
 

                                  

 

 

Constant Proportion Debt Obligations (CPDOs)
Modeling and risk analysis
Cont, Rama; Jessen, Cathrine

Document Version
Final published version

Published in:
Quantitative Finance

DOI:
10.1080/14697688.2012.690885

Publication date:
2012

License
CC BY-NC-ND

Citation for published version (APA):
Cont, R., & Jessen, C. (2012). Constant Proportion Debt Obligations (CPDOs): Modeling and risk analysis.
Quantitative Finance, 12(8), 1199-1218. https://doi.org/10.1080/14697688.2012.690885

Link to publication in CBS Research Portal

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us (research.lib@cbs.dk) providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 17. Oct. 2025

https://doi.org/10.1080/14697688.2012.690885
https://doi.org/10.1080/14697688.2012.690885
https://research.cbs.dk/en/publications/e33136cb-5e22-43d9-98c5-489c327bc98c


Constant Proportion Debt Obligations

(CPDOs):

Modeling and Risk Analysis

Rama CONT Cathrine JESSEN
IEOR Department Department of Finance
Columbia University, New York Copenhagen Business School
e-mail: Rama.Cont@columbia.edu e-mail: cj.fi@cbs.dk

Revision: 2011.
Financial Engineering Report No. 2009-01

Center for Financial Engineering, Columbia University∗.

Abstract

Constant Proportion Debt Obligations (CPDOs) are structured credit
derivatives which generate high coupon payments by dynamically leverag-
ing a position in an underlying portfolio of investment grade index default
swaps. CPDO coupons and principal notes received high initial credit rat-
ings from the major rating agencies, based on complex models for the joint
transition of ratings and spreads for all names in the underlying portfo-
lio. We propose a parsimonious model for analyzing the performance of
CPDO strategies using a top-down approach which captures the essen-
tial risk factors of the CPDO. Our approach allows to compute default
probabilities, loss distributions and other tail risk measures for the CPDO
strategy and analyze the dependence of these risk measures on various
parameters describing the risk factors. We find that the probability of
the CPDO defaulting on its coupon payments is found to be small–and
thus the credit rating arbitrarily high– by increasing leverage, but the rat-
ings obtained strongly depend on assumptions on the credit environment
(high spread or low spread). More importantly, CPDO loss distributions
are found to be bimodal with a wide range of tail risk measures inside a
given rating category, suggesting that credit ratings are insufficient per-
formance indicators for such complex leveraged strategies. A worst-case
scenario analysis indicates that CPDO strategies have a high exposure to
persistent spread-widening scenarios CPDO ratings are shown to be quite
unstable during the lifetime of the strategy.

∗We thank William Morokoff, William Dellal and Eric Raiten for helpful comments.
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1 Introduction

Constant Proportion Debt Obligations (CPDOs) are leveraged credit invest-
ment strategies which appeared in the low credit spread environment of 2006
with the aim of generating high coupons while investing in investment grade
credit. The asset side of the CPDO contains two positions: a money market
account and leveraged credit exposure via index default swaps on indices of cor-
porate names, typically the ITRAXX and DJ CDX. The dynamically adjusted
risky exposure is chosen such as to ensure that the CPDO generates enough
income to meet its promised liabilities and also to cover for fees, expenses and
credit losses due to defaults in the reference portfolio and mark-to-market losses
linked to the fair value of the index default swap contract.

The CPDO strategy involves high initial leverage but adjust this leverage
dynamically: leverage is reduced as the gap between portfolio value and present
value of liabilities narrows and increased if losses are incurred, in order to regain
some of the lost capital. With this leverage rule a CPDO has no upside potential
but it has an added ability to recover from negative positions at the cost of not
having principal protection, contrarily to the better-known portfolio insurance
(CPPI) strategies [10]. The term ”constant proportion” refers to the fact that
it operates with a piecewise constant leverage rule (see Section 2.2).

The first CPDO launched by ABN Amro paid coupons at 100bp above
Euribor and later versions of the CPDO paid spreads as high as 200bp above
EURIBOR/LIBOR. Yet CPDO coupons and principal notes initially received
top (AAA) ratings from the major rating agencies. This top rating gave rise to
an intense discussion among market participants, because standard top-rated
products such as treasury bonds pay significantly lower coupons and also be-
cause the pool of corporate names on which the CPDO sells protection has
significantly lower average rating.

When first issued, there were several studies on the risk and performance of
CPDOs conducted by rating agencies [25, 18] and by issuers [24]. The sensitivity
analysis conducted in these studies suggested that the CPDO strategy is fairly
robust and could overcome most historical credit stresses prior to the 2007–2008
financial crisis with low default rates [22]. However, one concern of agencies
which chose not to rate this product was the potentially high level of model
risk involved in the analysis of the CPDO strategy, given the large number
of factors and parameters in these models. Another major concern was the
limited extent of historical data for backtesting the strategy: spread data for
the ITRAXX and CDX indices are only a few years in length (only a fraction
of the risk horizon of CPDOs) and in this period credit markets had not been
under serious stress. In hindsight this was a serious drawback since the 2007
credit crunch hit the markets quite suddenly and the following steep increase in
ITRAXX and CDX spreads caused heavy CPDO losses. The continued market
distress has forced many structures to unwind.

The methods used by rating agencies [5, 25, 23] to analyze CPDOs have
been based on high-dimensional models for co-movements of ratings and spreads
for all names in the reference portfolio. Defaults in the underlying index are
generated through a detailed modeling of rating migrations of the underlying
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names and the index spread is modeled as a stochastic process depending on
the average rating of the names in the index. This modeling approach leads to
hundreds of state variables and is not accessible to entities other than rating
agencies due to lack of historical data on ratings, not to mention the difficulty
of calibrating such models with thousands of parameters.

We argue that such a complex framework may not be necessary and may in
fact obscure the main risk factors influencing the CPDO strategy. We show that
the main risk and performance drivers can be parsimoniously modeled using a
top-down approach where the underlying credit portfolio is modeled in terms
of its aggregate default loss. We model the rate of occurrence of defaults in
the underlying index using a default intensity process, representing the rate of
default in the underlying index. This setting allows to study the key risk factors
associated with CPDOs, while keeping estimation and simulation of the model
at a simple level and enabling a meaningful sensitivity analysis. Our analysis
allows an independent assessment of the credit ratings assigned by agencies,
allows to compute default probabilities, loss distributions and other tail risk
measures for the CPDO strategy.

1.1 Summary of main findings

Besides illustrating the possibility of analyzing the risk of the CPDO strategy
using a parsimonious top-down model, our study also leads to several interesting
findings on the nature of this instrument:

∙ CPDOs are path-dependent spread derivatives. One of the insights
of our study is to show that the main risk of a CPDO is not default risk
but spread risk and interest rate risk: in fact, the worst case scenario for
the CPDO investor is observed to be a spread-widening scenario, even in
absence of defaults. Thus, a CPDO may be more appropriately viewed
as path-dependent derivative on the spread of underlying CDS index.

∙ Credit ratings are insufficient to characterize the risk of a CPDO:
the risk of a CPDO is not appropriately characterized by a ”credit rating”,
based on either expected loss or default probability.

∙ CPDO strategies lead to skewed loss distributions with consid-
erable tail risk. The simulated loss distribution generated by CPDO
strategies is observed to have a highly asymmetric shape, which is not
adequately characterized by a single statistic such as expected loss or the
default probability. Examining risk measures such as Expected Shortfall
(or Tail Conditional Expectation) leads to a different picture of the risk
of CPDOs than the one portrayed by credit ratings.

∙ CPDOs can achieve high ratings but at the price of higher ex-
posure to ”tail risk”: a CPDO strategy may be adjusted to achieve
a default probability lower than a given threshold but at the price of a
higher Expected Shortfall. In particular, credit ratings based on default
probability may be arbitrarily improved by ”pushing the risk far enough
into the tails”.
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∙ CPDOs are highly exposed to model uncertainty: ratings and risk
measures associated to the CPDO strategy are observed to have values
which are quite sensitive to model parameters, making it difficult to make
precise statements. This contrasts with the precision implied by some
agency ratings on such products.

1.2 Outline

The paper is organized as follows. Section 2 describes the CPDO strategy and
the cash flows involved. Risk factors influencing these cash flows are analyzed in
section 3 and based on this we setup a one factor top-down model for the default
intensity. We perform a simulation-based analysis of the performance of CPDOs
in section 4 by studying ratings and risk measures in different credit market
environments, by conducting a sensitivity analysis and evaluating transition
probabilities for ratings. Section 5 summarizes our results and discusses some
implications of our analysis.

2 The CPDO strategy

A CPDO is a dynamically leveraged credit trading strategy which aims at
generating high coupon payments (100–200 bps above LIBOR in the exam-
ples observed in the market) by selling default protection on a portfolio of
investment-grade obligors with low default probabilities. The idea is to gener-
ate such high coupons by taking a leveraged position in a credit (CDS) index
and dynamically adjusting this leveraged exposure as the value of the portfolio
changes.

2.1 Description

An investor in a CPDO provides initial capital (normalized to 1 in the sequel)
and receives periodic coupon payments of a contractual spread above the LI-
BOR rate until expiry T of the deal. The CPDO manager sells protection on
some credit index via index default swaps on the notional which is leveraged
up with respect to initial placement. The CPDO portfolio is composed of two
positions: a short term investment, such as a money market account, denoted
(At)0≤t≤T and a position in a T I -year index default swap (typically the 5-year
index default swap). The sum of the value of the swap contracts and the money
market account is denoted by (Vt)t∈[0,T ].

Initially, the notional paid by the investor, minus an eventual arrangement
fee (≃ 1%) is invested in the money market account: A0 = 0.99. The money
market account earns interest at the LIBOR rate: we denote L(t, s) the spot
LIBOR rate quoted at t for maturity s > t.

The investor receives coupons at dates CD = {tl ≤ T ∣ l = 1, 2, ...}. CPDO
coupons are paid out as a spread � over LIBOR

ctl = Δ(tl)
[
L(tl−1, tl) + �

]
,
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where Δ(t) = t − max{tl ∈ CD∣ tl < t} is the time elapsed since last coupon
payment date. The present value of these liabilities is called the target value:

TVt = B(t, T ) +
∑

tl∈CD∩[t,T ]

EQ
[
ctle
−

∫ tl
t rsds

∣∣ℱt] ,
where B(t, u) = EQ

[
e−

∫ u
t rsds ∣ℱt

]
is the discount factor associated with some

short rate process r and ℱt is the market information at time t. If Vt ≥ TVt
then the CPDO manager can meet her obligations by simply investing (part
of) the fund in the money market.

To be able to meet the coupon payments, the CPDO manager sells protec-
tion on a reference credit index (ITRAXX, CDX,...) by maintaining a position
in index default swaps on the investor’s notional that is leveraged by a factor
m (the leverage ratio). This position generates income for the CPDO by earn-
ing a periodic spread, denoted S(t, T I) for the spread observed at time t of a
swap expiring at time T I . We denote by Pt the present value of these spread
payments; i.e. Pt is equal to the present value of the premium leg of the index
default swap at time t.

If a name in the underlying index defaults, the CPDO manager incurs a loss,
which is magnified through leverage. We denote by DT = {�1 ≤ �2 ≤ ... ≤ �NI

}
the set of default times in the index: �i represents the date of the i-th default
event, N I denotes the number of names in the underlying index (N I = 250 for

a CPDO referencing the ITRAXX and CDX), and Nt =
∑NI

i=1 1{�i≤t} is the
number of defaults in the index up to time t.

The CPDO is said to cash in if the portfolio value reaches a value sufficient
to meet future liabilities, i.e. Vt ≥ TVt. In this event all swap contracts are
liquidated and the CPDO portfolio consists only of the money market account.

If, on the other hand, the value falls below a threshold k, Vt ≤ k (e.g.
k = 10% of the investor’s initial placement) the CPDO is said to cash out. In
this case the CPDO unwinds all its risky exposures, ends coupon payments and
returns the remaining funds to the investor.

A CPDO can default on its payments either by cashing out and thereby
defaulting on both remaining coupon payments and principal note, or by simply
failing to repay par to investor at maturity, in which case it defaults on its
principal note. Default clustering in the reference portfolio or sudden spread-
widening may result in a cash out event where the money market account is not
sufficient to settle the swap contracts. This loss is covered by the CPDO issuer
and the risk of such a scenario (known as “gap risk”) is reduced by setting the
cash out threshold strictly above zero.

Until expiry, a cash-in or a cash-out event occurs, the manager readjusts
the leveraged position in index default swaps using a rule described in the next
section.

2.2 Leverage rule

At initiation there is a shortfall between the net value Vt of assets and the target
value TVt: TV0 > V0. The target leverage mt is chosen such that the income
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generated by the swap, Pt compensates the shortfall:

mt = �
TVt − Vt

Pt
. (1)

� denotes a gearing factor that controls the aggressiveness of strategy.
The actual leverage is not adjusted continuously as this would involve sig-

nificant trading costs in practice. The underlying index rolls into a new series
every six months and it is therefore natural to update actual leverage

(
m̄i
)
i=1,2,..

to equal target leverage on index roll dates RD:

m̄i(t) = mt, for t ∈ RD =

{
Tj
∣∣Tj =

j

2
, j = 1, ..., 2T

}
,

where i(t) ∈ ℕ denotes the leverage factor index employed at time t. The
leverage factor is also adjusted if it differs more than " (usually " = 25%) from
target leverage:

m̄i(t) = mt, if m̄i(t)−1 /∈
[
(1− ")mt, (1 + ")mt

]
.

The set of these rebalancing dates (excluding roll dates) will be denoted RBD.
The actual leverage factor is automatically adjusted on default dates as the
number of names in the underlying index is reduced by one until next roll date:

m̄i(t) =
N I −Nt

N I −Nt−
m̄i(t)−1, for t ∈ DT.

The leverage factor is capped at a maximum level M in order to reduce the
overall possible loss (usually M = 15).

By this strategy, the leverage factor employed by a CPDO is piecewise
constant, hence the name “constant proportion” debt obligations. The leverage
adjustment rule leads to an increase in leverage if losses occur in the index, and
a decrease in leverage if the shortfall is reduced. It is therefore a “buy low, sell
high” strategy as opposed, for instance, to more popular CPPI strategies [10],
which lead to a ”buy high, sell low” strategy.

2.3 Cash flow structure

Spread income generated by the CPDO is determined by the average spread
on the swap contracts held. Contracted spread changes every time the CPDO
enters new swap contracts and is thereby a piecewise constant process denoted
(S̄i)i=1,2,.... Initially, contracted spread is equal to observed spread: S̄0 =
S(0, T I). On index roll dates existing swap contracts on the off-the-run index
are liquidated and new on-the-run contracts are entered, i.e.

S̄i(t) = S(t, t+ T I) for t ∈ RD.

At rebalancing dates on which the leverage factor is increased, the new contracts
entered contribute to the contracted spread. For t ∈ RBD

S̄i(t) =

{
S̄i(t)−1, m̄i(t) < m̄i(t)−1

wS̄i(t)−1 + (1− w)S
(
t, Tj(t) + T I

)
, m̄i(t) > m̄i(t)−1 ,
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where w = m̄i(t)−1

m̄i(t) is the relative weight of old contracts in the swap portfolio
after releveraging, and Tj(t) denotes the latest roll date prior to time t: j(t) :=
max{j ∣Tj < t, Tj ∈ RD}.

A change in the observed index default swap spread implies a change in the
mark-to-market value, denoted MtM , of the swap contracts. Mark-to-market
is the value of entering an offsetting swap with the same expiry and coupon
dates:

MtMt =
(
S̄i(t) − S(t, Tj(t) + T I)

)
Dswap
t ,

where

Dswap
t := EQ

⎡⎣ ∑
tl∈CD∩[t,T I ]

e−
∫ tl
t rsdsΔ(tl)

(
1− Ntl

N I

) ∣∣∣ℱt
⎤⎦

is the duration of the swap contract. The value of the CPDO portfolio is given
as the sum of the money market account and the value of swap contracts:
Vt = At +MtMt.

Liquidating (part of) the position in swap contracts leads to a profit or
loss which is balanced by the money market account. On roll dates the entire
position of swap contracts is liquidated and the profit/loss is

m̄i(t)
(
S̄i(t) − S(t, Tj(t) + T I)

)
Dswap
t , t ∈ RD.

Note that on roll date t ∈ RD the spread at which protection on the off-the-
run is bought back is S(t, t + T I − 1

2), whereas the spread of new on-the-run
contracts is S(t, t+ T I); new contracts have six months longer to expiry.

At rebalancing dates on which the leverage factor is decreased (t ∈ RBD∩
{mt < m̄i(t)−1}) a part of the swap contracts are liquidated giving the following
profit/loss to the money market account:(

m̄i(t)−1 −mt

)(
S̄i(t) − S(t, Tj(t) + T I)

)
Dswap
t .

In summary the cash flows of a CPDO can be decomposed into:

1. Interest payments t ∈ [0, T ]: At−ΔL(t − Δ, t)Δ, where Δ is time be-
tween interest payment dates.

2. Coupon payments tl ∈ CD: −ctl .

3. Spread income tl ∈ CD: m̄i(tl)S̄i(tl)Δ(tl) (assuming spread premiums
are paid on the same dates as CPDO coupons).

4. Default loss � ∈ DT: −m̄i(�) (1−R)
NI , where R is the recovery rate on a

single default event.

5. Liquidation of swap contracts:

m̄i(t)
(
S̄i(t) − S(t, Tj(t) + T I)

)
Dswap
t 1RD(t)

+
(
m̄i(t)−1 −mt

)(
S̄i(t) − S(t, Tj(t) + T I)

)
Dswap
t 1(RBD∩{mt<m̄i(t)−1})(t).
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Given that the value of the money market account and the CPDO portfolio is
known up to but not at time t, At and Vt can be calculated in the following
way:

At = At−Δ

(
1 + L(t−Δ, t)Δ

)
+
(
m̄i(t)S̄i(t)Δ(t)− ct

)
1CD(t) (2)

−mi(t) (1−R)

N I
1DT(t) + m̄i(t)

(
S̄i(t) − S(t, Tj(t) + T I)

)
Dswap
t 1RD(t)

+
(
m̄i(t)−1 −mt

)(
S̄i(t) − S(t, Tj(t) + T I)

)
Dswap
t 1(RBD∩{mt<m̄i(t)−1})(t)

Vt = At +MtMt. (3)

2.4 Risk factors

Based on the description above we can identify the following risk factors influ-
encing the cash flows of the CPDO strategy:

∙ Spread risk
The main determinant of the CPDO cash flows is the index default swap
spread. The leverage rule is designed such that, if the index spread were
constant, the CPDO would always cash in prior to expiry, given that
there are no defaults in the underlying portfolio. Therefore a stochastic
model for the swap spread is essential for capturing the spread risk of the
strategy.

An increase in the index spread increases the premium payments at each
payment date, but results in an immediate loss in market value of the
CPDO since the CPDO is selling protection on the index. This loss in
market value materializes as a cash flow on roll and rebalancing dates. A
sudden spread change will give rise to a single cash flow on roll dates, but
it will have long term effects on the spread income.

The index roll will typically result in a downward jump in the swap spread
since the downgraded names that are removed contribute with higher
spreads than the investment grade names they are replaced by. On average
this negative jump implies a mark-to-market loss on roll dates.

∙ Default risk
The default rate in the underlying portfolio determines the average num-
ber of defaults during the lifetime of the CPDO. A higher default rate is
negative for the CPDO performance due to higher expected credit losses.

The recovery level affects the size of credit losses incurred at default dates
although this is to some extent offset by its effect on the spread income,
since lower recovery level implies higher swap spread and thereby higher
spread premium income to the CPDO. Since recovery data is sparse a
constant recovery level R = 0.4 is chosen.

∙ Interest rates
The term structure of interest rates has two main effects on the cash flows.
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First, higher LIBOR rates imply higher coupon payments to the investor
but this effect will more or less be offset by the higher interest accruing
to the money market account. The interest rate also influences present
value calculations via the discount factor, for example when determining
the target value. The stochastic evolution of the interest rate can easily
be incorporated in our framework but in the remainder of the paper we
will focus on a constant term structure since the effect is of second order
with respect to the credit spreads and their volatility.

∙ Liquidity risk
The liquidity of the index default swaps also affects the cash flows via the
bid/ask spread of the index. Note however that most CPDOs reference
the most liquid indices, ITRAXX and DJ CDX. In the following we do
not explicitly model liquidity risk though this can be done by introducing
a bid/ask spread of the index at roll dates.

2.5 Rating of CPDOs

Credit ratings, issued by rating agencies, are routinely used as an indicative
scale of credit risk for bonds. It has become market practice to also assign
ratings to structured credit products. Such structured finance ratings are ex-
pressed using the same letter scale (AAA, AA, etc) as bonds and misleadingly
tend to imply that such structured products have a risk profile similar to cor-
porate bonds with identical ratings. As it will become clear from our discussion
below, this is far from being true in the case of CPDOs.

A CPDO is a structured product with leverage effects, and it is not straight-
forward -and not necessarily meaningful- to assign a credit rating to it. Ratings
have been assigned to CPDOs by major rating agencies by comparing the de-
fault probability or the expected loss of the structure to thresholds which are
typically adjusted versions of bond default probabilities [5, 25]. These ratings
follow similar procedures adopted for CDO tranches [9] and share many of their
drawbacks. As will become clear in the sequel, we do not condone the use of
such ‘ratings’ as an appropriate metric for the risk of a complex product such as
a CPDO. However, given their widespread use, we will compute sample ratings
in various examples and examine their properties in the case of CPDOs.

Separate ratings are assigned to the coupons and the principal note of a
CPDO. In the sequel we will focus on the approach based on default probabil-
ities.

The rating on the coupon note is based on the probability of the CPDO
cashing out. This probability can be found by Monte Carlo simulations and
is translated into a rating according to the rating thresholds, an example of
which is given in table 1. Both cash out scenarios and scenarios in which the
CPDO survives until expiry but is unable to repay par in full will result in
default on principal note and the probability of this is likewise found by Monte
Carlo simulations. Thresholds in table 1 are used to translate the probability
of default on principal into a rating.

Major rating agencies [5, 25, 23] have analyzed CPDOs using high-dimensional
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% AAA AA+ AA AA- A+ A A-

10 year PD 0.73 1.01 1.49 1.88 2.29 2.72 3.56

BBB+ BBB BBB- BB+ BB BB- B+

10 year PD 4.78 7.10 12.31 14.63 19.94 26.18 32.76

Table 1: Standard & Poor’s CDO rating thresholds in terms of default probabilities. Source:

[19].

models for co-movements of ratings and spreads for all names in the reference
portfolio. In such models the defaults in the underlying index are generated
through a detailed modeling of rating migrations of the underlying names, and
the index spread is modeled as a stochastic process depending on the average
rating of names in the index. Such detailed joint modeling of rating and spread
movements is not accessible to entities other than rating agencies due to lack
of historical data on ratings. We will argue below that in fact such a complex
framework may not be necessary: the main features of CPDOs can be captured
with a low-dimensional model, which can be more readily estimated, simulated
and analyzed.

3 Top-down modeling of CPDOs

The above considerations show that the risk and performance of a CPDO strat-
egy mainly depend on

∙ the behaviour of the index default swap spread

∙ the number of defaults/the total loss in the reference portfolio

∙ index roll effects

CPDO cashflows do not depend directly on features such as individual name
ratings, the identity of the defaulting entities, the spreads of individual names,
etc. This suggests that the risk of CPDOs can be parsimoniously modeled by
describing defaults at the portfolio level using a top-down model.

We consider an arbitrage-free market model represented by a filtered prob-
ability space (Ω,ℱ ,F, P ), where P denotes the real-world probability of mar-
ket scenarios (statistical measure). We consider as numeraire the zero-coupon
bond B(t, T ) and denote by Q ∼ P the forward measure associated with this
numeraire [15]. The spot yield curve s 7→ R(t, s) at date t is defined by

B(t, s) = exp[−(s− t)R(t, s)],

and the LIBOR rates at date t are given by L(t, s) =
1

B(t,s)
−1

s−t . In the examples

we shall use a flat term structure B(t, s) = e−r(s−t) but this is by no means
necessary.

Denote by Nt the number of defaults in the underlying portfolio up to time
t ≤ T ; (Nt)t∈[0,T ] is a point process. As we shall see below, we need to model the
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dynamics of Nt under P and Q. The dynamics will be described by specifying
an intensity for Nt under each probability measure.

The T I -year index default swap spread is determined such that the risk-
neutral expected value of the default leg of the swap is equal to the expected
value of the premium leg. Denote by (Lt)t∈[0,T ] the loss process. Assuming
a constant recovery level R across all names in the underlying index, we have

Lt = (1−R)
NI Nt. The default leg of the index default swap is a stream of payments

that cover the portfolio losses as they occur. At time t ≤ T I the cumulative
discounted losses are given by

Dt = EQ

[∫ T I

t

B(t, s)dLs

∣∣∣ℱt]

= B(t, T I)EQ [LT I ∣ℱt]− Lt −
∫ T I

t

−R(t,s)B(t,s)︷ ︸︸ ︷
∂

∂s
B(t, s) EQ [Ls∣ℱt] ds

=
(1−R)

N I

(
B(t, T I)EQ [NT I ∣ℱt]−Nt +

∫ T I

t

R(t, s)B(t, s)EQ [Ns∣ℱt] ds

)
.

The value of the premium leg at time t as a function of the index default swap
spread S is

Pt(S) = S
∑

tl∈CD∩[t,T I ]

B(t, tl)Δ(tl)

(
1−

EQ
[
Ntl ∣ℱt

]
N I

)
= S Dswap

t .

Finally, the swap spread contracted at time t for a swap expiring at T I is

S(t, T I) =

(1−R)
NI

(
B(t, T I)EQ [NT I ∣ℱt]−Nt +

∫ T I

t
R(t, s)B(t, s)EQ [Ns∣ℱt] ds

)
Dswap
t

. (4)

3.1 Modeling default risk

The main ingredient to the model is the dynamics of the number of defaults
Nt. We propose here to use a reduced-form approach for modeling Nt: the
occurrence of defaults is specified via the aggregate default intensity, (�t)t∈[0,T ],
defined as the conditional probability per unit time of a default in the port-
folio. This intensity-based approach has been used in the recent literature to
model portfolio credit risk [8, 17]. A special case is the Cox process frame-
work: conditionally on some underlying market factor (Xt)t∈[0,T ], Nt follows an
inhomogeneous Poisson process with intensity (�(Xt))t∈[0,T ].

The choice of dynamics for the risk-neutral default intensity determines
the slope of the term structure of credit spreads. This influences the CPDO
performance via the profit/loss from liquidation of swap contracts on roll dates,
since at these dates the CPDO manager buys back protection of a (T I − 1

2)-
tenor swap, protection that was initially sold with a T I -year tenor. An upward
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(downward) sloping term structure will on average imply a profit (loss) on roll
dates. Empirically, we typically observe an upward sloping term structure.

It is crucial to be able to compute the default swap spread in an efficient
manner in the simulations and cash flow computations. As noted above, the
expression for the swap spread requires computation of the expected number
of defaults and/or the survival probabilities efficiently. These computations,
especially the computation of the T I -year swap spread, will be made tractable
by choosing affine processes for the default intensity under Q.

Under an equivalent probability measure P ∼ Q, the point process Nt will
in general have a different intensity process [4, Theorem VI.2.] of the form
�Qt = #t�

P
t , where # is a strictly positive predictable process which characterizes

the risk premium for the uncertainty associated with the timing of defaults. For
simplicity, we assume that the statistical default intensity is proportional to the
risk neutral intensity: �Pt = 1

#�
Q
t where # is the risk premium.

3.2 Default intensity

We model the default events via the default intensity �t, defined as the ℱt-
intensity of the default process Nt, where ℱt designates the market history up
to t, including observations of past defaults. Intuitively, the default intensity
�t is the conditional probability per unit time of the next default event, given
past market history:

�t = lim
Δt→0

1

Δt
P
(
Nt+Δt = Nt− + 1∣ℱt

)
.

This naturally leads to a default intensity which jumps at default dates. Thereby
the default process becomes self-affecting in that one default may have spill-over
effects on other names and trigger a cluster of defaults.

Example 3.1 (Markovian defaults) A simple way to model the impact of
past defaults on the default rate is to model the default intensity as a function
of the total number of defaults:

�t = f(t,Nt).

This leads to a Markov process for Nt which is easy to simulate and in which
loss distributions and other quantities may be computed by solving a system of
linear ordinary differential equations. [8] show that the intensity function f
implied from market prices of CDO tranches exhibit a strong, non-monotone,
dependence of the default intensity on the number of defaults. However this
model is too simple for our purpose since it leads to piecewise-deterministic
spread dynamics between default dates, whereas the CPDO is sensitive to spread
volatility.

Closed-form expressions for the swap spread may be readily obtained by
assuming that the risk neutral default intensity (�Qt ) is an affine jump-diffusion:

d�Qt = �(�Qt )dt+ �(�Qt )dWt + �dZt, (5)
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where the coefficients �(⋅), �2(⋅) and the intensity of the jump process Z are
affine functions of �Qt . Transform methods can be applied to give an explicit
expression for the swap spread as done in [14]. To compute EQ[Ns∣ℱt] for
s ∈]t, T I ] consider the 2-dimensional process Yt = (�Qt , Nt)

′. Y is of the general
affine form (5) and the drift function can be written K0 + K1Yt, the volatility
H0 +H1Yt and the jump intensity of the 2-dimensional jump process Λ0 +Λ1Yt.
Define the Laplace transform � : ℂ2 → ℂ of � by

�(c) =

∫
ℝ2

ec⋅zd�(z).

In affine models [13] the conditional expectation of the number of defaults can
be expressed as an affine function of the state variable

EQ[Ns∣ℱt] = A(t) +B(t)Yt. (6)

for v = (0 1)′. A : [0, s] → ℝ and B : [0, s] → ℝ2 are determined by the
following differential equations

∂tB(t) = −K ′1B(t)− Λ1∇�(0) ⋅ �B(t) (7)

∂tA(t) = −K0 ⋅B(t)− Λ0∇�(0) ⋅ �B(t) (8)

with terminal conditions A(s) = 0 and B(s) = v and where ∇� denotes the
gradient of �. These expressions can in turn be used to compute (6). In special
cases (7)–(8) can be solved analytically, providing an analytic expression for
EQ[Ns∣ℱt] and thereby for the swap spread.

Example 3.2 (Self-exciting defaults) An example of a self-exciting default
process is given by the model of [17] where the default intensity jumps up by
a magnitude proportional to the loss at defaults and follows a diffusive process
between default times. The intensity process is given by

d�Qt = �
(
� − �Qt

)
dt+ �

√
�Qt dWt + �dLt, �Q0 > 0 (9)

where L denotes the loss process. The intensity of the default counting process
N is thus updated at each default and undergoes a jump. Since this default
intensity follows a CIR-process (13) between defaults, 2�� ≥ �2 is required to
ensure �Qt > 0 almost surely.

Between default events the intensity reverts back to its long term level �
exponentially in mean at a rate � ≥ 0 with diffusive fluctuations driven by
a Brownian motion. The default counting process N is self-exciting because
the intensity of Nt increases at each default event. This property captures the
feedback effects (contagion) of defaults observed in the credit market.

The process (9) belongs to the class of affine processes, where the expected
number of defaults is given in closed form: For B(t) = (B1(t), B2(t))′, B2(t) =
1, where

B1(t) = − 1

�+ �
(

1−R
NI

) (e−(�+�( 1−R

NI ))(T I−t) − 1
)

(10)

A(t) =
��(

�+ �
(

1−R
NI

))2 (e−(�+�( 1−R

NI ))(T I−t) − 1
)

+
��

�+ �
(

1−R
NI

) (T I − t),(11)
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we have EQ[NT I ∣Gt] = A(t) +B1(t)�Qt +Nt, which gives an analytic expression
for the T I-year swap spread.

⋄

3.3 Cox process framework

A special class of default intensity models is where the default counting process
N is specified as a Cox process [21]. Let X be a Markov process on a probability
space (Ω,ℱ ,F, P ) designating a risk factor and define Gt = �{Xs∣s ≤ t}. We
model the default intensity by �t := �(Xt) where � : ℝn → ℝ+ is a non-negative
function. Assume that

Λt :=

∫ t

0
�sds <∞ almost surely t ∈ [0, T ].

Let Ñ be a standard unit rate Poisson process independent of Gt. A Cox process
N with intensity (�t) can be constructed as Nt := ÑΛt . It is straightforward
to check that Nt−

∫ t
0 �sds is a ℱt-martingale and thereby (�t) is a ℱt-intensity

for Nt. Default times can then be simulated/generated successively as

�i = inf

{
t > �i−1

∣∣ ∫ t

�i−1

�sds ≥ Ei

}
, (12)

where (Ei)i=1,..,NI is a sequence of independent, identically distributed standard
exponential random variables.

The main advantage of specifying the default intensity as a Cox process is
the simple method for generating default events as given (12). One restriction,
though, implied by Cox specification is that the default intensity process is not
affected by the occurrence of default events. This leads to an underestimation
of default clustering effects [11] due to the fact that in the Cox framework the
hazard rate �t depends only on the history of the factor process X but not on
the default itself.

Example 3.3 (A Cox process with CIR hazard rate) Let the risk-neutral
hazard rate (i.e. under Q) be defined by the CIR dynamics:

d�Qt = �
(
� − �Qt

)
dt+ �

√
�Qt dWt, �Q0 > 0. (13)

This model leads to a mean-reverting and non-negative short term spread if
2�� ≥ �2. This is a special case of Example 3.2 with � = 0 and here (10)–(11)
reduce to

B1(t) = −1

�

(
e−�(T I−t) − 1

)
A(t) =

∫ T I

t
��B1(s)ds =

�

�

(
e−�(T I−t) − 1

)
+ �(T I − t).

⋄
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Another choice of hazard rate is the exponential OU process:

Example 3.4 (Exponential Ornstein-Uhlenbeck process) In this model
the hazard rate is assumed to follow

d�Qt

�Qt
= �

(
� − ln�Qt

)
dt+ �dWt. (14)

This process is mean-reverting and non-negative, which are desirable qualities
for a hazard rate process, it has a log-normal distribution and is stationary for
long time horizons. The exponential OU process produces heavier tails in the
distribution of the default intensity than the CIR model, for which increments
follow a �2-distribution. The process (14) is not affine and the index default
swap spread needs to be computed via quadrature.

⋄

3.4 Modeling the index roll

When modeling the default intensity of the underlying index, it is crucial to
take the semi–annual rolling of the index into account: the replacement of down-
graded names results in a negative jump in the default intensity and thereby
also in the swap spread on average implying a loss when liquidating swap con-
tracts. In the long run, rolling the index also has a positive effect as the portfolio
default risk and thereby the portfolio loss is lowered.
We consider two possible approaches for modeling the roll over effect.

The simplest model is to include a constant proportional jump size in the
default intensity on each roll date. However, empirical observations show vari-
ation in the jump sizes, so extending this setup to allow for two possible jump
sizes ℎ1, ℎ2 ∈ [0, 1], not necessarily taken with equal probability, is more realis-
tic.

To model in more detail the index roll, we assume that the index is homo-
geneous, such that all individual name default intensities (Λ1, ...,ΛN

I
) are inde-

pendent with identical distribution denoted F . For a given roll date Tj ∈ RD

let (Λ̄1
Tj
, ..., Λ̄N

I

Tj
) be a realization of N I independent F distributed variables.

Rolling the index corresponds to removing a number of the highest realiza-
tions and replacing these by new independent draws from the F distribution.
The roll over effect is then given as the difference between the average intensity
before and after the roll. This setup requires an assessment of the average num-
ber of names removed on each roll date and of the individual default intensity
distribution.

Assuming that the term structure is upward sloping, the effect from rolling
down the credit curve will counteract the effect from rolling over the index.
Empirically these two effects are more or less observed to offset each other. In
the following, the first mentioned approach for modeling the roll over effect will
be taken, and the jump sizes {ℎ1, ℎ2} are chosen such as on average to cancel
the roll down effect implied by the dynamics of the default intensity. Note that,
the proportional jump in the default intensity does not affect the calculation of
the index spread, since this references the current index, not the rolling index.
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4 Performance and risk analysis

We analyze the performance of the CPDO strategy by Monte Carlo simulations.
The aim is not only to assess the rating based on the default and cash out
probabilities but also to study other risk measures such as the loss distribution
and the expected shortfall. Further, we wish to identify key parameters and
study the dependence of the CPDO performance on these parameters.

4.1 Simulation results

We model the risk neutral intensity �Qt by a CIR process with jumps at default
events (9) given in example 3.2. We will study the performance of CPDOs in
two credit market configurations. The first corresponds to the historical credit
environment during the period 2004–2007 and is based on the study of [1], who
estimate the parameters in (9) using data for the spread of the CDX index. Since
the CPDO considered here is written on both ITRAXX and CDX, we multiply
the estimated default intensity of [1] by two, thereby implicitly assuming that
the spread of ITRAXX has properties similar to CDX. This leads to a risk
neutral intensity specified by the parameters

� = �Q0 = 1.7 � = 0.35 � = 0.75
√

2 = 1.061 and � = 0.8.

[1] find that the risk premium #t =
�Qt
�Pt

for correlated default risk may fluctuate

widely, typically in the range 10–30. However, # increased to much higher
levels during the market turmoil in late 2007 and was very close to zero during
the benign credit environment in 2005–2006. Yet, to maintain a parsimonious
model, we assume a constant risk premium at # = 20. Let r = 0.05 and R = 0.4.
For the roll over effect, we choose a fairly low relative jump size ℎ1 = 0.05 in
most scenarios (95%) and occasional (5%) large downward jumps of ℎ2 = 0.2
on roll dates.

We simulate the path of the risk neutral intensity piecewise between arrivals
of default events according an Euler discretization scheme as the i’th inter-
arrival intensity follows a CIR-process started at �Q�i−1 . The next default event
�i is generated according to (12), and since the loss process L jumps at the
default event, so does the intensity: �Q�i = �Q�i−(1 + � 1−R

NI ). After the jump, the
default intensity again follows a CIR-process. Every six months we introduce a
negative, proportional jump in the default intensity on index roll dates:

�Qt = �Qt−(1− pℎ1 − (1− p)ℎ2) for t ∈ RD,

where p is drawn from a Bernoulli distribution with success probability 0.95 and
ℎ1, ℎ2 are the two possible jump sizes. Then, with the simulated a path for the
risk neutral intensity we can calculate the index spread (4) using (6) and (10)–
(11). The parameter choice in the historical credit environment corresponds to
a spread level around 47 bp and on average 0.7 defaults over the 10 year lifetime
of the CPDO.

We examine the case of a CPDO contract paying coupons of 200bp above
LIBOR employing a maximum leverage of M = 15, " = 0.25 and cash out
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threshold k = 0.1. The aggressiveness of the target leverage rule (1) is deter-
mined by the gearing factor � = 1.7.

Based on 10 000 simulation runs we find the probability of the CPDO de-
faulting to be 1.8%. According to Standard & Poor’s default probability thresh-
olds given in table 1, this will earn the CPDO principal note a A+ rating. The
probability of the CPDO cashing out and thereby defaulting on both coupons
and principal note is 0.04% which gives the coupon payments a AAA rating.
The expected loss conditional on default occurring, LGD, is 3.5% of notional.

Another useful risk measure is the expected shortfall defined at a given level
� by

ES� = E
[
L∣L > V aR�

]
for V aR� = inf

{
l ∣P (L > l) < 1− �

}
,

where L denotes the loss of the CPDO. In this credit environment we find
ES0.99 = 6.0% of note notional. That is, in the worst 1% of the scenarios,
the investor expects to recover more than 90% of the initial investment. If not
defaulting the CPDO cashes in after 5.1 years on average. Results are given in
table 2.

Market PD Cash Out Rating LGD ES99 Cash In E[NT ]
(%) (%) – (%) (%) (years) –

Historical 1.8 0.04 A+ 3.5 6.0 5.1 0.69

Stressed 1.2 0.10 AA 9.0 10.5 5.0 1.4

Table 2: Summary of results.

Figure 1 illustrates a typical scenario in the historical credit market. The
top left graph shows the portfolio default intensity �P , at the top right is the
on-the-run index default swap spread S(t, T I) versus the piecewise constant
contracted spread (S̄t), at the bottom left is the target (mt) and actual (m̄t)
leverage factors and in the bottom right is the evolution of the CPDO portfolio
value (Vt). Note that the spread widening during the years 2–4 and the implied
mark-to-market losses result in decreasing CPDO portfolio value. However, the
consecutive spread tightening allows the CPDO to cash in after approximately
7 years.

During most of the estimation period 2004–2007 up to the summer of 2007
index spreads were very tight, but increased during the second half of 2007. In
2008 the index spreads increased dramatically. Therefore, we study the CPDO
performance in a second market configuration corresponding to a more stressed
market environment with higher spread levels. If doubling the risk neutral
intensity by employing the parameters

� = �Q0 = 3.4 � = 0.35 � = 1.5 and � = 1.6,

while leaving the risk premium # unchanged, the average index default swap
spread is around 95bp and on average 1.4 obligors default over a 10 year period.
In a stressed market environment, the maximum allowed leverage is likely to
be reduced, so here we set M = 10. The remaining input parameters are left
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Figure 1: Historical credit market scenario. Top left: Portfolio default intensity �P . Top

right: On-the-run index default swap spread S(t, T I) (black line) versus the contracted spread

(S̄t) (red line). Bottom left: Target (mt) (black line) and actual leverage factor (m̄t) (red

line). Bottom right: CPDO portfolio value (Vt) (red line) compared to the target value (black

line).

unchanged. The probability of the CPDO defaulting is 1.2% corresponding to
an AA rating, and the cash out probability is 0.10%, which gives the coupons a
AAA rating. The expected shortfall is 10.5% of note notional and almost twice
as high as the tail loss in the historical credit market. Like in the historical
market setting, the CPDO cashes in after 5 years on average.

Figure 2 shows the default intensity, index spread, leverage factors and
CPDO portfolio value in a typical scenario in the stressed credit environment.
Here, an early spread tightening from 180 bp to 60 bp and the implied mark-
to-market gain causes the CPDO to cash in after approximately five years.

4.2 Sensitivity analysis

To assess the various parameters’ impact on the CPDO performance we carry
out a sensitivity analysis of the dependence of risk measures on model parame-
ters. Simulation results from the two market configurations are found in tables
3–4. Ratings in the tables refer to the principal note and are given according
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Figure 2: Stressed credit market scenario. Top left: Portfolio default intensity �P . Top right:

On-the-run index default swap spread S(t, T I) (black line) versus the contracted spread (S̄t)

(red line). Bottom left: Target (mt) (black line) and actual leverage factor (m̄t) (red line).

Bottom right: CPDO portfolio value (Vt) (red line) compared to the target value (black line).

to the CDO default matrix of Standard & Poor’s [19] given in 1. The main
findings are summarized below.

Default intensity
The default risk premium # has a significant influence on the CPDO perfor-
mance, since # determines the average level of spread income relative to the
credit losses incurred. Halving the risk premium from # = 20 to # = 10 dou-
bles the average number of credit events and results in a higher CPDO default
probability. The dependence of the CPDO performance on the risk premium
is illustrated in figure 3 showing the probability of default and expected 99%
shortfall in the historical credit market as a function of the risk premium #
based on 10 000 simulations. Not surprisingly, we see downward sloping curves
in both cases.

While the average number of defaults in the underlying portfolio have some
effect on the CPDO performance, the risk of mark-to-market losses from spread
widening is more important. One default causes a reduction of portfolio value
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Figure 3: Left: Dependence of CPDO default rate on risk premium #. Right: Dependence

of CPDO expected 99% shortfall on risk premium #.

(if leveraged up to 15x) of 3.6%, whereas a 15bp spread widening causes almost
10% reduction of the portfolio value. In our model, the main determinant of
possible spread widenings is the mean reversion parameter �. With a higher
mean reversion speed the index spread fluctuates more tightly around its long
term mean level which reduces the mark-to-market losses. Therefore a higher �
reduces the probability of default and leads to a lower expected shortfall. This
dependence is investigated in figure 4, where the default rate and expected
99% shortfall as a function of the mean reversion speed � are shown. The
minimum level of � is restricted by the condition 2�� ≥ �2 ensuring that the
CIR-process is positive. Notice that the estimates found by [1] only just satisfy
this inequality, so there is little room for reducing � further in this analysis.
We see an improved performance for increasing values of �, both with respect
to the CPDO default rate and the expected 99% shortfall.

The parameter underlying the intensity process affecting the CPDO per-
formance the most is the long term mean �: the higher level of spread income
implied by a higher value of � more than compensates for the increase in credit
losses which is also an implication of increasing �. However, increasing � also
implies a higher probability of the CPDO cashing out and thereby a higher
expected shortfall. This is most clearly seen when comparing the historical
and stressed credit markets. Also notice, that if the CPDO is issued during a
period, where the default intensity is below its long term mean – i.e. if �Q0 < �
– then the spread is likely to widen initially, which results in mark-to-market
losses. This we see has a large effect on the default and cash out probabilities.
The effect of an initial spread tightening (�Q0 > �) is less dramatic.

The volatility of the default intensity affecting the volatility of the spread is
less important, but we do see that a higher volatility is harmful for the CPDO
performance both when it comes to the probabilities of default and cash out as
well as the expected shortfall. The reason is that higher volatility leads to more
extreme scenarios, which for a CPDO with no upside potential means more

21



0.35 0.40 0.45 0.50

1.45
1.50

1.55
1.60

1.65
1.70

1.75

Probability of default

Mean reversion speed

%

0.35 0.40 0.45 0.50

2
3

4
5

Expected 99% shortfall

Mean reversion speed

% o
f no

tion
al

Figure 4: Left: Dependence of CPDO default rate on mean reversion speed �. Right:

Dependence of CPDO expected 99% shortfall on mean reversion speed �.

extreme loss scenarios and a higher probability of cashing out. Also in this
case, the condition 2�� ≥ �2 restricts the analysis of high levels of volatility.

The feedback effect of defaults on the default intensity given in terms of the
jump parameter � does not have a clear effect on the CPDO default rate and
cash out probability. Since only few defaults happen over the 10 year lifetime
of the CPDO, � is of minor importance for the performance. Note that, in the
case � = 0 we recover the CIR-intensity from example 3.3.

We find that the magnitude of the negative jumps in the spread at index
roll dates affects the performance significantly: without jumps at roll dates the
CPDO performance would improve.

Recovery rate
The level of recovery R upon default in the underlying portfolio affects the
outcomes in two ways. First, a higher recovery will increase the CPDO default
probability because a higher recovery implies a lower index default swap spread.
On the contrary, a high recovery rate will lead to fewer cash out events and
lower losses given default.

Interest rates
The level of interest rates is inversely related to the probabilities of default and
cash-out: a lower interest rate implies higher probabilities and higher tail losses,
which may rise to dramatic levels for very low interest rates. The reason is that
a fall in interest rates will result in a higher target value and lead the CPDO
strategy to become more aggressive and increase leverage to meet this higher
target, thereby increasing its exposure to spread risk. The average cash-in time
is also increased as a consequence of lower interest rates.
Leverage strategy
The parameters governing the leverage strategy are key when studying the
CPDO performance. Increasing the maximum leverage M will result in lower
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default rates at the cost of higher losses. This is exactly the reason for capping
the leverage factor, namely to reduce the overall possible loss.

The aggressiveness of the strategy, as described by the gearing factor �,
enables to obtain a wide range of CPDO default rates, expected shortfall levels
and cash out probabilities. As shown in Figure 6, a low gearing factor reduces
the expected shortfall at the cost of higher default probability and vice versa.
This is illustrated in figure 5 for both the historical and stressed markets. An-
other way to view this result is to say that the CPDO manager may attain lower
and lower values of default probability but at the price of increasing Expected
Shortfall i.e. higher tail risk: thus, if a credit rating based on default probability
is the only metric used to assess the strategy, one can always achieve a AAA
rating by ”pushing the risk far enough into the tails”.

A more aggressive strategy also reduces the average cash-in time. Some
versions of the CPDO strategy employ in fact a time dependent gearing factor.
Alternatively, the risky duration of the liabilities of the CPDO could be used
when calculating target leverage instead of the duration of assets. This would
result in a less aggressive strategy the first couple of years, but in case the
CPDO has not cashed in closer to maturity, the strategy subsequently becomes
more aggressive.

If we increase the level of the cash out threshold, k, the default and cash
out probabilities as well as the expected shortfall will increase. This happens
because a higher cash out threshold eliminates the chance of (partial) recovery
the CPDO would have had with a lower k.

Employing a simplified version of the leverage strategy according to which
leverage is adjusted only on roll dates lowers the probability of default at the cost
of higher tail losses. The reason is that as long as a scenario evolves favourable,
i.e. as long as the difference between target and portfolio value is reduced, this
simple leverage strategy operates more aggressively because it reduces leverage
more rarely than the regular strategy. However, a more aggressive strategy
also means higher exposure if spreads suddenly increase and leads to heavier
mark-to-market losses.
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Figure 5: Top: CPDO default rate versus gearing factor �. Bottom: expected
shortfall at 99% level versus gearing factor �. The blue curve corresponds to
the historical market environment and the red curve to a stressed market.

4.3 CPDO loss distribution

Being a leveraged instrument sensitive to spread risk, a CPDO may generate
a loss distribution with highly asymmetric features and using simple statistics
such as expected loss may not adequately summarize its risk profile. An example
of such a loss distribution is shown in Figure 7 for a stressed credit environment.
We see that in most of the default scenarios, only small losses of 0-20% of note
notional are incurred. In these cases the CPDO is typically not under distress
toward expiry but the employed leverage strategy is not aggressive enough to
allow a cash in prior to expiry. The right tail of the loss distribution corresponds
to cases where the CPDO cashes out or is very close to cashing out.
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Figure 6: CPDO default rate versus 99% Expected Shortfall, for different gear-
ing factors �. Top: historical environment (pre 2007). Bottom: stressed market
environment; note the considerably higher tail risk in the stressed environment.
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Historical PD Cash Out Rating LGD ES99 sd(LGD) Cash In S0 E[NT ]
market (%) (%) – (%) (%) – (years) (bp) –

standard 1.75 0.04 A+ 3.5 6.0 13.2 5.1 47.0 0.69
simple 0.28 0.04 AAA 15.6 15.6 29.7 2.8 47.0 0.68

1% adm. fee 2.06 0.06 A+ 3.7 7.2 12.8 5.2 47.0 0.68
� = 0.015 0.93 0.02 AA+ 3.6 3.6 12.7 4.6 47.0 0.67
� = 0.025 2.97 0.01 A- 2.1 4.9 5.6 5.7 47.0 0.68

# = 10 2.60 0.03 A 3.0 7.0 10.3 5.2 47.0 1.39
# = 30 1.95 0.07 A+ 4.6 8.7 16.5 5.1 47.0 0.47
� = 1.0 1.82 0.04 A+ 3.4 5.9 13.2 5.3 47.0 0.70
� = 1.09 1.90 0.05 AA- 3.9 7.2 14.4 5.1 47.0 0.69

� = �Q
0 = 1.61 1.74 0.03 AA- 3.3 5.5 11.8 5.1 44.4 0.64

� = �Q
0 = 2.0 1.48 0.01 AA 1.7 2.4 7.1 5.3 55.4 0.80

�Q
0 = 1.0 3.27 0.09 A- 4.06 12.0 14.3 5.7 37.7 0.62

�Q
0 = 2.5 1.04 0.05 AA 5.7 5.9 19.4 4.8 57.7 0.78

� = 0.335 1.94 0.06 A+ 3.9 7.4 15.0 5.0 47.0 0.69
� = 0.5 1.36 0 AA 0.9 1.2 1.2 6.0 47.0 0.72
� = 0 1.71 0.02 AA- 2.7 4.4 9.9 5.1 47.1 0.67
� = 1.5 1.86 0.06 AA- 4.3 7.6 15.5 5.1 46.8 0.69
R = 0.2 1.69 0.12 AA- 7.7 12.7 22.5 5.1 62.5 0.67
R = 0.6 2.87 0 A- 1.7 3.9 3.0 5.6 31.3 0.69
r = 0.01 32.2 0.13 B+ 1.1 18.0 5.9 8.0 42.4 0.70
r = 0.1 0.06 0.01 AAA 15.1 15.1 34.7 3.4 53.1 0.69

ℎ1 = 0, ℎ2 = 0 0.92 0 AA+ 1.0 1.0 1.3 4.9 47.0 0.85
ℎ1 = 0.3, ℎ2 = 0.02 1.56 0.04 AA- 3.8 5.8 14.5 5.0 47.0 0.76

M = 10 2.90 0 A- 1.6 3.6 3.1 5.6 47.0 0.70
M = 20 1.83 0.11 AA- 6.8 12.2 21.1 5.1 47.0 0.68
� = 1.5 5.49 0.01 BBB 1.4 4.9 4.2 6.1 47.0 0.69
� = 2 0.47 0.04 AAA 9.4 9.4 24.4 4.1 47.0 0.69
k = 0.2 1.84 0.09 AA- 5.0 9.0 15.9 5.2 47.0 0.68

Table 3: Sensitivity analysis: Historical market setting. The standard parameters are � =

�Q
0 = 1.7, � = 0.35, � = 1.061, � = 0.8 and # = 20. The CPDO pays a 200bp spread, has

gearing factor � = 1.7 and maximum leverage of M = 15. Note that it is not possible to

vary the parameters freely in the sensitivity analysis, since the condition 2�� ≥ �2 should be

fulfilled in a CIR model.

4.4 Scenario analysis

The model allows to determine market scenarios that are most harmful for the
CPDO performance by studying scenarios in the historical credit market in
which the CPDO cashes out. An example of such a scenario is given in figure
8. In this case a more than 100bp spread widening between year 3 and 5 and
two defaults between year 3.5 and 4 cause the portfolio value to drop to 10%
of notional and the CPDO cashes out at year 4.7.

In general, the main reason causing a CPDO to cash out is continued spread
widening. The average cash out time in this credit environment, given that there
is a cash out event, is 3.7 years. Since the default intensity is mean reverting,
a significant spread widening will at some point be followed by a similar spread
tightening, as is also the case in figure 8. If the CPDO survives the period of
spread widening it will benefit from the consecutive spread tightening and may
thereby regain a large part of the lost capital.
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Stressed PD Cash Out Rating LGD ES99 sd(LGD) Cash In S0 E[NT ]
market (%) (%) – (%) (%) – (years) (bp) –

standard 1.17 0.10 AA 9.0 10.5 24.8 5.0 95.3 1.38
simple 0.16 0.06 AAA 33.8 33.8 42.7 2.6 95.3 1.37

1% adm. fee 1.24 0.09 AA 7.7 9.5 23.2 5.1 95.3 1.39
� = 0.015 0.72 0.06 AAA 8.8 8.8 24.8 4.6 95.3 1.4
� = 0.025 1.99 0.31 A+ 15.0 29.5 31.9 5.3 95.3 1.34

# = 10 1.75 0.08 AA- 5.4 9.2 18.3 5.0 95.3 2.75
# = 30 1.12 0.13 AA 11.5 12.5 28.5 4.9 95.3 0.92
� = 1.4 1.27 0.06 AA 5.0 6.3 18.5 5.1 95.3 1.39
� = 1.54 1.24 0.20 AA 15.3 18.9 32.4 4.9 95.3 1.39

� = �Q
0 = 3.22 1.15 0.09 AA 8.2 9.4 23.8 4.9 90.1 1.31

� = �Q
0 = 4.0 0.91 0.03 AA+ 3.8 3.8 15.4 5.1 112.8 1.60

�Q
0 = 2.0 1.76 0.13 AA- 7.8 13.5 22.8 5.5 76.1 1.21

�Q
0 = 4.5 0.73 0.05 AAA 7.1 7.1 22.1 4.7 110.6 1.49

� = 0.335 1.27 0.10 AA 8.1 10.2 23.6 4.9 95.3 1.37
� = 0.5 0.62 0 AAA 0.8 0.8 1.5 5.8 95.4 1.43
� = 0 1.32 0.12 AA 9.2 12.1 25.2 4.9 95.8 1.39
� = 2.5 1.28 0.08 AA 6.7 8.6 21.4 5.0 95.0 1.38
R = 0.2 1.19 0.11 AA 9.6 11.4 26.2 5.0 126.8 1.38
R = 0.6 1.25 0.01 AA 2.2 2.8 8.1 5.0 63.6 1.39
r = 0.01 24.5 0.22 BB- 1.4 25.2 8.7 7.8 86.1 1.38
r = 0.1 0.06 0.02 AAA 30.8 30.8 41.3 3.3 107.6 1.37

ℎ1 = 0, ℎ2 = 0 0.36 0.05 AAA 13.0 13.0 31.0 4.7 95.3 1.70
ℎ1 = 0.3, ℎ2 = 0.02 0.69 0.07 AAA 10.3 10.3 27.0 4.9 95.3 1.51

M = 5 2.04 0 A+ 1.8 3.1 3.1 5.4 95.3 1.39
M = 15 1.11 0.08 AA 7.4 8.2 22.7 5.0 95.3 1.38
� = 1.5 3.90 0.04 BBB+ 2.1 6.6 9.1 5.9 95.3 1.37
� = 2 0.34 0.19 AAA 51.1 51.1 44.7 3.9 95.3 1.38
k = 0.2 0.96 0.14 AA+ 11.7 11.7 25.7 4.9 95.3 1.36

Table 4: Sensitivity analysis: Stressed credit market. The standard parameters are: � =

�Q
0 = 3.4, � = 0.35, � = 1.5, � = 1.6 and # = 20. The CPDO pays a 200bp spread, has

gearing factor � = 1.7 and maximum leverage M = 10. Note that it is not possible to vary the

parameters freely in the sensitivity analysis, since the condition 2�� ≥ �2 should be fulfilled

in a CIR model.

Similarly, one can study the most favorable scenarios for the CPDO. This
reveals that initial spread tightening combined with no defaults in the reference
portfolio, results in the fastest cash. A fast cash-in scenario is shown in figure
9. In this example, an initial spread tightening from approximately 55bp to
35bp lays the foundation for the CPDO cashing in after 2.8 years.

4.5 Variability of ratings and downgrade probabilities

Given that CPDOs are leveraged and path-dependent instruments, the initial
rating of CPDO notes gives only a partial idea of the risk of the instrument. As
in the case of CDO tranches studied by [9], a CPDO with initial AAA rating
may have a probability of being downgraded which is much higher than a AAA
bond. It is therefore interesting to examine the probability of rating downgrades
during the lifetime of the CPDO. This can be done by a nested Monte Carlo
simulation as suggested by [23].
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Figure 7: Kernel estimator of loss density in stress scenario (Sec. 4.1) based on 100 000

simulated scenarios.

Suppose that at initiation t = 0 the strategy is given rating R0 correspond-
ing to a T -year probability of default PD(0, T ) ∈ [LT , UT [, where UT , LT are
default probability thresholds corresponding to a rating R0 over a horizon of
T years. We want to re-assess the rating R1 after T1 < T years by calculating
the T2-year default probability, PD(T1, T2) given information available at time
T1, for T2 = T − T1,. If PD(T1, T2) /∈ [LT2 , UT2 [ the CPDO rating at time T1

has changed; R1 ∕= R0. In the outer loop of the simulation NO paths of �, V ,
A, m̄, etc. up to time T1 are generated. If the CPDO has cashed out at time
T1 the rating R1 = D is recorded. For each path that has not cashed out at
time T1, a second Monte Carlo simulation is performed in order to assess the
default probability at T1 and thereby the rating R1. This is done by simulating
NI paths from time T1 to expiry T , using the starting values �T1 , VT1 , AT1 , etc.
found in the outer loop. The rating transition probability is estimated by:

P (R1 ∕= R0) ≈ 1

NO

NO∑
i=1

1{
P̂Di(T1,T2)/∈[LT2 ,UT2 [

}, (15)

where P̂Di(T1, T2) denotes the estimated T2-year probability of default for given
values of state variables at T1 in the i’th outer loop. Now

P (P̂Di(T1, T2) =
j

NI
) = Pbin(j;NI , PDi(T1, T2)),

where Pbin denotes the binomial point probability in j for NI trials and success
rate equal to the true default probability PDi(T1, T2). Then P̂Di(T1, T2) →
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Figure 8: A cash-out scenario in the historical market configuration.

PDi(T1, T2) for NI →∞ implying

E
[
1{

P̂Di(T1,T2)/∈[LT2 ,UT2 [
}] =

NI∑
j=0

1{ j
NI

/∈[LT2 ,UT2 [
}Pbin(j;NI , PDi(T1, T2))

→ 1{
PDi(T1,T2)/∈[LT2 ,UT2 [

} for NI →∞,

i.e. the expected estimated transition indicator converges to the true transition
indicator. Hereby it follows, that the estimation in (15) can be performed

summing E
[
1{

P̂Di(T1,T2)/∈[LT2 ,UT2 [
}] = P

(
P̂Di(T1, T2) /∈ [LT2 , UT2 [

)
:= piT1,T2

over i = 1, ..., NO.
Define the simulated rating transition indicator by

yi =

{
1 if P̂Di(T1, T2) /∈ [LT2 , UT2 [
0 otherwise

and let

wi =

{
yi with probability piT1,T2
1− yi with probability 1− piT1,T2 .
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Figure 9: A fast cash-in scenario in the historical market configuration.

Now wiyi + (1−wi)(1− yi) is equal to 1 with probability piT1,T2 and the rating
transition probability can then be calculated as

P (R1 ∕= R0) ≈ 1

NO

NO∑
i=1

(wiyi + (1− wi)(1− yi)) .

With NO = 1 000 and NI = 10 000 the rating transition probabilities are given
in table 5. Our results indicate high probabilities for rating downgrades. Since

P (R1 ∕= R0) P (R1 < R0)

T1 = 1 99.3% 7.4%
T1 = 5 99.3% 7.7%

Table 5: Rating transition probabilities.

the average cash-in time is less than 5 years, for a large part of the scenarios the
CPDO has already cashed in before year 5, earning the CPDO a AAA rating,
which differs from the initial A+ rating obtained in this market configuration.
More interestingly, more than 7% of the contracts have been downgraded after
one year and this number increases slightly at year 5. Since less than 2%
of the contracts end up in default, this is an indication of the CPDO being
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able to recover even after severe losses. The high rating volatility documented
here clearly distinguishes CPDOs from similarly rated investment grade bonds,
which are typically expected to maintain their original rating during the lifetime
with high probability.

5 Discussion

We have presented a parsimonious model for analyzing the performance and
risks of CPDO strategies. We consider a variety of specifications for a one
factor top-down model for the index default intensity and show that they allow
to study credit ratings, default probabilities, loss distributions and different tail
risk measures for the CPDO and capture its risk features in a meaningful yet
simple way.

Our results indicate that while coupon notes have a low probability of de-
fault, principal notes have typically a much higher probability of default, leading
to lower credit ratings under the same market conditions. Also, our scenario
analysis identifies a high exposure to credit-spread widening, similar to that
observed recently in the market.

Perhaps the most important insight from our study is that CPDOs are less
sensitive to default risk than to movements of spreads and behave in this respect
more like path-dependent derivatives on the index spread. Our scenario analysis
clearly indicates that the worst case scenario for a CPDO manager is that of a
sustained period of spread widening. This scenario has precisely happened in
the second half of 2007 and in 2008, and has resulted in the forced unwinding
of many CPDOs [26] as predicted by our analysis.

In line with the findings of rating agencies, we have found the CPDO struc-
ture to be very parameter sensitive. Relatively small changes in certain param-
eters may result in a jump of several notches in the rating. Accordingly, we
conclude that over the lifetime of the CPDO this leads to very high variability
of the rating compared to that of AAA-rated bonds. The parameters with re-
spect to which we observed the highest sensitivity are the (long-term) spread
level � setting the spread income generated by the CPDO, the mean reversion
speed � determining the possible spread widening, the risk premium parameter
# which governs the discrepancy between market-implied and historical default
rates, and the level of interest rates.

Another insight from our analysis is the influence of the aggressiveness of
leverage strategy employed. Following a more aggressive leverage rule results in
fewer defaults at the cost of higher tail losses. An actively managed CPDO or a
time/state dependent gearing factor would therefore possibly result in a better
performing CPDO in some scenarios and could be designed to accommodate
the risk aversion of the investor. Analyzing risks and performance of such a
product would require a subtle specification of actions taken by the manager.

There are straightforward extensions and refinements, e.g. a two factor
model for the joint evolution of the default intensity and interest rate or in-
cluding a stochastic risk premium #. Yet we believe that the top-down model
in the basic form introduced here captures the essential risk factors of CPDOs.
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It is difficult to compare directly our results with the ratings/default prob-
abilities given by rating agencies since many parameters and contract details
enter into these computations. But our model makes it clear that the main
factors are the term structure of credit spreads, which determines the roll-down
effect, the behaviour of the index spread at each roll date (explicitly modeled
here using parameters compatible with historical data) and the dynamics of the
spread (mean-reversion, widening/tightening).

More importantly, our analysis shows that within a given rating category a
wide range of expected shortfalls may be observed, leading us to conclude that
basing the risk analysis of such complex products as CPDOs on ratings or de-
fault probabilities alone is not sensible: credit ratings should be complemented
by other risk measures such as expected shortfall or other measures of downside
risk, in agreement with similar conclusions drawn from studies of CDO tranche
ratings [9].

The question of “credit ratings” for such leveraged, path-dependent prod-
ucts such as CPDOs raises various methodological issues. Credit ratings are
usually presented to investors as a metric for credit/default risk (as opposed to
indicators of “market risk”). However, in the context of structured credit prod-
ucts such as CPDOs, it is clear that the rating will be based on scenario simula-
tions incorporating various market risk factors such as volatility of spreads, the
level and volatility of interest rates, etc., blurring the (non-existent?) borderline
between credit and market risk and raising questions about the interpretation
of such ratings by investors. In fact, as shown in our results, market risk, not
default risk, is the main risk of CPDOs.

Thus, our results suggest that for such complex products ratings tend to
be misleading and cannot replace a detailed risk analysis. Indeed, some rating
agencies refused to rate CPDO deals.
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