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Optimal Consumption and Investment Strategies

with Stochastic Interest Rates

Abstract

We study the consumption and investment choice of a time-additive power utility

investor and demonstrate how the investor should optimally hedge changes in the op-

portunity set. The investor is allowed to invest in stocks and interest rate dependent

assets in a continuous-time dynamically complete market. In particular, we demon-

strate that under stochastic interest rates the investor optimally hedges changes in the

term structure of interest rates by investing in a coupon bond, or portfolio of bonds,

with a payment schedule that matches the forward-expected (i.e certainty equivalent)

consumption pattern. This is of conceptual importance since the hedge portfolio does

not depend on the speci�c term structure dynamics (only through the consequences

for the optimal consumption pattern). We consider two explicit examples where the

dynamics of the term structure of interest rates are given by the Vasicek-model and a

three-factor non-Markovian Heath-Jarrow-Morton model.



1 Introduction

In this paper, we establish speci�c results on how investors in a continuous-time model should

optimally hedge changes in the investment opportunity set, in the sense of Merton (1971,1973).

In particular, under specialized (Gaussian) term structure dynamics and dynamically complete

markets, we demonstrate that the optimal way to hedge changes in the term structure of interest

rates is by investing in a coupon bond, or portfolio of bonds, with a payment schedule that

matches the forward-expected (i.e certainty equivalent) consumption pattern. This provides a

conceptual way to think about how to hedge changes in the opportunity set where the focus is

on the optimal consumption pattern and not the assumed dynamics of the opportunity set.

We consider the optimal consumption and investment problem of an investor with time-

additive power utility, i.e. with a Constant Relative Risk Aversion (CCRA) utility function.

Throughout the paper we allow for non-Markovian dynamics of asset prices and the term struc-

ture of interest rates. In particular, under specialized Gaussian term structure dynamics we use

the framework of Heath, Jarrow and Morton (1992) (HJM) which as input uses the current form

of the term structure of interest rates. This allows us to address questions like: Is the current

form of the term structure important for how to hedge changes in the opportunity set or does

only the dynamics of the term structure matter? We address this question by considering two

explicit examples based on the Vasicek (1977) model as well as a HJM three-factor model where

the term structure can exhibit three kinds of changes: a parallel shift, a slope change, and a

curvature change. Our results suggest that the form of the initial term structure of interest rates

is of crucial importance for the (forward-expected) consumption pattern and, hence, important

for the relevant bond to hedge changes in the opportunity set while the speci�c dynamics of the

term structure is of minor importance.

Our speci�c results and examples also provide a contribution on its own since these are,

to our knowledge, the �rst explicit results to an intertemporal consumption and investment

problem where the dynamics of the opportunity set is non-Markovian and the investor has

non-logarithmic utility.

The intertemporal consumption and investment decision of a utility-maximizing investor is

a classical problem of �nancial economics. In two pathbreaking papers, Merton (1969, 1971)

studies this problem in a continuous-time framework using dynamic programming. He shows

that the optimal investment strategy combines a myopic, or speculative, portfolio and some

portfolio which hedges changes in the investment opportunity set (i.e. time-varying returns

and volatilities). Also, Merton (1973) addresses the optimization problem under a stochastic

investment opportunity set where the drift and di�usion coeÆcients of the asset prices depend
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on the current short-term interest rate, but he does not derive explicit results for the hedge

portfolio in this case.

Our paper deviates from the classical Merton (1969,1971,1973) papers in at least three

methodological aspects: (i) We do not assume that asset prices are Markovian, (ii) we as-

sume complete markets, and (iii) instead of using a dynamic programming approach we use

the martingale solution approach suggested and formalized by Cox and Huang (1989,1991) and

Karatzas, Lehoczky, and Shreve (1987).

In the literature there has recently been a number of studies of optimal investment strategies

in dynamic markets with speci�c assumptions on the changes in the investment opportunity set.

Brennan, Schwartz and Lagnado (1997) solve numerically for the optimal investment strategy of

an investor with CRRA utility from terminal wealth in a market with stocks and bonds driven

by three variables: the short-term and the long-term interest rates and a stochastic dividend

yield on the stock. They investigate numerically how the optimal investment strategy deviates

from the myopic strategy for di�erent investment horizons.

Brennan and Xia (1998) and S�rensen (1999) consider the investment problem of a CRRA

utility investor with utility from terminal wealth only. They assume complete markets and show

that in the case where the term structure of interest rates is described by a Vasicek-model and

market prices on risk (and excess returns) are constant, the optimal hedge portfolio is the zero-

coupon bond that expires at the investment horizon. Also, Liu (1999) provide a similar result

in an example and this particular result is also a very special case of the results obtained in this

paper.

Campbell and Viceira (1998) consider a dynamic investment problem that allows for in-

tertemporal consumption. In fact, their (recursive) preferences are more general than the CRRA

utility assumed in this paper. On the other hand we allow for much more general dynamics of

the opportunity set. While Campbell and Viceira (1998) provide explicit (but approximate)

results on how to hedge changes in interest rates, they do not explicitly link the optimal hedge

portfolio to the optimal consumption pattern.

Detemple, Garcia and Rindisbacher (1999) consider a complete market where changes in the

investment opportunity set are driven by a multi-dimensional state variable following a Markov

di�usion. For an investor maximizing utility of terminal wealth, they are able to express the

optimal investment strategy as a combination of the myopic, growth-optimal strategy and two

terms representing the hedge against changes in the short-term interest rate and the market

prices of risk, respectively. The two hedge terms involves Malliavin derivatives and are based

on the Clark-Ocone formula, cf. Ocone and Karatzas (1991). In the special setting of a CRRA
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investor in a complete market with a single risky asset where the short-term interest rate and the

market price of risk follow two particular di�usion processes that are both perfectly correlated

with the risky asset price, they are able to derive the hedge strategies in closed-form. For other

settings they demonstrate how to compute the hedge components numerically by simulations

using their Malliavin formulation. Again, they do not explicitly link the optimal hedge portfolio

to the optimal consumption pattern, as in this paper.

Kim and Omberg (1996), Campbell and Viceira (1999), Chacko and Viceira (1999), and

other recent papers consider dynamic optimization problems where interest rates are constant

but where risk premia are stochastic and/or markets are incomplete; see also Campbell (2000)

for a survey of the literature.

In contrast to all the papers referred above, we allow for non-Markovian dynamics of the

opportunity set and link the optimal hedge portfolio to the optimal consumption pattern of the

investor.

The rest of the paper is organized as follows. In Section 2 we set up the general continuous-

time consumption and investment problem in a dynamically complete market and provide a

general characterization of the optimal consumption and investment policy for a CRRA investor

in a possibly non-Markovian setting. In Section 3 we derive explicit results on how to hedge

changes in the term structure of interest rates using coupon bonds in a specialized HJM multi-

factor Gaussian term structure setting. In Section 4 we consider two speci�c numerical examples

based on the Vasicek-model and an HJM three-factor model. Section 5 concludes and proofs

are given in an Appendix.

2 The investment problem

We consider a frictionless economy where the dynamics are generated by a d-dimensional Wiener

process, w = (w1; : : : ; wd), de�ned on a probability space (
;F ; IP). F = fFt : t � 0g denotes

the standard �ltration of w and, formally, (
;F ; F; IP) is the basic model for uncertainty and

information arrival in the following.

2.1 Preferences

We will consider the investment problem of an expected utility maximizing investor with a

time-separable constant relative risk aversion utility function on the form,

K � E0

"Z T

0
U1(Ct; t)dt

#
+ (1�K) � E0 [U2(WT )] (1)
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where

U1(C; t) = e��t
C1� � 1

1� 
and U2(W ) = e��T

W 1� � 1

1� 

and where � is a constant subjective time discount rate and  is a constant relative risk aversion

parameter. The preference parameter K controls the relative weight of intermediate consump-

tion, Ct, and terminal wealth, WT , in the agent's utility function. The special case where  =

1 is the logarithmic utility case: U1(C; t) = e��t logC and U2(W ) = e��T logW .

2.2 Investment assets

The agent can invest in a set of �nancial securities. One of these �nancial assets is assumed

to be an \instantaneously" risk-free bank account which has a return equal to the short-term

interest rate rt. In addition, the agent can invest in d risky assets with prices described by the

vector Vt = (V1t; : : : ; Vdt)
0. The price dynamics of the risky assets (cum dividend) are given by

dVt = diag(Vt) [(rt1d + �t�t) dt+ �t dwt] (2)

where �t is an IRd-valued stochastic process of market prices of risk, �t is an IRd�d-valued

stochastic process of volatilities, 1d is a d-dimensional vector of ones, and diag(Vt) is a (d� d)-

dimensional matrix with Vt in the diagonal (and zeros o� the diagonal). It is assumed that � has

full rank d implying that markets are dynamically complete, c.f. DuÆe and Huang (1985). As a

consequence of markets being dynamically complete, the pricing kernel (or state-price deator)

is uniquely determined and given by (see, e.g., DuÆe (1996), chapter 6)

�t = exp

�
�

Z t

0
rs ds�

Z t

0
�0s dws �

1

2

Z t

0
k�sk

2 ds

�
; t � 0 (3)

or, equivalently, in di�erential form,

d�t = �t [� rt dt� �t dwt ] ; �0 = 1: (4)

The present value of any stochastic payo�, X, paid at some future time point s can be determined

by evaluating the pricing kernel weighted payo�. In particular, we have

PVt[X] = Et

��
�s

�t

�
X

�
= Pt(s)Ê

s
t [X] (5)

where Pt(s) is the time t price on a zero-coupon bond that expires at time s. The last equality

de�nes the so-called certainty-equivalent or forward-expected payo�, Ês
t [X]; see e.g. Jamshid-

ian (1987,1989) and Geman (1989) who introduce the notion of the forward-expected martingale

measure, as being distinct from the usual risk-neutral martingale measure in the context of in-

terest rate models.
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2.3 The problem and the general solution

Let �t be an IRd-valued process that describes the fractions of wealth that the agent allocates

into the d di�erent risky assets. The wealth of the agent then evolves according to

dWt =
�
(rt + �0t�t�t)Wt � Ct

�
dt+Wt�

0

t�tdwt: (6)

The agent's problem is to choose a dynamic consumption strategy, Ct, and portfolio policy,

�t, in order to maximize the expected utility in (1). The main idea of the martingale solution

approach suggested and formalized by Cox and Huang (1989,1991) and Karatzas, Lehoczky, and

Shreve (1987) is to alternatively consider the static problem

sup
fCt;WT g

K � E0

"Z T

0
U1(Ct; t)dt

#
+ (1�K) � E0 [U2(WT )] (7)

subject to

E0

"Z T

0

�
�t

�0

�
Ctdt+

�
�T

�0

�
WT

#
�W0: (8)

The problem in (7) and (8) is a standard Lagrangian optimization problem which can be solved

using the Saddle Point Theorem (see e.g., DuÆe (1996), pp. 205{208) to determine the optimal

consumption process, Ct, and terminal wealth, WT . In principle, the problem is to maximize

expected utility subject to the budget constraint (8) which states that the present value of

the consumption stream and terminal wealth cannot exceed the agent's current wealth. The

value function, or indirect utility, Jt from the optimization problem is the maximum expected

remaining life-time utility which can be achieved by the optimal consumption and terminal

wealth plan following any time point t, 0 � t � T .

As shown by Cox and Huang (1989,1991) and Karatzas, Lehoczky, and Shreve (1987), the

solution to this problem also provides the solution to the dynamic problem of choosing the

optimal consumption strategy and portfolio policy. While the consumption policy is given

explicitly when solving (7) and (8), the optimal portfolio policy is only given implicitly as the

policy which replicates the optimal terminal wealth from the above problem and in accordance

with (6).

As described by Merton (1971,1973), the optimal investment policy can in a general Marko-

vian setting be decomposed into a speculative portfolio (chosen by a myopic or logarithmic utility

investor) and a term which hedges changes in the opportunity set. For general utility functions,

the optimal investment strategy can be represented rather abstractly in complete markets in

terms of stochastic integrals of Malliavin derivatives by the Clark-Ocone formula, cf. Ocone and

Karatzas (1991). However, in order to derive an explicit expression for the optimal portfolio
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for non-logarithmic utility functions it is generally recognized that the price dynamics must be

specialized. Cox and Huang (1989) show that when the state-price deator and the risky asset

prices constitute a Markovian system, the optimal investment strategy can be represented in

terms of the solution of a linear second order partial di�erential equation. On the other hand,

in the following proposition we provide a closed-form expression for the optimal investment

strategy for a power utility investor in a general non-Markovian complete market setting for a

CRRA investor. The (investor speci�c) stochastic process

Qt = K
1



Z T

t
e
�

�


(s�t)

Et

2
4��s

�t

� �1



3
5 ds+ (1�K)

1

 e
�

�


(T�t)

Et

2
4��T

�t

� �1



3
5 (9)

is crucial for how to hedge changes in the opportunity set, as will be formalized in the proposition

below.

Since Qt is a positive stochastic process adapted to the �ltration generated by wt, it follows

from the Martingale Representation Theorem (see e.g., DuÆe (1996)), that the dynamics of Qt

can be described on the form

dQt = Qt [�Qtdt+ �Qtdwt] (10)

for some drift process �Qt and some volatility process �Qt.

Proposition 1 The value function of the general problem in (7) and (8) has the form

Jt =
Q

tW

1�
t �A(t)

1� 
(11)

where

A(t) =
K

�

�
1� e��(T�t)

�
+ (1�K)e��(T�t)

and Qt is de�ned in equation (9).

The optimal consumption choice and the optimal portfolio policy at time t are given by

Ct = K
1


Wt

Qt
(12)

and

�t =

�
1



�
(�0t)

�1�t + (�0t)
�1�Qt: (13)

Proof: See the appendix.

Proposition 1 states the optimal portfolio policy has the same form as in Merton (1971).

The portfolio policy can be decomposed into a speculative portfolio (the �rst term in (13))

and a hedge portfolio that describes how the investor should optimally hedge changes in the
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investment opportunity set (the last term in (13)). As usual the hedge portfolio vanishes in

the special case where the investor has logarithmic utility; the precise result for the logarithmic

investor benchmark case is stated explicitly in a corollary below. Also, note that the optimal

consumption choice in (12) is on the same \feed-back form" as in, e.g., Merton (1971) even

though Proposition 1 holds for a general non-Markovian setting where dynamic programming is

not directly applicable.

It is seen from Proposition 1 that in order to hedge changes in the opportunity set, the

investor must form a hedge portfolio that basically mimics the dynamics of Qt. Hence, Qt

reects everything of importance for how to hedge changes in the investment opportunity set.

For a given investor it can thus be inferred from (9) that only processes included in the description

of (moments of) the pricing kernel stated in (3) are relevant for intertemporal hedging purposes.

In general, the investor should alone consider to hedge changes in interest rates and changes in

prices on risk in the economy while changes in, say, volatilities on marketed securities should be

of no concern in our complete market setting.

In order to discuss the implications of the results in Proposition 1 we will focus on two

benchmark cases: the log-utility case ( = 1) and the case of an in�nitely risk averse investor (

= 1).1 These two investor types represent important polar cases since the logarithmic investor

does not hedge changes in the opportunity set at all while the in�nitely risk averse investor has

no speculative demand for securities at all. Moreover, in the next section we will demonstrate

that the forward expected consumption pattern of the agent is important for how to hedge

changes in the term structure of interest rates in a specialized market setting. As formalized

and explicitly stated in the following corollaries, the forward-expected consumption patterns of

the benchmark cases of log-utility investors and in�nitely risk averse investors do not depend

on the dynamics in the investment opportunity set but only on the current form of the term

structure of interest rates.

Corollary 1 For the special case of an investor with logarithmic utility, i.e.  = 1, the value

function general problem in (7) and (8) has the form

Jt = Qt logWt (14)

with Qt = A(t) and where A(t) is de�ned in (11).

The optimal consumption choice and the optimal portfolio policy at time t are given by

Ct = K
Wt

Qt
(15)

1Formally, the results for an in�nitely risk averse investor are de�ned as the limiting results as  ! 1.
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and

�t = (�0t)
�1�t: (16)

Furthermore, at time t the forward-expected consumption rates at future time points s 2 [t; T )

are given by

Ês
t [Cs] = Ct (Pt(s))

�1 e��(s�t) ; 0 � t � s < T; (17)

and the forward-expected terminal wealth at time T is given by

ÊT
t [WT ] = Ct

�
1�K

K

�
(Pt(T ))

�1 e��(T�t): (18)

Proof: See the appendix.

Corollary 2 For the special case of an in�nitely risk averse investor, i.e.  = 1, the optimal

consumption choice is constant and given by

Ct =
Wt

Qt
=

W0

Q0
(19)

and the optimal portfolio policy at time t is given by

�t = (�0t)
�1�Qt (20)

with

Qt =

Z T

t
Pt(s) ds+ Pt(T ): (21)

In particular, the forward-expected consumption rates at future time points s 2 [t; T ) are

given by

Ês
t [Cs] = Ct ; 0 � t � s < T; (22)

and the forward-expected terminal wealth at time T is given by

ÊT
t [WT ] = Ct ; 0 � t � s < T: (23)

Proof: See the appendix.

Corollary 1 states that the optimal portfolio choice of a logarithmic utility investor is de-

scribed entirely by the speculative portfolio while Corollary 2 states that the optimal portfolio

choice of an in�nitely risk averse investor is described entirely by the hedge portfolio. The hedge

portfolio, as reected in Qt, will in this case be an annuity bond2 and the optimal consumption

will be certain and \at" and basically be generated by the certain payments on the annuity

bond.3

2An annuity bond is a coupon bond where the certain cash ows (coupon + principal repayment) from the

bond are the same throughout the �nite life of the bond (and including the last payment on the bond).

3Wachter (1999) provides similar results for an in�nitely risk averse investors in a Markovian market setting.
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3 Hedging changes in interest rates

In the following, we are especially interested in how the agent should allocate investment funds

into two general classes of securities: stocks and bonds. Therefore, we will introduce additional

notation and separate the investment assets into stocks and bonds. Formally, we will split the

d-dimensional Wiener process generating the �nancial asset returns as w = (wB ; wS), where wB

is of dimension k and wS of dimension l = d � k. We assume that the dynamics of the term

structure of interest rates, and, hence, the dynamics of prices on bonds and other term structure

derivatives traded at the bond market, are a�ected only by wB . The dynamics of the prices

of the stocks may depend on both wB and wS which allows for correlation between stocks and

term structure derivatives. Speci�cally, the investor can invest in the \instantaneously" risk-free

bank account, k term-structure derivatives, and l stocks. The asset price dynamics are given by

dBt = diag(Bt) [(rt1k + �Bt�Bt) dt+ �Bt dwBt] (24)

and

dSt = diag(St) [(rt1l + 'St) dt+ �S1t dwBt + �S2t dwSt] (25)

where �B , �S1, and �S2 are matrix valued processes of dimension k�k, l�k, and l�l, respectively.

Again, �B and �S2 are assumed non-singular so that markets are complete. Changes in the

returns of the term structure derivatives and the stocks are correlated with k � l covariance

matrix �Bt�
0

S1t. The market price of risk process � (which is not dependent on the particular

set of assets chosen) has the form

�t = (�Bt; �St)
0

where

�St = ��1
S2t'St � ��1

S2t�S1t�Bt:

Note that we have introduced the IRl-valued stochastic process 'St (= �S1t�Bt + �S2t�St) which

can be interpreted as the expected excess return on the stocks.

3.1 Term structure dynamics and portfolio choice

In the following we will introduce additional notation in order to be speci�c about the term

structure dynamics in the economy and in order to provide a framework for casting the speci�c

examples considered in a later section. Speci�cally, we assume that the dynamics of the term

structure of interest rates can be described by a k-factor model of the HJM-class introduced by

Heath, Jarrow, and Morton (1992). Moreover, we will assume that forward rate volatilities are
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deterministic which implies that we only consider term structure dynamics within the so-called

Gaussian HJM-class.

For any maturity date � the dynamics of the � -maturity instantaneous forward rate are

ft(�) = f0(�) +

Z t

0
�(s; �) ds +

Z t

0
�f (s; �)

0 dwBs; (26)

where �f (�; �) is an IRk-valued deterministic function and f0(�) is the � -maturity forward rate

observed initially at time 0. The most important feature of the HJM-modeling is that in the

absence of arbitrage, one only has to specify the initial term structure of forward rates and the

volatility structure �f (t; �) for all t and � in order to have a well-speci�ed term structure model;

in particular, as a no-arbitrage drift restriction, we have that

�(t; �) = �f (t; �)
0

�
�B(t) +

Z �

t
�f (t; u) du

�
:

While equation (26) (and the no-arbitrage drift restriction) describes the evolvement over time

of the entire forward rate curve, the dynamics of the short-term interest rate is given as the

special case where � = t, i.e. rt = ft(t). The dynamics of the short-term interest rate are thus

described by

rt = f0(t) +

Z t

0
�(s; t) ds+

Z t

0
�f (s; t)

0 dwBs: (27)

Among the many term-structure derivatives, we focus on default-free bonds. The dynamics

of the price Pt(�) = exp (�
R �
t ft(s) ds) of the zero-coupon bond maturing at time � is given by

dPt(�) = Pt(�)
��
rt + �P (t; �)

0�B(t)
�
dt+ �P (t; �)

0 dwBt

�
(28)

where �P (t; �) = �
R �
t �f (t; u) du. For later use we will also consider a bond paying a continuous

coupon of k(t) up to time T and a lump sum payment of k(T ) at time T . The time t price of

such a bond is

B
cpn
t =

Z T

t
k(s)Pt(s) ds+ k(T )Pt(T ):

Applying the Leibnitz-type rule for stochastic processes stated in Lemma 1 in the Appendix, we

see that the coupon bond price evolves according to

dB
cpn
t = �k(t) dt+B

cpn
t

h�
rt + �0Bcpn

t
�B(t)

�
dt+ �0Bcpn

t
dwBt

i
;

where

�Bcpn

t
=

R T
t k(s)Pt(s)�P (t; s) ds+ k(T )Pt(T )�P (t; T )R T

t k(s)Pt(s) ds+ k(T )Pt(T )
: (29)

Our speci�c results on how to hedge changes in interest rates, as stated in the following

Proposition 2, are based on the following assumption.
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Assumption 1 The relative risk process �t � �(t) and the forward rate volatilities �f (t; �) are

deterministic functions of time.

The implications of the assumption that prices of risk and forward rate volatilities are de-

terministic are important since we only allow interest rates to change and, hence, there are no

reasons to hedge changes in prices of risk nor forward rate volatilities. Also, as a consequence of

Assumption 1 the following analysis is limited to Gaussian models of the term structure of inter-

est rates. However, note that we do not assume that the di�usion coeÆcients �B, �S1, and �S2

of the investment assets are deterministic and, in fact, they may be described by non-Markovian

processes.

Despite shortcomings of Gaussian term structure models, such as not ruling out negative

interest rates, multi-factor Gaussian models are often used for derivative pricing since they allow

closed-form solution for most European-type term structure contingent claims, cf., e.g., Amin

and Jarrow (1992) and Brace and Musiela (1994). As we shall see in the following, the Gaussian

assumption also allows closed-form expressions for optimal investment strategies. Furthermore,

it is important to point out that not even in Gaussian HJM-models is the short rate process

necessarily Markovian. Only if �f (t; �) can be separated as �f (t; �) = G(t)H(�), where H is a

real-valued continuously di�erentiable function that never changes sign and G is an IRk-valued

continuously di�erentiable function, is the short rate Markovian, cf. Carverhill (1994). This will

e.g. not be the case in the HJM three-factor example considered in a subsequent section and,

hence, the short-term interest rate will not be a Markovian process in the speci�c example.

From the assumption that prices of risk and forward rate volatilities are deterministic, it

follows that the short-term interest rate in (27) is normally distributed (Gaussian) and that the

pricing kernel �t, as stated in (3), is lognormally distributed. It is thus possible to compute

in closed-form the expectations in the de�nition of Qt in (9) and, hence, obtain an analytical

expression for Qt. The proof of the following proposition is based on this feature.

Proposition 2 Assuming that the relative risk process �(t) and the forward rate volatilities

�f (t; �) are deterministic functions of time, the value function and the optimal consumption

strategy are given by (11) and (12) in Proposition 1 where in this case

Qt =

Z T

t
Zt(s) ds+ Zt(T ) (30)

with

Zt(s) = K
1
 (Pt(s))

�1

 exp

�
�
�


(s� t) +

1� 

22
g(t; s)

�
; 0 � t � s < T (31)

Zt(T ) = (1�K)
1
 (Pt(T ))

�1

 exp

�
�
�


(T � t) +

1� 

22
g(t; T )

�
(32)
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and

g(t; s) =

Z s

t
k�(u)k2 du+

Z s

t
k�P (u; s)k

2 du� 2

Z s

t
�B(u)

0�P (u; s) du: (33)

The optimal portfolio policy at time t is described by

�t =

�
1



�
��1
t �(t) +

�
 � 1



�
��1
t

0
@�Bcpn

t

0

1
A (34)

where �Bcpn

t
is the volatility vector of a bond, as de�ned in equation (29), which pays continuous

coupon according to

k(s) = Ês
t [Cs] = K

1

Wt

Qt
(Pt(s))

�
1
 exp

�
�
�


(s� t) +

1� 

22
g(t; s)

�
; 0 � t � s < T; (35)

and has a terminal lump sum payment at time T of

k(T ) = ÊT
t [WT ] = (1�K)

1

Wt

Qt
(Pt(T ))

�
1
 exp

�
�
�


(T � t) +

1� 

22
g(t; T )

�
(36)

Proof: See the appendix.

Proposition 2 states that in order to hedge changes in the opportunity set, i.e. changes in the

term structure of interest rates in the present context, the relevant hedge portfolio is a coupon

bond with coupons chosen to match the (forward-expected) consumption pattern. Speci�cally,

Proposition 2 states that the optimal investment strategy allocates a fraction of wealth (1=)

into the speculative portfolio and a fraction of wealth (1 � 1=) into the speci�c coupon bond.

Since the portfolio weights in �t only describe the portfolio weights on the individual risky assets

in the economy, the individual components in �t are not restricted to sum to one, and any excess

wealth will be invested in the bank account. Furthermore, it follows directly that in the special

case of investors with logarithmic utility ( = 1) there are no desire for hedging changes in the

opportunity set while on the other hand for very risk averse investors (i.e. as  !1) there are

no speculative demand for risky assets, in accordance with Corollary 1 and Corollary 2.

The special case K = 0 corresponds to utility from terminal wealth only and in this case

it follows from Proposition 2 that the relevant bond for hedging changes in the term structure

of interest rates is a bond that only has a lump sum payment at time T . In this special case

Proposition 2 generalizes the insights of Brennan and Xia (1998) and S�rensen (1999) who in

Vasicek settings demonstrate that, in the case of utility from terminal wealth only, the relevant

bond for hedging changes in the opportunity set is the zero-coupon bond that expires at the

investment horizon.

In our view the hedging strategy in Proposition 2 is of conceptual importance since the

optimal way to hedge changes in the opportunity set is model-independent in the sense that

12



the investor should alone aim at buying a coupon bond, or portfolio of bonds, such that the

(forward-expected) consumption pattern is matched. In general, Proposition 2 states that the

speci�c dynamics of the term structure of interest rates is of importance for how to hedge changes

in the opportunity set only through its e�ect on the optimal (forward-expected) consumption

pattern. In the following examples, we will focus on the determinants of the optimal (forward-

expected) consumption patterns and, in particular, we will focus on whether the current form

of the term structure or the dynamics of the term structure are of crucial importance for the

optimal (forward-expected) consumption pattern. At this point it can be noted that in general

only the form of the term structure of interest rates matters for the optimal (forward-expected)

consumption patterns for the benchmark cases of logarithmic utility investors and in�nitely risk

averse investors, as described in Corollary 1 and Corollary 2.

4 Speci�c examples

In this section we describe two speci�c examples and present numerical results on how to hedge

multi-factor interest rate risk in a dynamic setting. The �rst example is based on the term

structure dynamics from the Vasicek (1977) model while the second example considers a non-

Markovian three-factor HJM-term structure model where the term structure can exhibit three

di�erent kinds of changes: a parallel level change, a slope change, or a curvature change.

4.1 Vasicek example

In the following example we allow for utility from intermediate consumption by setting the

preference parameter K equal to 1
2
in the speci�cation of the utility function in (1) so that

utility from intermediate consumption and utility from terminal wealth are equally weighted.

On the other hand, the set-up for investment assets in the following example is basically as in

Brennan and Xia (1998) and S�rensen (1999) who only consider utility from terminal wealth.

The agent can thus invest in a single stock and a single bond as well as the \instantaneously" risk-

free bank account. The term structure dynamics are described by the one-factor term structure

model originally suggested by Vasicek (1977). In particular, the dynamics of the short-term

risk-free interest rate is described by an Ornstein-Uhlenbeck process of the form,

drt = �(� � rt)dt� �rdwBt (37)

where the parameter � describes the long-run level for the short-term interest rate, � is a

mean-reversion parameter that determines the strength of tendency to the long-run level, and

the parameter �r describes the interest rate volatility. Besides the parameters describing the
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interest rate dynamics, the parameter denoted �B in the context of section 3 determines the

price of interest rate risk.

Using standard no-arbitrage arguments, one can solve for prices on interest rate contingent

claims in the Vasicek-model. The possible forms of the term structure of forward interest rates

can thus be determined by solving for prices on zero-coupon bonds. The � -maturity forward

rate at time t in the Vasicek-model is given by

ft(�) = e��(��t)rt + r1

�
1� e��(��t)

�
+
�2r
2�

e��(��t)b(� � t) (38)

where

r1 = � + �B�r
� �

�2r
2�2

b(s) = 1
�
(1� e��s) :

The dynamics of the � -maturity forward rate can be determined from (38) and (37) and an

application of Ito's lemma. In particular, it is seen that the forward rate volatility structure in

this example has the form �f (t; �) = ��re
��(��t). Within the HJM-framework of section 3, this

volatility structure and an initial term structure of forward rates of the form in (38) provide a

complete speci�cation of the Vasicek (1977) term structure model.

The agent can invest in a single stock as well as bonds and the bank account. In the speci�c

case of a one-factor interest rate model it is suÆcient that the agent can invest in a single bond

besides the stock and the bank account in order to implement the complete markets optimal

solution. The price process of the single stock is described in equation (25) where in this case

�S1 and �S2 are scalars (i.e., of dimension 1� 1).

The speci�c parameter values used in the following numerical example are chosen as follows:

� = 0:04; � = 0:15; �r = 0:015; �S1 = 0:0625; �S2 = 0:2421;

'S = 0:05; �S = 0:19365; �B = 0:05:

(39)

In particular, the parameters �, �, and �r that describe the interest rate dynamics are chosen

so that they are close to those obtained by Chan, Karolyi, Longsta�, and Sanders (1992) for

the Vasicek interest rate process. The parameters for the stock process are chosen such that

the expected excess return on the stock is 'S = 5%, the volatility of the stock is constant 25%�
= (�2S1 + �2S2)

1=2
�
, and the \instantaneous" correlation coeÆcient between the stock and the

short-term interest rate is constant �25% (and, hence, the correlation between the stock and

any bond in the one-factor Vasicek-model is 25%). The 5% expected rate of excess return on the

stock is below the 8.4% point estimate suggested by the Ibbotson Associates 1926-1994 historical

returns data on stocks (see, e.g., Brealey and Myers (1996), chapter 7, Table 7-1). Though, as
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pointed out by Brown, Goetzmann and Ross (1995), the use of realized mean returns in this

context is likely to involve a survival bias which could be as high as 400 basis points per year.

The 25% volatility of the stock is slightly higher than 20.2% historical volatility estimate

on the S%P 500 index based on the Ibbotson and Associates returns data (see, e.g., Brealey

and Myers (1996), chapter 7) but well in accordance with, say, volatilities on individual stocks

and less diversi�ed portfolios of stocks. Furthermore, the 25% positive correlation between the

stock and bonds is consistent with the empirical results in, e.g., Campbell (1987), Fama and

French (1989), and Shiller and Beltratti (1992). Finally, the risk premia on bonds, �B = 0.05, is

set so that, e.g., the expected excess return on a 10-year zero-coupon bond in the Vasicek-model

is 0.39%.4

The above parameter values imply that an agent with logarithmic utility invests an 80%

fraction of wealth in the stock, a fraction of 0% in bonds, and the residual 20% of wealth in the

bank account. On the other hand, agents with non-logarithmic utility want to invest in bonds

that have payo�s that match their (forward-expected) consumption pattern in order to hedge

changes in the opportunity set, as described in Proposition 2. The in�nitely risk averse investors

invest 100% in the hedge bond while, e.g., an investor with constant relative risk aversion, ,

equal to 2 will invest 50% of wealth in the speculative portfolio and 50% of wealth in the hedge

bond; i.e. the portfolio composition in this case is: 40% in the stock, 10% in the bank account,

and 50% in the hedge bond.

We will consider three cases with di�erent initial term structures of forward rates. These

three forms are given by setting the short-term interest rate equal to 0.01, 0.04, and 0.07,

respectively. The three forms of the initial term structure of forward interest rates are displayed

in Figure 1.

[ INSERT FIGURE 1 ABOUT HERE ]

As formalized in Proposition 2, the (forward-expected) consumption pattern of the agent is

crucial for how to hedge changes in interest rates. The (forward-expected) consumption pattern

and the (forward-expected) terminal wealth of the agent can be determined by inserting in

the expressions in (35) and (36). In particular, the consumption pattern over time depends

on the term structure of forward rates through the occurrence of the zero-coupon price P (t; �)

= exp (�
R �
t f(t; s) ds) in the expressions. Also, the consumption pattern over time depend on

the prices on risk in the economy through the expression for the variance of the log-pricing

kernel, g(t; s) in (33). Using that the zero-coupon bond volatility is �P (t; �) = �
R �
t �f (t; u) du

4Again, Brealey and Myers (1996, chapter 7) tabulate the average historical excess return on government bonds

to be slightly higher, 1.4%, based on the Ibbotson and Associates returns data.
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= �rb(� � t) and by evaluating the integrals in (33), one obtains

g(t; s) = (�2B + �2S)(s� t) + 2(r1 � �) (b(s� t)� (s� t))�
�2r
2�

(b(s� t))2 (40)

The (forward-expected) consumption patterns are displayed in Figure 2 to Figure 6 for di�erent

degrees of relative risk aversion and for a subjective time discount rate of � = 0.03 and time

horizon of T = 25 (years).

[ INSERT FIGURE 2 TO FIGURE 6 ABOUT HERE ]

The consumption patterns in the �gures describe the speci�c payment schedules for the relevant

coupon-bonds that the di�erent investors should use in order to hedge changes in the term

structure of interest rates. The log-utility investors and the in�nitely risk averse investors are

polar benchmark cases where either the demand for the hedge bond is exactly 0% or exactly

100%. Investors in between these two polar cases will invest a fraction of wealth between 0%

and 100% in the speci�c bonds in order to hedge changes in the opportunity set. For example,

investors with relative risk aversion of 4/3, 2, and 4 should optimally invest 25%, 50%, and 75%,

respectively, in their speci�c hedge bonds.

For a log-utility investor and for an investor with  =1, the forward-expected consumption

and terminal wealth patterns, as stated in the general expressions in Corollary 1 and Corollary 2,

only depend on the initial term structure of interest rates. In particular, for  =1 the forward-

expected consumption pattern is always at, as displayed in Figure 6, while the forward-expected

consumption pattern for a log-utility investor in Figure 2 depends on the subjective discount

rate � and the speci�c form of the current term structure. From (17) it follows that in the

logarithmic utility case,  = 1, the forward-expected consumption rate k(s) must satisfy

k0(s) = (ft(s)� �) k(s)

and, hence, that the forward-expected consumption rate as a function of the time to consumption

is increasing whenever the forward rate is higher than the subjective discount rate � = 0:03, and

vice versa. The consumption patterns for the investors in Figure 3 to Figure 5 are basically in

between the two polar benchmark cases of investors with logarithmic utility and in�nitely risk

averse investors.

4.2 A non-Markovian three-factor HJM-model

This example features non-Markovian dynamics of the opportunity set. We consider three

di�erent initial term structures of forward rates; these are the initial term structures from the

above Vasicek example, as displayed in Figure 1.
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The term structure can exhibit basically three kinds of changes: a parallel level change,

a slope change, and a curvature change. Speci�cally, the forward rate volatility structure is

assumed to have the form

�f (t; �)
0 = �

�
�1; �2e

��2(��t); �3(� � t)e��3(��t)
�
; 0 � t � � � T: (41)

The dynamics of the forward rate curve is described by inserting the volatility structure (41) in

(26). In particular, a change in the Wiener-process that governs movements in the �rst factor

will result in an equal change in all forward rates for di�erent maturities; hence, this causes a

parallel level change of the forward curve. Likewise, a change in the Wiener-process that governs

movements in the second factor will signi�cantly a�ect forward rates with short maturities but

not forward rates with long maturities; hence, this causes a slope change of the forward curve.

Finally, a change in the Wiener-process that governs movements in the third factor will a�ect

forward rates with medium maturities but neither forward rates with short and long maturities;

hence, this causes a change in the curvature of the forward curve. The three factors are similar

to the fundamental three components in the Nelson and Siegel (1986) structural forms widely

used in practice for calibration of term structures of interest rates and also consistent with the

term structure factors determined empirically by, e.g., Litterman and Scheinkman (1991).

The volatility of any zero-coupon bond is described by �P (t; �) = �
R �
t �f (t; u) du and under

the above speci�cation of forward curve volatility, we have

�P (t; �)
0 =

�
�1(� � t); �2b2(� � t); �3�3 (b3(� � t)� (� � t)e��3(��t))

�
(42)

where bj(�) =
1
�j
(1� e��j� ) for j = 2; 3.

As in the Vasicek-example above, it is possible to determine the optimal (forward-expected)

consumption pattern and, hence, the relevant coupon bond to hedge changes in the opportunity

set using the general results in Proposition 2. Besides the form of the initial term structure

of interest rates the variance of the (log-) pricing kernel, g(t; s), is determining the relevant

consumption patterns in (35) and (36). Straightforward calculations using (33) show that

g(t; s) = (�2B1 + �2B2 + �2B3 + �2S)(s� t)� �B1�1(s� t)2 + 1
3
�21(s� t)3

+
�
2�B2�2

�2
�

�2
2

�2
2

�
(b2(s� t)� (s� t))�

�2
2

2�2
(b2(s� t))2

�
�
4�B3�3

�2
3

� 3
2

�2
3

�4
3

�
(s� t)� 1

2

�2
3

�3
3

(s� t)2

+
�
4�B3�3

�2
3

� 3
2

�2
3

�4
3

+
�
2�B3�3

�3
+

�2
3

�3
3

�
(s� t) +

�2
3

�2
3

(s� t)2
�
b3(s� t)

�
�2
3

�2
3

�
5

4�3
+ 3

2
(s� t) + 1

2
�3(s� t)2

�
(b3(s� t))2

(43)

In the following, we will tabulate numerical results for three di�erent sets of parameters for the

three-factor HJM-model. Our base case set of parameters are chosen such that the volatilities
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of short term and long term bonds as well as the expected excess returns on stocks and bonds

are of the same magnitude as in the Vasicek-example above. Below, we will comment further

on how this is achieved but, speci�cally, the parameters values in the base case are:

�2 = 1:00; �3 = 0:50; �1 = 0:00325; �2 = 0:01184; �3 = 0:00869;

�S1 = (0:03187; 0:02305; 0:04857) 0 ; �S2 = 0:24206;

'S = 0:05; �S = 0:19365; �B = (0:02549; 0:01844; 0:03886) 0 :

(44)

In choosing the parameters in (44) we �rst �xed �2 and �3 so that it makes sense to talk about

a slope e�ect and a curvature e�ect in the dynamics of the forward rate curve in (26). In

the present context, the innovations in the forward curve are generated by a three-dimensional

Wiener process, wB = (wB1; wB2; wB3)
0. As described above, an innovation in wB1 a�ects all

forward rates equally while, e.g., an innovation in wB2 a�ects short rates but not very long rates.

For example, �2 = 1.00 implies that if an innovation in wB2 increases the spot rate with 100

basis point, the 1-year forward rate is increased only by (100 � e��2�1 =) 36.79 basis points,

and the 5-year forward rate is only increased by 0.67 basis points; hence, an innovation in wB2

will signi�cantly change the slope of the forward rate curve. Likewise, an innovation in wB3 will

not a�ect the very near forward rates nor the very distant forward rates but will change the

curvature of the forward rate curve. The maximum amplitude in the forward rate curve caused

by an innovation in wB3 occurs for a medium distant forward rate; speci�cally, for �3 = 0.50

the maximum amplitude occurs for the (1=�3 =) 2-year forward rate.

While the parameters �2 and �3 are speci�ed exogenously, the forward rate volatility param-

eters �1, �2, and �3 are calibrated in order to ensure that the volatilities of zero-coupon bonds

with times to maturity equal to 0.25 years, 2 years, and 10 years, respectively, are identical to

those in the Vasicek example.5 Next, �S1 and �S2 are chosen such that the volatility on the

stock is 25% and such that the correlation coeÆcients between the stock and any of the three

term structure factors are �25% which corresponds to the �25% correlation between the stock

and the short-term risk-free interest rate in the Vasicek example. Finally, risk premia are also

calibrated to be similar to those in the Vasicek example. In particular, the expected excess

return on the stock is 5% while the risk premia on bonds, as reected in �B , are calibrated so

that there are no speculative demand for bonds (also, jj�B jj = 0.05, as in the Vasicek example).

The portfolio choice of a logarithmic investor is, hence, to invest 80% of wealth in the stock, 0%

in bonds, and 20% in the bank account, as in the Vasicek example. Likewise, other investors

allocate the same fraction of wealth into the stock, the bank account, and a hedge bond as in

5This is done by equating the relevant zero-coupon bond volatilities from (42)) to those in the Vasicek example.
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the Vasicek example.

The speculative demand for securities in this example is exactly similar to the speculative

demand in the above Vasicek example. The way the investors want to hedge changes in the

opportunity set, however, may be quite di�erent due to the more complex dynamics of the term

structure of interest rates in this HJM three-factor setting. In our view, a comparison between

the hedge choice in the Vasicek example and in this HJM three-factor setting using the base

case parameters in (44) is relevant for addressing questions such as: (i) is the present form of

the term structure of interest rates important for how to hedge changes in the opportunity set,

and (ii) is the exibility and dynamics of the term structure of interest rates important for how

to hedge changes in the opportunity set?

As formalized in Proposition 2 the forward-expected consumption pattern is crucial for the

hedging behavior since the appropriate bond (or bond portfolio) for hedging changes in the

opportunity set is one that has a payment schedule similar to the optimal forward-expected

consumption pattern. Hence, the questions above can be answered by comparing the optimal

consumption patterns across the two di�erent examples. The optimal consumption patterns

are tabulated in Table 1 for investors with di�erent degrees of relative risk aversion. As in the

Vasicek example, the investors have investment horizon of 25 years, a subjective time discount

rate of � = 0:03, and they equally weight utility from intermediate consumption and �nal wealth,

i.e., K = 1
2
in the general utility function speci�cation in (1).

[ INSERT TABLE 1 ABOUT HERE ]

The (forward-expected) consumption patterns for the Vasicek dynamics are exactly identical to

those displayed in Figure 2 to Figure 6 in the Vasicek example above. The (forward-expected)

consumption patterns for the HJM three-factor model are for the benchmark parameters in (44).

Of course, the results for log-utility investors and in�nitely risk averse investors in Table 1 are

exactly identical since the (forward-expected) consumption patterns of these investors depend

only on the current form of the term structure of interest rates, as shown in Corollary 1 and

Corollary 2. However, also for investors with relative risk aversion in between these benchmark

investors the di�erences between the consumption patterns in the Vasicek example and in the

base case HJM three-factor model seems basically ignorable. The conclusion from observing

similar (forward-expected) consumption patterns from the Vasicek example and the base case

HJM three-factor model is that investors need not care about the dynamics of the term struc-

ture of interest rates since in both cases the investors should hedge changes in the investment

opportunity set by basically buying the same coupon bond. On the other hand, the current form

of the term structure is important for the optimal consumption patterns of the investors and,
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hence, important for the precise payment schedule of the relevant bond for hedging changes in

the opportunity set.

In Table 2 we have tabulated results for two other sets of parameter values for the HJM

three-factor model.

[ INSERT TABLE 2 ABOUT HERE ]

In the discussion of Proposition 1, it was noted that optimal consumption choices are only altered

if one change parameters that enter the dynamics (or particular moments) of the pricing kernel

process. Hence, e.g., changing the volatilities �S1 and �S2 of the investment assets will have no

consequences for the optimal forward-expected consumption pattern and, hence, no consequences

for the relevant coupon bond to hedge changes in the opportunity set. On the other hand, if one

changes risk premia or parameters in the description of the term structure dynamics the optimal

consumption pattern will in general be a�ected. Therefore, we only consider two other sets of

parameters: one in which forward-rate volatility parameters are changed and one in which risk

premia parameters are changed.

The two sets of alternative parameters considered in Table 2 are:

�2 = 1:00; �3 = 0:50; �1 = 0:00650; �2 = 0:02367; �3 = 0:01738;

�S1 = (0:03187; 0:02305; 0:04857) 0 ; �S2 = 0:24206;

'S = 0:05; �S = 0:19365; �B = (0:02549; 0:01844; 0:03886) 0

(45)

and

�2 = 1:00; �3 = 0:50; �1 = 0:00325; �2 = 0:01184; �3 = 0:00869;

�S1 = (0:03187; 0:02305; 0:04857) 0 ; �S2 = 0:24206;

'S = 0; �S = 0; �B = (0; 0; 0)0 ;

(46)

respectively.

The parameter set in (45) di�ers from the base set of parameters in (44) alone by higher

volatilities on the forward rate curve; speci�cally, the parameters in (45) are chosen such that

the volatilities on zero-coupon bonds with time to maturity equal to 0.25 years, 2 years, and

10 years, respectively, are exactly twice as large as in the HJM base case parameters set and,

hence, twice as large as in the Vasicek example. The speculative demands for stocks and bonds

are similar to those in the base case, i.e. a logarithmic utility investor invest an 80% fraction of

wealth in the stock, 0% in bonds, and 20% in the bank account.

The parameter set in (46) di�ers from the base set of parameters in (44) alone by having zero

prices on risk so that the speculative demands for stocks and bonds are zero, i.e. a logarithmic
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utility investor in this case invests a 0% fraction of wealth in the stock, 0% in bonds, and 100%

in the bank account.

The optimal (forward-expected) consumption patterns in the HJM three-factor example with

the above parameter choices are tabulated in Table 2 under the labels \HJM-2" and \HJM-3",

respectively. The optimal (forward-expected) consumption patterns for the benchmark param-

eter set in (44) are identical to those in Table 1 and tabulated under the label \HJM-1" in

Table 2. For the polar cases of log-utility investors and in�nitely risk averse investors the op-

timal consumption patterns are unaltered across the di�erent parameter sets since these only

depend on the initial form of the term structure; these cases are, therefore, not tabulated in

Table 2.

For investors with preferences in between the polar cases of logarithmic utility and in�nite

risk aversion, the (forward-expected) consumption patterns do depend on the speci�c set of

parameters applied, as can be seen from Table 2. However, it seems that the optimal consump-

tion patterns do not change dramatically across the di�erent parameter sets. In particular, the

consumption patterns in the case of higher forward rate volatilities are basically similar to those

in the benchmark parameter case (44) and in the Vasicek-example.

In order to have an objective measure of the distance between the di�erent consumption

plans in Table 2 and, hence, of the relevant bonds to hedge changes in the opportunity set, we

have also tabulated Fisher-Weil durations in Table 2. The Fisher-Weil duration measure is in

this context de�ned by R T
t (s� t)k(s)Pt(s)ds+ (T � t)k(T )Pt(T )R T

t k(s)Pt(s)ds+ k(T )Pt(T )

and is a measure of the average time to the payments of any particular bond. Even for the

case of zero risk premia, the durations of the relevant coupon bond for hedging changes in

the opportunity set seem close to the relevant durations implied by the other parameter sets

considered in Table 2.

5 Conclusion

In this paper we have derived optimal strategies for investments in stocks and term-structure

derivatives for a CRRA investor in a complete market. We provided explicit result on how

to hedge changes in the investment opportunity set in the case of multi-factor Gaussian HJM

interest rates and deterministic market prices of risk. In particular, we have demonstrated how

changes in the investment opportunity set can be hedged by a single bond: A zero-coupon bond

for the case of utility from terminal wealth only and a continuous-coupon bond in the case
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of utility from intermediate consumption. Due to the limitations of the assumed dynamics of

the �nancial markets, it is of course highly relevant to expand our study to models with more

realistic term structure dynamics and other speci�cations of market prices of risk. We leave

such an analysis to future research.
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Appendix

Proof: (Proposition 1)

At any point in time t, 0 � t � T , the optimal consumption and terminal wealth plan will

maximize expected remaining life-time utility and, hence, solve the problem:

sup
fCs;WT g

K � Et

"Z T

t
U1(Cs; s)ds

#
+ (1�K) � Et [U2(WT )] (47)

subject to

Et

"Z T

t

�
�s

�t

�
Csds+

�
�T

�t

�
WT

#
�Wt (48)

where U1 and U2 are de�ned in (1). The �rst-order conditions, which the optimal consumption

and terminal wealth plan must satisfy, are given by:

Ke��(s�t)C�
s = 	

�s

�t
; 0 � t � s � T

and

(1�K)e��(T�t)W
�
T = 	

�T

�t

or, equivalently,

Cs = 	
�

1

K
1

 e
�

�


(s�t)

�
�s

�t

�
�

1


; 0 � t � s � T (49)

and

WT = 	
�

1

 (1�K)
1

 e
�

�


(T�t)

�
�T

�t

�
�

1


(50)

Inserting (49) and (50) into the budget constraint (48), we obtain

Wt = 	
�

1
 Et

�R T
t

�
�s
�t

�
K

1
 e

�
�


(s�t)

�
�s
�t

�
�

1

ds+

�
�T
�t

�
(1�K)

1
 e

�
�


(T�t)

�
�T
�t

�
�

1


�

After using Fubini's Theorem to interchange the order of expectations and integration in the

last term on the right hand side of this equality the term is seen to be equal to Qt, as de�ned

in equation (9). Hence, solving for the Lagrange multiplier 	, we have

	
�

1

 =
Wt

Qt
(51)

Substituting the expression for 	 in (51) into (49) and (50), the optimal consumption and

terminal wealth plan can be written on the form

Cs =
Wt

Qt
K

1
 e

�
�


(s�t)

�
�s

�t

�
�

1


; 0 � t � s � T (52)

and

WT =
Wt

Qt
(1�K)

1
 e

�
�


(T�t)

�
�T

�t

�
�

1


(53)
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The value function can now be determined by inserting the optimal consumption and terminal

wealth plan in (52) and (53) into the objective function in (47). We obtain

Jt = K Et

hR T
t e��(s�t)C

1�
s �1
1� ds

i
+ (1�K) Et

�
e��(T�t)

W
1�

T
�1

1�

�

= 1
1�

�
K
R T
t e��(s�t)Et

�
C1�
s

�
ds+ (1�K)e��(T�t)Et

h
W

1�
T

i�
� 1

1�

�
K
R T
t e��(s�t)ds+ (1�K)e��(T�t)

�

= 1
1�

�
Wt

Qt

�1�  
K

1


R T
t e

�
�


(s�t)

Et

"�
�s
�t

��1



#
ds+ (1�K)

1

 e
�

�


(T�t)

Et

"�
�T
�t

��1



#!

� 1
1� A(t)

=
Q


tW
1�

t �A(t)

1�

where we have used Fubini's Theorem and the de�nition of A(t) in the third equality. The fourth

equality follows by using the de�nition of Qt in (9). This proves the form of the value function

stated in (11).

The optimal consumption choice stated in (12) follows as the special case where s = t in the

expression for the optimal consumption plan in (52).

Finally, it remains to be shown that the optimal portfolio policy is as stated in (13). Since

the optimal plan for optimal terminal wealth in (53) is valid for any t, 0 � t � T , and in

particular also for t = 0, we have that

W0

Q0

(1�K)
1
 e

�
�


T
�
�T

�0

�
�

1


=
Wt

Qt
(1�K)

1
 e

�
�


(T�t)

�
�T

�t

�
�

1


or, equivalently,

Wt =W0 e
�

�


t
�
Qt

Q0

��
�t

�0

�
�

1


(54)

Using the expression for optimal wealth in (54), and by an application of Ito's lemma, (10), and

(4), it follows that

dWt =Wt

�
(: : :) dt+ �Qtdwt +

�
1



�
�tdwt

�
(55)

In order to replicate the dynamics of optimally invested wealth in (55) the di�usion coeÆcients

must be matched (almost surely). Note that the drift term has been left unspeci�ed since, using

the martingale solution approach, this term will automatically be matched once the di�usion

coeÆcients are matched. The claimed portfolio policy in (13) can now be veri�ed by inspection;

i.e., by inserting the portfolio policy in (13) into (6) it is seen that the proposed strategy ensures

a match with the di�usion coeÆcients in (55). This ends the proof.
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Proof: (Corollary 1)

The proofs of (14), (15), and (16) follow exactly the same steps as in the proof of Proposition 1

above and, hence, will not be repeated here.

The analog to the optimal consumption plan in (52) is given by setting  equal to one,

Cs =
Wt

Qt
Ke��(s�t)

�
�s

�t

�
�1

= Cte
��(s�t)

�
�s

�t

�
�1

; 0 � t � s � T (56)

where the last equality follows from (15). The forward-expected consumption rate at time s is

by de�nition given by

Pt(s)Ê
s
t [Cs] = Et

��
�s

�t

�
Cs

�
= Cte

��(s�t)

where we have used (56) to obtain the last equality. The form of the forward-expected con-

sumption rates in (17) now follow by solving for Ês
t [Cs]. The proof of the expression for forward-

expected terminal wealth in (18) follows analogously (in this case by using the pendant to

optimal terminal wealth in (53) for  = 1).

Proof: (Corollary 2)

The limiting optimal consumption plan is given by the limit of (52),

Cs =
Wt

Qt
; 0 � t � s � T: (57)

Since (57) is valid for any s and t, and especially for t = 0, it follows that the process Cs, s � 0,

is constant. The claim in (19) follows directly from (57) as do the claim in (22). Taking the

limit of (53) as  approaches in�nity, it is seen that WT = Wt=Qt = Ct; the proves the claim in

(23).

The portfolio policy in (20) is obtained as the limit of (13) as  approaches in�nity.

The expression for Qt in (21) can be obtained as the limit of the expression in (9) as 

approaches in�nity.6 Alternatively, it follows from (19) that Qt is proportional to the current

wealth, Wt. Since current wealth must be invested in an annuity (which ensures a \at" pay-

ment schedule equal to the optimal consumption plan Ct = C0), the present value of this annuity

must always be: Wt = Ct �
�R T

t Pt(s) ds+ Pt(T )
�
. The claimed form of Qt in (21) now follows

from (19).

In the proof of Proposition 2 we make use of the following Leibnitz-type rule for stochastic

processes:

6In this case it is implicitly assumed that the relevant expectations of the pricing kernel are suÆciently well-

behaved so that a convergence theorem can be applied to interchange the order of integration and passage to the

limit.
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Lemma 1 Let Zt(s) be a family of stochastic processes such that for each �xed s 2 [0; T ]

dZt(s) = �t(s) dt+ �t(s) dwt ; 0 � t � s

where �t(s) satis�es

(a)
R T
0 �2t (s)dt <1 for all s 2 [0; T ];

(b)
R T
0

hR T
t �t(s) ds

i2
dt <1

almost surely. Let Yt be de�ned by

Yt =

Z T

t
Zt(s) ds:

Then the dynamics of Yt are given by

dYt =

" Z T

t
�t(s) ds

!
� Zt(t)

#
dt+

 Z T

t
�t(s) ds

!
dwt:

Proof: The proof is an application of the generalized Fubini-type rule for stochastic processes

stated and applied in the Appendix of Heath, Jarrow and Morton (1992). Let t0 � t1, then since

Zt1(s) = Zt0(s) +

Z t1

t0

�t(s) dt+

Z t1

t0

�t(s) dwt; (58)

we have

Yt1 =

Z T

t1

Zt0(s) ds+

Z T

t1

�Z t1

t0

�t(s) dt

�
ds+

Z T

t1

�Z t1

t0

�t(s) dwt

�
ds

=

Z T

t1

Zt0(s) ds+

Z t1

t0

"Z T

t1

�t(s) ds

#
dt+

Z t1

t0

"Z T

t1

�t(s) ds

#
dwt

= Yt0 +

Z t1

t0

"Z T

t
�t(s) ds

#
dt+

Z t1

t0

"Z T

t
�t(s) ds

#
dwt

�

Z t1

t0

Zt0(s) ds�

Z t1

t0

�Z t1

t
�t(s) ds

�
dt�

Z t1

t0

�Z t1

t
�t(s) ds

�
dwt

= Yt0 +

Z t1

t0

"Z T

t
�t(s) ds

#
dt+

Z t1

t0

"Z T

t
�t(s) ds

#
dwt

�

Z t1

t0

Zt0(s) ds�

Z t1

t0

�Z s

t0

�t(s) dt

�
ds�

Z t1

t0

�Z s

t0

�t(s) dwt

�
ds

= Yt0 +

Z t1

t0

"Z T

t
�t(s) ds

#
dt+

Z t1

t0

"Z T

t
�t(s) ds

#
dwt

�

Z t1

t0

�
Zt0(s) +

Z s

t0

�t(s) dt+

Z s

t0

�t(s) dwt

�
ds

= Yt0 +

Z t1

t0

"Z T

t
�t(s) ds

#
dt+

Z t1

t0

"Z T

t
�t(s) ds

#
dwt �

Z t1

t0

Zt(t) dt
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where the Fubini rule is used in the second and fourth equality while the �rst equality follows

by inserting (58) in the de�nition of Yt and, also, the last equality follows by using (58) and

the fact that
R t1
t0
Zt(t) dt =

R t1
t0
Zs(s) ds; the other equalities follow by pure manipulation of the

involved expressions. The claim now follows.

Proof: (Proposition 2)

In order to prove the form of the value function and the optimal consumption strategy, we only

need to verify that under the speci�c assumptions Qt, as de�ned in equation (9), has the form

stated in (30), (31), (32), and (33).

It follows from (9) that Qt can always be written on the form in (30) with

Zt(s) = K
1
 e

�
�


(s�t)

Et

2
4��s

�t

� �1



3
5 ; 0 � t � s < T (59)

Zt(T ) = (1�K)
1
 e

�
�


(T�t)

Et

2
4��T

�t

� �1



3
5 : (60)

Using the assumption that �(t) and the forward volatilities �f (t; �) are deterministic functions

of time, it follows that the pricing kernel �t in (3) is lognormally distributed and, hence, it is

possible to compute in closed-form the expectations that enter the expressions for Zt(s) and

Zt(T ) in (59) and (60). First note that the price of a zero-coupon bond must satisfy

Pt(s) = Et

��
�s

�t

��
= exp

�
Et

�
ln

�
�s

�t

��
+
1

2
Vart

�
ln

�
�s

�t

���
:

It follows that

Et

2
4��s

�t

��1



3
5 = exp

(
 � 1


Et

�
ln

�
�s

�t

��
+
1

2

�
 � 1



�2

Vart

�
ln

�
�s

�t

��)

= Pt(s)
�1

 exp

�
1� 

22
g(t; s)

�
; 0 � t � s � T (61)

where for notational simplicity we have introduced the deterministic function

g(t; s) = Vart

�
ln

�
�s

�t

��
;

which can be rewritten using (3) and (27) as

g(t; s) = Vart

�
�

Z s

t
ru du�

1

2

Z s

t
k�(u)k2 du�

Z s

t
�(u)0 dwu

�

=

Z s

t
k�(u)k2 du+

Z s

t


Z s

u
�f (u; �) d�

2 du+ 2

Z s

t
�B(u)

0

�Z s

u
�f (u; �) d�

�
du

=

Z s

t
k�(u)k2 du+

Z s

t
k�P (u; s)k

2 du� 2

Z s

t
�B(u)

0�P (u; s) du: (62)
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The stated forms of Zt(s) and Zt(T ) in (31) and (32) now follow by substituting (61) into (59)

and (60).

We will now prove that the optimal portfolio policy is as stated in (34). Note that by

using the general expression for the portfolio policy in Proposition 1, we need only to show

that �Qt =
�
�1


�
(�0

B
cpn
t

; 00)0. We will start by proving the formulas for forward-expected

consumption and terminal wealth stated in (35) and (36). By de�nition of the forward-expected

(or certainty equivalent) payo� of the stochastic consumption rate Cs, 0 � t � s < T , we have

Pt(s)Ê
s
t [Cs] = Et

��
�s

�t

�
Cs

�

Inserting the optimal consumption plan derived in the proof of Proposition 1 and stated in

equation (52), we obtain

Pt(s) Ê
s
t [Cs] =

Wt

Qt
K

1
 e

�
�


(s�t)

Et

2
4��s

�t

��1



3
5

=
Wt

Qt
Zt(s) (63)

where the second equality follows using (59). The formula for the forward-expected consumption

rate in (35) now follows by inserting the expression for Zt(s) in (31) (which was proved above)

into (63) and solving for Ês
t [Cs]. The analogous formula for Ê

T
t [WT ] in (36) can be veri�ed using

exactly the same steps.

We will now show that �Qt =
�
�1


�
(�0

B
cpn
t

; 00)0. First note that by an application of Ito's

lemma, (31), and (28), the dynamics of Zt(s) can be described on the form

dZt(s) = Zt(s)

�
(: : :) dt+

�
 � 1



�
�P (t; s)

0dwBt

�
(64)

where we have left the drift term unspeci�ed since it is of no importance for the proof. Now,

since Qt is of the form in (30), we can apply the Leibnitz-type rule for stochastic processes stated

in Lemma 1 in order to �nd the dynamics of Qt. We �nd that

dQt = (: : :) dt+

�
 � 1



� Z T

t
Zt(s)�P (t; s)ds+ Zt(T )�t(T )

!
0

dwBt

In particular, the dynamics of Qt is of the general form stated in (10) with

�Qt =

�
 � 1



�0B@
�R T

t Zt(s)�P (t; s)ds+ Zt(T )�t(T )
�
0

R T
t Zt(s)ds+ Zt(T )

; 00

1
CA
0

: (65)

From (63) we have that Zt(s) =
�
Qt

Wt

�
Pt(s)k(s) where by de�nition k(s) � Ês

t [Cs]. Inserting

this in (65) and dividing through by the constant
�
Qt

Wt

�
in the numerator and denominator, the
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expression for �Qt in (65) takes the form
�
�1


�
(�0

B
cpn
t

; 00)0 with �Bcpn

t
on the form in (29). This

is the claimed portfolio policy and, hence, this ends the proof.
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Figure 1: Term structures of forward interest rates. The �gure displays forward rates as

a function of time to maturity for di�erent Vasicek term structures described by short interest

rate levels of 0.01, 0.04, and 0.07, respectively.
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Figure 2: Expected consumption patterns for an investor with constant relative risk

aversion, RRA = 1.00, and time horizon T = 25. The �gure displays the expected

consumption streams under the forward-adjusted martingale measures for the three di�erent

Vasicek term structures of forward interest rates displayed in Figure 1.
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Figure 3: Expected consumption patterns for an investor with constant relative risk

aversion, RRA = 1.33 and time horizon T = 25. The �gure displays the expected

consumption streams under the forward-adjusted martingale measures for the three di�erent

Vasicek term structures of forward interest rates displayed in Figure 1.
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Figure 4: Expected consumption patterns for an investor with constant relative risk

aversion, RRA = 2.00 and time horizon T = 25. The �gure displays the expected

consumption streams under the forward-adjusted martingale measures for the three di�erent

Vasicek term structures of forward interest rates displayed in Figure 1.
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Figure 5: Expected consumption patterns for an investor with constant relative risk

aversion, RRA = 4.00 and time horizon T = 25. The �gure displays the expected

consumption streams under the forward-adjusted martingale measures for the three di�erent

Vasicek term structures of forward interest rates displayed in Figure 1.
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Figure 6: Expected consumption patterns for an investor with constant relative risk

aversion, RRA = 1 and time horizon T = 25. The �gure displays the expected consump-

tion streams under the forward-adjusted martingale measures for the three di�erent Vasicek

term structures of forward interest rates displayed in Figure 1.
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