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Portfolio Choice under Inflation: Are Popular

Recommendations Consistent with Rational Behavior?

Abstract

We consider the optimal asset allocation choice of an investor who can invest in

cash (a money market bank account), nominal bonds, and stocks (the stock index).

The investor faces an incomplete market setting and is not able to perfectly hedge

long run real interest rate risk using the available securities. The optimal invest-

ment strategy is consistent with the following features of popular investment advice

which have been pointed out as puzzles: (i) a decreasing fraction of stocks in the

portfolio as time passes towards the investment horizon, and (ii) a higher bond to

stock ratio for more conservative (less risk tolerant) investors (Canner, Mankiw and

Weil, 1997). The model for asset price dynamics is calibrated to US market data

and, furthermore, risk aversion parameters and time horizons are calibrated so as

to obtain a match between the optimal asset allocations and observed investment

recommendations for “aggressive,” “moderate,” and “conservative” investor groups

with different investment horizons.



1 Introduction

Investment advisors tend to recommend that younger investors – who have a long investment

horizon – should invest a higher fraction of wealth in stocks than should older investors. As

Samuelson (1963) originally demonstrated, this investment advice is not consistent with ratio-

nal portfolio allocation in basic models of portfolio choice, and the phenomenon is thus often

referred to as the Samuelson puzzle. A large literature has addressed this discrepancy and pro-

vided potential rational explanations; see e.g. the discussion in Samuelson (1989, 1994). More

recently, Canner, Mankiw and Weil (1997) have pointed out another common feature of in-

vestment advice that is at odds with standard mean-variance two-fund separation results that

prescribe all investors to invest in cash (short term risk-free money account) and a single tan-

gency portfolio. The ratio of bonds to stocks should thus be the same for all investors and equal

to the bonds/stocks ratio in the tangency portfolio, according to these two-fund separation re-

sults. However, the recommended asset allocations by professional investment advisors seem to

systematically display a higher bonds/stocks ratio for less risk tolerant investors.

In this paper we use the general continuous-time modeling framework of Merton (1969,

1971, 1973) in analyzing rational asset allocation in a dynamic setting. We propose a specific

model with inflation uncertainty that qualitatively and for some parameter values is able to

resolve simultaneously both of the above mentioned puzzles. In order to analyze whether the

optimal asset allocation behavior from the model is also quantitatively consistent with popular

investment advice, we perform a calibration exercise. The parameters of stock, bonds, and

inflation dynamics are estimated using US data from the period 1951-2001. Furthermore, we take

a specific asset allocation advice as the “data” to be explained. The investment advice, which

exhibits both of the above discussed features, is constructed based on the recommendations of

Quinn (1991); one of the four sources used by Canner, Mankiw and Weil (1997). In particular, we

calibrate the representative investors in the specific investment allocation advice by varying three

relative risk aversion parameters and three investment horizons that are supposed to reflect the

attitudes towards risk and investment horizons of “conservative,” “moderate,” and “aggressive”

investors and investors with “short,” “medium,” and “long” investment horizons, respectively.

When model parameters are allowed to vary in reasonable ranges, we demonstrate that the

model is able to fit well the asset allocation advice used as “ data” and resolve simultaneously

the Samuelson puzzle as well as the asset allocation puzzle pointed out by Canner, Mankiw and

Weil (1997).

In the formal modeling framework we consider the portfolio choice of a constant relative

risk aversion (CRRA) investor who maximizes expected utility of wealth at a given investment
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horizon. The investor can continuously invest in cash, a nominal bond, and a stock (the stock

index). The excess return on the stock is assumed constant while interest rates are stochastic.

The model of the dynamics of the term structure of nominal interest rates is adopted from the

no-arbitrage model of Vasicek (1977). Furthermore, there is inflation uncertainty in the economy

but the investor does not have access to real bonds.

In a setting without inflation uncertainty, Brennan and Xia (2000), Omberg (1999), and

Sørensen (1999) consider a similar problem and demonstrate how the optimal portfolio policy,

in accordance with the general characteristics in Merton (1971,1973), can be decomposed into

a “speculative term” and a term that prescribes how the investor should hedge changes in the

opportunity set. They show that the relevant instrument for hedging changes in interest rates

is the zero-coupon bond expiring at the investment horizon (or a portfolio replicating this zero-

coupon bond). This result would also apply in our setting if markets were not incomplete and

the appropriate real bond was available for investments. We demonstrate that instead the stock

enters the hedge portfolio since the stock may be used as a non-perfect substitute for real bonds

for hedging long term real interest rate risk in cases where the stock is negatively correlated

with the real interest rate.

The model in this paper is close to the models applied in Brennan and Xia (2001) and

Campbell and Viceira (2001). In both these papers the real interest rate is described by a

Vasicek-model and the expected inflation dynamics is given by an Ornstein-Uhlenbeck process.

The term structure of nominal interest rates is therefore described by a two-factor model. While

Brennan and Xia (2001) assume CRRA utility preferences similar to those in this paper, Camp-

bell and Viceira (2001) allow for intermediate consumption and a more general recursive utility

specification in an infinite horizon setting. The infinite horizon assumption in Campbell and

Viceira (2001), however, makes it difficult to address effects due to investors having different

investment horizons and is thus not suitable for our calibration purposes. Also, while the model

in this paper is conceptually very similar to the model in Brennan and Xia (2001), there are

important differences. For example, in our setting the model of the term structure of nomi-

nal interest rates is a one-factor model while the implied term structure of real interest rates

is described by a two-factor model; in Brennan and Xia (2001) it is the other way round. In

Brennan and Xia (2001) it would thus be possible to implement the complete market solution

by essentially mimicking the relevant real bond by investing in two different nominal bonds. On

the other hand, in our model it is never possible to replicate a real bond by trading in any num-

ber of nominal bonds. Also, Brennan and Xia (2001) use a version of the martingale solution

technique of Cox and Huang (1989,1991) which as a starting point requires specification of the

relevant pricing kernel in the economy. We take a more direct dynamic programming approach
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to the incomplete market asset allocation problem.

The calibration of the model is done in two steps. In the first step we estimate parameters

of stock returns, bond returns, and inflation parameters using historical US data from the

period 1951–2001. The estimation is based on maximum likelihood and an application of the

Kalman filter. In the second step, we use the obtained capital market parameters from the

first step and calibrate the relevant preference parameters by minimizing the distance (sum of

squared deviations) between the theoretical and observed asset allocation advice across investors

with different risk attitudes and investment horizons. At the point estimates of capital market

parameters obtained in the first step, we are not able to fit well the observed asset allocation

advice since stocks do not correlate with the relevant real bond that should ideally be used as

the instrument for hedging long term inflation risk and real interest rate risk. In this case the

Samuelson puzzle applies. However, when we allow the capital market parameters to vary within

intervals of plus-minus two standard deviations on the estimates (which could reflect reasonable

uncertainty on the parameter estimates), we are able to obtain theoretical asset allocation results

that closely mimic the observed asset allocation advice that is used as our data. In particular,

in this case the model is able to provide simultaneously a resolution of the Samuelson puzzle as

well as the asset allocation puzzle pointed out by Canner, Mankiw and Weil (1997).

The paper is organized as follows. In section 2 we present the formal model and the solution

to the intertemporal portfolio problem. In section 3 we estimate capital market parameters and,

subsequently, calibrate the model to observed asset allocation advice. Section 4 concludes.

2 The problem and optimal asset allocation

We consider the investment problem of an investor who has access to the capital market and

wants to transfer current wealth W0 into wealth at a specific investment horizon. We consider

the basic asset allocation problem of how much to invest in cash (i.e. a money market bank

account), nominal bonds, and stocks.

2.1 Preferences

The investor wants to choose a dynamic portfolio strategy in order to maximize the expected

utility of wealth at a specific horizon T . The utility function displays constant relative risk

aversion and the investor’s portfolio policy is thus set so as to

maxE [U(WT )] (1)
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where

U(W ) =
W 1−γ − 1

1− γ

and γ > 0 is the parameter of constant relative risk aversion. For γ = 1, we have, as a limiting

and special case, U(W ) = logW .

2.2 Investment asset dynamics

The stock index (with dividends reinvested) is assumed to evolve according to the stochastic

differential equation
dSt

St
= (rt + λS)dt+ σSdW1t (2)

where rt denotes the short nominal interest rate, the parameter λS is the expected excess return

from investing in stocks, and σS is the stock index volatility. W1 is a Wiener process. The

(nominal) interest rate dynamics are described by an Ornstein-Uhlenbeck process,

drt = κ(θ − rt)dt− σrdW2t (3)

where the parameter θ describes the long-run mean of the interest rate, κ describes the degree

of mean-reversion, and σr is the interest rate volatility. We will assume that the two basic

Wiener processes W1 and W2 that generate the dynamics of the stock index and the interest

rate are correlated with a constant correlation coefficient ρ12. The instantaneous covariance rate

between the stock return and the short interest rate is denoted σSr (= −ρ12σSσr). Likewise, the

instantaneous correlation rate between the stock return and the short interest rate is denoted

ρSr (= −ρ12).
1

The term structure of interest rates has the same form as in Vasicek (1977). In particular,

the price of a zero-coupon bond with time to maturity τ is given by

P (r, t; τ) = e−a(τ)−b(τ)r (4)

where

a(τ) = R(∞)(τ − b(τ)) + σ2
r

4κ (b(τ))
2

b(τ) = 1
κ
(1− e−κτ )

and where R(∞) = θ + λr
κ
− 1
2
σ2
r

κ2 describes the yield to maturity for a very long bond (as τ

approaches infinity). The constant parameter λr describes the risk premium on interest rate

risk.

1Throughout we will denote instantaneous covariance rates and correlation rates by σij and ρij where i and j

indicate the relevant processes.
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Any bond is essentially an interest rate contingent claim and, by Ito’s lemma, the dynamics

of the bond price Bt can be described by a stochastic differential equation on the form

dBt

Bt
= (rt + λB)dt+ σBdW2t (5)

with λB = λrD(r, t), σB = σrD(r, t), and where D = −∂B
∂r

1
B

is the elasticity of the bond price

with respect to the short interest rate; this elasticity is usually referred to as the duration of the

interest rate contingent claim. We will assume that the bond available for the investor has a

constant duration D. This can be thought of as reflecting the duration of the aggregate portfolio

of bonds outstanding, or a bond index, where bonds that expire are always substituted with

new longer term bonds. Also, note that the short interest rate and the return on the bond are

perfectly negatively correlated and with covariance rate σBr = −Dσ2r = −(1/D)σ2B.

To sum up, the investor can invest in three securities: the bank account (cash), the stock

index in (2), and the constant duration bond in (5). And, for future reference, the variance-

covariance matrix and excess returns on the two risky securities can be summarized in matrix

form by

Σ =





σ2S σSB

σSB σ2B



 and λ =

(

λS
λB

)

where σSB = −DσSr.

2.3 Inflation uncertainty

The nominal price of the real consumption good in the economy at time t is denoted by Ψt.

The real price of any asset in the economy is thus determined by deflating by the price index

Ψt. The real price of the stock is, for example, given by St/Ψt.

The dynamics of the nominal price of the consumption good are given by the following

system of differential equations:

dΨt

Ψt
= πt dt+ σΨ dW3t (6)

and

dπt = β(α− πt) dt+ σπ dW4t (7)

where πt is the expected rate of inflation, α describes the long-run mean of the rate of inflation,

β describes the degree of mean-reversion, σπ is the volatility of the inflation rate, while σΨ is the

volatility of the price index and thus σΨ determines the magnitude of the unexpected short-run

inflation in the economy. Changes in the nominal price index and the inflation rate are correlated

with the stock index return and interest rates. For example, the covariance rate between the
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return on the stock index and the price level is denoted σSΨ (= ρ13σSσΨ), the covariance rate

between the return on the stock index and the inflation rate is denoted σSπ (= ρ14σSσπ), and

so on.

2.4 Optimal asset allocation

We will assume that nominal stock returns are generated by the model of the stock index in

(2), and that the nominal bond returns are generated by the nominal interest rate dynamics of

the Vasicek type in (3) and the nominal bond index dynamics in (5). The real wealth of the

investor at time t is denoted by Wt, and the Bellman equation associated with the problem of

maximizing the expected utility in (1) has the form

sup
w=(wS ,wB)∈IR

2

{

µWWJW + κ(θ − r)Jr + β(α− π)Jπ + 1
2σ
2
WW

2JWW

+ 1
2σ
2
rJrr +

1
2σ
2
πJππ + σWrWJWr + σWπWJWπ + σrπJrπ + Jt

}

= 0

(8)

where

µW = r + w′λ− πt + σ2Ψ − w
′

(

σSΨ
σBΨ

)

, σ2W = w′Σw + σ2Ψ − 2w′

(

σSΨ
σBΨ

)

,

σWr = w′

(

σSr
σBr

)

− σΨr , σWπ = w′

(

σSπ
σBπ

)

− σΨπ

and where J(W, r, π, t) is the indirect utility function which must satisfy the boundary condition

J(W, r, π, T ) = U(W ). The first order condition of the problem in (8) provides the following

characterization of the optimal risky asset proportions w:

w = −JW
WJWW

Σ−1λ− JWr

WJWW
Σ−1

(

σSr
σBr

)

+
(

1 + JW
WJWW

)

Σ−1

(

σSΨ
σBΨ

)

− JWπ

WJWW
Σ−1

(

σSπ
σBπ

)

.

(9)

The expression in (9) provides a general characterization of the optimal portfolio weights in the

specific market setting. The first term in (9) is the usual speculative portfolio which is optimal

for an investor with short horizon or log utility. The other three terms in (9) describe how the

investor optimally hedges changes in the opportunity set. The second term describes the hedge

against the nominal interest rate and by using that

(

σSr
σBr

)

= −
1

D

(

σSB
σ2B

)

= −
1

D
Σ

(

0
1

)

,

it is seen that this term can be rewritten in the form

−
JWr

WJWW
Σ−1

(

σSr
σBr

)

=
JWr

WJWW

(

1

D

)

(

0
1

)

.
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Hence, the optimal hedge against changes in the interest rate is obtained by investing entirely

in the bond; this is similar to the optimal strategy in the complete market Vasicek settings

of Brennan and Xia (2000) and Sørensen (1999). The last two terms in (9) describe how the

investor hedges against short-run unexpected inflation and changes in future inflation rates,

respectively.

The optimal asset allocation of the CRRA investor is stated in the following proposition

which can be verified by inspection and substitution in Equations (8) and (9).

Proposition 1 (i) The indirect utility of wealth function which solves (8) is given by2

J(W, r, π, t) =
(Weα(T−t)+b(T−t)r−c(T−t)π)1−γ − 1

1− γ
(10)

where α(τ) is the solution to an ordinary differential equation with boundary α(0) = 0, b(τ) is

defined in (4), and c(τ) = 1
β

(

1− e−βτ
)

.

(ii) The vector of optimal risky asset allocations at time t is given by:

w =

(

1

γ

)

Σ−1λ+

(

1−
1

γ

)(

b(T − t)

D

)

(

0
1

)

+

(

1−
1

γ

)

Σ−1

(

c(T − t)

(

σSπ
σBπ

)

+

(

σSΨ
σBΨ

))

(11)

The residual wr = 1− 1′w = 1− wS − wB is invested in the bank account.

As formalized in Proposition 1, the optimal portfolio weights for CRRA investors are linear

combinations of the speculative portfolio and the different hedge portfolios. In particular, for

investors with the same investment horizon T the optimal portfolios are linear combinations of

the speculative portfolio and a single hedge portfolio; the relative risk tolerance, 1/γ, describes

the weights on the two relevant portfolios.

As discussed above, the second term in (11) describes the hedge against changes in the

nominal interest rate and consists entirely of a position in the bond. The occurrence of this hedge

term can explain the bonds/stocks puzzle pointed out by Canner, Mankiw and Weil (1997); see

e.g. Brennan and Xia (2000). On the other hand, the last hedge term in (11) describes the

inflation hedge and involves the stock. The occurrence of this term may explain the Samuelson

puzzle since there is a horizon effect reflected by the function c(T − t). In particular, the

parameter β determines the difference on the stock allocations for myopic and long term investors

with the same relative risk aversion. If β is small, changes in the expected inflation rate are

relatively permanent, and horizon effects may be significant. However, whether this horizon

effect implies more or fewer stocks for the long-term investor depends on the precise correlation

2The expression is formally only defined for γ 6= 1. The case γ = 1 is described by the limiting result as γ

approach 1.
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structure and, intuitively, whether the stock serves as a relatively good substitute for the real

bond that should ideally be used for hedging changes in real rates in a complete market setting.

Moreover, while the last term in (11) can potentially explain horizon effects it may also in part

explain a varying ratio of bonds to stocks. In a standard one-period mean-variance model, Elton

and Gruber (2000) thus demonstrate that inflation uncertainty alone can explain the varying

bonds/stocks ratio puzzle of Canner, Mankiw and Weil (1997) when investors focus on real

returns and only nominal assets are available (and short sale constraints are imposed).

3 Calibration

In the following two subsections we will first calibrate the asset price and inflation parameters of

the capital market model. Subsequently, we will use these parameters in a calibration exercise

where the subjective risk aversion parameter and time horizon parameter are fitted to match

observed asset allocation advice for different investor groups.

3.1 Calibration of asset price and inflation parameters

A Kalman filtering approach is adopted in order to estimate the parameters involved in the

asset price and inflation dynamics in (2), (3), (4), (6), and (7). The specific approach is based

on expressing the model in state space form and then using the Kalman filter to obtain the rele-

vant log-likelihood function to be maximized; see e.g. Harvey (1989, chapter 3). The estimation

approach is basically similar to the approach used by Pennacchi (1991) for term structure esti-

mation and adopted by Campbell and Viceira (2001) and Brennan and Xia (2001) in a context

similar to this paper.

The transition equation of the four state-variables st = logSt, rt, ψt = logΨt, and πt is

described by the discrete time solution to the system of stochastic differential equations in (2),

(3), (6), and (7). The relevant discrete-time moments of the Gaussian processes are obtained

by a straightforward application of the results for linear stochastic differential equations in, e.g.,

Karatzas and Shreve (1991, pp. 354-358).

The measurement equation relates the state-variables to the empirical observations that

consist in part of yields to maturity on n (= 5) zero-coupon bonds with times to maturity τj ,

j = 1, . . . , n which are related to the state-variables by

y(t; τj) ≡ −
P (rt, t; τj)

τj
=
a(τj)

τj
+
b(τj)

τj
rt + ε̃t,j (12)

where ε̃t,j is the measurement “noise” on the τj-maturity yield. The measurement noise terms

on the zero-coupon yields are assumed uncorrelated and normally distributed with mean zero
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and standard deviation σε,j . In addition, the measurement equation consists of observing the

(log) stock index value (i.e. st) and the (log) price index value (i.e. ψt) without measurement

noise at the different sample dates.

In our implementation the shortest zero-coupon yield (0.25 years to maturity) is observed

with limited measurement noise in order to obtain a close fit to the short end of the term structure

which is closely determined by the short rate rt which is one of the basic and important state-

variables in our asset allocation model. In particular, the standard deviation on this observation

is fixed at a value close to zero (0.0001).

The system is estimated using monthly US data which spans the half-century period from

March 1951 until March 2001. Data on five constant maturity yields are used; the times to

maturities are 0.25, 1, 2, 5, and 10 (years). The zero-coupon bond yields for the period March

1951 until February 1991 are adopted from McCulloch (1990) and McCulloch and Kwon (1993).

The yields for the period March 1991 until March 2001 are based on constant maturity yields

taken from the Federal reserve H.15 Statistical Releases; the specific constant maturity zero-

coupon yields are constructed using bootstrapping (combined with linear interpolation when

necessary to take account of missing maturities). The cum dividend stock returns and CPI-index

data are identical to the S&P 500 data from Shiller (2000); the updated data were downloaded

from Robert Shiller’s homepage.

Maximum likelihood parameter estimates are given in Table 1.

[ INSERT TABLE 1 ABOUT HERE ]

Note that the zero-coupon yields are recorded at the end of the month whereas the Shiller (2000)

stock returns are based on the average stock index value over each month. Besides the timing

mismatch, the volatility on the stock index is potentially underestimated. Therefore, in the

following exercise where the model is calibrated to asset allocation recommendations, the esti-

mate (and standard error) on σS is increased by a factor 1.675 to correct for this feature.3 The

adjusted estimate on the stock index volatility is thus 0.1960 (= 0.1170 × 1.675) and with a

standard error on the estimate of 0.0080 (= 0.0048× 1.675).

The expected excess return on the stock index is estimated to be 5.12% while the expected

interest rate risk premium implies that the expected excess return on, for example, a zero-

3If the stock index is described by a geometric Wiener process, as in the Black-Scholes framework, it can be

shown that the monthly observed index value is higher than the (geometric) mean process with a factor
√

6n2

(n+ 1)(2n+ 1)

where n is the number of observation dates within the month. Substituting n = 22 trading days per month into

this formula, one obtains the factor 1.675. Details can be obtained from the authors on request.
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coupon bond with five years to maturity is 0.97%.4 Furthermore, the long-run mean of the

nominal interest rate is estimated to be 4.39% while the long-run expected inflation rate is

estimated to be 3.57%.

In general, the estimates in Table 1 are compatible with similar estimates reported in e.g.

Campbell and Viceira (2001) and Brennan and Xia (2001). For example, also the estimate of

the inflation mean-reversion parameter β is in between the values considered in Brennan and

Xia (2001) and which they induce from estimations with respectively monthly and annual data.

In our case, the point estimate of β= 0.2936 implies that the half life of shocks to the inflation

rate is 2.36 years. Also, the standard deviations on the noise terms imposed on the bond

yields in the measurement equation are of the same magnitude as in Brennan and Xia (2001).

However, the standard deviations on the noise term on the long zero-coupon yields are small,

and the standard deviations on the noise term on short yields are relatively large in Brennan

and Xia (2001) whereas the opposite is the case in our implementation (due to having fixed a

small standard deviation on the 3 month zero-coupon yield).

The estimates on correlations imply that the stock index is slightly negatively correlated

with the nominal interest rate (ρSr = −0.0029) but slightly positively correlated with the real

interest rate, ρS,(r−π) = 0.0790.5 Since the stock is not negatively correlated with the real

interest rate, it cannot serve as a natural substitute for a long term real bond in hedging long

term real interest rate risk under inflation, as will be seen in the results to follow.

3.2 Calibration to asset allocation recommendations

The asset allocation recommendations that we take as our “data” and will try to match are

given in Table 2.

[ INSERT TABLE 2 ABOUT HERE ]

These recommendations are generated from the advice in Quinn (1991). Quinn (1991, p. 489)

provides three classic portfolios and rank them by their market risk: low risk, medium risk, and

high risk. These portfolios are tabulated in Canner, Mankiw and Weil (1997) as Quinn’s recom-

mendation for “conservative,” “moderate,” and “aggressive” investors. Though, Quinn (1991,

p. 489) is a bit more detailed and recommends to “Take these classics as baseline...Tip toward

4The interest elasticity of this bond is D = b(5) = 4.585 and its volatility is σB = 4.585 × σr = 0.0912. The

expected excess return is calculated as 4.585× λr.

5Following e.g. Breeden (1986), it can be shown that in our continuous time setting the real interest rate is

determined by: (rt - πt) plus a constant term. This fact is used in a straightforward way when calculating the

specific correlations with the real interest rate as stated in the text.
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higher risks...if you are young, or won’t need the money for many years.” Our construction in

Table 2 is intended to quantitatively represent the qualitative guidance of Quinn (1991).

The portfolios in the diagonal are the so-called classic portfolios which we in our context have

interpreted as being the portfolio recommendations for a short investment horizon “conservative”

investor, a medium investment horizon “moderate” investor, and a long investment horizon

“aggressive” investor. The off diagonal portfolio recommendations are constructed as weighted

averages of the two diagonal (or classic) portfolio recommendations with the same attitude

towards risk and the same investment horizon, respectively. The concrete recommendations are

obtained by using a weight of 0.75 on the classic portfolio with the same attitude towards risk

and a weight of 0.25 on the classic portfolio with the same investment horizon. For example,

the stock allocation for a “conservative” long investment horizon investor is obtained as 0.75×

20% + 0.25× 100% = 40%.

The applied weighting scheme gives more weight to the risk attitude than the investment

horizon, which seems appropriate in order to capture the qualitative statement of Quinn (1991)

that investors with longer investment horizons should “tip” towards higher risks. However, we

have tried other weighting schemes without affecting dramatically the calibration result reported

in the following.

The recommendations in Table 2 are in accordance with the popular advice that investors

with a long horizon should invest a higher fraction of wealth in stocks. Also, the invest-

ment recommendations are in accordance with the pattern pointed out by Canner, Mankiw

and Weil (1997) and, in fact, for any investment horizon the bond to stock ratio is increasing

with risk aversion.

We will calibrate parameters so as to minimize the sum of squared deviations between the

asset allocation recommendations in Table 2 and the optimal asset allocations in the economic

modeling framework in section 2. The summation of squared deviations that will be minimized is

taken over all portfolio weights for the three horizons (short, medium, long), the three degrees of

risk aversion (conservative, moderate, aggressive), as well as the allocations into stocks, bonds,

and cash. This makes a total of 27 (= 3× 3× 3) squared deviations in the summation.

In calibrating the model, we vary three risk aversion parameters: γcon > γmod > γagg > 0.

Likewise, we vary three investment horizon parameters: 0 <Hshort <Hmed <Hlong < 40 (years).

These parameters are meant to represent the relative risk aversion parameters of “conservative,”

“moderate,” and “aggressive” investors as well as the investment horizon of investors with short,

medium, and long horizons, respectively.

Furthermore, we allow investors with different investment horizons to use bonds that differ

in duration. The individual investor can thus invest in cash, stocks and a bond with a duration
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that depends on the investment horizon. Without loss of generality the bond can be thought

of as a zero-coupon bond and when we refer to the duration of the bond in the following, we

are in fact referring to the time to maturity on the relevant zero-coupon bond. This duration

concept is known as the stochastic duration; see e.g. Ingersoll, Skeldon and Weil (1978) and Cox,

Ingersoll and Ross (1979). We calibrate the (stochastic) durations as part of the problem and

we impose the intuitive restriction that investors with longer investment horizons should not

use shorter duration bonds and the restriction that the duration on the bond is between 5 years

and 15 years so that it could represent a realistic aggregate bond index; i.e. in the calibration

we have the restriction: 5 ≤ Dshort ≤ Dmed ≤ Dlong ≤ 15.

The calibration is done in two versions. In the first version we only vary the risk attitude

parameters, investment horizons, and relevant durations subject to the above restrictions. The

point estimates of the asset price and inflation dynamics in Table 1 are applied in generating

the optimal theoretical asset allocations as stated in Proposition 1. In the second version we

also allow the estimated parameters in Table 1 to vary within a range that reflects the precision

of the estimate. Formally, we allow each parameter to vary around the point estimates within

intervals of plus-minus two standard deviations on the estimates which represent individual 95%

confidence intervals for the parameters.

The calibration results in Table 3 are obtained using the point estimates of the asset price

and inflation dynamics in Table 1.

[ INSERT TABLE 3 ABOUT HERE ]

It can be observed that the calibrated model asset allocations in Panel A of Table 1 do not

conform to the advice that longer term investors should invest a higher fraction of wealth in

stocks; i.e. the Samuelson puzzle applies in this case. In fact, the model prescribes a slightly

lower fraction of wealth invested in stocks for longer term investors. This is similar to the results

reported in Brennan and Xia (2001). On the other hand, the calibrated asset allocations are

in accordance with the pattern observed by Canner, Mankiw and Weil (1997) that the bond to

stock ratio is increasing with risk aversion.

The risk aversion parameters in Table 3 are so that “aggressive” investors have risk tolerance

of 0.55 (= 1/1.815). Hence, for a given investment horizon these investors allocate 55% of wealth

to the speculative portfolio and 45% of wealth to a hedge portfolio, according to Proposition 1.

On the other hand, the “conservative” investors have a risk tolerance of 0.27 (= 1/3.771) and

for a given investment horizon these investors thus allocate 27% of wealth to the speculative

portfolio and 73% of wealth to a hedge portfolio. In our view, it seems reasonable that an

“aggressive” investor uses at least 55% of wealth for speculative purposes while it also makes
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sense that a “conservative” investor is so cautious that 73% is invested with an eye on reducing

intertemporal risks.

The relative short investment horizons in Table 3 are a consequence of the fact that the

optimal asset allocations in the formal model dictates a smaller fraction invested in stocks for

long horizon investors, contrary to the observed recommendations in Table 2. Moreover, note

that the recommendations for medium horizon and long horizon investors are identical since

their calibrated investment horizons are equal. This phenomenon is basically due to the above

observation that the stock is a poor substitute for real bonds in hedging long term real interest

rate risk under inflation since the stock is positively correlated with the real interest rate.

The calibration results in Table 4 are obtained by allowing the preference parameters to be

varied, but also by allowing the capital market parameters in Table 1 to vary within intervals

around the point estimates. The intervals are given as plus-minus two standard deviations

around the point estimates.

[ INSERT TABLE 4 ABOUT HERE ]

Not all parameters estimated in Table 1 matter for the optimal asset allocation choice. This is

the case for the long-run means of interest rates and inflation, θ and α, as well as the covariance

parameter σΨπ; these are thus not used in the calibration and, hence, their calibrated values are

not reported in Table 4.

Comparing the calibrated asset allocations in Table 4 to the target asset allocation recom-

mendations in Table 2, it is seen that the model is able to match the “data” very well. Only in a

few cases do the model portfolios deviate by more than 10% from the targeted portfolio advice.

And, in no case do the stock portfolio weights deviate by 10%. In fact, the calibrated asset allo-

cations in Table 4 are well in accordance with the recommendation that long horizon investors

should invest a higher fraction of wealth in stocks. Simultaneously, the model asset allocation

in Table 4 also conforms to the pattern pointed out by Canner, Mankiw and Weil (1997). For

any investment horizon the ratio of bonds to stocks is thus decreasing with risk tolerance.

The individual parameters calibrated in Table 4 are restricted, as described above. We have

indicated whether the individual parameters take a value that hits the restriction boundary and

whether the parameters hit a lower or upper boundary.

The representative investment horizons calibrated in Table 4 are reasonable in our view.

Specifically, a short investment horizon investor has an investment horizon of 5.487 years while

a long term investor acts so as to maximize utility of wealth at a forty-year horizon. On the

other hand, the calibrated relative risk aversion parameters are unreasonably high in our view.

For example, an “aggressive” investor has a relative risk tolerance of 0.28 (= 1/3.532). Hence,
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this investor will only allocate 28% of wealth to the speculative portfolio while the remaining

72% is allocated to the hedge portfolio. Also, the “conservative” investors are very cautious in

the sense that they will only allocate 3.6% (= 1/27.99) of wealth to the speculative portfolio

while 96.4% are invested in a hedge portfolio.

The reason that the relative risk aversion parameters are estimated rather high, at least in

our view, is the heavy burden we place on the model in order to explain why long investment

horizon investors should invest 20% extra in stocks. This horizon effect should be explained by

intertemporal hedging behavior alone since the speculative portfolio remains the same for any

horizon. Also, since we require the “aggressive” investor to hold 20% extra in stocks for a long

horizon investor compared to a short investment horizon investor, even the induced “aggressive”

representative investor must have a strong desire to buy the hedge portfolio.6

In order to resolve the Samuelson puzzle and make the stock a good substitute for a long-term

real bond, the calibrated capital market parameters in Table 4 are so that the stock index and the

real interest rate are negatively correlated, ρS,(r−π) = −0.2934 (compared to ρS,(r−π) = 0.0790

under the original estimates). Also, in order to obtain sufficient horizon effects the shocks to

the inflation rate have to be quite permanent. This is reflected in the calibrated value of β =

0.0954 which is at its lower boundary value. The estimate implies that the half life of shocks

to the inflation rate is 7.27 years (as compared to 2.36 years under the original estimates).

Allowing these parameters to vary in larger intervals could reduce the deviation between the

asset allocation advice in Table 2 and the asset allocations deduced from the formal model even

more.

4 Conclusions

In this paper we have demonstrated that popular investment allocation advice is not necessarily

at odds with rational portfolio choice. In particular, we have provided a model that is able to

resolve simultaneously the Samuelson puzzle as well as the asset allocation puzzle pointed out by

Canner, Mankiw and Weil (1997). However, it still seems that especially the recommendation

that very “aggressive” investors should also have a significantly higher fraction of wealth invested

in stocks is a heavy burden to put on the rational portfolio model – at least if this feature is to

be explained by intertemporal hedging behavior.

6It may be noted that since the horizon effects in our theoretical asset allocation model are due to the allocation

into the hedge portfolio, the model will never be able to explain why both “conservative” and “aggressive” investors

should hold the same 20% extra in stocks for the long horizon investors.
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Table 1: Estimates of Asset Price and Inflation Parameters

Parameter Estimate Standard error∗

Stock Return Process: dS
S

= (rt + λS)dt+ σSdWSt

λS 0.0512 0.0164

σS 0.1170 0.0048

Nominal interest rate process: drt = κ(θ − rt)dt+ σrdWrt

κ 0.0352 0.0549

θ 0.0439 0.0620

σr 0.0199 0.0006

λr 0.1067 0.0970

σε,1 0.0001 —–

σε,2 0.0049 0.0002

σε,3 0.0071 0.0003

σε,4 0.0096 0.0003

σε,5 0.0119 0.0003

Price index Process: dΨ
Ψ = πtdt+ σΨdWΨt

σΨ 0.0081 0.0003

Inflation Process: dπt = β(α− πt)dt+ σπdWπt

β 0.2936 0.0991

α 0.0357 0.0089

σπ 0.0213 0.0014

Correlations:

ρSr -0.0029 0.0605

ρSΨ -0.0406 0.0457

ρSπ -0.0519 0.1054

ρrΨ 0.0063 0.0535

ρrπ 0.7948 0.1307

ρΨπ 0.0168 1.0810

∗ Heteroscedasticity-consistent standard errors from White (1980).
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Table 2: Asset Allocation Recommendations Used For Calibration

Attitude towards risk

Horizon Conservative Moderate Aggressive

Short:
Stock

Bonds

Cash

Bonds/stock

20.0%

30.0%

50.0%

1.50

42.5%

37.5%

20.0%

0.88

80.0%

7.5%

12.5%

0.09

Medium:
Stock

Bonds

Cash

Bonds/stock

27.5%

32.5%

40.0%

1.18

50.0%

40.0%

10.0%

0.80

87.5%

10.0%

2.5%

0.11

Long:
Stock

Bonds

Cash

Bonds/stock

40.0%

22.5%

37.5%

0.56

62.5%

30.0%

7.5%

0.48

100.0%

0.0%

0.0%

0.00

16



Table 3: Calibrated Asset Allocations and Investor Parameters

Panel A: Calibrated asset allocations

Attitude towards risk

Horizon Conservative Moderate Aggressive

Short:
Stock

Bonds

Cash

Bonds/stock

34.5%∗

17.4%∗

48.1%

0.50

58.0%∗

24.2%∗

17.9%

0.42

72.8%

28.4%∗∗

−1.3%∗

0.39

Medium:
Stock

Bonds

Cash

Bonds/stock

34.3%

22.2%∗

43.5%

0.65

57.8%

27.8%∗

14.4%

0.48

72.7%∗

31.3%∗∗

−4.0%

0.43

Long:
Stock

Bonds

Cash

Bonds/stock

34.3%

22.2%

43.5%

0.65

57.8%

27.8%

14.4%

0.48

72.7%∗∗

31.3%∗∗∗

−4.0%

0.43

Panel B: Calibrated parameters

Parameter Estimate Boundary

Attitudes towards risk:
γagg 1.815 no

γmod 2.272 no

γcon 3.771 no

Investment horizons:
Tshort 2.424 no

Tmed 3.784 upper

Tlong 3.784 lower

Optimal durations of bonds:
Dshort 15.00 upper

Dmed 15.00 lower/upper

Dlong 15.00 upper

Value of object function: 0.44686

∗ Deviation from recommendation by more than 10%.
∗∗ Deviation from recommendation by more than 20%.
∗∗∗Deviation from recommendation by more than 30%.
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Table 4: Calibrated Asset Allocations and Investor/Asset Price Parameters

Panel A: Calibrated asset allocations

Attitude towards risk

Horizon Conservative Moderate Aggressive

Short:
Stock

Bonds

Cash

Bonds/stock

21.2%

34.2%

44.6%

1.61

46.7%

24.2%∗

29.1%

0.52

83.1%

10.0%

6.9%

0.12

Medium:
Stock

Bonds

Cash

Bonds/stock

26.4%

39.1%

34.4%

1.48

51.3%

29.0%∗

19.6%

0.57

87.0%

14.6%

−1.6%

0.17

Long:
Stock

Bonds

Cash

Bonds/stock

37.5%

29.4%

33.0%

0.78

61.3%

20.4%

18.4%∗

0.33

95.2%

7.4%

−2.6%

0.08

Panel B: Calibrated parameters

Parameter Estimate Boundary

Attitudes towards risk:
γagg 3.532 no

γmod 7.271 no

γcon 27.99 no

Investment horizons:
Tshort 5.487 no

Tmed 9.337 no

Tlong 40.00 upper

Optimal durations of bonds:
Dshort 5.000 lower

Dmed 5.506 upper

Dlong 5.506 lower

(Table 4, continued next page)
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(Table 4, continued)

Stock Return Process: dS
S

= (rt + λS)dt+ σSdWSt

λS 0.0840 upper

σS 0.1800 lower

Nominal interest rate process: drt = κ(θ − rt)dt+ σrdWrt

κ 0.1362 no

σr 0.0211 upper

λr 0.0123 no

Price index Process: dΨ
Ψ = πtdt+ σΨdWΨt

σΨ 0.0087 upper

Inflation Process: dπt = β(α− πt)dt+ σπdWπt

β 0.0954 lower

σπ 0.0223 no

Correlations:

ρSr -0.1239 lower

ρSΨ 0.0508 upper

ρSπ 0.1589 upper

ρrΨ -0.1007 lower

ρrπ 0.5334 lower

Value of object function: 0.10704

∗ Deviation from recommendation by more than 10%.
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