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Abstract

The objective of this paper is to study the mean–variance portfolio
optimization in continuous time. Since this problem is time inconsistent
we attack it by placing the problem within a game theoretic framework
and look for subgame perfect Nash equilibrium strategies. This particular
problem has already been studied in [2] where the authors assumed a con-
stant risk aversion parameter. This assumption leads to an equilibrium
control where the dollar amount invested in the risky asset is independent
of current wealth, and we argue that this result is unrealistic from an eco-
nomic point of view. In order to have a more realistic model we instead
study the case when the risk aversion depends dynamically on current
wealth. This is a substantially more complicated problem than the one
with constant risk aversion but, using the general theory of time inconsis-
tent control developed in [4], we provide a fairly detailed analysis on the
general case. In particular, when the risk aversion is inversely proportional
to wealth, we provide an analytical solution where the equilibrium dollar
amount invested in the risky asset is proportional to current wealth. The
equilibrium for this model thus appears more reasonable than the one for
the model with constant risk aversion.

Key words: Mean–variance, time inconsistency, time inconsistent control,
dynamic programming, stochastic control, Hamilton-Jacobi-Bellman equation
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1 Introduction

Mean–variance (MV) analysis for optimal asset allocation is one of the classical
results of financial economics. After the original publication in [14], a vast
number of papers have been published on this topic. Most of these papers deal
with the single period case, and there is a very good reason for this: It is very
easy to see that an MV optimal portfolio problem in a multi period framework
is time inconsistent in the sense that the Bellman Optimality Principle does not
hold. As a consequence, dynamic programming cannot be easily applied, and it
is in fact not at all clear what one should mean by the term “optimal”.

In the literature there are two basic ways of handling (various forms of)
time inconsistency in optimal control problems. One possibility is to study the
pre-committed problem, where “optimal” is interpreted as “optimal from the
point of view of time zero”. Kydland and Prescott [10] indeed argue that a pre-
committed strategy may be economically meaningful in certain circumstances.
In the context of MV portfolio choice, [17] is probably the earliest paper that
studies a pre-committed MV model in a continuous-time setting (although he
considers only one single stock with a constant risk-free rate), followed by [1].
In a discrete-time setting, [11] developed an embedding technique to change the
originally time-inconsistent MV problem into a stochastic LQ control problem.
This technique was extended in [21], along with an indefinite stochastic linear–
quadratic control approach, to the continuous-time case. Further extensions
and improvements are carried out in, among many others, [13], [12], [3], and
[20]. Markowitz’s problem with transaction cost is recently solved in [5]. Note
that in all these works only pre-committed strategies have been derived.

Another possibility is to take the time inconsistency more seriously and
study the problem within a game theoretic framework. This is in fact the
approach of the present paper. One possible interpretation of the time incon-
sistency is that our preferences change in a temporally inconsistent way as time
goes by, and we can thus view the MV problem as a game, where the players
are the future incarnations of our own preferences. We then look for a subgame
perfect Nash equilibrium point for this game.

The game theoretic approach to addressing general time inconsistency via
Nash equilibrium points has a long history starting with [18] where a determin-
istic Ramsey problem is studied. Further work along this line in continuous and
discrete time is provided in [8], [9], [15], [16], and [19].

Recently there has been renewed interest in these problems. In the interest-
ing papers [6] and [7], the authors consider optimal consumption and investment
under hyperbolic discounting in deterministic and stochastic models from the
above game theoretic point of view. To our knowledge, these papers were the
first to provide a precise definition of the game theoretic equilibrium concept in
continuous time.

In the particular case of MV analysis, the game theoretic approach to time
inconsistency was first studied (in discrete and continuous time) in [2], where
the authors undertake a deep study of the problem within a Wiener driven
framework. The case of multiple assets, as well as the case of a hidden Markov
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process driving the parameters of the asset price dynamics are also treated.
The authors derive an extension of the Hamilton–Jacobi–Bellman equation and
manages, by a number of very clever ideas, to solve this equation explicitly for
the basic problem, and also for the above mentioned extensions. The method-
ology of [2] is, among other things, to use a “total variance formula”, which
partially extends the standard iterated expectations formula. This works very
nicely in the MV case, but drawback of this particular approach is that it seems
quite hard to extend the results to other objective functions than MV.

The first paper to treat the game theoretic approach to time inconsistency
in more general terms was [4] where the authors consider a fairly general class
of (time inconsistent) objective functions and a very general controlled Markov
process. Within this framework the authors derive an extension of the standard
dynamic programming equation, to a system of equations (which in the diffusion
case is a system of non linear PDEs). The framework of [4] is general enough
to include many previously known models of time inconsistency. In particular,
[4] reproduces the result of [2] for the MV problem in a Black–Scholes market.

Going back to the MV portfolio optimization, there is a non trivial problem
connected with the solution presented in [2]. In the problem formulation of [2],
the MV objective function at time t, given current wealth Xt = x, is given by

Et,x [XT ]−
γ

2
V art,x [XT ] ,

where XT is the wealth at the end of the time period, and where γ is a given
constant representing the risk aversion of the agent. For such a model it turns
out (see [2]) that, at time t and when total wealth is x , the optimal dollar
amount u(t, x) invested in the risky asset is of the form

u(t, x) = h(t)

where h is a deterministic function of time. In particular this implies that the
dollar amount invested in the risky asset does not depend on current wealth x.

In our opinion this result is economically unreasonable, since it implies
that you will invest the same number of dollars in the stock if your wealth is
100 dollars as you would if your wealth is 100,000,000 dollars. See Section ??
for a more detailed discussion.

The deeper reason for this anomaly is the fact that the risk aversion param-
eter γ is assumed to be a constant, which is clearly unreasonable. A person’s
risk preference certainly depends on how wealthy he is; and hence the obvi-
ous implication is that we should explicitly allow γ to depend on current
wealth.

The main goal of the present paper is precisely to study MV problems
with a state dependent risk aversion. More explicitly we consider an objective
function of the form

Et,x [XT ]−
γ(x)

2
V art,x [XT ] ,

where γ is a deterministic function of present wealth x. This type of problem
cannot easily be treated within the framework of [2], but it is a simple special
case of the theory developed in [4].
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The structure and main result of the present paper are as follows. In
Section 2 we present our formal model. We discuss the time inconsistency
of the mean variance problem and we place that problem within the general
framework of [4]. The game theoretic problem is presented, both in informal
and in mathematically precise terms, and from [4] we cite the general theoretical
results that we need for our analysis.

In Section 3 we give a brief recapitulation of the MV problem with constant
γ studied in [2], and we use our general theory to derive the solution. In Section
4 we study the MV problem with state dependent risk aversion using the theory
developed in [4]. We start by deriving a surprisingly explicit solution for the
case of a general risk aversion γ(x). We then specialize to the economically
natural case of γ(x) = γ/x and for this case we obtain an analytic solution.
More precisely, we show that the optimal dollar amount ût to invest in the
risky asset at time t is given by

ût = c(t)x

where the deterministic function c solves an integral equation. This is the main
result of the paper, and it shows that with the proper specification of the risk
aversion γ(x), the optimal solution is indeed economically reasonable.

We finish the paper by proving that the integral equation for c admits a
unique solution, and we also provide a numerical algorithm for computing c.
The algorithm is implemented for some natural parameter combinations and we
present graphs for illustrative purposes.

2 The basic framework

In this section we formulate the problem under consideration.

2.1 The model

Our basic setup is a standard Black-Scholes model for a risky stock with GBM
price dynamics and a bank account with constant risk free short rate r. Denoting
the stock price by S and the bank account by B, the dynamics are as follows
under the objective probability measure P .

dSt = αStdt + σStdWt,

dBt = rBtdt.

Here W is a standard P -Wiener process, and the constants α, σ, and r are
assumed to be known. In the analysis below, we will study self-financing port-
folios (with zero consumption), based on S and B. Denoting the dollar value
invested in the risky asset at time t by ut, the value process X of the portfolio
is easily seen to have dynamics given by

dXt = [rXt + (α− r)ut] dt + σutdWt.
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2.2 The basic problem

Loosely speaking, the problem to be solved is to maximize utility of final wealth,
where the utility is of MV form, i.e. we want to maximize the expression

E [XT ]−
γ

2
V ar [XT ] ,

where γ is a pre-specified risk aversion parameter.
A disturbing property of this optimization problem is that it is time in-

consistent in the sense that the Bellman optimality principle does not hold. For
a more detailed discussion see [2, 4].

The lack of time consistency leads to conceptual as well as computational
problems. From a conceptual point of view, it is no longer clear what we mean
by the word “optimal”, since a control strategy which is optimal for one choice
of starting point in time will generically not be optimal at a later point in time.
On the other hand, even with certain precise definition of optimality, we also
have a computational problem, since DynP is no longer available.

There are at least two approaches to the conceptual problem.

• We fix one initial point, like for example (0, x0), and then try to find the
control law û which maximizes E [XT ] − γ

2 V ar [XT ] where X0 = x0. We
then simply disregard the fact that at a later points in time the control
law û will not be optimal. Such a control is known as pre-commitment.

• We take the time inconsistency seriously and formulate the problem in
game theoretic terms.

In this paper we will use the game theoretic formulation.

2.3 The game theoretic formulation

In order to formulate the game theoretic version of our problem, we will follow
[4], where the reader may find full proofs of all cited results. To see the structure
of the problem a bit more clearly we will consider a more general and abstract
problem than the MV problem above. This will also allow us to treat the case
with a state dependent γ below.

We thus consider a controlled n-dimensional SDE of the form

dXt = µ(t, Xt, ut)dt + σ(t, Xt, ut)dWt

where W is P -Wiener. The adapted control u is restricted to takes values in
U ⊆ Rk. We restrict ourselves to feedback control laws, i.e. the controls
are of the form ut = u(t, Xt) where the control law u : R+ × Rn → Rk is a
deterministic function of the two variables t and x. The solution of the SDE
above, using the control law u will be denoted by Xu.

For a fixed initial point (t, x) we consider a functional of the form

J(t, x, u) = Et,x [F (x, Xu

T )] + G (x, Et,x [Xu

T ]) ,
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where F (x, y) and G(x, y) are given deterministic functions. The objective is to
maximize J(t, x, u) for each (t, x). We see that with the choice of the functional
above, time inconsistency enters at several different points. Firstly we have the
appearance of the present state x = Xt in the functions F and G, and this leads
to time inconsistency since it implies that, as the state process X changes, our
preferences change accordingly. Secondly, in the term G (x, Et,x [Xu

T ]) we have,
even without the presence of x, a nonlinear function G acting on the conditional
expectation, and this again leads to time inconsistency.

In order to define our game we now make the interpretation that at every
point in time t we have one player - player number t - which we will denote
by Pt. Conceptually we may think of this as a game with an infinite number
of distinct players – one at each point in time. Alternatively you may think
of the game as a game with one “real” player namely yourself, and Pt as the
incarnation of your own preferences at time t. Given a control law u, the reward
function for Pt is given by J(t, x, u), where J obviously only depends on the
control law u restricted to the time interval [t, T ].

We can now loosely define the concept of a “subgame perfect Nash equi-
librium point” of the game. This is a control law û satisfying the following:

• Choose an arbitrary point t in time.

• Suppose that every player s, for all s > t, will use the strategy û(s, ·).

• Then the optimal choice for player t, given the objective functional J
defined above, is that he/she also uses the strategy û(t, ·).

Based on this we now give the formal definition of an equilibrium control.

Definition 2.1 Given a control law û, construct a control law uh by

uh(s, y) =

{

u, for t ≤ s < t + h, y ∈ Rn

û(s, y), for t + h ≤ s ≤ T, y ∈ Rn

where u ∈ Rk, h > 0, and (t, x) ∈ [0, T ]× Rn are arbitrarily chosen. If

lim inf
h→0

J(t, x, û) − J(t, x, uh)

h
≥ 0,

for all u ∈ Rk and (t, x) ∈ [0, T ]×Rn, we say that û is an equilibrium control
law. The equilibrium value function V is defined by

V (t, x) = J(t, x, û).

We note that in the case of a standard time consistent setting, the definition of
an equilibrium will coincide with the definition of an optimal strategy and the
equilibrium value function will be the usual optimal value function.

As a special case of the results on [4] we can now define the appropri-
ate extension of the standard Hamilton-Jacobi-Bellman (HJB) equation. The
operator Au below is the usual controlled infinitesimal operator defined by

Au =
∂

∂t
+ µ(t, x, u)

∂

∂x
+

1

2
σ2(t, x, u)

∂2

∂x2
.
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Definition 2.2 The extended HJB system of equations for the Nash equilibrium
problem is defined as follows.

sup
u∈U

{(AuV ) (t, x)− (Auf) (t, x, x)+ (Aufx) (t, x)

− Au (G � g) (t, x) + (Hug) (t, x)} = 0, 0 ≤ t ≤ T

Aûfy(t, x) = 0, 0 ≤ t ≤ T,

Aûg(t, x) = 0, 0 ≤ t ≤ T,

V (T, x) = F (x, x) + G(x, x),

f(T, x, y) = F (y, x),

g(T, x) = x.

Here û is the control law which realizes the supremum in the first equation, and
fy , G � g, and Hg are defined by

fy(t, x) = f(t, x, y),

(G � g) (t, x) = G(x, g(t, x)),

Hug(t, x) = Gy(x, g(t, x)) ·Aug(t, x),

Gy(x, y) =
∂G

∂y
(x, y).

We now have some comments on the extended HJB system.

• The first point to notice is that we have a system of deterministic re-
cursion equations for the simultaneous determination of V (t, x), f(t, x, y)
and g(t, x).

• In the case when F (x, y) does not depend upon x, and there is no G term,
the problem trivializes to a standard time consistent problem. The terms
(Auf) (t, x, x) + (Aufx) (t, x) in the V -equation cancel, and the system
reduces to the standard HJB equation

(AuV ) (t, x) = 0,

V (T, x) = F (x).

• We have the probabilistic interpretations

f(t, x, y) = Et,x

[

F (y, Xû

T )
]

, (1)

g(t, x) = Et,x

[

Xû

T

]

. (2)

• The equations for g and fy state that the processes g(t, Xû

t ) and fy(t, Xû

t )
are martingales.

We finish this section by citing the Verification Theorem from [4]. This shows
that if you mange to solve the (deterministic) extended HJB system, then you
have in fact solved your game.
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Theorem 2.1 (Verification Theorem) Assume that (V, f, g) is a solution of
the extended system in Definition 2.2, and that the control law û realizes the
supremum in the equation. Then û is an equilibrium control law, and V is the
corresponding value function. Furthermore, f and g can be interpreted according
to (1)-(2).

We will now use this result to analyze two versions of the MV portfolio opti-
mization problem.

3 Mean–variance with constant risk aversion

In this section we will review the result of [4] based on total variance formula
(and reproduced in [4] based on the extended HJB equation) for the simplest
case of MV portfolio optimization with constant risk aversion. Then we will
discuss it from an economic perspective and we will find that it is not economi-
cally reasonable. In Section 4 we will therefore extend the “naive” MV problem
to a more realistic one where γ is allowed to depend on current wealth x.

The problem is already presented in Section 2.2. To recall, the state dy-
namics are given by

dXt = [rXt + (α − r)ut]dt + σutdWt

and the reward function to player number t is given by

J(t, x, u) = Et,x [Xu

T ] −
γ

2
V art,x [Xu

T ] .

We can re-write our objective functional as

J(t, x, u) = Et,x [F (Xu

T )] − G(Et,x [Xu

T ])

where F (x) = x − γ
2 x2 and G(x) = γ

2 x2.

Proposition 3.1 (Basak–Chabakauri [2]) For the model above we have the
following results.

• The optimal amount of money invested in a stock is given by

û(t, x) =
1

γ

α − r

σ2
e−r(T−t).

• The equilibrium value function is given by

V (t, x) = er(T−t)x +
1

2γ

(α − r)2

σ2
(T − t).

• The expected value of the optimal portfolio is given by

Et,x

[

Xû

T

]

= er(T−t)x +
1

γ

(α − r)2

σ2
(T − t).
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Let us now discuss the equilibrium solution above from an economic point
of view, and the main question is if the result makes economic sense. Our claim
is in fact that the result does not make economic sense, and to see this we recall
that the equilibrium portfolio is given by

û(t, x) =
1

γ

α − r

σ2
e−r(T−t).

We now recall that the interpretation of the control u is the dollar amount
that is invested in the risky asset. From the expression for û we thus see that the
dollar amount invested in the risky asset at time t is independent of the current
wealth x. This is, in our view, economically unrealistic. The result implies that
you will invest the same number of dollars in the stock if your wealth is 100
dollars as you would if your wealth is 100,000,000 dollars. Stated this way, it is
clear that the equilibrium portfolio is economically unreasonable. We hasten to
add that there is nothing surprising about the result – given the experience from
the one-period mean variance model this particular result is quite expected.

There is, however, a big conceptual difference between a one-period model
and our multi-period model. In the one-period model one can argue that al-
though the independence of initial wealth seems unreasonable at first sight, we
can save the situation by noting that the risk aversion parameter γ should de-
pend on the initial wealth. The obvious intuition is of course that γ should
decrease with increasing wealth, so the person with initial wealth of 100 should
have a much higher value of γ than a fund with 100,000,000 initial capital.

This idea is, in our view, perfectly reasonable in a one-period setting. It
is also reasonable for the case of pre-committment, since then the perspective
is clearly taken at time t = 0.

In our multi-period setting, however, and with our game theoretic for-
mulation, we do have a problem, since in this setting there is no particular
importance attached to the wealth at time t = 0. Instead, all points in time
are of equal importance. We can of course choose our γ such that it reflects the
risk version corresponding to the initial wealth x0. As time goes by, however,
our wealth will change so when we come to time t the risk aversion coefficient γ
which was appropriate for the initial wealth x0 is no longer appropriate for the
current wealth Xt.

The natural conclusion of this discussion is, in our opinion, that we should
explicitly allow the risk aversion parameter γ to be a function γ(x) of current
wealth x. In the next section we will analyze this case.

4 Mean–variance with state dependent risk aver-

sion

From the discussion in the previous section it is clear that we should extend the
simple MV problem treated in [2] to the more realistic case when the reward
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functional is given by

J(t, x, u) = Et,x [Xu

T ] −
γ(x)

2
V art,x [Xu

T ]

where γ is a deterministic function of x. We now have two problems.

• Given a specific choice of γ(x), how do we compute the equilibrium strat-
egy.

• Is there a particularly natural choice of the risk aversion function γ(x)?

To start with the first question, it is clear that the problem is perfectly
fitted to be attacked by the extended HJB system in Definition 2.2. In fact, the
reward functional can be written as

J(t, x, u) = Et,x [F (x, Xu

T )] − G (x, Et,x [Xu

T ])

with

F (x, y) = y −
γ(x)

2
y2 ,

G(x, y) =
γ(x)

2
y2.

It is thus clear that we are within the general framework of [4].

4.1 A natural choice of γ(x)

We now turn to the second question above, namely that of having a “natural”
choice for γ(x). There are in fact two natural arguments, both leading to the
same choice of γ(x).

1. One way of finding a natural candidate of γ is to perform a dimension
analysis. In the reward function

J(t, x, u) = Et,x [Xu

T ] −
γ(x)

2
V art,x [Xu

T ]

we see that the first term Et,x [Xu

T ] has the dimension (dollar). The term
V art,x [Xu

T ] has the dimension (dollar)2, so in order to have a reward
function measured in dollars we have to choose γ in such a way that γ(x)
has the dimension (dollar)−1. The most obvious way to accomplish this
is of course to specify γ as

γ(x) =
γ

x
,

where, with a slight abuse of notation, the occurrence of γ in the right
hand side denotes a constant.
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2. In the original single-period mean variance analysis, the mean variance
utility function (with constant γ) is in fact not applied to the wealth
itself, but rather to the return rate. More precisely this means that the
objective function is given by

J(t, x, u) = Et,x

[

Xu

T

x

]

−
γ

2
V art,x

[

Xu

T

x

]

and we can write this as

J(t, x, u) =
1

x

{

Et,x [Xu

T ] −
γ

2x
V art,x [Xu

T ]
}

Since x > 0, it is clear that this objective functional will lead to the same
equilibrium control û as the objective functional

J(t, x, u) = Et,x [Xu

T ] −
γ(x)

2
V art,x [Xu

T ] .

with
γ(x) =

γ

x
.

In the next subsection we will analyze the case of a general choice of γ(x) and
obtain a fairly explicit result. In Section 4.3 we specialize to the case when
γ(x) = γ/x, and for this case we obtain a more explicit solution, which we will
argue is also reasonable from an economic point of view.

4.2 The case of a general γ(x)

Applying the general theory from Section 2.3 to the objective functional

J(t, x, u) = Et,x [Xu

T ] −
γ(x)

2
V art,x [Xu

T ]

gives us, after a large number of elementary calculations, the following result
(see Appendix A for details). We use the notation β = α − r.

Proposition 4.1 The extended HJB system takes the following form:

Vt + sup
u∈R

{

(rx + βu)

[

Vx − fy −
γ′(x)

2
g2

]

+
1

2
σ2u2

[

Vxx − fyy − 2fxy −
γ′′(x)

2
g2 − 2γ′(x)ggx − γ(x)g2

x

]}

= 0, (3)

ft(t, x, y) + (rx + βû) fx(t, x, y) +
1

2
σ2û2fxx(t, x, y) = 0, (4)

gt(t, x) + (rx + βû) gx(t, x) +
1

2
σ2û2gxx(t, x) = 0. (5)

Remark 4.1 Note that, in (3), the partial derivatives of f and g should be
evaluated at (t, x, x) and (t, x) respectively.
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The HJB system above can in fact be simplified. We recall the probabilistic
interpretations

V (t, x) = Et,x

[

Xû

T

]

−
γ(x)

2
V art,x

[

Xû

T

]

,

f(t, x, y) = Et,x

[

Xû

T

]

−
γ(y)

2
Et,x

[

(

Xû

T

)2
]

,

g(t, x) = Et,x

[

Xû

T

]

.

From these it follows that

V (t, x) = f(t, x, x) +
γ(x)

2
g2(t, x).

We thus have, always with f and its derivatives evaluated at (t, x, x),

Vt = ft + γggt,

Vx = fx + fy +
γ′

2
g2 + γggx,

Vxx = fxx + fyy + 2fxy +
γ′′

2
g2 + 2γ′ggx + γg2

x + γggxx.

Using these expressions, equation (3) takes the form

ft + γggt + sup
u∈R

{

(rx + βu) [fx + γggx] +
1

2
σ2u2 [fxx + γggxx]

}

= 0,

and the optimal u is easily obtained as

û(t, x) = −
β

σ2

fx(t, x, x) + γ(x)g(t, x)gx(t, x)

fxx(t, x, x) + γ(x)g(t, x)gxx(t, x)
.

We collect our results

Lemma 4.1 With notation as above, the extended HJB system takes the form

ft + γggt + sup
u∈R

{

(rx + βu) [fx + γggx] +
1

2
σ2u2 [fxx + γggxx]

}

= 0,

ft(t, x, y) + (rx + βû) fx(t, x, y) +
1

2
σ2û2fxx(t, x, y) = 0,

gt(t, x) + (rx + βû) gx(t, x) +
1

2
σ2û2gxx(t, x) = 0,

and the equilibrium control is given by

û(t, x) = −
β

σ2

fx(t, x, x) + γ(x)g(t, x)gx(t, x)

fxx(t, x, x) + γ(x)g(t, x)gxx(t, x)
.
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Since the extended HJB system above gives us three equations involving only
two unknown functions f and g, it now seems that we may have a potential
problem with an over-determined system. This is, however, not the case. We
recall that (4) is valid for all x and y, so in particular we can set y = x. We
then have the system

ft + γggt + (rx + βû) [fx + γggx] +
1

2
σ2û2 [fxx + γggxx] = 0, (6)

ft(t, x, x) + (rx + βû) fx(t, x, x)+
1

2
σ2û2fxx(t, x, x) = 0, (7)

gt(t, x) + (rx + βû) gx(t, x) +
1

2
σ2û2gxx(t, x) = 0. (8)

This looks over-determined but by inspection we see that in fact

(6) = (7) + γg · (8),

so (6) is in fact implied by (7) and (8). We can thus summarize the results so
far.

Proposition 4.2 The equilibrium control is given by

û(t, x) = −
β

σ2

fx(t, x, x) + γ(x)g(t, x)gx(t, x)

fxx(t, x, x) + γ(x)g(t, x)gxx(t, x)
, (9)

where the functions f and g are determined by the system

ft(t, x, y) + (rx + βû) fx(t, x, y) +
1

2
σ2û2fxx(t, x, y) = 0, (10)

gt(t, x) + (rx + βû) gx(t, x) +
1

2
σ2û2gxx(t, x) = 0, (11)

with boundary conditions

f(T, x, y) = x −
γ(y)

2
x2,

g(T, x) = x.

The equilibrium value function V is given by

V (t, x) = f(t, x, x) +
γ(x)

2
g2(t, x). (12)

4.3 The case γ(x) = γ

x

We now move to the particularly interesting case when

γ(x) =
γ

x
.

Our main result is as follows.

13



Proposition 4.3 For the case when γ(x) = γ
x
, the equilibrium control is given

by

û(t, x) =
β

γσ2

a(t) + γ
[

a2(t) − b(t)
]

b(t)
x

where a and b solves the ODE system

ȧ +

(

r +
β2

γσ2b

(

a + γ
[

a2 − b
])

)

a = 0,

a(T, x) = 1,

ḃ +

{

2

(

r +
β2

γσ2b

(

a + γ
[

a2 − b
])

)

+
β2

γ2σ2b2

(

a + γ
[

a2 − b
])2

}

b = 0,

b(T, x) = 1.

The equilibrium value function V is given by

V (t, x) =
{

a(t) +
γ

2

[

a2(t) − b(t)
]

}

x.

Proof. See Appendix B.

4.4 An integral equation for c

The ODE system in Proposition 4.3 is highly nonlinear, and it does not satisfy
the usual Lipschitz and linear growth conditions guaranteeing global existence
and uniqueness of a solution, so we have a problem. Instead of analyzing a and
b as above, an alternative approach is to focus directly on the function c in the
Ansatz û(t, x) = c(t)x and to derive a single integral equation for c. Then we
express a and b in terms of c.

Theorem 4.1 For the case γ(x) = γ
x
, the equilibrium control is given by

û(t, x) = c(t)x

where c solves the integral equation

c(t) =
β

γσ2

{

e
−

∫

T

t
[r+βc(s)+σ2c2(s)]ds

+ γe
−

∫

T

t
σ2(s)c2(s)ds

− γ

}

. (13)

The equilibrium value function V is given by

V (t, x) =
{

a(t) +
γ

2

[

a2(t) − b(t)
]

}

x

where

a(t) = e

∫

T

t
[r+βc(s)]ds

, (14)

b(t) = e
2
∫

T

t
[r+βc(s)+ 1

2
σ2c2(s)]ds

. (15)

14



Proof. Under û(t, x) = c(t)x the wealth process X is GBM:

dXû
t = [r + βc(t)] Xû

t dt + σc(t)Xû
t dWt.

A direct computation shows that

Et,x

[

Xû
T

]

= xe

∫

T

t
[r+βc(s)]ds

,

Et,x

[

(

Xû
T

)2
]

= x2e
2
∫

T

t
[r+βc(s)+ 1

2
σ2c2(s)]ds

.

Thus (14)-(15) follows from (26)-(27). From Proposition 4.3 we also have

c(t) =
β

γσ2

a(t) + γ
[

a2(t) − b(t)
]

b(t)
,

and a simple calculation, using (14)-(15), gives us (13).

The key question now is whether the integral equation (13) has a unique
global solution. We assume from now on that β := α−r > 0 (the case β < 0 can
be treated similarly). We also assume that γ > 0 which is economically reason-
able. We use the standard notation C[0, T ] to denote the space of continuous
functions on [0, T ] endowed with supremum norm.

Theorem 4.2 The integral equation (13) admits a unique solution c ∈ C[0, T ].

Proof. We construct a sequence cn ∈ C[0, T ] as follows

c0(t) ≡ 1, (16)

cn(t) =
β

γσ2

[

e
−

∫

T

t
[r+βcn−1(s)+σ2c2

n−1
(s)]ds

+ γe
−

∫

T

t
σ2c2

n−1
(s)ds

− γ

]

,(17)

n = 1, 2, · · ·. We will now show that this sequence converges in C[0, T ], and this
will be done in three steps.

Step 1: Prove that {cn} is uniformly bounded in C[0, T ].
Noting that γ > 0 we have

cn(t) =
β

γσ2
e
−

∫

T

t
σ2c2

n−1
(s)ds

{

e
−

∫

T

t
[r+βcn−1(s)]ds

+ γ

}

−
β

σ2
≥ −

β

σ2

for all t ∈ [0, T ]. Using this we also obtain

cn(t) ≤
β

γσ2

[

e
−

∫

T

t
βcn−1(s)ds

+ γ − γ

]

≤
β

γσ2
e
−

∫

T

t
β

β

σ2 ds

=
β

γσ2
e−

β2

σ2
(T−t) ≤

β

γσ2
e

β2

σ2
T , ∀t, n = 1, 2, ...
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We have thus proved that

−
β

σ2
≤ cn(t) ≤

β

γσ2
e

β2

σ2
T , ∀t ∈ [0, T ], n = 1, 2, ...

Step 2: Prove that {ċn} is uniformly bounded in C[0, T ].
From the defining recursion it is obvious that cn is continuously differentiable
for all n, and we obtain

ċn(t) =
β

γσ2

[

{

r + βcn−1(t) + σ2c2
n−1(t)

}

e
−

∫

T

t
[r+βcn−1(s)+σ2c2

n−1
(s)]ds

+ γσ2cn−1(t)e
−

∫

T

t
σ2c2

n−1
(s)ds

]

.

Since {cn} is proved to be uniformly bounded, we conclude that {ċn} is uni-
formly bounded.

Step 3: Prove existence and uniqueness for c.
For any s, t ∈ [0, T ], and using the result from Step 2, we obtain

|cn(t) − cn(s)| =

∣

∣

∣

∣

∫ 1

0

d

du
cn(s + u(t − s))du

∣

∣

∣

∣

=

∣

∣

∣

∣

(t − s) ·

∫ 1

0

ċn(s + u(t − s))du

∣

∣

∣

∣

≤ K(t − s),

where K is a constant independent of n. Hence the sequence {cn} is equicontin-
uous and, since we have already proved uniform boundedness, the Arzela-Ascoli
Theorem implies that there exists a c ∈ C[0, T ] and subsequence {cni

} such that
cni

→ c. Taking limits in (17) shows that c is a solution to (13).
To prove uniqueness, assume that c1 and c2 are two solutions to (13).

Noting that c1 and c2 are both bounded and that the function ϕ(x) = ex is
globally Lipschitz on any given bounded set, we can show easily that

|c1(t) − c2(t)| ≤ K

∫ T

t

|c1(s) − c2(s)|ds.

The Gronwal inequality now implies that c1 ≡ c2.

Remark 4.2 The proof above shows that, for any subsequence of {cn} there is a
further subsequence that converges to the same function c (which is the solution
to (13)). Thus {cn} itself converges to c.
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4.5 A numerical algorithm for c

The next question is to find a numerical algorithm for the determination of
c. The obvious idea is of course to implement the recursion scheme (16)-(17)
numerically. From Remark 4.2 we know that the scheme converges to c, and
the following result gives the speed of convergence.

Theorem 4.3 Let {cn} be constructed according to (16)–(17), and let c be the
solution to (13). Then we have

|cn(t) − c(t)| ≤

∞
∑

m=n

Km−1

(m − 2)!
(T − t)m−2 , n = 2, 3, ...

Proof. Let c̄n = cn − cn−1. Then, with arguments as in the proof above, it is
easy to show that

|c̄n(t)| ≤ K

∫ T

t

|c̄n−1(s)|ds, ∀t ∈ [0, T ]. (18)

Denote ϕn(t) =
∫ T

t
|c̄n(s)|ds. From (18) we conclude that

ϕ̇n(t) + Kϕn−1(t) ≥ 0,

which implies

ϕn(t) ≤ K

∫ T

t

ϕn−1(s)ds.

By induction we deduce

ϕn+1(t) ≤
Kn

n!
(T − t)nϕ1(0).

It then follows from (18) that

|c̄n(t)| ≤ Kϕn−1(t) ≤
Kn−1

(n − 2)!
(T − t)n−2ϕ1(0),

and the stated result follows.

5 Numerical results

We now illustrate the results for the case

γ(x) =
γ

x

with various choices of γ, and for different time horizons. We have used the
parameter values α = 0.12, σ = 0.2, r = 0.04. The function c, depicted in
Figures 1 and 2, has been calculated using the iterative scheme (16)–(17).
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A natural comparison that one may make is between the mean-variance
allocation problems and the standard Merton problem:

max
u

E [U(t, Xt)dt]

dXt = [rXt + (α − r)ut] dt + σutdWt.

where U(x) = x1−γ

1−γ
. Figures 3-5 compare the investing strategies resulting from

the two mean-variance problems and the standard Merton problem.
The Figure 3 plots the amount of money invested in the stock versus time

as well as the proportion of wealth invested in the risky asset and the the risk
aversion parameter versus time, computed for the three models. The Figure 4
plots the expected wealth (at the end of the investment horizon) versus time
for the three problems, as well as the conditional variance of the final wealth.
The Figure 5 presents plots the amount of money invested in the stock versus
the wealth of the investor, as well as the proportion of money invested in the
stock and the risk aversion parameter versus the wealth. This figure shows very
similar the results yielded by the Merton model and the mean-variance with
state dependent risk aversion. This is not surprising if one takes into account
the fact that the risk aversion γ

x
. However, the two models are not as similar

when we look at how the optimal strategies behave along the timeline. In the
Merton model, the proportion of wealth invested in the stock does not very with
respect to the investment horizon:

u(t, x) =
α − r

γσ2
x.

In the mean variance problem with state dependent risk aversion, the pro-
portion of wealth invested in the stock decreases as the horizon increases. Also,
the conditional variance of wealth is much lower in the case of the mean-variance
problem with state-dependent risk aversion than in the other two approaches.

A Proof of Proposition 4.1

In order not to get swamped by details we write the wealth dynamics as

dXt = µ(Xt, ut)dt + σ(Xt, ut)dWt,

so we have, with obvious notation,

Au =
∂

∂t
+ µ

∂

∂x
+

1

2
σ2 ∂2

∂x2
.

Denoting partial derivatives with subscript we now have

AuV = Vt + µVx +
1

2
σ2Vxx.
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Furthermore we have

Aufx(t, x) = ft(t, x, x) + µfx(t, x, x) +
1

2
σ2fxx(t, x, x)

and

Auf(t, x, x) = ft(x, x) + µ {fx(t, x, x) + fy(t, x, x)}

+
1

2
σ2 {fxx(t, x, x) + fyy(t, x, x) + 2fxy(t, x, x)} .

Recalling that
(G � g) (t, x) = G(x, g(t, x))

we also have

Au (G � g) (t, x) = Gygt + µGx + µGygx

+
1

2
σ2

{

Gxx + Gygxx + 2Gxygx + Gyyg
2
x

}

= GyA
ug

+µGx +
1

2
σ2

{

Gxx + 2Gxygx + Gyyg2
x

}

where G is evaluated at G(x, g(t, x)) and g is evaluated at g(t, x).

Since
Hug(t, x) = Gy(x, g(t, x)) · Aug(t, x)

we see that the extended HJB system takes the form

Vt + sup
u∈U

{

µVx +
1

2
σ2Vxx − µfy −

1

2
σ2fyy − σ2fxy

−µGx −
1

2
σ2

[

Gxx + 2Gxygx + Gyyg
2
x

]

}

= 0, (19)

ft(t, x, y) + µ̂fx(t, x, y) +
1

2
σ̂2fxx(t, x, y) = 0, (20)

gt(t, x) + µ̂gx(t, x) +
1

2
σ̂2gxx(t, x) = 0. (21)

Note that in (19), the function f and its derivatives should be evaluated as
f(t, x, x) and similarly for ft, fx, and fxx. In (20)-(21) we have used the short-
hand notation

µ̂ = µ(x, û(t, x)),

σ̂ = σ(x, û(t, x)).

We recall that in our case we have

µ(x, u) = rx + (α − r)u,

σ(x, u) = σu.

19



Using the notation
β = α − r

the extended HJB system is thus as follows,

Vt + sup
u∈R

{(rx + βu) [Vx − fy − Gx]

+
1

2
σ2u2

[

Vxx − fyy − 2fxy − Gxx − 2Gxygx − Gyyg
2
x

]

}

= 0, (22)

ft(t, x, y) + (rx + βû) fx(t, x, y) +
1

2
σ2û2fxx(t, x, y) = 0, (23)

gt(t, x) + (rx + βû) gx(t, x) +
1

2
σ2û2gxx(t, x) = 0. (24)

Note the following

• In (22) the function ft and other f-derivatives should be evaluated as
ft(t, x, x) etc.

• In (22), the function Gx and other derivatives should be evaluated as
Gx(x, g(t, x)) etc.

For completeness we also recall the dynamics

dXt = [rXt + βut]dt + σutdWt (25)

Furthermore we have

Gx(x, y) =
γ′(x)

2
y2,

Gxx(x, y) =
γ′′(x)

2
y2 ,

Gy(x, y) = γ(x)y,

Gxy(x, y) = γ′(x)y,

Gyy(x, y) = γ(x).

Plugging these expressions for the G derivatives into the extended HJB proves
Proposition 4.1.

B Proof of Proposition 4.3

In this special case we have

γ(x) =
γ

x
,

γ′(x) = −
γ

x2
,

γ′′(x) =
2γ

x3
.
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We now conjecture that û is linear in x so we make the Ansatz

û(t, x) = c(t)x

for some deterministic function c. If this is the case, then X will be GBM so
we will have

Et,x

[

Xû

T

]

= a(t)x, (26)

Et,x

[

(

Xû

T

)2
]

= b(t)x2, (27)

for some deterministic functions a and b. We recall the probabilistic interpreta-
tions

f(t, x, y) = Et,x

[

Xû

T

]

−
γ(y)

2
Et,x

[

(

Xû

T

)2
]

,

g(t, x) = Et,x

[

Xû

T

]

.

This leads to the Ansatz

f(t, x, y) = a(t)x −
γ

2y
b(t)x2,

g(t, x) = a(t)x.

With this we have, with ȧ = ∂a
∂t

etc,

ft(t, x, y) = ȧx − γ
2y

ḃx2, fx(t, x, y) = a − γ
y
bx,

fxx(t, x, y) = −γ
y
b, fxy(t, x, y) = γ

y2 bx,

fy(t, x, y) = γ
2y2 bx2, fyy(t, x, y) = − γ

y3 bx2

gt(t, x) = ȧx, gx(t, x) = a,

gxx(t, x) = 0.

Plugging this into (9) gives us the equilibrium control as

û(t, x) =
β

γσ2b

(

a + γ
[

a2 − b
])

x.

Equation (10) now reads

ȧx −
γ

2y
ḃx2 +

(

rx +
β2

γσ2b

(

a + γ
[

a2 − b
])

x

)(

a −
γ

y
bx

)

−
1

2

β2

γ2σ2b2

(

a + γ
[

a2 − b
])2

x2 γ

y
b = 0.
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By separation of variables this leads to the following system of ODEs

ȧ +

(

r +
β2

γσ2b

(

a + γ
[

a2 − b
])

)

a = 0,

ḃ +

{

2

(

r +
β2

γσ2b

(

a + γ
[

a2 − b
])

)

+
β2

γ2σ2b2

(

a + γ
[

a2 − b
])2

}

b = 0.

Equation (11) becomes

ȧx +

(

rx +
β2

γσ2b

(

a + γ
[

a2 − b
])

x

)

a = 0,

leading to the ODE

ȧ +

(

r +
β2

γσ2b

(

a + γ
[

a2 − b
])

)

a = 0,

which we recognize from above.

References

[1] Bajeux-Besnainou, I., and Portait, R. Dynamic asset allocation in a
mean-variance framework. Management Science 44, 11 (1998), 79–95.

[2] Basak, S., and Chabakauri, G. Dynamic mean-variance asset alloca-
tion. Review of Financial Studies 23 (2010), 2970–3016.

[3] Bielecki, T. R., Jin, H., Pliska, S., and Zhou, X. Continuous-time
mean-variance portfolio selection with bankruptcy prohibition. Mathemat-
ical Finance 15, 2 (2005), 213–244.

[4] Björk, T., and Murgoci, A. A general theory of Markovian time in-
consistent stochastic control problems. Working paper, Stockholm School
of Economics, 2009.

[5] Dai, M., Xu, Z., and Zhou, X. Continuous-time Markowitz’s model
with transaction costs. SIAM Journal on Financial Mathematics 1 (2010),
96–125.

[6] Ekeland, I., and Lazrak, A. Being serious about non-commitment:
subgame perfect equilibrium in continuous time, 2006. Preprint. University
of British Columbia.

[7] Ekeland, I., and Privu, T. Investment and consumption without com-
mitment, 2007. Preprint. University of British Columbia.

[8] Goldman, S. Consistent plans. Review of Economic Studies 47 (1980),
533–537.

22



[9] Krusell, P., and Smith, A. Consumption and savings decisions with
quasi-geometric discounting. Econometrica 71 (2003), 366–375.

[10] Kydland, F. E., and Prescott, E. Rules rather than discretion: The
inconsistency of optimal plans. Journal of Political Economy 85 (1997),
473–492.

[11] Li, D., and Ng, W. Optimal dynamic portfolio selection: Multi-period
mean-variance formulation. Mathematical Finance 10 (2000), 387–406.

[12] Lim, A. E. B. Quadratic hedging and mean-variance portfolio selection
with random parameters in an incomplete market. Mathematics of Opera-
tions Research 29 (2004), 132–161.

[13] Lim, A. E. B., and Zhou, X. Quadratic hedging and mean-variance port-
folio selection with random parameters in a complete market. Mathematics
of Operations Research 27, 1 (2002), 101–120.

[14] Markowitz, H. Portfolio selection. Journal of Finance 7 (1952), 77–98.

[15] Peleg, B., and Menahem, E. On the existence of a consistent course of
action when tastes are changing. Review of Economic Studies 40 (1973),
391–401.

[16] Pollak, R. Consistent planning. Review of Economic Studies 35 (1968),
185–199.

[17] Richardson, H. R. A minimum variance result in continuous trading
portfolio optimization. Management Science 35, 9 (1989), 1045–1055.

[18] Strotz, R. Myopia and inconsistency in dynamic utility maximization.
Review of Economic Studies 23 (1955), 165–180.

[19] Vieille, N., and Weibull, J. Multiple solutions under quasi-exponential
discounting. Economic Theory 39 (2009), 513–526.

[20] Xia, J. M. Mean-variance portfolio choice: Quadratic partial hedging.
Mathematical Finance 15, 3 (2005), 533–538.

[21] Zhou, X. Y., and Li, D. Continuous-time mean-variance portfolio selec-
tion: A stochastic lq framework. Applied Mathematics and Optimization
42 (2000), 19–33.

23



0 0.2 0.4 0.6 0.8 1
1.4

1.5

1.6

1.7

1.8

1.9

2

time

p
ro

p
o

rt
io

n
 i
n

v
e

s
te

d
 i
n

to
 s

to
c
k
s

γ=1

0 0.2 0.4 0.6 0.8 1

0.58

0.6

0.62

0.64

0.66

0.68

time

p
ro

p
o

rt
io

n
 i
n

v
e

s
te

d
 i
n

to
 s

to
c
k
s

γ=3

0 0.2 0.4 0.6 0.8 1
0.36

0.365

0.37

0.375

0.38

0.385

0.39

0.395

0.4

time

p
ro

p
o
rt

io
n
 i
n
v
e
s
te

d
 i
n
to

 s
to

c
k
s

γ=5

0 0.2 0.4 0.6 0.8 1
0.185

0.19

0.195

0.2

time

p
ro

p
o
rt

io
n
 i
n
v
e
s
te

d
 i
n
to

 s
to

c
k
s

γ=10

Figure 1: The function c(t) for various choices of γ with T = 1.
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Figure 2: The function c(t) for various time horizons with γ = 3.
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Figure 3:
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Figure 4: Expected wealth and the conditional variance of wealth in the three
models
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Figure 5: Amount of money invested in the stock, proportion of money invested
in the stock and risk aversion across wealth levels in the three models
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