-

erational costs methodology]. Technical note 66/2015. Brasilia 

Bogetoft P (2012) Performance benchmarking: measuring and managing performance. Springer, 

New York 

Bogetoft P (2000) DEA and activity planning under asymmetric information. J Prod Anal 13:7–

48 

Bogetoft P, Boye K, Neergaard-Petersen H, Nielsen K (2007) Reallocating sugar beet contracts: 

can sugar production survive in Denmark? Eur Rev Agric Econ 34:1–20. 

Bogetoft P, Lopes A (2015) Comments on the Brazilian benchmarking model for energy distribu-

tion regulation: fourth cycle of tariff review – technical note 407/2014. 

nespufmg.com.br/content/upload/p/d3d9446802a44259755d38e6d163e820.pdf. Accessed 16 

December 2017 

Bogetoft P, Otto L (2011) Benchmarking with DEA, SFA, and R. Springer, New York 

https://doi.org/10.24355/dbbs.084-201902081349-0



29 
 

Bogetoft P, Pruzan, P (1991) Planning with multiple criteria. North-Holland, Amsterdam 

Bogetoft P, Wang D (2005) Estimating the potential gains from mergers. J Prod Anal 23:145–171 

Charnes A, Rousseau J, Semple J (1996) Sensitivity and stability of efficiency classifications in 

Data Envelopment Analysis. J Prod Anal 7:5–18 

Charnes A, Neralic, L (1990) Sensitivity analysis of the additive model in Data Envelopment 

Analysis. Eur J Oper Res 48:332–341 

Färe R, Grosskopf S (2000a) Network DEA. Socio Econ Plan Sci 34:35–49 

Färe R, Grosskopf S (2000b) Outfoxing a paradox. Econ Lett 69:159–163 

Färe R, Grosskopf S, Zelenyuk V (2004) Aggregation bias and its bounds in measuring technical 

efficiency. Appl Econ Lett 11:657–660 

Färe R, Zelenyuk V (2002) Input aggregation and technical efficiency. Appl Econ Lett 9:635–636 

Farrell MJ (1957) The measurement of productive efficiency. J R Stat Soc 120:253–281 

Fox KJ (1999) Efficiency at different levels of aggregation: public vs. private sector firms. Econ 

Lett 65:173–176 

Fox KJ (2012) Problems with (dis)aggregating productivity, and another productivity paradox. 

Ann Oper Res 37:249–259 

Frank CR Jr (1969) A generalization of the Koopmans-Gale theorem on pricing and efficiency. 

Int Econ Rev 10:488–491 

Hackman ST (2010) Production economics: integrating the microeconomic and engineering per-

spectives. Springer, Berlin/Heidelberg. 

Imanirad R, Cook WD, Zhu J (2013) Partial input to output impacts in DEA: production consid-

erations and resource sharing among business subunits. Nav Res Logist 60:190–207 

Kao C, Hwang S-N (2008) Efficiency decomposition in two-stage Data Envelopment Analysis: 

an application to non-life insurance companies in Taiwan. Eur J Oper Res 185:418–429 

Lozano S, Villa G (2004) Centralized resource allocation using Data Envelopment Analysis. J 

Prod Anal 22:143–161  

Ma, J, Chen L (2018) Evaluating operation and coordination efficiencies of parallel-series two-

https://doi.org/10.24355/dbbs.084-201902081349-0



30 
 

stage-system: a data envelopment analysis approach. Exp Sys Appl 91:1–11 

Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton 

Simar L, Wilson PW (1999) Estimating and bootstrapping Malmquist indices. Eur J Oper Res 

115:459–471 

Sung T-J, Lu Y-T, Ho S-S (2010) Time-based strategy and business performance under environ-

mental uncertainty: an empirical study of design firms in Taiwan. Int J Des 4(3):29–42 

Tauer LW (2001) Input aggregation and computed technical efficiency. Appl Econ Lett 8:295–

297 

Tone K (2001) A slacks-based measure of efficiency in data envelopment analysis. Eur J Oper 

Res 130:498–509 

https://doi.org/10.24355/dbbs.084-201902081349-0


