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Abstract

In this paper, we use recursive and rolling cointegration methods to test for a system
of several exchange rates being within the process of convergence. We use the methods
to analyze how the convergence of five ERM exchange rates has developed during the
ERM period. We find that the number of cointegration vectors in the system of KFRM
exchange rates increases as the sample period is extended, and interpret this as a sign
of increased convergence of ERM exchange rates. In particular, we find no evidence
of convergence in the first years of the ERM and strong evidence of convergence in
the last years of the ERM. In the analyses we acknowledge that managed exchange
rates, such as exchange rates in ERM target zones, can be misaligned at their observed
values as compared to their fundamental free-float values. For this reason, we also
study convergence of filtered shadow exchange rates. We use two filters to extract the

shadow exchange rates: a linear filter and a non-linear filter.



1 Introduction

On January 1, 1999 eleven former ERM (Furopean FExchange Rate Mechanism) cur-
rencies were replaced with the euro. In order to pave the way for a smooth transition
to a common currency, the economies of the participating countries had to fulfill the
convergence criteria of the Maastricht Treaty. The possible convergence of the FRM
economies during the period leading up to the third stage of Economic and Monetary

! This paper aims at con-

Union in Furope has prompted a considerable literature.
tributing to this literature by (i) presenting and discussing how specific cointegration
procedures that allow for time-variation in the data-generating process can be used to
investigate whether a system of non-converged exchange rates evolves into a system of
converged exchange rates and (i7) use the procedures to test for convergence of EFRM

exchange rates.

It has been argued that a necessary condition for several integrated and non-
stationary time series having already converged, is that the means and variances of
suitable linear combinations of the time series (for instance the difference between two
time series) do not drift apart in an unbounded fashion; in other words, the time series
should be cointegrated, see Bernard & Durlauf (1995, 1996) and Hall ef al. (1992,
1997). Therefore, if the aim of an analysis is to investigate whether the particular
time series included in the analysis have already converged, one of the more standard
cointegration techniques can be applied. If, on the other hand, the aim of an analysis
is to test for several time series being within the process of converging, tests which do
not allow for time variation in the underlying data-generating process could be biased
towards rejecting convergence; see also the discussion in Durlauf & Quah (1999) on this
point. When testing for the relevant time series being within the process of converging,
it thus appears preferable to use methods which explicitly take into account the possible
changes in the parameters of the underlying statistical model which could result from
a process of convergence. For this reason, we propose to use time-varying multivariate

cointegration techniques when analyzing the dynamics of convergence.

Especially, we use recursive cointegration tests, as presented in Hansen & Johansen
(1992, 1998), as well as rolling cointegration tests. We use the recursive tests to study
the dynamics of convergence for the full sample of observations, whereas the rolling tests

are used to investigate the degree of convergence during different subsamples of the full

LSurveys can be found in Kenen (1995), Eichengreen (1997), and Gros & Thygesen (1998).



sample.? Basically, our hypothesis will be that when the time series start to converge,
the probability of rejecting the above mentioned necessary condition for convergence
(cointegration of the time series) should decline. In other words: the more converged
the exchange rates are, the higher the chance of accepting that the system of exchange
rates is characterized by relatively more cointegration vectors and thus relatively fewer

“common” stochastic trends.?

In the empirical application of this paper, we illustrate the procedure with the EFRM
case and start the estimations in 1979 where the ERM was launched. Especially, we
investigate whether the number of common stochastic trends decreased as spring 1998
approached (where the number of currencies to be replaced with the euro was finally

laid down) .

By employing multivariate cointegration techniques to study certain time-series
properties of systems including several exchange rates, the paper is related to the anal-
ysis in Baillie & Bollerslev (1989, 1994) and Diebold et al. (1994) who investigate
issues related to the efficiency of foreign exchange markets by evaluating whether sev-
eral floating exchange rates share common stochastic trends. Before the transition to
a common currency, though, the exchange rates we analyze were not floating, but were
de facto restricted by the ERM target zone regimes. This implies that if convergence is
measured by means of bilateral ERM exchange rates only, the results could be biased
towards a more favorable degree of convergence if the exchange rates were misaligned at
their observed values, in the non-credible target zones, as compared to their fundamen-
tal free-float values.* We take this aspect into account by recognizing that a positive
spread between a domestic and a foreign interest rate could reflect that the specific

exchange rate is temporarily misaligned at its observed value. Therefore, our analysis

2Furthermore, there is an additional statistical reason for using both types of time-varying tests:
when doing the recursive tests, the number of observations will be increasing, whereas the number of
observations is kept fixed in each rolling estimation. For this reason, the power of the tests remains
constant in each rolling estimation.

3 Generally, we think of a convergence process as a gradual and smooth process. For this reason,
econometric techniques that test for structural breaks in the data-generating process at well-defined
points in time (such as for instance the Perron, 1989, univariate tests for unit roots) are ill-suited for
analyzing the kind of questions raised in this paper. In order to analyze how the process evolves over
time, one needs techniques that allow for an investigation of the gradual change in the data-generating
process, such as rolling and recursive techniques.

4 As the ERM target zones could be realigned, they were non-credible target zones in the sense of
Krugman (1991). Therefore, a pressure for a realignment could be realized whenever an exchange rate

in the target zone system was misaligned relative to its fundamental free-float value.



of convergence is based both on the actual exchange rates, as well as filtered shadow
exchange rates, where the shadow exchange rates can be thought of as the natural levels
of the exchange rates if the FRM target zones were suspended. Specifically, we use two
procedures to filter out the shadow exchange rates: a linear filter and a non-linear filter,
where the latter is taken from Rangvid & Sgrensen (2000) who present and estimate
a model that describes the dynamics of an exchange rate in a non-credible target zone

regime.

The basic result of the analysis is that convergence of ERM exchange rates has
increased over time. We draw this conclusion because both the recursive tests and the
rolling tests indicate that the system of ERM exchange rates is driven by relatively
fewer common stochastic trends in the later parts of the sample period as compared
to the early parts of the sample period. Furthermore, the rolling estimates allow us
to infer that convergence was “strongest” during the period from 1995 to 1997 and
“weakest” during the period from 1979 to 1983. Finally, we find that not all exchange
rates are stationary when evaluated over the complete sample period from 1979 to
1998, but, importantly, all exchange rates are found to be stationary when evaluated
over the latest subsample which runs from 1995 through 1998. In addition to these
findings, which all are based on the estimations of multivariate models, we also employ
traditional univariate Dickey-Fuller tests to find that the individual exchange rates in
our sample behaved in an increasingly stationary manner as the ERM evolved. It is
noted that the findings all are robust in the sense that they hold regardless of whether
convergence is tested with actually observed exchange rates or with filtered shadow

exchange rates.

In the following section, we present the statistical tests for the number of common
stochastic trends, and we discuss the relation between, on the one side, the dynam-
ics in the number of common stochastic trends that is found and, on the other side,
convergence in the ERM. In section 3, we discuss the data which is analyzed in the em-
pirical part of the paper and we describe how we have filtered out the shadow exchange
rates. Section 4 contains the empirical part of the paper. In this section we present the
empirical applications with the recursive and rolling tests for the number of common

stochastic trends driving the ERM (shadow) exchange rates. A final section concludes.



2 Testing for convergence. The statistical procedure

All tests employed in this paper basically evaluate whether the individual non-stationary
time series in a multivariate system are driven by a reduced number of common stochas-
tic trends. In the cointegration/common trends framework, the presence of r cointe-
gration vectors in a multivariate time series of dimension p implies that there are r
relations that connect the p variables linearly, i.e. there will only be p — r = n in-
dependent non-stationary time series - the common stochastic trends. When testing
for a decreasing number of common stochastic trends, or equivalently an increasing
number of cointegration vectors, we apply recursive cointegration tests based on the
Johansen procedure, see e.g. Johansen (1988, 1991, 1995), and, in the following, we
briefly illustrate this testing procedure.

Consider the vector-autoregressive model (VAR) written in the error correction
form,

k-1

AV =) TilYe i +1Ve 1+ e (1)
i=1

where Y; is of dimension p. With the model given by (1), the first part of Granger’s
representation theorem (see Johansen, 1991) states that if II has reduced rank r < p,
the series in Y; contain unit roots, are cointegrated, and II can be decomposed as a3,
where both o and 3 have dimensions pxr. When Y} is integrated of order one, 3'Y; gives
the stationary linear combinations of the otherwise non-stationary variables contained
in Y}, i.e. [ contains the r cointegration vectors. The parameters in « are often referred

to as the loading coeflicients.

2.1 The relation between cointegration and common trends

The second part of Granger’s representation theorem provides the MA-representation
of a cointegrated multivariate process. To be more specific, the MA-representation of
AY; is given by (1 — L)Y, = C (L) &, with L as the lag operator, where C (L) can
be expanded as C' (L) = C (1) + C*(L) (1 — L), see e.g. Engle & Granger (1987).
Accordingly, the representation of Y; is given by,

¢

Y, =
T

e+ C (D)a=C1) e i+C" (D)= (2)

where C' (1) can be found from the cointegration parameters and will have reduced rank

p—r =n, le. only n elements of C (1) > e ; have independent permanent effect on
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Y;. The cointegrated VAR model can thus be represented as common stochastic trends

plus stationary disturbances.

In order to illustrate the concepts, let Y; contain five integrated and non-stationary
time series, p = 5. If we cannot reject four cointegration vectors (r = 4), the rank of
C (1) cannot be rejected to equal one (n = p — r), Le. the non-stationary behavior
of the five individual time series in Y; would be generated by one underlying common

stochastic trend.

2.2 Estimation of the cointegration model - recursive and rolling tests

When testing for cointegration and the number of common trends, Johansen (1988,
1991) shows that the solution to the eigenvalue problem ‘)\SH — 5105&)1501‘ = 0, where
Sij = T Zthl RitR;t, for i, = 0,1 and Rg, Ry; are the residuals from the regressions
of AY;, respectively Y;, on AY; q,... ,AY; 1, will give p eigenvalues 1 > Xl > ... >
Xp > 0and ﬁ = (1,... ,Vp) where Uy, ... , T, are the associated normalized eigenvectors.
The maximized value of the likelihood function is given by L7 = |Soo| TTE_, (1 — XZ)
In order to determine the number of statistically significant cointegration vectors (the
number of As being statistically different from zero), Johansen (1988, 1991) shows that
a likelihood ratio test statistic for r cointegration vectors in a space with a maximum

of p cointegration vectors is given by:

P
—ﬂnQOﬁp):—37§:hﬂﬁ—AO (3)

i=r+1
The asymptotic distribution of the likelihood ratio test statistic in (3) is derived in
Johansen & Juselius (1990) who also present critical values, as do Osterwald-Lenum

(1992).

When actually determining the number of cointegration vectors/common stochastic
trends, a sequential testing strategy is used. First, the hypothesis of r = 0 is tested
against the alternative of 7 = p (i.e. all series being unit root series against the alter-
native hypothesis of all series being stationary series); H (r = 0 | 7 = p). If this test is
rejected (and thus Ay > 0), the hypothesis of at most one cointegration vector, r < 1,
is tested against the alternative hypothesis of = p; H (r < 1| r = p), and so forth
until the hypothesis of r < p — 1 is tested against r = p; H(r <p—1|r =p). When

a particular hypothesis cannot be rejected, the sequential testing procedure stops.



Recursive tests. (Generally, when estimating a model recursively the initial observa-
tion is kept fixed and the sample length is increased by adding an additional observation
at each recursive estimation. Hansen & Johansen (1992, 1998) show that in the recursive
cointegration analysis the p—r smallest eigenvalues will converge towards zero, while the
7 largest eigenvalues converge towards the solution to ‘)\ﬂ/znﬂ — ﬁ’zngolzmﬁ\ =0,
where 3'Y113 and Yoo are the asymptotic variances of 'Ry, and Ry, respectively, and
('310 is the asymptotic covariance matrix for 3’ Ry, and Ry, (see e.g. Theorem 1, Hansen
& Johansen, 1998). Therefore, based on recursive estimations of the VAR-model, a se-
quence of likelihood ratio test statistics as given by (3), should be increasing for tests
of the hypotheses that the truly positive cointegration vectors equal zero and should be
constant for tests of the hypotheses that the truly non-significant cointegration vectors

equal zero.

Rolling tests. Generally, when computing rolling test statistics, the size of the sub-
sample 1s kept constant and both the first and the last observation in the subsample
roll through the full sample. The size of the subsample is thus a constant fraction of

the size of the full sample.

2.2.1 Discussion of the recursive and the rolling tests. As mentioned, in the
recursive estimations, the path of the likelihood ratio test statistics should be increasing
for tests of the hypotheses of “truly” positive eigenvalues being equal to zero due to
the inclusion of additional observations to the sample. Based on some constant critical
value for the particular hypothesis being tested, an increasing test statistic implies that
the probability of rejecting a “false” hypothesis increases. In our recursive estimations,
an increasing path of the test statistics could thus be due to both (i) an actual increase
in the number of cointegration vectors or (ii) adjustment towards the asymptotic prop-
erties of the particular tests. On the other hand, the rolling tests makes it possible to
evaluate whether a finding of increasing test statistics in the recursive tests is due to
actual convergence and not the inclusion of additional observations in itself. In partic-
ular, increasing test statistics for the rolling regressions will indicate an increase in the
stance of actual economic convergence (an increasing number of cointegration vectors

cannot be rejected), as the number of observations in each subsample is kept constant.’

®On the other hand, the advantage of the recursive regressions is inter alia that all historic informa-
tion is taken into account. Furthermore, for a non-increasing sequence of test statistics in a recursive

estimation, the hypothesis of increased convergence is obviously rejected.



2.3 Interpretation of the number of common stochastic trends

In the statistical framework we use, one can think of two interpretations of a declining
number of common stochastic trends: increasing stationarity of the relevant time series
or the relevant time series being increasingly driven by the same shocks with permanent
effects. In this section, we discuss these two interpretations in terms of possible ERM

exchange rate convergence.

Stationarity of the time series. In a statistical sense, the de facto presence of
the ERM target zone bands implied that the first two moments of the exchange rate
processes were bounded, if the target zone bands could not be changed, i.e. non-
stationary exchange rate processes could implicitly be ruled out when the target zones
remained constant (in addition, the Maastricht Treaty stipulated that the target zone
bands were not allowed to be changed during the last two years before introducing
the euro). Furthermore, any stationary time series in a cointegration framework is
represented by a specific cointegration vector, such as e.g. 3 = (0,0,1,0,0). On
the other hand, because the target zone bands actually did change during the ERM
period, also ERM exchange rates can be modelled as non-stationary processes. It follows
that if convergence of ERM exchange rates is followed by fewer changes in the target
zone bands and thus more stationary exchange rate processes, an increasing number of
stationary exchange rate series (implying an increasing number of cointegration vectors)
should be found - leading to a decrease in the number of common stochastic trends
characterizing the system of exchange rates. When the process of converging has come
to an end and no more changes in the target zones occur, one would then expect all
exchange rate series to be stationary, i.e. finding p cointegration vectors and zero

common trends.

Generally, we would interpret a finding of zero common stochastic trends at sample

end as a “perfectly” converged system.

Shock structure. Since the work of Nelson & Plosser (1982) it has been recognized
that an univariate difference-stationary time series can be decomposed into a permanent
component plus a transitory disturbance. For a multivariate system of non-stationary
time series the same holds, i.e. the non-stationary system is driven by permanent
components plus transitory disturbances. If cointegration is established, the number of
components with permanent effect is reduced and (some of) the time series in the system

are driven by linear combinations of the reduced number of shocks with permanent



effects, see e.g. Stock & Watson (1988), King et al. (1991), and the representation in
(2). For this reason, if all time series actually remain non-stationary during the period
where the number of common stochastic trends declines, the non-stationarity will be

caused by fewer shocks with a permanent effect.

Therefore, even if all individual exchange rates towards the German mark remain
non-stationary, finding a decreasing number of common stochastic trends should still
be interpreted as a sign of convergence, as the exchange rates would follow increasingly
similar time-series processes. In particular, if there is only one shock with a permanent
effect on the p non-stationary time series, one should expect to find p — 1 cointegration

vectors.

Generally, we would not interpret a finding of one (or more) common stochastic
trends at sample end as a “perfectly” converged system because shocks to the individual
time series would still have permanent effect and the first two moments of the time series

would thus not be bounded.

2.4 Convergence criteria and exchange rate quotation

At this stage of the analysis, it seems relevant to comment on the apparent difference be-
tween our condition for “perfect convergence” (of exchange rates) and the condition for
“perfect convergence” used by Bernard & Durlauf (1995) who investigate convergence
of real production series. Where we define perfect convergence as a situation where our
VA R-system of exchange rates is driven by zero common stochastic trends, Bernard &
Durlauf (1995) define perfect convergence as a situation where the VAR-system they
analyze is driven by a single common stochastic trend. Basically, the reason for this
apparent difference is that when considering exchange rates quoted vis 4 vis another
currency within the VAR-system (as for instance in this paper where we quote exchange
rates as the prices of one German mark in terms of the other ERM currencies), the
obvious requirement for convergence is that all exchange rates are stationary. On the
other hand, when considering time series such as real activity, one would naturally al-
low those individual series to be non-stationary time series, also when converged, with
the requirement for convergence then being that all the series are driven by the same

shock with a permanent effect.

Analogously, if we had used exchange rates quoted against a currency that does not
belong to the ERM target zone system, e.g. the US dollar, and all the exchange rates

in this alternative VA R-system were non-stationary, it would have been relevant to use



the Bernard & Durlauf (1995) requirement for “perfect convergence”, as the necessary
condition for ERM exchange rate convergence would then be that the intra-ERM cross-

rates were stationary.®

A simple example illustrates these points. Consider the two exchange rates e; =
In(FRF/USD) and e5 = In (DEM/USD) , these being the logarithms to the prices in
French franc respectively German mark for one US dollar. In this case, the necessary
condition for intra-ERM convergence imposes a particular restriction on the cointegra-
tion vector, this being that In (FRF/USD) —In(DEM/USD) = In(FRF/DEM) is
stationary, i.e. the logarithm to the price of one German mark in French franc should be
stationary. For a VAR-system including the two exchange rates e and ey (l.e. p = 2),
one cointegration vector (i.e. r = 1), as 8’ = [1,—1], and thus one common stochastic

trend should be expected (i.e. n=p—r=1).

Consequently, when the exchange rates are quoted as the prices of one German mark
in terms of other ERM currencies, as in our case, these series should be stationary by
themselves; for the model with one exchange rate quoted in German mark (i.e. p = 1),
one thus expects one cointegration vector (i.e. r = 1), as ' = 1, and thus zero common

stochastic trends (i.e. n=p—1r =0).

In conclusion, when measuring convergence of exchange rates within the ERM with
exchange rates quoted as prices for one German mark in terms of the other ERM
currencies (as we do), the necessary condition for a convergence process having already
come to an end, is that all exchange rates should be stationary and there should be

zero common stochastic trends.

3 Data description and filtering procedures

The data which we analyze in the following sections consists of weekly observations
(Wednesdays, or Thursday if Wednesday is not available) on exchange rates and one-
month Euro market interest rate spreads. Data was collected for the countries that
have belonged to the ERM since March 13, 1979; the Irish pound is, however, omitted
in our empirical analysis due to data limitations. The exchange rate data consists of
exchange rates for the Belgian franc, the Danish kroner, the French franc, the Italian
lira, and the Dutch guilder all versus the German mark. The relevant one-month Furo

market interest rate spreads are based on bid rates supplied by the Bank of International

5The single common stochastic trend would then represent the trend of all the ERM currencies
versus the US dollar.



Settlements. The final decision regarding the number of currencies to be replaced by
the euro, was made at the KU summit on May 1-3, 1998 and based on the convergence
report as released on March 25, 1998. Therefore, we let our sample period run from
March 13, 1979 (where the ERM was initiated) until April 1, 1998 and each data
series includes a total of 995 observations. In addition to the analysis of the actually
observed exchange rates, we also analyze shadow exchange rates. Based on the interest
rate spreads and the exchange rates, the shadow exchange rates are extracted through

two filters: a non-linear filter and a linear filter.”

3.1 A non-linear filter for extracting the shadow exchange rates

The particular non-linear filter that we use is taken from Rangvid & Sgrensen (2000),
and in this section we will briefly review their model.® Basically, Rangvid & Sgrensen
(2000) present a general theoretical {ramework for the dynamics of an exchange rate
where the fluctuations of the exchange rate are restricted by a non-credible target zone

regime (i.e. a target zone that can be realigned).”

The basic feature of the target zone modelling is thus that the exchange rate is re-
stricted to move within a band unless a realignment occurs. The timing of realignments
is described by a so-called Cox process which is basically a Poisson process with stochas-
tic intensity. In particular, the intensity depends on the position of the exchange rate
within the target zone band as well as how misaligned the exchange rate is relatively

to the shadow exchange rate.

Formally, the dynamics of the (log-) shadow exchange rate f; and the (log-) exchange

"We do not claim that these two filtering procedures necessarily span the whole set of possible
filtering procedures. What we do claim, though, is simply that the two procedures represent two
distinctly different ways to extract shadow exchange rates: a non-linear and a linear procedure. For
a more detailed review of the target zone literature and the currency crises literature, both of which
pay careful attention to the role played by the shadow exchange rate, see Garber & Svensson (1995).
Furthermore, Flood et al. (1991) and Bartolini & Prati (1997) present and discuss other simple linear
filters through which measures of shadow exchange rates can be obtained.

8 A more detailed discussion of the particular specification of the model, the estimation procedure,
as well as the parameter estimates can thus be found in Rangvid & Sgrensen (2000).

9The model is a variation of the model in Christensen et al. (1998). Our motivation for extending
the particular model of Christensen et al. (1998) is due to some of the desirable features of that model.
For instance, the model allows for a positive correlation between the exchange rate and the interest
rate during periods with pressure on the exchange rate; a feature which is in accordance with the
results from empirical tests, as noted by Bertola & Caballero (1992), but not present in for instance

the basic Krugman (1991) model.
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rate e¢; are described by the following stochastic differential equation system,

dft = /,Ldt + UdWlt
(4)
de; = mudt + vidWor + €, d N,
where Wy, and Wy, are wiener-processes with cov(dWy,, dWs,) = pdt, N, is a Cox
process with jump intensity A;, and ¢; is the jump size if a realignment occurs at time ¢.
The drift and volatility of the shadow exchange rate, p and o, are constant parameters

whereas the drift and volatility of the exchange rate are given by,

ur—0O¢
my = a(0y —e) + %) (fi—e) if fi<e <0 (5)
a(0y —e) + Kk (ft —e) otherwise

a(Qt—et)—l—/i M) (ft—et) if 8t<€t<ft

and

= A(ug —er)(er — 1)
t a\/ — ©)

where a, k, and 6 are constant parameters and 0y, I;, and u; denote the (log-) central

parity, the (log-) lower bound of the band, and the (log-) upper bound of the band,

respectively.

The parameter a describes the degree of tendency towards the central parity and
k describes the degree of tendency towards the shadow exchange rate. The tendency
towards f; evaporates at the boundaries whenever this tendency would otherwise pull it
outside the exchange rate band. Likewise, the volatility v, evaporates at the boundaries
in order to ensure that the target zone is sustained unless a realignment jump occurs.
The parameter ¢ can be interpreted as the volatility of the exchange rate in the center

of the target zone.

The realignment intensity and the exchange rate jump sizes at a realignment date

are described by,

er — 04

At = do + Ay max|[0, (fi — e) < >] and ¢ = (fi —e) 4+, (7)

ug —
respectively, where A\g and Ay are non-negative constant parameters and 7, is a series of
independent and normally distributed stochastic variables with mean zero and standard
deviation w. Hence, the realignment intensity depends on the distance to the central
parity of the target zone as well as the distance to the shadow exchange rate and, if
there is a realignment, the exchange rate will jump to a position around the shadow

exchange rate.

11



Imposing uncovered interest rate parity, the interest rate spread must equal the drift
rate in the (log-) exchange rate plus a component representing the rate of expected (log-)

exchange rate movement due to a potential realignment:
/ét — Z{ = My —I— At(ft — et) (8>

The interest rate spread in (8) is a monotonically increasing function of f; and there is
thus an invertible relationship between the interest rate spread and the shadow exchange

rate.

When referring to “shadow exchange rates extracted through a non-linear filter” in
what follows, we thus refer to f; as filtered out through the inverted relationship in (8)
for given observed interest rate spreads. When filtering out the shadow exchange rates,
we use the approximate maximum likelthood parameter estimates reported in Rangvid
& Sgrensen (2000).'? Especially, the parameters of the target zone model are estimated
separately for each currency (in relation to the German mark), i.e. the non-linear filter

allows for different estimated parameters across the different exchange rates.

In order to evaluate our findings with respect to the restrictions embodied in the use
of a particular non-linear model for the ERM exchange rates, we also investigated the
actually observed exchange rates as well as shadow exchange rates extracted through
a more simple linear filter. In the linear filter, we imposed equal parameters across the

different exchange rates, so as not to rely on any particular estimation procedure.

3.2 A linear filter for extracting the shadow exchange rates

To obtain the shadow exchange rates through a linear filter we rely on the recent results
from “fundamental-based” approaches to exchange rates, as reported in for instance

Chinn & Meese (1995), Mark (1995), Mark & Choi (1997), and MacDonald (1999).

These authors show that if exchange rates are assumed to follow processes such as,

€ty1 — € = —7Y (et - ft)

where e; is the logarithm to the exchange rate quoted as the price of foreign currency
measured in domestic currency and f; is the logarithm to the shadow exchange rate,
the shadow exchange rate has predicting power for the future long-horizon development

of the exchange rate. Imposing uncovered interest parity, in the sense that the spread

10The estimation approach in Rangvid & Serensen (2000) is somewhat related to the estimation
approach in Bekaert & Gray (1998).

12



between the return on a domestic bond, i, and the return on a foreign bond, 2{ , equals
the expected future change in the exchange rate, i.e. iy — 2{ = (et41 — €¢), we can back

out the shadow exchange rate as:
fo=eoty (ic=if) (9)

In order to filter out the shadow exchange rate, we need an estimate of y. Mark (1995)
estimates the range for v to be between zero and 1.3. When referring to “shadow
exchange rates extracted through a linear filter” in what follows, we thus refer to f; as

filtered out through the solution in (9) with v = 1 imposed on all currencies.

Finally, as mentioned, we also investigated the dynamics of convergence for the
values of the exchange rates that we actually observe. In the following, we refer to

these as the “actually observed exchange rates”.!!

4 Convergence in the ERM

We now turn to the empirical analysis of convergence within the ERM, i.e. we investi-
gate whether the number of common stochastic trends in the systems of ERM (shadow)
exchange rates has decreased during the FRM period. We initially note that finding a
reduced but positive (i.e. smaller than p but larger than zero) number of cointegration
vectors implies that some (and possibly all) of the time series contained in Y; are inte-
grated and non-stationary, and that the necessary condition for “perfect” convergence

(zero common trends) is thus rejected.

4.1 Recursive tests for the number of cointegration vectors/common trends

The recursive test statistics for the number of cointegration vectors and common
stochastic trends, based on (3) and scaled by their 90 percentage asymptotic criti-
cal confidence values (from Osterwald-Lenum, 1992), are plotted in Figure 1, with the

period 1979 to 1980 reserved for initial estimates.

[INSERT FIGURE 1 ABOUT HERE]

"1One can think of the “actually observed exchange rates” as exchange rates extracted through the
linear filter (9) with y~! = 0 imposed on all exchange rates. Furthermore, by using two linear filters,
we try to make a perspective on the sensitivity of the results with respect to the choice of a particular

value for .
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Figure 1 plots the scaled recursive tests from three five-dimensional VARs of or-
der four (i.e. with four lags) where the constant in each VAR is left unrestricted.!”
The VARs include, respectively, the actually observed ERM exchange rates, the ERM
shadow exchange rates extracted through the non-linear filter as described in section
3.1, and the ERM shadow exchange rates extracted through a linear filter as described

1n section 3.2.

Common to all filtering procedures is the basic overall tendency for the tests not to
reject an increasing number of cointegration vectors and thus a decreasing number of
common stochastic trends since 1983, as the test statistics for the hypotheses Hj : 7 < i,

fori=0,...,3 (4 since 1996) are generally upward sloping.

Therefore, the findings indicate that in the early years of the KERM - until 1983 -
the hypotheses of r = 0 cannot be rejected, implying that all exchange rates were non-
stationary and described by their own stochastic trend during this early subsample.
After 1983, the test statistics start to increase, and a process of convergence begins.
From the late 1980s and onwards two cointegration vectors cannot be rejected and
the results for the recent years point towards a third cointegration vector not being
rejected. Finally, an important exception to the general tendency of decreasing numbers

of common stochastic trends is seen during the 1992-1993 period.

It is furthermore noted that at the end of the sample period, the hypothesis of
“perfect” convergence is clearly rejected regardless of the specific filter used. This
implies that even when we find that the (shadow) exchange rates have been within
a process of converging since 1983, the (shadow) exchange rates had not converged
“perfectly” as the decision with respect to the number of currencies to be replaced with

the euro was finally taken - when evaluated over the full sample.

Finally, even though the general tendency of a decrease in the number of common
stochastic trends does not seem to depend on the specific filtering procedure, the graph-
ical profiles of the test statistics do, to a minor extent, depend of the specific measure of
f¢ included in the VARs. In particular, the linear filter indicates the relatively highest
degree of convergence at the end of the sample period. As it is also the linear filter
which puts the highest weight on the interest rate spread, this finding probably re-
flects a convergence in interest rate spreads in addition to the convergence in nominal

exchange rates.

12We experimented with different choices of k. Basically, the results were rather robust with respect

to the choice of lags to include in the VAR.
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4.2 Rolling tests for the number of cointegration vectors

In addition to the full-sample recursive tests presented above, we also looked upon
shorter-sample tests of the convergence hypothesis by computing rolling regressions
where the number of observations is kept constant. We computed the rolling regres-
sions with a constant sample size of 156 observations (3 years).'* The paths of scaled
likelihood ratio test statistics are shown in Figure 2. For ease of interpretation, the
figure shows the paths of the tests statistics for all three filters for H (r =0 |r =p) in
the upper-left graph, the second graph in the first column shows the sample paths of
the tests statistics for H (r <1 |r = p) for all three filters, and so forth.

[INSERT FIGURE 2 ABOUT HERE]

At the overall level, the rolling tests confirm the insights from the recursive tests
of no convergence during the 1979-1983 period and, on the other hand, increasingly
converging RM exchange rates during the 1983-1998 period, with a possible minor
interruption during the ERM turmoils of 1992-1993.

Especially, Figure 2 confirms that all exchange rates were described by their own
stochastic trend during the 1979-1983 period (in Figure 2, the series are ordered such
that the test statistic for a particular subsample is placed at the end of the rolling
sample). On the other hand, where the recursive tests indicated a rather stable process
of convergence during 1983-1998, the rolling tests indicate some larger interruptions of
this process in 1986 and 1992-1993. What thus appear to be only minor interruptions of
the basic convergence process when evaluated over the whole period after 1983, as in the
recursive tests, appear more significant when evaluated over their own shorter sample
in isolation. Finally, and important to point out, when based on a three-year window,
the rolling tests indicate that the ERM exchange rates were “perfectly converged” in
1998, in the sense that all exchange rates are found to be stationary when evaluated
over the 1995-1998 period. This contrasts to the finding of two (or three) common

stochastic trends at sample end in Figure 1.

When assessing the evidence based on both methods of time-varying tests, a ten-
tative conclusion with respect to the degree of convergence in the different subperiods

could be lined up as in Figure 3.

13Tn the working paper version of the paper, also ten-year rolling windows (i.e. a sub-sample size of
520 observations) were analyzed. Basically, these tests supported the qualitative results presented in

this section. The tests are available upon request.
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[INSERT FIGURE 3 ABOUT HERE]

Comparing with the history of ERM exchange rates (sec e.g. Buiter et al., 1998
and Gros & Thygesen, 1998), these findings are intuitively interpretable. Until 1983,
realignments within the ERM were not unusual events, as the exchange rates were used
to influence the business cycles of the individual ERM countries, i.e. the exchange rate
policies were not especially focused on avoiding realignments. From 1987 to 1992 only
one realignment was realized (associated with the narrowing of the fluctuation band
around the Italian lira central parity in 1990). In 1992-1993, the ERM was exposed to
the worst pressure in its history resulting in the Italian lira leaving the ERM and the
fluctuation band being widened to +15 percentage for the Belgian franc, the Danish
kroner, and the French franc, while maintained at 42.25 percentage for the Dutch
guilder versus the German mark. Finally, in the most recent years some emphasis has
been directed towards preparing for the introduction of the common currency and thus

on coordinating the exchange rate policies, even with wide bands.

4.3 Declining numbers of common stochastic trends: stationarity or change

in the structure of shocks?

In section 2.3, we discussed two interpretations of the relationship between convergence
and declining numbers of common stochastic trends: (i) stationarity of the relevant
time series or (i) the relevant non-stationary time series being increasingly driven by
the same shocks. In this section, we will test whether explanation (i) can explain our

findings.

As the cointegration procedure reviewed in section 2 is a multivariate extension of
the basic univariate Dickey-Fuller procedure, one way to proceed is to conduct simple
recursive Dickey-Fuller tests in order to test whether each individual time series be-
comes increasingly stationary, as the sample period is extended.'* Figure 4 presents
the results from recursive Dickey-Fuller tests of each single (shadow) exchange rate. The
test statistics (based on Dickey-Fuller regressions with four augmentation lags and a

constant, but no trend) are scaled by their critical 90 percentage confidence values and,

14We also conducted rolling Dickey-Fuller tests. Basically, these tests supported the division into
phases of convergence as illustrated in Figure 3, and can be obtained upon request. Furthermore,
an early analysis of the unit-root properties of nominal floating exchange rates is given in Meese &
Singleton (1982) while Anthony & MacDonald (1998) investigate the unit root properties of single

ERM exchange rate series.
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hence, a scaled test statistic below one, at time ¢, suggests that the specific (shadow)
exchange rate cannot be rejected to contain an unit root over the period from March
13, 1979 to time ¢. The time series in the graphs thus present such tests for ¢ increasing
and the first observation remaining at March 13, 1979.

On the basis of the path of scaled recursive Dickey-Fuller test statistics, we are led
to believe that all series, possibly with the exception of the Italian lira series, seem to

behave more and more as stationary time series as the sample period is extended.
[INSERT FIGURE 4 ABOUT HERE]

The graphs in Figure 4 add some additional insights to the interpretation of Figure
1. Especially, at sample end, Figure 1 suggests two or three common stochastic trends;
the specific number of common stochastic trends being dependent upon the specific
measure of f; used in the VAR. From the recursive Dickey-Fuller tests, it appears that
only the Danish kroner and the Dutch guilder exchange rates are definitely stationary
and only the Italian lira series seems to be definitely non-stationary, whereas the Belgian
franc and the French franc are in-between cases, 1.e. the number of common stochastic
trends suggested in Figure 1 seems to be in accordance with the findings from the
recursive Dickey-Fuller tests. Finally, the tendency for an increase in the degree of

convergence appears only after 1983 also for the univariate Dickey-Fuller tests.

5 Conclusion

To sum up; in this paper we proposed to use time-varying multivariate cointegration
techniques when studying the dynamics of convergence of several exchange rates. In
the illustration of the procedures, we found that ERM exchange rates tended to behave

in an increasingly similar manner as January 1, 1999 approached.

In addition to the analysis presented here, the hypothesis of a reduced number of
common stochastic trends for currencies joining a monetary union is general and can be
applied to possible future applicants (the “pre-ins”) wanting to introduce the euro as
national currency (e.g. East European countries). Furthermore, for countries pegging
their exchange rate towards another country (even if these countries do not intend
to join a currency union), one could expect a declining number of common stochastic
trends, if the credibility of the peg is believed to be increased over time. More generally,
the procedures can be used to test for the dynamics of convergence for other types of

economic variables, such as real GDP, stock prices (see Rangvid, 2000), and so forth.
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Figure 1: Recursive multivariate tests for the number of common trends

The figures show recursive tests for the number of cointegration vectors, scaled by their critical
90 percentage confidence values, in VAR models containing respectively five ERM exchange
rates, five shadow exchange rates from linear filters, and five shadow exchange rates from non-
linear filters. The period March 13, 1979 to January 1, 1980 is reserved for initial estimates.
A series above “one” suggests rejection of the hypothesis of respectively r <i,i=0,1,2,3,4
and, hence, the number of series below “one” indicates the number of common stochastic

trends.
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Figure 2: Rolling cointegration tests. Window-size = 3 years

The figures show rolling cointegration tests scaled by their critical values (at 90 percentage
confidence level) from VAR models containing respectively five ERM exchange rates, five
shadow exchange rates from linear filters, and five shadow exchange rates from non-linear
filters. A series above “one” suggests rejection of the hypothesis of respectively r < i,i =
0,1,2,3,4. For ease of presentation, the specific filters used to extract the underlying time

series are not pointed out in the graphs.
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Figure 3: Phases of degree of convergence in the ERM
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Figure 4: Recursive Dickey-Fuller tests

The figures show recursive Dickey-Fuller tests scaled by their critical values (at 90 percentage
confidence level). The period March 13, 1979 to January 1, 1980 is reserved for initial esti-
mates. A series below “one” suggests that the corresponding time series cannot be rejected as
a non-stationary series. In the graphs, it is indicated whether the tests are based on shadow
exchange rates extracted through the linear filter (1-fil), the non-linear filter (nl-fil), or the
linear filter with § =0 (exh).
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