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Abstract

We study the optimal management of evolving hierarchies, which abound in real-life

phenomena. An initiator invests into finding a subordinate, who will bring revenues to the

joint venture and who will invest herself into finding another subordinate, and so on. The

higher the individual investment (which is private information), the higher the probability

of finding a subordinate. A transfer scheme specifies how revenues are reallocated, via

upward transfers, as the hierarchy evolves. Each transfer scheme induces a game in

which agents decide their investment choices. We consider two optimality notions for

schemes: initiator-optimal and socially-optimal schemes. We show that the former are

schemes imposing to each member a full transfer to two recipients (the predecessor and

the initiator) with a constant ratio among the transfers. We show that the latter are

schemes imposing full transfers to the immediate predecessors.
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1 Introduction

It has been argued that the basic structure (or order) of the world is a hierarchical structure

(e.g., Salthe, 1985). By a hierarchical structure (system) we mean, in general, an ensemble

of interacting parts which is composed of successively nested sets of interacting subunits (e.g.,

Nicolis, 2010). Hierarchy seems a pervasive feature of the organization of natural and artifi-

cial systems (e.g., Corominas-Murtra et al., 2013). Hierarchical systems are frequent in large

scale industrial automation such as the steel, petrochemical and electric power industries (e.g.,

Mesarovic et al., 1970). They also appear in countless scenarios we experience on a daily basis.

In this paper, we study the optimal management of evolving hierarchies. In our model, an

initiator invests into finding a subordinate, who will bring revenues to the joint venture and

who will invest herself into finding another subordinate. The higher the individual investment

(which is private information), the higher the probability of finding a subordinate. Without

investment, the probability reduces to zero. With large investments, the probability approaches

one. The probabilistic process thus generates an evolving hierarchy.

A transfer scheme specifies how revenues are reallocated, via upward transfers, as the hier-

archy evolves. Each transfer scheme induces a game in which agents decide their investment

choices. The profile of investments and the transfer scheme determine the expected return

from investments and the expected payoffs. The social value derived from the hierarchy is

given by the expected total payoff. As transfers among agents cancel out, the transfer scheme

is irrelevant for the computation of the optimal social value. Our first result is actually that

the socially optimal investment profile is unique and constant among members of the hierarchy.

In other words, the highest possible social value is obtained when all agents invest the same

amount.

We then move to a decentralized framework and consider two optimality notions for schemes:

initiator-optimal and socially-optimal schemes.

A transfer scheme is initiator optimal if it induces an equilibrium which yields the highest

possible expected payoff for the initiator (achievable in equilibrium).

A transfer scheme is socially optimal if it induces an equilibrium which yields the highest

possible social value (achievable in equilibrium).

We show that the initiator optimal schemes impose to each member a full transfer to only

two recipients: the immediate predecessor and the initiator. Furthermore, a constant ratio

among the transfers is imposed for all members. More precisely, there exists α ∈ (0, 1) such
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that each agent transfers α of her revenues to her immediate predecessor and the rest to the

initiator.

As for socially optimal schemes, we show that they simply impose full transfers to the

immediate predecessors (and, therefore, no transfer to the initiator).

The rest of the paper is organized as follows. We finish the introduction referring to some

related literature. We set the model in Section 2. We analyze the centralized management in

Section 3. We deal in Sections 4 and 5 with the decentralized management (initiator optimality

in the former and social optimality in the latter). In Section 6, we derive explicitly all the

optimal schemes for a natural example. We conclude in Section 7. Some further computations

have been gathered in an Appendix.

1.1 Related literature

Our model of managing endogenous hierarchies is somewhat related to a specific network in-

tervention known in the literature as induction. The term network interventions describes the

process of using social network data to accelerate behavior change or improve organizational

performance (e.g., Valente, 2012). Induction interventions stimulate peer-to-peer interaction to

create cascades in behavioral diffusion, implicitly endorsing that secondary incentives can be

more efficient and effective than primary incentives, at least in some contexts. For instance,

media marketing campaigns often rely on word-of mouth strategies, such as encouraging users

to recommend products to their connections, who would do the same themselves (e.g., Aral

and Walker, 2011). In respondent-driven sampling (e.g., Heckathorn, 1997), a form of chain-

referral sampling also known as “snowball methods”, individuals recruit others to receive an

intervention, who subsequently encourage additional people to participate, and so on.

Goldlücke (2017) also deals with the strategic recruiting in ongoing hierarchies. Her em-

phasis is on analyzing the effect of skill-based promotions on incentives to recruit, exploring

how the management rule “A’s hire A’s and B’s hire C’s” can make sense in a game-theoretic

model.

Our analysis also focusses on the dichotomy between centralized and decentralized man-

agement of hierarchies. In that sense, we are close to a literature dealing with search and

organizational hierarchy, in which it has been argued that a hierarchy with a central decision

maker at the top can speed up problem solving, but possibly at the cost of solution quality

compared with results of a decentralized search (e.g., Mihm et al., 2010; Rivkin, 2000).
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From a different vantage point, there has been a growing interest in the literature dealing

with resource allocation in the presence of a hierarchical structure (see, for instance, Hougaard

(2018) and the references cited therein). This interest can be traced back to Claus and Kleitman

(1973) and Bird (1976), with their canonical cost sharing problem within a rooted tree, or

Littlechild and Owen (1973) with the so-called airport problem, in which the runway cost has to

be shared among different types of airplanes with a linear graph representing the runway. More

recently, Hougaard et al., (2017) consider the problem of distributing the proceeds generated

from a joint venture in which the participating agents are hierarchically organized.1 They

characterize a family of allocation rules where revenue ‘bubbles up’ in the hierarchy, ranging

from the no-transfer rule (where no revenue bubbles up) to the full-transfer rule (where all

the revenues bubble up to the top of the hierarchy). Intermediate rules within that family are

reminiscent of popular incentive mechanisms for social mobilization or multi-level marketing

(e.g., Pickard et al., 2011; Emek et al., 2011) and can also be seen as specific geometric (incentive

tree) mechanisms (e.g., Lv and Moscibroda, 2013) that are usually considered in the computer

science literature.

2 The benchmark model

The set of potential agents is identified with the set of natural numbers including 0, i.e.,

N0 = {0, 1, 2, . . . }. We imagine a dynamic process where agent 0 represents the initial agent

(to be thought of as the initiator, designer, boss, owner, patriarch, etc., depending on the

application in mind) and starts the process to attract agent 1 as a follower. The probability of

succeeding depends on how much resources agent 0 invests in the process. If agent 0 succeeds,

this follower (agent 1) can now start the same process (as her predecessor) to attract agent

2 as a follower, and so forth, until some agent (n) is unsuccessful in getting a follower. The

outcome of the process would then be a realized hierarchy, representing an ordering of agents

with higher numbers indicating a lower rank.

We assume that the ability of getting a follower is the same for every agent and is formalized

by a function p : R+ → [0, 1), which assigns for each xi ∈ R+, denoting agent i’s search invest-

ment (i.e., the amount of resources that the agent has invested in the search), the probability

p(xi) ∈ [0, 1) that such an investment becomes successful. We refer to p as the technology and

1This is reminiscent of the problem of sharing a polluted river (e.g., Ni and Wang, 2007; Dong et al., 2012),

with the modification of considering negative revenues, and thus interpreting them as costs.
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assume that it is a strictly increasing, differentiable and strictly concave function, satisfying

that p(0) = 0, and limx→0+ p
′(xi) = +∞. Note that we also assume p(xi) < 1, for each xi ∈ R+.

Thus, no matter how much a given agent invests in the search there is no guarantee of getting

a follower. Also, we assume that agents’ investment decisions are private information and that

there is no budget constraint.

We assume that all agents joining the hierarchy are equally valuable and provide the same

revenue, which we normalize to 1.

The initiator designs a transfer scheme specifying how revenues are reallocated as the hi-

erarchy evolves. In line with the rank of the hierarchy we assume that revenues can only be

transferred upwards in the realized hierarchy (that is, from agents with higher numbers to

agents with lower numbers). A transfer scheme t = {tij}{ij}⊂N0 is given by transfers tij ∈ [0, 1]

such that tij = 0 for each i < j and
∑

j≤i tij = 1 for each i. Note that tij is interpreted as the

amount that agent i has to transfer to agent j, provided i joins the hierarchy.

x1 1 + t21 − t10

x0 1 + t20 + t10

1

x2

0

1− t20 − t212

(t20, t21)

t10

6

6

@
@

@
@R

p(x1)

p(x0)

@
@

@
@R

Figure 1: A realized hierarchy with three agents (the initiator and two successors).

For each agent i ∈ N0, each transfer scheme t, and each profile of investment choices

x = (x0, x1, x2, . . . ), let Ei(t, x) denote the expected payoff for agent i conditional on the

realization of that agent.2 Formally,

Ei(t, x) = tii − xi +
+∞∑
l=1

l−1∏
k=0

p(xi+k)t(i+l)i. (1)

We sometimes refer to the last term in (1), i.e., Ēi(t, x) =
∑+∞

l=1

∏l−1
k=0 p(xi+k)t(i+l)i, as the

gross expected return from investment.

2In principle, we allow for infinite expected payoffs.
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For any given profile of investments, x, the social value is given by the expected total

payoff. Note that given a profile of investments, x, the transfer scheme t is irrelevant for the

computation of the social value because transfers among agents cancel out. Alternatively, one

can write the social value as

V(x) = (1− x0) +
+∞∑
i=1

i−1∏
k=0

p(xi+k−1) (1− xi) . (2)

We say that a profile of investments x∗ is first-best socially optimal, if the social value is

maximized. As transfers are irrelevant, this kind of profile would be equivalently obtained

analyzing a single-agent dynamic investment problem.

Note that first-best socially optimal profiles are dynamically consistent. By this we mean

that they also maximize downward social value along the hierarchy. Formally, at any period l,

the downward social value is given by

Vl(xl, xl+1, . . . ) = (1− xl) +
+∞∑
i=1

i−1∏
k=l

p(xi+k−1) (1− xi) . (3)

Then, if x∗ = (x∗0, x
∗
1, x
∗
2, . . . ) is first-best socially optimal it follows that xl∗ = (x∗l , x

∗
l+1, . . . )

maximizes (3).

Each transfer scheme induces a game in which agents decide their investment choices (which

are private information). A profile of investments x∗ = (x∗0, x
∗
1, . . . ) is a (Nash) equilibrium of

this game if, for each agent i ∈ N0,

Ei(t, (x∗i , x∗−i)) ≥ Ei(t, (xi, x∗−i)),

for each xi ∈ R+.

In equilibrium, each agent i ∈ N0, if xi > 0, solves the following first order condition:

p′(xi) =
1

t(i+1)i +
∑+∞

l=2

∏l−1
k=1 p(xi+k)t(i+l)i

. (4)

Note that (4) shows that every agent has a unique best response given the other agents

investment levels (equilibrium or not). In fact, the game is supermodular (Topkis, 1979) as

there are monotonically increasing best replies.

As we shall argue later, agents’ investments are, de facto, bounded and, thus, the fact that

the game is supermodular means that for any technology, and any transfer scheme, there exists

a pure strategy Nash equilibrium.
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Remark 1 The uniqueness of equilibria is not guaranteed. To show this, consider the technol-

ogy defined by

p(xi) =

√
xi

1
4

+
√
xi
.

Let t be the transfer scheme such that ti(i−2) = 1, for each i ≥ 2, t00 = t11 = 1, and tij = 0

otherwise. As p(0) = 0, it follows that the profile (0, 0, . . . ) is an equilibrium. Now, (4)

corresponds to

1/8 = (1/4 +
√
xi)

3,

which has the solution x∗i = 1/16, with p(x∗i ) = 1/2. Thus, the profile (x∗i , x
∗
i , . . . ) is also an

equilibrium.

In the rest of the paper, we shall be mostly concerned with the two following decentralized

optimality notions:

We say that a transfer scheme t∗ is (second-best) socially optimal if there exists a profile

of investments x∗, which constitutes an equilibrium for the game induced by t∗, and V(t̄, x̄) ≤

V(t∗, x∗), for each transfer scheme t̄, inducing a game for which x̄ is an equilibrium. Such a

supporting equilibrium will sometimes be called socially-optimal equilibrium.

We say that a transfer scheme, t∗, is initiator-optimal if there exists a profile of investments

x∗, which constitutes an equilibrium for the game induced by t∗, and E0(t̄, x̄) ≤ E0(t
∗, x∗),

for each transfer scheme t̄, inducing a game for which x̄ is an equilibrium. Such a supporting

equilibrium will sometimes be called initiator-optimal equilibrium.

3 Social optimality

We concentrate in this section on the centralized approach to our model. As we shall see, the

socially optimal investment profile is unique and constant among members of the hierarchy.

Our first result is about the existence of first-best socially optimal investment profiles.

Theorem 1 There exists a first-best socially optimal investment profile.

Proof. Let x be a given investment profile. If x is first-best socially optimal, the proof is

finished. Otherwise, let y1 = {y1i } be a profile such that V(x) < V(y1). Without loss of

generality, we can assume that y1i ≤ 1 for each i = 0, . . . ,∞. Indeed, if there exists an agent

i for which y1i > 1, we define a new sequence z1 for which z1k = y1k, k = 0, . . . , i − 1 and if

7



min{j|j > i and y1j ≤ 1} 6= ∅, let j∗ ≡ arg min{j|j > i and y1j ≤ 1} and set z1i+k = y1j∗+k for

k = 0, . . . ,∞. Otherwise, set z1 = (0, . . . , 0). In either case, V(z1) > V(y1).

If y1 is optimal, then the proof is finished. Otherwise, let y2 = {y2i } be a profile such that

V(y2) > V(y1) and y2i ≤ 1 for each i = 1, . . . ,∞. Eventually, we obtain a sequence of profiles

yk =
{
yki
}

such that yki ≤ 1 for each i = 1, . . . ,∞ and

V(x) < V(y1) < . . .V(yk−1) < V(yk) < . . .

As V is a continuous function, and investments are bounded above by 1, we know that

sup
y

V(y) <∞.

We can therefore assume, without loss of generality, that we choose the sequence of profiles

yk so that

limV(yk) = sup
y

V(y) <∞.

Now, as the sequence yk lies within the compact interval [0, 1], there exists a period-wise

converging subsequence ȳk of yk, whose limit we denote by ȳ∗ = limk ȳ
k. By construction, ȳ∗ is

first-best optimal.

Our second result is about the uniqueness of first-best socially optimal investments and its

properties.

We say that a profile of investments x is constant if xi = xj for each pair i, j ∈ {1, 2, ...}.

Theorem 2 The first-best socially optimal investment profile is unique and constant.

Proof. Let x̄ be a first-best optimal profile of investments (which exists because of Theorem

1). Suppose, by contradiction, that x̄ = (x̄1, x̄2, . . . ) is not constant. Then, there exists a pair

i, j ∈ {1, 2, ...}, such that x̄i 6= x̄j. As x̄ is first-best socially optimal, it follows, by dynamic

consistency, that

Vi+1(x̄i+1, x̄i+2, , . . . ) = Vj+1(x̄j+1, x̄j+2, , . . . ) = V̄.

This means, in particular, that x̄i and x̄j are the solutions for the problems

arg max p(xl)V̄− xl,

for l = i, j, whose first order conditions are

p′(xl)V̄− 1 = 0,
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for l = i, j. Now, by the strict concavity of p, it follows that both solutions are the same, i.e.,

x̄i = x̄j, which is a contradiction. Uniqueness follows by an analogous argument.

In the next two sections, we turn to the decentralized approach to our model. First, we

concentrate on initiator-optimal transfer schemes. Second, we concentrate on socially-optimal

transfer schemes.

4 Decentralized initiator optimality

The next result characterizes the so-called initiator-optimal transfer schemes as those imposing

to each member a full transfer to two recipients (the predecessor and the initiator) with a

constant ratio among the transfers.

Theorem 3 There exists α ∈ (0, 1) such that the scheme defined by t∗(i+1)i = α, t∗i0 = 1 − α,

and t∗ij = 0 otherwise, is initiator-optimal.

Proof.

Step 1. There exists an initiator-optimal transfer scheme.

Theorem 1 implies that each agent’s payoff and investment have a finite upper bound, which

again implies that (without loss of generality) investments are bounded intervals. Now, take a

sequence (tk, xk) where xk is an equilibrium of the game induced by tk. Choose the sequence

such that it converges to sup(t,x) E0(t, x), where x is an equilibrium for the game induced by t.

Then, we can choose a subsequence such that, for each agent i, we have that xki converges

to x̄i and tkij converges to t̄ij. Thus, we obtain that (t̄, x̄) is an equilibrium (as each agent’s

payoff is continuous in t and x), from where we conclude that t̄ is an initiator-optimal transfer

scheme.

Step 2. There exists α ∈ (0, 1) such that the scheme defined by t∗(i+1)i = α, t∗i0 = 1− α, and

t∗ij = 0 otherwise is initiator-optimal

Let t be an initiator-optimal transfer scheme. We now claim some properties of t.

First, tii = 0, for each i ∈ N0 \ {0}. The reason is simply that a self-transfer is irrelevant for

the investment decision. More precisely, if tii > 0, for some i ∈ N0\{0}, and x is an equilibrium

of the induced game, then we could construct a transfer t′, such that t′ii = 0, t′i0 = ti0 + tii,

and t′jk = tjk otherwise, and whose induced game would have x′ as an equilibrium, such that

E0(t, x) < E0(t
′, x′).
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Let N+
i denote the set of i’s followers (including i) in the hierarchy, i.e., N+

i = {i, i+1, . . . }.

Let x be an initiator-optimal equilibrium in the game induced by t, and let Si(t, x) denote the

expected total transfers from members of coalition N+
i to the predecessors of i, given agent i

joins the hierarchy. Formally,

Si(t, x) =
+∞∑
j=i

j−1∏
l=0

p(xl)
i−1∑
k=0

tjk.

Let j be such that 0 < j < i. We claim that Si(t, x) = Sj(t, x).

Suppose, by contradiction, that Si(t, x) > Sj(t, x). Then, agent 0 can design a new transfer

scheme t′ in which the transfers of N+
i are copied onto N+

j , i.e., t′kl = t(k+(i−j))l, for each

k ∈ N+
j . Moreover, for each k /∈ N+

j , t′kl is such that Ek(t, x) = Ek(t′, x). Any residual revenue

goes to agent 0. Note that such a transfer scheme t′ is feasible due to the hypothesis that

Si(t, x) > Sj(t, x).

As x was an initiator-optimal equilibrium of the game induced by t, the transfer scheme t′

induces an equilibrium x′ with the following features:

• x′0 > x0 and E0(t
′, x′) > E0(t, x),

• x′l = xl for each l = 1, 2, . . . , j − 1,

• x′l = xi+j−l for each l = j, j + 1, . . . .

But then, because of the first item, t is not initiator-optimal, which represents a contradiction.

Suppose now that Si(t, x) < Sj(t, x). Then agent 0 can design a new transfer scheme t′ in

which the transfers of N+
j are copied onto N+

i , i.e., t′kl = t(k+(j−i))l, for each k ∈ N+
i . Moreover,

for each k /∈ N+
i , t′kl is such that Ek(t, x) = Ek(t′, x). Any residual revenue goes to agent 0.

Note that such a transfer scheme t′ is feasible due to the hypothesis that Si(t, x) < Sj(t, x).

As x was an initiator-equilibrium of the game induced by t, the transfer scheme t′ induces

an equilibrium x′ with the following features:

• x′0 > x0 and E0(t
′, x′) > E0(t, x),

• x′l = xl for each l = 1, 2, . . . , i− 1,

• x′l = xl−i+j for each l = i, i+ 1, . . . .

But then, because of the first item, t is not initiator-optimal, which represents a contradiction.

We therefore conclude that Si(t, x) = Sj(t, x).
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Next, we argue that an initiator-optimal transfer scheme induces a symmetric equilibrium

among the agents following the initiator. For this, suppose that t is initiator-optimal and x is

a corresponding boss optimal equilibrium.

Now, suppose that for some i ≥ 1 we have xi 6= xi+1.

We will argue that it is then possible to change t to another transfer scheme t̂ such that a

new equilibrium x̂ is obtained with x̂i = x̂i+1 and x̂j = xj for all j ≤ i, and in particular the

payoff to agent 0 is the same at x̂ than at x.

For this, we will establish t̂ such that agent i+ 1 faces the same transfers from subsequent

agents as i did under scheme t. More precisely, let t̂ satisfy the following:

• t̂kj = t(k−1)(j−1), for each k ≥ j ≥ i+ 1,

• t̂kj = tkj, for each j ≤ k ≤ i+ 1,

•
∑i

j=0 t̂kj =
∑i−1

j=0 t(k−1)j, for each k ≥ i+ 2 and each j = 0, ..., i.

Now, let x̂ be defined by x̂j = xj for j ≤ i and x̂j = xj−1 for j > i. Then, as Si+1(t̂, x̂) =

Si(t, x) it is possible to choose the transfers t̂kj (for j ≤ i, k ≥ i+ 2) such that each agent j ≤ i

gets the same total expected payoff from investing in a follower under t̂ as under t. Thus, x̂ is

an equilibrium under t̂, and we are done.

Starting at i = 1 this process can be sequentially repeated for increasing i.

Now, let α = Ēi(t, x) > 0. Note that the highest possible revenue obtained from the

hierarchy is
∑∞

n=0(p(x))n = 1
1−p(x) . On the other hand, the overall gross expected return would

be
∑∞

n=0(p(x))nα = α
1−p(x) . By feasibility, it follows that α < 1.

To conclude, consider the scheme t∗ defined by t∗(i+1)i = α, t∗i0 = 1−α, and t∗ij = 0 otherwise.

This scheme induces a game with a symmetric equilibrium with strictly positive investments

in which each agent (except for 0) gets a gross expected return from investment of α. Thus, 0

gets the residual, i.e., (1− α)
∑∞

n=0(p(x))n = 1−α
1−p(x) .

The previous result characterizes the initiator-optimal transfer schemes as those imposing to

each member a full transfer to two recipients (the predecessor and the initiator) with a constant

ratio among the transfers. But its proof is silent about the construction of the optimal ratio

(α) describing the corresponding optimal scheme. It turns out that it is the solution to the

problem

max
α∈[0,1]

Φ(α), (5)

11



where Φ : [0, 1]→ R is such that, for each α ∈ [0, 1],

Φ(α) = (1− x̄α) + p(x̄α)

(
1− αp(x∗α)

1− p(x∗α)

)
, (6)

and x∗α is such that

αp′(x∗α) = 1, (7)

whereas x̄α is such that

p′(x̄α) =
1− p(x∗α)

1− αp(x∗α)
. (8)

Note that (7) guarantees that all followers are selecting their optimal investment, given the

scheme tα, whereas (8) guarantees that the initiator is selecting her optimal investment, given

the scheme tα. Finally, (6) reflects the expected payoff for the initiator, at those investment

choices, i.e.,

Φ(α) = E0(t
α, (x̄α, x

∗
α, x

∗
α, . . . )).

5 Decentralized social optimality

We now focus on (second-best) socially optimal transfer schemes. The next result characterizes

them as those imposing full transfers to the immediate predecessors.

Theorem 4 The scheme defined by t(i+1)i = 1, for i = 0, . . . , and tij = 0 otherwise, is

decentralized socially optimal.

Proof. Given investment profile x, define the expected length of the hierarchy as L(x) =

1 +
∑+∞

i=1

∏i−1
k=0 p(xk). For a given expected investment X, let L∗(X) be the highest obtainable

expected length from an investment profile with expected investment X.

Step 1. L∗ is a strictly concave function.

Let x and y be two investment profiles inducing expected investments X and Y, respectively.

Consider a fair lottery between x and y, denoted by z̄ = [(x; 1
2
), (y; 1

2
)].3 Then, the expected

investment of z̄ is given by 1
2
X + 1

2
Y and its expected length is given by 1

2
L(x) + 1

2
L(y). We

aim to show that, based on this lottery, we can derive an investment profile z with expected

investment equal to 1
2
X + 1

2
Y and expected length strictly larger than 1

2
L(x) + 1

2
L(y).

3We endorse the standard notation for lotteries. Thus, [(x; p), (y; 1− p)] indicates that profile x occurs with

probability p, whereas profile y occurs with probability 1− p.

12



For each t = 1, 2, . . . , let x|t = (xt, xt+1, . . . ) and y|t = (yt, yt+1, . . . ). Now, define the lottery

ẑ =

[(
1

2
x0 +

1

2
y0, x

|1; s1

)
,

(
1

2
x0 +

1

2
y0, y

|1; s2

)
,

(
1

2
x0 +

1

2
y0, 0

|1; 1− s1 − s2
)]

,

where s1 ∈ [0, 1] and s2 ∈ [0, 1] satisfy that

1

2
p(x0) = p

(
1

2
y0 +

1

2
x0

)
s1, and

1

2
p(y0) = p

(
1

2
y0 +

1

2
x0

)
s2.

Note that, by the concavity of p, p(1
2
y0 + 1

2
x0) ≥ 1

2
p(y0) + 1

2
p(x0). Thus, s1 + s2 ≤ 1.

That is, ẑ is the lottery indicating that, with probability s1, the investment profile x ma-

terializes, with the exception of having 1
2
x0 + 1

2
y0 for the initiator’s investment, instead of x0.

Likewise, with probability s2, the investment profile y materializes, with the exception of having

1
2
x0 + 1

2
y0 for the initiator’s investment, instead of y0. Finally, with probability 1 − s1 − s2,

the investment profile 0 materializes, with the exception of having 1
2
x0 + 1

2
y0 for the initiator’s

investment, instead of 0.

Note also that s1 and s2 are chosen so that the expected investment of ẑ is equal to that of

z̄, i.e., 1
2
X + 1

2
Y. Now,

L(z̄) =
1

2
(1 + p(x0) + p(x0)p(x1) + . . . ) +

1

2
(1 + p(y0) + p(y0)p(y1) + . . . ) =

1

2
L(x) +

1

2
L(y),

and

L(ẑ) = 1 + p

(
1

2
y0 +

1

2
x0

)
+ p

(
1

2
y0 +

1

2
x0

)
(s1p(x1) + s2p(y1)) + · · · > 1

2
L(x) +

1

2
L(y),

as desired.

Step 2. For each investment profile x, there exists a constant profile σ such that L(x) = L(σ)

and V(x) ≤ V(σ).

Without loss of generality, assume that x is a non-constant investment profile. If Lt, the

expected length of the hierarchy from period t on, is constant, we can obviously choose a

constant investment profile with the same expected length. If there exist two periods t and

t′ such that Lt < Lt′ then, by concavity of L∗, we can marginally increase investment in t

and decrease investments in t′ such that the expected length is fixed, but expected invested

investment decreases.

Step 3. For each equilibrium profile x, there exists a constant equilibrium profile σ such that

L(x) = L(σ).

Let x be an equilibrium profile. By Step 2, it follows that there exists a constant profile

with the same expected length and lower or equal expected investments. Consider the transfer

13



scheme for which t(i+1)i = β, for i = 0, . . . , and tij = 0 otherwise. We now claim that we

can choose β ≤ 1 such that the investment in the constant profile is optimal for each agent.

By contradiction, suppose that is not the case. Then, to choose the investment, each agent

would need a (hypothetical) amount greater than 1 in return for finding the follower. But

this contradicts that it was possible to incentivize the original investment. It is clear that the

socially optimal transfer scheme sets β = 1.

6 Examples

The aim of this section is to provide numbers for some of the profiles and schemes introduced

above. For that matter, we consider the same technology as in Remark 1. Formally, let

p : R→ [0, 1] be the technology defined by

p(xi) =

√
xi

1
4

+
√
xi
.

6.1 First-best optimal investment profile

By Theorem 2, we know that the first-best optimal investment profile is constant. Then, if at

(2) we impose xi = xj = σ, for each i, j ∈ N0, we obtain

V(x) = V(σ, σ, . . . ) = (1− σ)
+∞∑
n=0

(p(σ))n =
1− σ

1− p(σ)
.

The value of σ maximizing that expression is obtained by solving the first order condition

1− σ
1− p(σ)

=
1

p′(σ)
.

Equivalently,

(1− σ)
1/4

2
√
σ(1/4 +

√
σ)2

= (1− σ)p′(σ) = 1− p(σ) =
1/4

1/4 +
√
σ
,

or
√
σ + 6σ − 2 = 0,

whose solution is σ∗ = 1/4. Note that p(1/4) = 2/3 and V(1/4, 1/4, . . . ) = 9/4.

6.2 The (second-best) socially optimal scheme

Let us now consider the decentralized framework. We start with the full transfer predecessor

scheme, which, as shown by Theorem 4, is the (second-best) socially optimal scheme. Formally,

14



t is defined such that ti(i−1) = 1, for each i ≥ 1, t00 = 1, and tij = 0 otherwise. Then, each

agent i selects xi to maximize p(xi)−xi, whose first order condition is p′(xi) = 1. Equivalently,

1 = 8
√
xi(1/4 +

√
xi)

2,

whose unique solution is σ? = 0.1216. As all agents are facing the same first-order condition, the

optimal profile is precisely (σ?, σ?, . . . ). Note that p(x?) = 0.582 and V(x?, x?, . . . ) ≈ 2.1. One

can infer from here that the price of anarchy for this scheme is small (about 1.07 = 2.25/2.1).

6.3 The initiator-optimal schemes

Let now tα be the α-transfer initiator scheme, characterized in Theorem 3 as the initiator-

optimal schemes. Formally, for each α ∈ [0, 1], tα is defined by tα(i+1)i = α, tαi0 = 1 − α, and

tαij = 0 otherwise. Then, each agent i ≥ 1 selects xi to maximize p(xi)α− xi, whose first order

condition is p′(xi) = 1/α. Equivalently,

α = 8
√
xi(1/4 +

√
xi)

2,

whose solution (which cannot be explicitly obtained) is denoted by x∗α. Some numerical values

are the following:

α x∗α

0 0

0.2 0.02357

0.25 0.03

0.26 0.0316

0.265 0.0322336

0.2655 0.0322998

0.266 0.032366

0.4 0.04984

0.5 0.0625

1 0.1216

Now, the initiator aims to select x0 to maximize

(1− x0) + p(x0) + p(x0)p(x
∗
α)(1− α) + p(x0)(p(x

∗
α))2(1− α) + · · ·

15



That is,

(1− x0) + p(x0) + p(x0)(1− α)

(
∞∑
n=1

(p(x∗α))n

)
= (1− x0) + p(x0) + p(x0)(1− α)

p(x∗α)

1− p(x∗α)

= (1− x0) + p(x0)

(
1 + (1− α)

p(x∗α)

1− p(x∗α)

)
= (1− x0) + p(x0)

(
1− p(x∗α) + (1− α)p(x∗α)

1− p(x∗α)

)
= (1− x0) + p(x0)

(
1− αp(x∗α)

1− p(x∗α)

)
Let

A(α) =
1− αp(x∗α)

1− p(x∗α)
.

Then, the initiator selects her investment x0 so that she maximizes

(1− x0) + p(x0)A(α).

Thus, x̄α is the solution to

p′(x0) = 1/A(α) =
1− p(x∗α)

1− αp(x∗α)
.

Equivalently, x̄α is the solution to

1

4
+ (1 + α)

√
x∗α = 2

√
x0

(
1

4
+
√
x0

)2

.

Some numerical values are the following:

α x̄α

0 0.22588

0.2 0.36051

0.25 0.38312

0.26 0.3875

0.265 0.38968

0.2655 0.3899

0.266 0.39012

0.4 0.44597

0.5 0.48576

1 0.67726
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Then,

E0(t
1, (x̄1, x

∗
1, x
∗
1, . . . )) = (1− x̄1) + p(x̄1)

(
1− p(x∗1)
1− p(x∗1)

)
≈ (1− 0.67726) + p(0.67726)

≈ 1.0897.

Similarly,

E0(t
0, (x̄0, x

∗
0, x
∗
0, . . . )) = (1− x̄0) + p(x̄0)

(
1

1− p(x∗0)

)
≈ (1− 0.22588) + p(0.22588)

≈ 1.429419.

In general,

Φ(α) = E0(t
α, (x̄α, x

∗
α, x

∗
α, . . . )) = (1− x̄α) + p(x̄α)

(
1− αp(x∗α)

1− p(x∗α)

)
Thus, as argued in the Appendix, the optimal value is reached around α = 0.2655. Some

numerical values are the following:

α Φ(α)

0 1.429419

0.2 1.692389

0.25 1.699306

0.26 1.701201

0.265 1.7012544

0.2655 1.7012545

0.266 1.701253

0.4 1.671493

0.5 1.618237

1 1.089735

6.4 Full transfer pre-predecessor

Finally, let t be the full transfer pre-predecessor transfer scheme considered in Remark 1.

Formally, t is such that ti(i−2) = 1, for each i ≥ 2, t00 = t11 = 1, and tij = 0 otherwise. As

mentioned in Remark 1, the profile (1/16, 1/16, . . . ) is an equilibrium and it satisfies p(1/16) =

1/2. Then, V(1/16, 1/16, . . . ) = 15/8.
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7 Discussion

We have analyzed a stylized model on the optimal management of evolving hierarchies. In

our model, an initiator invests into finding a subordinate, who will bring revenues to the joint

venture and who will invest herself into finding another subordinate, and so on. The initiator

sets a transfer scheme specifying how revenues are reallocated, via upward transfers, as the

hierarchy evolves.

We believe our model is interesting on its own, but we have also argued that it has poten-

tially important applications, relating to diverse areas such as network induction interventions,

respondent-driven sampling, strategic recruiting in ongoing hierarchies, search and organiza-

tional hierarchy incentive tree mechanisms, or resource allocation in the presence of a hierar-

chical structure.

We have shown first that the socially optimal investment profile is unique and constant

among members of the hierarchy. As for the decentralized approach to the model, we have

considered two optimality notions for transfer schemes: initiator-optimal and socially-optimal

schemes. We have shown that the former are schemes imposing to each member a full transfer

to two recipients (the predecessor and the initiator) with a constant ratio among the trans-

fers. We have also shown that the latter are schemes imposing full transfers to the immediate

predecessors.

Our model has concentrated on the linear-hierarchy case, but the whole analysis can be

smoothly generalized to account for branch hierarchies, i.e., situations in which a given agent

can have more than one immediate subordinate.

An avenue for further research would be to extend the analysis in this paper beyond hier-

archies containing a single highest-ranked agent (initiator). It is often the case that a given

agent has more than one superior. For instance, for social mobilization schemes, an agent

may be approached by several recruiters and may solve tasks for all of them. Similarly, two

firms may jointly own an entity on an equal partnership basis and that entity may again own

other entities, either alone or as joint ventures. Our decentralized notion of initiator optimality

would have to be redefined for this setting. Other interesting issues for the management of

these general hierarchies would also arise.
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8 Appendix

Let f : R+ → R+ be such that, for each z ∈ R+,

f(z) =
√
z

(
1

4
+
√
z

)2

.

Note that, for each α ∈ [0, 1], x∗α is the solution to

f(z) =
α

8
, (9)

whereas x̄α is the solution to

f(z) =
1

8
+

1 + α

2

√
x∗α. (10)

Thus, it all amounts to solve equations of the form

f(z) = A,

for some scalar A.

Let y =
√
z. Then,

f(z) =
A

16
⇐⇒ 16y3 + 8y2 + y − A = 0.

Then, y could be explicitly obtained by the so-called cubic formula, first published by Cardano

(1545). More precisely,

y =

( −b3
27a3

+
bc

6a2
− d

2a

)
+

((
−b3

27a3
+

bc

6a2
− d

2a

)2

+

(
c

3a
− b2

9a2

)3
)1/2

1/3

+

( −b3
27a3

+
bc

6a2
− d

2a

)
−

((
−b3

27a3
+

bc

6a2
− d

2a

)2

+

(
c

3a
− b2

9a2

)3
)1/2

1/3

− b

3a
,

where a = 16, b = 8, c = 1 and d = −A.

Now, (
−b3

27a3
+

bc

6a2
− d

2a

)
=

1 + 54A

1728
=

1 + 54A

26 · 33
,

and (
c

3a
− b2

9a2

)
= − 1

144
= − 1

24 · 32
.

Then, (
−b3

27a3
+

bc

6a2
− d

2a

)2

+

(
c

3a
− b2

9a2

)3

=
(1 + 54A)2 − 1

212 · 36
=

(27A+ 1)A

210 · 33
.
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From here, it follows that

y =

1 + 54A

26 · 33
+

((
1 + 54A

26 · 33

)2

+

(
− 1

24 · 32

)3
)1/2

1/3

+

1 + 54A

26 · 33
−

((
1 + 54A

26 · 33

)2

+

(
− 1

24 · 32

)3
)1/2

1/3

− 1

6

=

(
1 + 54A

26 · 33
+

(
54A(54A+ 2)

212 · 36

)1/2
)1/3

+

(
1 + 54A

26 · 33
−
(

54A(54A+ 2)

212 · 36

)1/2
)1/3

− 1

6

=

(
1 + 54A+

√
54A(54A+ 2)

26 · 33

)1/3

+

(
1 + 54A−

√
54A(54A+ 2)

26 · 33

)1/3

− 1

6

=
1

12

(
3

√
1 + 54A+

√
54A(54A+ 2) +

3

√
1 + 54A−

√
54A(54A+ 2)− 2

)
Note that we could get complex numbers in the expression above. We restrict ourselves to the

real solutions, i.e., A(54A+ 2) > 0 or, equivalently, A ∈ (−∞,−1/27] ∪ [0,+∞).4

Let g : (−∞,−1/27] ∪ [0,+∞)→ R, such that, for each A ∈ (−∞,−1/27] ∪ [0,+∞),

g(A) =
1

12

(
3

√
1 + 54A+

√
54A(54A+ 2) +

3

√
1 + 54A−

√
54A(54A+ 2)− 2

)
.

Then, a solution to the equation

f(z) =
A

16
,

is

z = (g(A))2.

Note that

g(1) =
1

12

(
3

√
55 +

√
3024 +

3

√
55−

√
3024− 2

)
=

1

4
,

as expected.5

We can then state that

x∗α = (g(2α))2 =
1

144

(
3

√
1 + 108α + 6

√
6α(54α + 1) +

3

√
1 + 108α− 6

√
6α(54α + 1)− 2

)2

,

4In our cases, A will always be positive.
5Recall we mentioned above that x∗1/2 = 1/16.
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whereas

x̄α =
(
g
(
2 + 8(1 + α)

√
x∗α
))2

.

For each α ∈ [0, 1], we could then define the function Φ : [0, 1]→ R such that

Φ(α) = E0(t
α, (x̄α, x

∗
α, x

∗
α, . . . )) = (1− x̄α) + p(x̄α)

(
1− αp(x∗α)

1− p(x∗α)

)
.

The goal is to find

α∗ = arg max
α∈[0,1]

Φ(α).

Note that, as mentioned above, α∗ ≈ 0.2655.
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