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Capturing volatility persistence: A dynamically complete

Realized EGARCH-MIDAS model*

Daniel Borup† Johan S. Jakobsen**

Abstract
We introduce extensions of the Realized Exponential GARCH model (REGARCH)
that capture the evident high persistence typically observed in measures of
financial market volatility in a tractable fashion. The extensions decompose
conditional variance into a short-term and a long-term component. The latter
utilizes mixed-data sampling or a heterogeneous autoregressive structure, avoid-
ing parameter proliferation otherwise incurred by using the classical ARMA
structures embedded in the REGARCH. The proposed models are dynamically
complete, facilitating multi-period forecasting. A thorough empirical investi-
gation with an exchange traded fund that tracks the S&P500 Index and 20
individual stocks shows that our models better capture the dependency struc-
ture of volatility. This leads to substantial improvements in empirical fit and
predictive ability at both short and long horizons relative to the original RE-
GARCH. A volatility-timing trading strategy shows that capturing volatility
persistence yields substantial utility gains for a mean-variance investor at
longer investment horizons.
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I. Introduction

The Realized GARCH model (RGARCH) and Realized Exponential GARCH model

(REGARCH) (Hansen, Huang, and Shek, 2012; Hansen and Huang, 2016) provide an

advantageous structure for the joint modeling of stock returns and realized measures

of their volatility. The models facilitate exploitation of granular information in high-

frequency data by including realized measures, which constitute a much stronger

signal of latent volatility than squared returns (Andersen, Bollerslev, Diebold, and

Labys, 2001, 2003). Despite the empirical success of the R(E)GARCH models, these

models do not adequately capture the dependence structure in volatility (both latent

and realized) without proliferation in parameters. This dependence structure is

typically characterized by a positive and slowly decaying autocorrelation function

(long-range dependence) or a persistence parameter close to unity, known as the

"integrated GARCH effect". Indeed, Hansen and Huang (2016) point out that the

REGARCH does a good job at modeling returns, but falls short in describing the

dynamic properties of the realized measure.

In this paper, we introduce parsimonious extensions of the REGARCH to capture

this evident high persistence by means of a multiplicative decomposition of the

conditional variance into a short-term and long-term component. The multiplicative

decomposition was popularized by Feng (2004), Engle and Rangel (2008), and Engle,

Ghysels, and Sohn (2013)), among others. This structure is particularly useful

since it enables explicit modeling of a "baseline volatility", whose level arguably

shifts over time, and is the basis around which short-term movements occur. This

structure is appealing since it is intuitive and facilitates parsimonious specifications

of a slow-moving component in volatility. Moreover, it allows for great flexibility

as opposed to formal long-memory models employing, e.g., fractional integration.

Whether the high persistence arises due to structural breaks, fractional integration

or another source (see e.g. Lamoureux and Lastrapes (1990), Diebold and Inoue

(2001), Hillebrand (2005), McCloskey and Perron (2013), and Varneskov and Perron

(2017)) our proposed models are able to reproduce the high persistence of volatility

observed in stock return data and alleviate the integrated GARCH effect. This plays

an important role in stationarity of the short-term component and existence of the

unconditional variance, but also provides a means to obtain improved multi-step

forecasts by reducing the long-lasting impact of the short-term component and its

innovations via faster convergence to the time-varying baseline volatility.

1



When specifying our models, we retain the dynamics of the short-term component like

those from a first-order REGARCH, but model the long-term component either via

mixed-data sampling (MIDAS) or a heterogeneous autoregressive (HAR) structure.

Motivated by Engle et al. (2013), the former specifies the slow-moving component as

a weighted average of weekly or monthly aggregates of the realized measure with

the backward-looking window and weights estimated from the data. The latter is

motivated by the simple, yet empirically successful HAR model of Corsi (2009), which

approximates the dependencies in volatility by a simple additive cascade structure

of a daily, weekly and monthly component of realized measures. Both our extensions

introduce only two or three additional parameters, hence avoid parameter prolif-

eration otherwise incurred by means of the classical ARMA structures embedded

in the original REGARCH. Moreover, they remain dynamically complete. That is,

the models fully characterize the dynamic properties of all variables included in the

model. This property is especially relevant for forecasting purposes, since it allows

for multi-period forecasting. This contrasts GARCH-X models, which only provide

forecasts one period into the future, and related extensions including macroeconomic

factors who rely on assumptions about the included variables’ exogenous dynamics.

We apply our REGARCH-MIDAS and REGARCH-HAR to the exchange traded index

fund, SPY, which tracks the S&P500 Index and 20 individual stocks and compare

their performances to a quadratic REGARCH-Spline and a fractionally integrated

REGARCH, the FloEGARCH (Vander Elst, 2015). We find that both our proposed

models better capture the autocorrelation structure of latent and realized volatility

relative to the original REGARCH, which is only able to capture the dependency

over the very short term. This leads to substantial improvements in empirical fit

(log-likelihood and information criteria) and predictive ability, particularly beyond

shorter horizons, when benchmarked to the original REGARCH. We document,

additionally, that the backward-looking horizon of the HAR specification is too short

to sufficiently capture autocorrelation beyond approximately one month. While

the REGARCH-Spline comes short relative to our proposals (with four-five extra

parameters), the FloEGARCH performs well. It does, however, not perform better

than our best-performing REGARCH-MIDAS specifications in-sample and lack

predictive accuracy in the short-term. This leaves the REGARCH-MIDAS as a very

attractive model for capturing volatility persistence in the REGARCH framework

and improving forecasting performance at both short and long horizons. To assess the

economic value of the improvements in predictive accuracy, we examine a volatility-
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timing strategy that uses each model’s forecast as input to construct optimal portfolio

weights. A risk-averse investor with mean-variance preferences who allocates funds

into one risky asset and one risk-free asset would be willing to pay on average

about 15 basis points per year, and for certain stocks as much as 40 basis points, to

achieve the level of utility that is obtained by our REGARCH-MIDAS compared to

the original REGARCH.

The remainder of the paper is laid out as follows. Section II introduces our extensions

to the original REGARCH; the REGARCH-MIDAS and the REGARCH-HAR. Section

III outlines the associated estimation procedure. Section IV summarizes our data

set, examines the empirical fit and predictive ability of our proposed models, and

introduces a procedure for generating multi-period forecasts. Section V concludes.

Further empirical results and additional technical details are collected in the Supple-

mentary Appendix available online. Programs for estimating our proposed models

are available from the authors upon request.

A. Related literature

Our work builds on several strands of the literature on volatility modeling. We

now briefly describe the primary strands most closely related to the present paper

and provide a few exemplary contributions in each. The outset is the R(E)GARCH

framework, but other models have been proposed to utilize information from realized

measures. Notable innovations include the GARCH-X model (Engle, 2002), the

multiplicative error model (Engle and Gallo, 2006), and the HEAVY model (Shephard

and Sheppard, 2010). Within the class of GARCH models without realized measures,

several contributions have been made to capture the evident volatility persistence. A

few notable references include the Integrated GARCH (Engle and Bollerselv, 1986),

the Fractionally Integrated (E)GARCH (Baillie, Bollerslev, and Mikkelsen, 1996;

Bollerslev and Mikkelsen, 1996), FIAPARCH (Tse, 1998), regime-switching GARCH

(Diebold and Inoue, 2001), HYGARCH (Davidson, 2004), the Spline-GARCH (Engle

and Rangel, 2008), and the time-varying component GJR-GARCH (Amado and

Teräsvirta, 2013). In the class of R(E)GARCH models, Vander Elst (2015) proposes a

fractionally integrated REGARCH, whereas Huang, Liu, and Wang (2016) suggest

adding weekly and monthly averages of a realized measure in the GARCH equation

of the RGARCH.

Another strand of literature utilizes the idea of decomposing volatility, which orig-
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inates from Engle and Lee (1999). This has primarily been used to empirically

support countercyclicality in stock market volatility (see e.g. Engle et al. (2013)

and Dominicy and Vander Elst (2015)). Inspired by the findings of Mikosch and

Stărică (2004) which show that long-range dependence and the integrated GARCH

effect may be explained by level shifts in the unconditional variance, Amado and

Teräsvirta (2013) propose a multiplicative component version of the GJR-GARCH

model for capturing volatility persistence. The MIDAS concept originally introduced

in a regression framework (Ghysels, Santa-Clara, and Valkanov, 2004, 2005; Ghysels,

Sinko, and Valkanov, 2007) has recently been successfully incorporated into the

GARCH framework with the GARCH-MIDAS proposal of Engle et al. (2013). Conrad

and Kleen (2018) indeed show formally that the autocorrelation function of squared

returns is better captured by a multiplicative GARCH specification rather than its

nested GARCH(1,1) model, arising from the persistence in the long-term component.

Our innovation relative to this literature is to introduce the multiplicative compo-

nent modeling of conditional variance into the popular R(E)GARCH framework in

order to capture the evident volatility persistence.

II. Persistence in a multiplicative Realized EGARCH

Let {r t} denote a time series of returns, {xt} a time series of realized measures,1 and

{Ft} a filtration so that {r t, xt} is adapted to Ft. We define the conditional mean

by µt = E[r t|Ft−1] and the conditional variance by σ2
t =Var[r t|Ft−1]. Our aim is to

allow for more flexible dependence structures in the state-of-the-art specification of

conditional variance provided by the REGARCH of Hansen and Huang (2016). To

that end, we define

r t =µt +σtzt,

where {zt} is an i.i.d. innovation process with zero mean and unit variance, and

assume that the conditional variance can be multiplicatively decomposed into two

1For the remainder of this paper, we assume for clarity of exposition that xt is one-dimensional,
containing a single (potentially robust) realized measure consistently estimating integrated variance
such as the realized variance or the realized kernel (Barndorff-Nielsen, Hansen, Lunde, and Shephard,
2008). This assumption is without loss of generality in the sense that additional realized measures
(and their associated measurement equations) can be added, such as daily range or the realized
quarticity (Bollerslev, Patton, and Quaedvlieg, 2016), rendering xt a vector.
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components as

σ2
t = ht gt. (1)

We refer to ht as the short-term component, supposed to capture day-to-day (high-

frequency) fluctuations in the conditional variance. On the contrary, gt is supposed

to capture secular (low-frequency) movements in the conditional variance, henceforth

referred to as the long-term component or baseline volatility. With the multiplicative

decomposition in (1), we extend a daily REGARCH(1,1) to

r t =µt +σtzt, (2)

loght =β loght−1 +τ(zt−1)+αut−1, (3)

log xt = ξ+φ logσ2
t +δ(zt)+ut, (4)

log gt =ω+ f (xt−2, xt−3, . . . ;η), (5)

where f (·;η) is a Ft−1-measurable function, which can be linear or non-linear. The

equations are labeled as the "return equation", the "GARCH equation", the "mea-

surement equation", and the "long-term equation", respectively. For identification

purposes, we have omitted an intercept in (3). Note that the specification of the

GARCH and measurement equations is a generalization of the logarithmic RGARCH

in Hansen et al. (2012).2 Our model framework applies, as a result, also to the nested

RGARCH framework. Hansen and Huang (2016) document, moreover, considerable

empirical superiority of REGARCH over RGARCH.

We facilitate level shifts in the baseline volatility via the function f (·;η), which takes

as input past values of the realized measure. We make the dependence on η explicit

in the function f (·;η), and prefer that it is low-dimensional. If f (·;η) is constant,

we obtain the REGARCH as a special case. If f (·;η) is time-varying and persistent,

2Without multiplicative decomposition, the logarithmic RGARCH takes the form

loght =β loght−1 +αxt−1,

log xt = ξ+φ loght +δ(zt)+ut,

such that by substitution we obtain

loght = ω̃+ β̃ loght−1 +αδ(zt−1)+αut−1,

where ω̃=αξ and β̃=β+αφ. It is clear that the logarithmic RGARCH is nested in the REGARCH
if the two leverage functions are proportional, τ(zt−1) = αδ(zt−1), and that the coefficient on ut−1
determines the relative magnitude.
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past information may assist in capturing the dependency structure of conditional

variance better. We propose in the following sections two ways to parsimoniously

formulate f (·;η) using non-overlapping weekly and monthly averages of the realized

measure to be consistent with the idea of a slow-moving, low-frequency component.3

We model low-frequency movements in conditional variance using (aggregates of)

past information of the realized measure rather than tying it to macroeconomic

state variables as in Engle et al. (2013) and Dominicy and Vander Elst (2015). This

procedure renders the model in (2)-(5) complete with dynamic specifications of all

variables included in the model. Consequently, multi-period forecasting can be

conducted on the basis of the jointly estimated empirical dynamics. This contrasts

specifications using exogenous information (from e.g. macroeconomic variables)

that typically rely on additional assumptions on the dynamics of the exogenous

variables (e.g. random walks (Dominicy and Vander Elst, 2015)), outside-generated

forecasts (usually from a standard autoregressive specification) of the exogenous

variables in the model (Conrad and Loch, 2015) or the assumption that the long-

term component is constant for the forecasting horizon (Engle et al., 2013).4 We do,

however, emphasize that our proposed model accommodates well the inclusion of

exogenous information such as (possibly low-frequency) macroeconomic variables if

deemed appropriate.

Given the high persistence of the conditional variance (documented in the empirical

section below), simply including additional lags in the ARMA structure embedded

in the original REGARCH is not a viable solution, keeping parameter proliferation

in mind (cf. Section IV). Instead, we utilize the multiplicative component structure

which is both intuitively appealing and maintain parsimony. Whether high persis-

tence of the conditional variance process arises due to structural breaks, fractional

integration or any other source, the long-term component, if modeled accurately, fa-

cilitates high persistence in the REGARCH framework. That is, we do not explicitly

take a stance on the reason for the presence of high persistence. Our models may

be seen as a flexible alternative to a formal long-memory model (see e.g. Bollerslev

and Mikkelsen (1996) and Vander Elst (2015)). This is motivated by Mikosch and

3 The idea is to separate the effects of the realized measure into two, such that the day-to-day effects
is (mainly) contained in the short-term component ht via ut−1 and the long-term component captures
the information contained in the realized measure further back in time. Excluding information
in the realized measure on day t−1 from the function f (·;η) is consistent with the rolling-window
formulations with realized variance in the GARCH-MIDAS framework of Engle et al. (2013).

4As suggested by a referee, a thorough comparison of the forecasting performance resulting from
dynamically complete and incomplete specifications would be interesting for future research.
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Stărică (2004), who show that the high persistence can be explained by level shifts

in the unconditional variance (see also Diebold (1986) and Lamoureux and Las-

trapes (1990)). On this basis, Amado and Teräsvirta (2013) propose a multiplicative

decomposition of the GJR-GARCH model, where the "baseline volatility" changes

deterministically according to the passage of time. We may, therefore, capture high

persistence via the structure proposed above, when the long-term component in (5)

is specified as a slow-moving baseline volatility around which stationary short-term

fluctuations occur via the standard GARCH equation. Naturally, this interpretation

(and the existence of the unconditional variance) depends on whether |β| < 1 holds in

practice, which may be questionable on the basis of former evidence for the original

REGARCH (confirmed in Section IV). However, this integrated GARCH effect is

alleviated in our proposed models, where (estimated) β is notably below unity.

The leverage functions, τ(·) and δ(·), facilitate modeling of the dependence between

return innovations and volatility innovations known to be empirically important

(see e.g. Christensen, Nielsen, and Zhu (2010)). If the leverage functions are left out,

the residuals ẑt and ût will be correlated and thereby at odds with the underlying

assumptions (Hansen et al., 2012; Hansen and Huang, 2016). We adopt the quadratic

form of the leverage functions based on the second-order Hermite polynomial,

τ(z)= τ1z+τ2(z2 −1),

δ(z)= δ1z+δ2(z2 −1).

The leverage functions have a flexible form and imply E [τ(z)] = E [δ(z)] = 0 when

E [z] = 0 and Var[z] = 1. Thus, if |β| < 1, our identification restriction implies that

E [loght] = 0 such that E
[
logσ2

t
] = E [log gt].5 In the (Quasi-)Maximum Likelihood

analysis below, we employ a Gaussian specification like Hansen and Huang (2016)

with zt ∼ N(0,1) and ut ∼ N(0,σ2
u), and zt,ut mutually and serially independent. We

check the validity of this approach via a parametric bootstrap in Section III.

The return and GARCH equations are canonical in the GARCH literature. In the

return equation, the conditional mean, µt, may be modeled in various ways including

a GARCH-in-Mean specification or simply as a constant.6 Following the latter

5The GARCH equation implies that loght = β j loght− j +∑ j−1
i=0 β

i [τ(zt−1−i)+αut−1−i] such that
loght has a stationary representation if |β| < 1.

6The mean is typically modeled as a constant since stock market returns generally are found to be
close to serially uncorrelated, see, e.g., Ding, Granger, and Engle (1993). Sometimes the assumption of
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approach, we estimate the constant µt =µ. In our multiplicative specification, the

GARCH equation drives the dynamics of the high-frequency part of latent volatility.

The dynamics are specified as a slightly modified version of the EGARCH model

of Nelson (1991) (different leverage function) with the addition of the term αut−1

that relates the latent volatility with the innovation to the realized measure. Hence,

α represents how informative the realized measure is about future volatility. The

persistence parameter β can be interpreted as the AR-coefficient in an AR(1) model

for loght with innovations τ(zt−1)+αut−1.

The measurement equation is the true innovation in the R(E)GARCH, which makes

the model dynamically complete. The equation links the ex-post realized measure

with the ex-ante conditional variance. Discrepancies between the two measures

are expected, since the conditional variance (and returns) refers to a close-to-close

market interval, whereas the realized measure is computed from a shorter, open-to-

close market interval. Hence, the realized measure is expected to be smaller than

the conditional variance on average. Additionally, the realized measure may be an

imperfect measure of volatility. Therefore, the equation includes both a proportional,

ξ, and an exponential, φ, correction parameter. The innovation term, ut, can be seen

as the true difference between ex-ante and ex-post volatility.

A. The Realized EGARCH-MIDAS model

Inspired by the GARCH-MIDAS model of Engle et al. (2013), we consider the follow-

ing MIDAS specification of the long-term component

log gt =ω+λ
K∑

k=1
Γk

(
γ
)

y(N)
t−1,k, (6)

where Γk
(
γ
)

is a non-negative weighting function parametrized by the vector γ which

satisfies the restriction
∑K

k=1Γk
(
γ
)= 1, and y(N)

t,k = 1
N

∑N
i=1 log xt−N(k−1)−i is an N-day

average of the logarithm of the realized measure. Hence, the value of N determines

the frequency of the data feeding into the low-frequency component. We consider in

the following N = 5,22, corresponding to weekly and monthly averages.

By estimating γ, for a given weighting function and choice of K , the term
∑K

k=1Γk
(
γ
)

yt−1,k

zero mean, µ= 0, is imposed for simplicity and may in fact generate better out-of-sample performance
(Hansen and Huang, 2016). However, in option-pricing applications a GARCH-in-Mean specification
is usually employed, see, e.g., Huang, Wang, and Hansen (2017).
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acts as a filter, which extracts the empirically relevant information from past val-

ues of the realized measure with assigned importance given by λ. That is, the lag

selection process is allowed to be data driven. In practice, we need to choose a value

for K and a weighting scheme. Conventional weighting schemes are based on the

exponential, exponential Almon lag, or the beta-weight specification. A detailed

discussion can be found in Ghysels et al. (2007), who study the choice of weighting

function in the context of MIDAS regression models. We employ in the following the

two-parameter beta-weight specification defined by

Γk
(
γ1,γ2

)= (k/K)γ1−1 (1−k/K)γ2−1∑K
j=1 ( j/K)γ1−1 (1− j/K)γ2−1 (7)

due to its flexible form. We restrict γ2 > 1, which ensures a monotonically decreasing

weighting scheme when γ1 = 1. We examine a single-parameter case in which

we impose γ1 = 1 (see Engle et al. (2013) and Asgharian, Christiansen, and Hou

(2016) for a similar restriction) and a case where γ1 is a free parameter. More rich

structures for the weighting scheme can obviously be considered by introducing

additional parameters, but we will not explore that route, since one important aim

of the MIDAS models is parsimony. As long as the weighting function is reasonably

flexible, the choice of lag length of the MIDAS component, K , is of limited importance

if chosen reasonably large. The reason is that the estimated γ assigns the relevant

weights to each lag simultaneously while estimating the entire model. Should one

want to determine an ‘optimal’ K , we simply suggest to estimate the model for a

range of values of K and choose that for which higher values lead to no sizeable gain

in the maximized log-likelihood value.

B. The Realized EGARCH-HAR model

Inspired by Corsi (2009), we suggest the following HAR-specification of the long-term

component

log gt =ω+γ1
1
5

5∑
i=1

log xt−i−1 +γ2
1

22

22∑
i=i

log xt−i−1. (8)

The argument for this particular lag structure is motived by the heterogeneous mar-

ket hypothesis (Müller et al., 1993), which suggests accounting for the heterogeneity

in information arrival due to e.g. different trading frequencies of financial market

participants. See Corsi (2009) for a more detailed discussion. This particular choice

of lag structure including the lagged weekly and monthly average of the logarithm
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of the realized measure is intuitive and has been empirically successful, but is not

data driven as opposed to the MIDAS lag structure. The lag structure can be seen

as a special case of the step-function MIDAS specification in Forsberg and Ghysels

(2007), which was, indeed, inspired by an unpublished version of Corsi (2009).

III. Estimation

We estimate the models using (Quasi-)Maximum Likelihood (QML) consistent with

the procedures in Hansen et al. (2012) and Hansen and Huang (2016). The log-

likelihood function can be factorized as

L (r, x;θ)=
T∑

t=1
`t(r t, xt;θ)=

T∑
t=1

[`t(r t;θ)+`t(xt|r t;θ)], (9)

where θ = (µ,β,τ1,τ2,α,ξ,φ,δ1,δ2,ω,η,σ2
u)′ is the vector of parameters in (2)-(5), and

`t(r t;θ) is the partial log-likelihood, measuring the goodness of fit of the return

distribution. Given the distributional assumptions, zt ∼ N(0,1) and ut ∼ N(0,σ2
u),

and zt,ut mutually and serially independent, we have

`t(r t;θ)=−1
2

[
log2π+ logσ2

t + z2
t
]
, (10)

`t(xt|r t;θ)=−1
2

[
log2π+ logσ2

u +
u2

t

σ2
u

]
, (11)

where zt = zt(θ) = (r t −µ)/σt. We initialize the conditional variance process to be

equal to its unconditional mean, i.e. logh0 = 0. Alternatively, one can treat logh0

as an unknown parameter and estimate it as in Hansen and Huang (2016), who

show that the initial value is asymptotically negligible. To initialize the long-term

component, log gt, at the beginning of the sample, we simply set past values of log xt

equal to log x1 for the length of the backward-looking horizon in the MIDAS-filter.

This is done to avoid giving our proposed models an unfair advantage by utilizing

more data than the benchmark REGARCH. To avoid inferior local optima in the

numerical optimization, we perturb starting values and re-estimate the parameters

for each perturbation.
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A. Asymptotic properties

We document an MDS property of the score vector in Proposition 1 in the Supple-

mentary Appendix. This is similar to the original REGARCH, leading Hansen and

Huang (2016) to conjecture that the limiting distribution of the estimators is normal.

We follow the same route and leave the development of the asymptotic theory for es-

timators of the REGARCH-MIDAS and REGARCH-HAR for future research. Hence,

we conjecture that

p
T(θ̂−θ) d−→ N(0,TH−1SH−1), (12)

where S is the limit of the outer-product of the scores and H is the negative limit of

the Hessian matrix for the log-likelihood function. In practice, we rely on estimates of

these two components in the sandwich formula for computing robust standard errors

of the coefficients. The estimate θ̂ is obtained via QML.7 To check the validity of this

approach, we employ a parametric bootstrapping technique (Paparoditis and Politis,

2009) in the Supplementary Appendix and find that the in-sample distribution of

estimated parameters for both the REGARCH, REGARCH-MIDAS and REGRACH-

HAR is generally in agreement with a normal distribution. We also compared the

bootstrapped standard errors with the robust QML standard errors computed from

the sandwich-formula in (12). The standard errors were also quite similar, which in

summary does not contradict the assertion that the QML approach and associated

inferences are valid.

IV. Empirical results

In this section, we examine the empirical fit as well as the forecasting performance of

the REGARCH-MIDAS and REGARCH-HAR, including an outline of the forecasting

procedures involved with the proposed models. We mainly comment on the weekly

REGARCH-MIDAS, since the empirical results are qualitatively similar for the

monthly version.

7Han and Kristensen (2014) and Han (2015) conclude that inference for the QML estimator is
quite robust to the level of persistence in covariates included in GARCH-X models, irrespective of
them being stationary or not. Moreover, Francq and Thieu (2018) develop asymptotic theory for
a wide class of asymmetric GARCH models with exogenous covariates, but not for EGARCH nor
log-GARCH specifications.
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A. Data

The full sample data set consists of daily close-to-close returns and the daily realized

kernels (RK) of the SPY exchange traded fund that tracks the S&P500 Index and 20

individual stocks for the 2002/01-2013/12 period. In the computation of the realized

kernel, we use tick-by-tick data, restrict attention to the official trading hours 9:30:00

and 16:00:00 New York time, and employ the Parzen kernel as in Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2011). See also Barndorff-Nielsen et al. (2008) and

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009) for additional details. For

each stock, we remove short trading days where trading occurred in a span of less

than 20,000 seconds (compared to typically 23,400 for a full trading day). We also

remove data on February 27, 2007, which contains an extreme outlier associated

with a computer glitch on the New York Exchange that day. This leaves a sample

size for each stock of about 3,000 observations. Figure 1 depicts the evolution of

returns, squared returns, realized kernel and the autocorrelation function (ACF) of

the logarithm of the realized kernel for SPY.8

¿ Insert Figure 1 about here À

We estimate the fractional integration parameter d in the logarithm of the realized

kernel with the two-step exact local Whittle estimator of Shimotsu (2010). Over

the full sample all series satisfy 0.5 < d < 1, suggesting that volatility is highly

persistent.9 This finding is supported by the slowly decaying ACF of the logarithm

of the realized kernel for SPY. Moreover, we reject (Dickey-Fuller) unit root tests

across all assets considered using both regular least-squares and instrumented

persistence parameters, following the procedures in Hansen and Lunde (2014). See

Supplementary Appendix for further details. Collectively, these findings motivate a

modeling framework that is capable of capturing a high degree of persistence. Given

the requirement that |β| < 1, this also motivates a framework that pulls β away from

unity. This is where the proposed REGARCH-MIDAS and REGARCH-HAR prove

useful.
8We include in the Supplementary Appendix a table with summary statistics of the daily returns

and the logarithm of daily realized kernels for all 20 individual stocks.
9We estimated the parameters with m = bTqc for q =∈ {0.50,0.55, . . . ,0.80}, leading to no alterations

of the conclusions obtained for q = 0.65. See also Wenger, Leschinski, and Sibbertsen (2017) for a
comprehensive empirical study on long memory in volatility and the choice of estimator of d.
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B. In-sample results

In this section, we examine the empirical fit of the proposed REGARCH-HAR and

REGARCH-MIDAS using the full sample of observations for SPY and the 20 individ-

ual stocks. We start out by presenting some appropriate benchmarks.

B.1. Benchmark models

For comparative purposes, we estimate (using QML) two direct antecedents of

the REGARCH-MIDAS and REGARCH-HAR proposed in this paper. The first is

a REGARCH-Spline (REGARCH-S), with the only difference stemming from the

specification of the long-term component. That is, we consider the quadratic spline

formulation

log gt =ω+ c0
t
T

+
K∑

k=1
ck

(
max

{ t
T

− tk−1

T
,0

})2
,

where {t0 = 0, t1, t2, . . . , tK = T} denotes a partition of the time horizon T in K +1

equidistant intervals. Consequently, the smooth fluctuations in the long-term com-

ponent arises from the (deterministic) passage of time instead of (stochastic) move-

ments in the realized kernel as prescribed by the REGARCH-HAR and REGARCH-

MIDAS.10 The formulation of the long-term component originates from Engle and

Rangel (2008) and is also examined in Engle et al. (2013), to which we refer for

further details. The number of knots, K , is selected using the BIC information

criterion.11

The second benchmark is the fractionally integrated REGARCH (FloEGRACH)

of Vander Elst (2015), which incorporates fractional integration in the GARCH

equation of the REGARCH in a similar vein to the development of the FI(E)GARCH

model of Baillie et al. (1996) and Bollerslev and Mikkelsen (1996). The model, thus,

explicitly incorporates long-memory via fractionally integrated polynomials in the

ARMA structure defined via the parameter d. In contrast to our proposals and the

REGARCH-S, the FloEGARCH does not incorporate a multiplicative component

10When the long-term component is specified as a deterministic component it follows that E[logσ2
t ]=

log gt.
11In a similar spirit to the choice of K for the REGARCH-MIDAS, we apply the number of knots

determined in the estimation on SPY uniformly in all subsequent analyses.
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structure. Following Vander Elst (2015), we implement a FloEGARCH(1,d,1),

r t =µ+σtzt,

logσ2
t =ω+ (1−β)L−1(1−L)−d (τ(zt−1)+αut−1) ,

log xt = ξ+φ logσ2
t +δ(zt)+ut,

where (1−L)d is the fractional differencing operator. The infinite polynomial can be

written as

(1−β)L−1(1−L)−d =
∞∑

n=0

(
n∑

m=0
βmψ−d,n−m

)
Ln,

where ψ−d,k =ψ−d,k−1
k−1+d

k and ψ−d,0 = 1. In the implementation, we truncate the

infinite sum at 1,000, similar to Bollerslev and Mikkelsen (1996) and Vander Elst

(2015), and initialize the process similarly to Vander Elst (2015). For completeness,

we also estimate a multiplicative component version of the EGARCH(1,1) model in

Nelson (1991).

B.2. Results for the S&P500 Index

In Table 1, we report estimated parameters, their standard errors, and the associated

maximized log-likelihood values for the models under consideration.12

¿ Insert Table 1 about here À

We derive a number of notable findings. First, the multiplicative component struc-

tures lead to substantial increases in the maximized log-likelihood value relative

to the original REGARCH. It is worth noting that the null hypothesis of no MI-

DAS component, λ= 0 such that f (·;η)= 0, renders γ1 and γ2 unidentified nuisance

parameters. Hence, assessing the statistical significance of the differences in maxi-

mized log-likelihood values via a standard LR test and a limiting χ2 distribution is

infeasible. Instead, we construct a bootstrapped LR test (BLR), where the null is the

REGARCH and the alternative is one of our proposed extensions. Specifically, we

simulate 999 series using estimates for the null model (REGARCH) and compute

the LR statistic for each simulated series. To avoid problems with local maxima in
12Given the importance of choosing the value of K , the maximum lag length of the MIDAS filter,

large enough, we let data decide. A detailed analysis in the Supplementary Appendix shows that
K = 12 and K = 52 are suitable choices for the monthly and weekly filters, respectively. We apply
these uniformly in all subsequent analyses, including the individual stock results.
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the estimation (of especially the alternative model) under the null hypothesis, we

consider a wide grid of starting values by perturbation. Given this perturbation,

numerical optimization is stable. Despite that the critical values of the bootstrap

distributions are noticeably greater than those from a regular chi-square distribution

with two-three degrees of freedom, we strongly reject the null of the REGARCH

versus all versions of the REGARCH-MIDAS with a p-value of less than 1%. The

log-likelihood improvements obtained from the REGARCH-HAR and our benchmark

models are statistically significant at a 1% level as well.

We also nuance our interpretation of the log-likelihood gains by information criteria.

The substantial increases in log-likelihood value by only a small increase in the

number of parameters in the REGARCH-MIDAS and REGARCH-HAR lead to

systematic improvements in information criteria. Despite the noticeably greater

number of parameters in the REGARCH-S, the increase in the log-likelihood value

is only comparable to that of the REGARCH-HAR, leading to a modest improvement

in the AIC, only a slight improvement in the BIC, and even a worsening of the

HQIC. The FloEGARCH comes closest to the REGARCH-MIDAS specifications,

but is still short about seven log-likelihood points. Since it only introduces one

additional parameter, the information criteria remain comparable to those of the

REGARCH-MIDAS.13 We have also considered higher-order versions of the original

REGARCH(p,q), with p, q ∈ {1, . . . ,5}. The best fitting version, the REGARCH(5,5),

provides a likelihood gain close to, but still less than the REGARCH-MIDAS models.

This gain is, however, obtained with the inclusion of additional eight parameters,

causing the information criteria to deteriorate.14

Secondly, we find that the single-parameter REGARCH-MIDAS performs similarly

to the two-parameter version. Additionally, for the same number of parameters, the

single-parameter REGARCH-MIDAS provides a considerable 16-point log-likelihood

gain relative to the REGARCH-HAR. This suggests that the HAR formulation is too

short-sighted to fully capture the conditional variance dynamics (despite providing a

13It is also noteworthy that the FloEGARCH attaches a positive weight to information four years
in the past (1,000 daily lags), whereas the REGARCH-MIDAS only carries information from at
most the last year. This suggests that the outperformance of the REGARCH-MIDAS relative to the
FloEGARCH is somewhat conservative.

14It also stands out from Table 1 that the improvements in maximized value from all models under
consideration arise from a better modeling of the realized measure and not returns, which comes
as no surprise given the motivation behind their development and that the original REGARCH is
already a very successful model in fitting returns while lacking adequate modelling of the realized
measure, as put forward in Hansen and Huang (2016).
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substantial gain relative to the original REGARCH) by using only the most recent

month’s realized kernels. The differences of the lag functions, as depicted in Figure

2, corroborate this point, by attaching a positive weight on observations further than

a month in the past.

¿ Insert Figure 2 about here À

The cascade structure as evidenced in Corsi (2009) and Huang et al. (2016) of the

HAR formulation is clear from the figure as well, leading to the conclusion that

it constitutes a rather successful, yet suboptimal, approximation of the beta-lag

function used in the MIDAS formulation.

In Figure 3, we depict the fitted conditional variance along with the long-term

components of each multiplicative component model under consideration.

¿ Insert Figure 3 about here À

The long-term component of the REGARCH-MIDAS models appear smooth and do,

indeed, resemble a time-varying baseline volatility. The long-term component in the

REGARCH-HAR is less smooth in contrast to that from the REGARCH-S, which

is excessively smooth. To elaborate on the pertinence of the long-term component

within each model, we compute the variance ratio given by

VR= Var[log gt]
Var[loght gt]

, (13)

which reveals how much of the variation in a model’s fitted conditional variance

can be attributed to the long-term component. Note that it is not a goodness-of-fit

measure. Rather, it measures how much variation a given model finds it optimal

to assign to the long-term component. The last row in Table 1 suggests that the

long-term component’s contribution is important with more than two-thirds of the

variation for the REGARCH-HAR and REGARCH-MIDAS - noticeably larger than

that for the REGARCH-S. Moreover, the monthly aggregation scheme for the realized

kernel leads to a smoother slow-moving component and, by implication, a smaller

VR ratio.

In terms of parameter estimates and associated standard errors, the values are

very similar across the various REGARCH extensions for most of the intersection of

parameters. The leverage effect appears to be supported in all model formulations,

and estimated values of φ are less than unity with relatively small standard errors,
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consistent with the realized measure being computed from open-to-close data and

conditional variance referring to the close-to-close period. Moreover, estimated λ

is close to 0.9 and precisely estimated, suggesting that past information in the

realized kernels are highly informative on conditional variance. The fractional

integration parameter, d, is estimated to 0.65 in the FloEGARCH, confirming the

high persistence in the conditional variance process also suggested by the summary

statistics presented above. Note also that the parameters of the beta-weight function

are imprecisely estimated when the restriction γ1 = 1 is not imposed. The reason

is that two almost identical weight structures may be obtained for two (possibly

very) different combinations of γ1 and γ2, leaving the pair imprecisely estimated

and hints at a potential identification issue.15 This indeed motivates the restricted,

single-parameter version also considered in this paper. Importantly, the estimated

values of β are considerably smaller in our proposed models relative to the original

REGARCH. A similar, but less pronounced result, is obtained for the REGARCH-S.

This reduction in estimated β plays an important role in satisfying the condition that

|β| < 1 and alleviating the integrated GARCH effect. This occurs intuitively since

we enable a flexible level of the baseline volatility which the short-term component

fluctuates around. Lastly, the measurement equations in the REGARCH-MIDAS and

REGARCH-HAR have smaller estimated residual variances, σ2
u, than the original

REGARCH. This may indicate that the new models also provide a better empirical

fit of the realized measure via the multiplicative component specifications proposed

here.

Those conclusions for the SPY are echoed in our analysis of individual stocks, re-

ported in the Supplementary Appendix. In summary, the REGARCH-MIDAS is

the preferred model for all but two stocks when assessed by the likelihood gain. It

also stands out that the weekly REGARCH-MIDAS consistently outperforms the

REGARCH-HAR. This is generally the case for the monthly REGARCH-MIDAS as

well, albeit with a few exceptions. These exceptions may relate to its crude aggre-

gation scheme, which sacrifices too much fit of the autocorrelation structure in the

short term for better fit in the long-term compared to the relatively short-sighted

formulation in the REGARCH-HAR. Moreover, the estimated β is substantially

smaller than unity across all stocks for the REGARCH-MIDAS and REGARCH-HAR

models as opposed to the original REGARCH.

15For example, the weighting schemes are similar if (γ1,γ2) is set to either (−0.5,2), (0,7.5), or
(0.5,12).
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B.3. Autocorrelation function of conditional variance

In this section, we consider the implications of the REGARCH-HAR and REGARCH-

MIDAS on the ACF of the conditional variance and the realized kernel relative

to the original formulation in REGARCH. We depict in Figure 4 the simulated

and sample ACF of the logarithm of the conditional variance, logσ2
t , for the RE-

GARCH, REGARCH(5,5), REGARCH-HAR, single-parameter and two-parameter

REGARCH-MIDAS, and FloEGARCH on SPY. The simulated ACF is obtained using

the estimated parameters in Table 1 with a sample size of 3,750 (approximately

15 years), 10,000 Monte Carlo replications and the Gaussian specification of the

error terms as in Hansen and Huang (2016). The sample ACF is based on the fitted

conditional variance.

¿ Insert Figure 4 about here À

In general and for a given model, the closer the simulated and sample ACF are

to each other, the larger is the degree of internal consistency between theoretical

and actual model predictions of the dependency structure in conditional variance.

This is especially relevant for economic applications of the models. For instance,

in risk-management (e.g. Value-at-Risk) or option valuation, the researcher may

rely on simulations from a given model to produce trajectories of conditional vari-

ances, see, e.g., Engle (2004). If the internal consistency is low, the autocorrelation

property of the simulated variance processes are far from what the model tries to

capture in data. We note that the original REGARCH is only able to capture the

autocorrelation structure over the very short term. Moreover, the REGARCH(5,5)

does not substantially improve upon the REGARCH. The simulated ACF of the

REGARCH-HAR is closer to the sample ACF, but starts diverging at about lag 30.

Only the REGARCH-MIDAS models and the FloEGARCH are capable of captur-

ing the pattern of the autocorrelation structure over a long horizon. The monthly

REGARCH-MIDAS, however, trades off some fit in the short term for improved

accuracy in the long term by using a cruder aggregation scheme of the realized

measure. Overall, this suggests that the multiplicative component structure used

in the REGARCH-HAR and REGARCH-MIDAS constitutes a very appealing and

parsimonious way of capturing high persistence in the REGARCH framework.16

16We also compared the simulated and sample ACFs of the logarithm of the realized kernel for each
model to provide an insight into whether the models are able to capture the autocorrelation structure
of the market realized variance. The conclusions are, expectedly, similar to the one in Figure 4, and
are provided in the Supplementary Appendix.
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C. Forecasting with the REGARCH-MIDAS and REGARCH-HAR

Denote by k, k ≥ 1, the forecast horizon measured in days. Our aim is to forecast

the conditional variance k days into the future. To that end, we note that for k = 1

one-step ahead forecasting can be easily achieved directly via the GARCH equation

in (3). For multi-period forecasting (k > 1), we note that recursive substitution of the

GARCH equation implies

loght+k =βk loght +
k∑

j=1
β j−1 (

τ(zt+k− j)+αut+k− j
)
,

such that

logσ2
t+k = loght+k gt+k =βk loght +

k∑
j=1

β j−1 (
τ(zt+k− j)+αut+k− j

)+ log gt+k.

Multi-period forecasts of logσ2
t+k may then be obtained via

logσ2
t+k|t ≡ E[logσ2

t+k|Ft]=βk loght +βk−1 (τ(zt)+αut)+ log gt+k|t.

Consequently, the contribution of the short-term component to the forecast is easily

computed with known quantities at time t, namely ht,ut, zt. To obtain gt+k|t, we

generate recursively, using estimated parameters, the future path of the realized

measure using the measurement equation in (4) and 10,000 simulations that re-

samples from the empirical distributions of ẑt and ût. It is worth noting that for

multi-step forecast horizons a lower magnitude of β causes the forecast to converge

more rapidly towards the baseline volatility, determined by (the forecast of) the

long-term component. Because this baseline volatility is allowed to be time-varying,

a lower magnitude of β is preferable since it generates more flexibility and reduces

the long-lasting impact on the forecast from the most recent ht and its innovation. By

implication, the ability to generate reasonable forecasts of the long-term component

is valuable, which strongly motivates the dynamic completeness of the models.17

Jensen’s inequality stipulates that exp {E[logσ2
t+k|Ft]} 6= E[exp {logσ2

t+k}|Ft] such that

we need to consider the distributional aspects of logσ2
t+k|t to obtain an unbiased

forecast of σ2
t+k|t. As a solution, we utilize a simulation procedure with empirical

17We found, indeed, that setting gt+k|t = gt leads to notably inferior forecasting performance
relative to the case that exploits the estimated dynamics of the realized kernel.
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distributions of zt and ut. Using M simulations and re-sampling the estimated

residuals, the resulting forecast of the conditional variance given by

σ2
t+k|t =

1
M

M∑
m=1

exp {logσ2
t+k|t,m}

is unbiased. In the implementation, we estimate model parameters on a rolling

basis with 10 years of data (2,500 observations) and leave the remaining (about 500)

observations for (pseudo) out-of-sample evaluation. The empirical distribution of

ẑt and ût is similarly obtained using the same historical window of observations.

Forecasting with the REGARCH follows directly from the above with log gt+k|t =ω.

C.1. Forecast evaluation

Given the latent nature of the conditional variance, we require a proxy, σ̂2
t , of σ2

t for

forecast evaluation. To that end, we employ the adjusted realized kernel similarly to,

e.g., Fleming, Kirkby, and Ostdiek (2001, 2003), Martens (2002), Koopman, Jung-

backer, and Hol (2005), Bandi and Russell (2006) and Huang et al. (2016) given by

σ̂2
t = κRK t, where κ=∑T

t=1 r2
t /

∑T
t=1 RK t. The adjustment is needed since the realized

measure is a measure of open-to-close variance, whereas the forecast generated by

the REGARCH framework measures close-to-close variance. We compute κ on the

basis of the out-of-sample period.18 A second implication of using the realized kernel

as proxy is that we implicitly restrict ourselves to the choice of robust loss functions

(Hansen and Lunde, 2006; Patton, 2011) when quantifying the forecast precisions

in order to obtain consistent ranking of forecasts. Let L i,t+k(σ̂2
t+k,σ2

t+k|t) denote the

loss function for the i’th k-step ahead forecast. Two such robust functions are the

Squared Prediction Error (SPE) and Quasi-Likelihood (QLIKE) loss function given

as

L(SPE)
i,t+k (σ̂2

t+k,σ2
t+k|t)= (σ̂2

t+k −σ2
t+k|t)

2, (14)

L(QLIKE)
i,t+k (σ̂2

t+k,σ2
t+k|t)=

σ̂2
t+k

σ2
t+k|t

− log

(
σ̂2

t+k

σ2
t+k|t

)
−1. (15)

In both cases, a value of zero is obtained for a perfect forecast. The SPE (QLIKE) loss

function penalizes forecast error symmetrically (asymmetrically), and the QLIKE

18As pointed out by a referee, an alternative approach would be to add squared overnight returns
to the realized kernel. We find that the conclusions are unaltered.
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often gives rise to more power in statistical forecast evaluation procedures, especially

when comparing losses across different regimes (see e.g. Borup and Thyrsgaard

(2017)). Given the objective of evaluating whether the REGARCH-MIDAS and

REGARCH-HAR provide an improvement in forecasts relative to the REGARCH,

we implement a Diebold-Mariano test (Diebold and Mariano, 1995) computed using

Newey and West (1987) standard errors with a Bartlett kernel and data-dependent

bandwidth based on an AR(1) approximaton Andrews (1991).19 We perform the

test against the alternative that the i’th forecast losses are smaller than the ones

arising from the original REGARCH and evaluate the test statistic in the standard

normal distribution. Moreover, we conduct a Model Confidence Set (MCS) procedure

to identify the best performing set of models. See the explanation associated with

Table 2 and Hansen, Lunde, and Nason (2011) for additional details.

C.2. Forecasting results

Figure 5 depicts Theil’s U statistic in terms of the ratio of forecast losses on the

SPY arising from forecasts generated by the original REGARCH to those from the

REGARCH-HAR and the weekly REGARCH-MIDAS (single-parameter) on horizons

k = 1, . . . ,22. It depicts their associated statistical significance, too. Quantitatively

and qualitatively similar results for the remaining MIDAS specifications are left out,

but are available upon request.

¿ Insert Figure 5 about here À

The figure convincingly concludes that both the REGARCH-HAR and REGARCH-

MIDAS improve upon the forecasting performance of the original REGARCH for

all forecast horizons. These improvements tend to grow as the forecast horizon

increases from a few percentages to roughly 30-40% depending on the loss function.

This indicates the usefulness of modeling a slow-moving component, particularly for

forecasting beyond short horizons. In general, the improvements are statistically

significant for all horizons, except for the shorter horizons in the REGARCH-MIDAS

19We acknowledge that the Diebold-Mariano test is technically not appropriate for comparing
forecasts of nested models since the limiting distribution is non-standard under the null hypothesis
(see e.g. Clark and McCracken (2001) and Clark and West (2007)). The adjusted mean squared
errors of Clark and West (2007) or the bootstrapping procedure of Clark and McCracken (2015) are
appropriate alterations to standard inferences. However, since we estimate our models on a rolling
basis with a finite, fixed window size, the asymptotic framework of Giacomini and White (2006)
provides a rigorous justification for proceeding with the Diebold-Mariano test statistic evaluated in a
standard normal distribution. See also Diebold (2015) for a discussion.
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case.20 Identical conclusions hold for our 20 individual stocks, which are reported

in the Supplementary Appendix. Having established the improvement upon the

original REGARCH, we turn to a complete comparison of all our proposed models,

the REGARCH-S and the FloEGARCH. Table 2 reports the percentage of stocks

(including SPY) for which a given model is included in the MCS at an α = 10%

significance level.

¿ Insert Table 2 about here À

The inclusion frequency of our proposed REGARCH-MIDAS models are high and

indicate superiority over all competing models in both the short-term and beyond.

Interestingly, the cruder, monthly aggregation scheme dominates for longer horizons,

whereas the finer, weekly scheme is preferred for short horizons. The REGARCH-S

shows moderate improvement over the original REGARCH, but is less frequently

included in the MCS compared to our proposed REGARCH-MIDAS and REGARCH-

HAR. The FloEGARCH performs relatively bad for horizons 2,3,4 and 5, but is

increasingly included in the MCS as the forecast horizon increases, reaching simi-

lar performance as the REGARCH-MIDAS models at monthly predictions. These

findings indicate the usefulness of the flexibility obtained via the multiplicative

component structure as opposed to, e.g., incorporating fractional integration as in

the FloEGARCH.

C.3. Economic value of volatility timing

To assess the economic value of the improvements in predictive accuracy, we examine

a volatility-timing strategy that uses each model’s forecast as input to construct

optimal portfolio weights. We consider a risk-averse investor with mean-variance

preferences who allocates funds into one risky asset and one risk-free asset. The

investor uses conditional mean-variance analysis to make allocation decisions each

day with an investment horizon of k days into the future. For risk-aversion parameter

A, this determines the weights on the risky asset between at time t by

wi,t+k|t =
µ̃i,t+k|t − r̃ f

t+k

Aσ̃2
i,t+k|t

,

20We have also examined the models’ predictive ability of cumulative forecasts for a 5,10, and
22 horizon. Consistent with the findings for the point forecasts, both the REGARCH-HAR and
REGARCH-MIDAS provide substantial and statistically significant improvements relative to the
original REGARCH.
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where µ̃i,t+k|t and σ̃2
i,t+k|t denote the cumulative forecasts of the stock return and

variance, respectively, obtained from the i’th model, and r̃ f
t+k the risk-free rate. The

realized portfolio return is then

r̃p
i,t+k = r̃ f

t+k +wi,t+k|t(r̃ t+k − r̃ f
t+k).

To evaluate the incremental impact of the variance forecast, we assume the investor

treats future returns as unpredictable and use a rolling mean over the same in-

sample window used for generating the variance forecasts. This is consistent with

approaches in, e.g., Fleming et al. (2001, 2003) and Bandi and Russell (2006). We

proxy the daily risk-free rate by the T-Bill return which, over the number of trading

days within the month, compounds to the one month T-Bill rate obtained from

Kenneth French’s data library. For k = {1,5,10,22} investment horizons and P =
521−k out-of-sample forecasts, the investor’s realized average utility is

Ū
(
r̃p

i,t+k

)
= 1

P

P∑
t=1

(
r̃p

i,t+k −
A
2

(
r̃p

i,t+k −
1
P

P∑
t=1

r̃p
i,t+k

)2)
.

To quantify the economic benefit relative to a benchmark model indexed by "0", here

the original REGARCH, we use the performance fee metric put forward by Fleming

et al. (2001, 2003). Denoted by Φ, the performance fee measures the amount (in

basis points) the investor would be willing to pay to switch from the benchmark

strategy to the competing strategy. In our context it, thus, captures the value of the

forecasts from each of our considered models relative to those from the REGARCH

seen from the perspective of an investor. The performance fee is the solution to

Ū
(
r̃p

i,t+k −Φ
)
= Ū

(
r̃p

0,t+k

)
such that

Φ= Ū
(
r̃p

i,t+k

)
−Ū

(
r̃p

0,t+k

)
(16)
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in the case of mean-variance preferences.21 Figure 6 depicts the performance fee on

SPY for two conventional levels of the risk-aversion parameter, A = 2,10, and our

set of models under consideration.

¿ Insert Figure 6 about here À

At short investment horizons, there is an economically small, yet positive gain from

applying our models. The gain is monotonically increasing in the investment horizon,

and at monthly horizons the gain is substantial for both risk-aversion levels. This is

consistent with the intuitive finding above that capturing volatility persistence leads

to substantial improvements in predictive accuracy at especially longer horizons. The

REGARCH-HAR is the worst performing model, whereas the REGARCH-MIDAS

fares comparably to the FloEGARCH. Interestingly, even though the REAGRCH-

S was strongly outperformed in the statistical forecast evaluation, it is the best

performing model in terms of economic value. We evaluate the statistical significance

of the performance fees via a one-sided Diebold-Mariano type statistic and Newey

and West (1987) standard errors as in C.1, see Engle and Colacito (2006) and Bandi,

Russell, and Zhu (2008) for a similar approach. The p-values associated with the

null hypothesis Φ= 0 against the alternative Φ> 0 indicate rejections at k = 22 for

all models and both risk-aversion values, applying conventional significance levels

of the test. The economic gain is statistically insignificant at shorter investment

horizons, except for the REGARCH-S case, which remains significant at k = 10

at both risk-aversion values. These findings confirm the link between statistical

and economic evaluation in that improved predicative accuracy leads to improved

portfolio performance. This link is, however, not monotonic. In the Supplementary

Appendix, we report the distribution of performance fees across all our individual

stocks. Conclusions are identical to those from SPY, except that the REGARCH-S

is no longer uniformly the best performing model on average. Moreover, the cross-

sectional variation of performance fees is notably smaller for the REGARCH-MIDAS

compared to both REGARCH-S and FloEGARCH with a similar average, showing
21Another frequently used measure to assess portfolio performance is the Sharpe ratio. However,

this measure can easily be manipulated (Goetzmann, Ingersoll, Spiegel, and Welch, 2007). As such
we also cmpute the manipulation-proof performance measure of Goetzmann et al. (2007) relative to
the original REGARCH defined as

Θ= 1
1− A

log

 1
P

P∑
t=1

[
r̃p

i,t+k

1+ r̃ f
t+k

]1−A− log

 1
P

P∑
t=1

[
r̃p

0,t+k

1+ r̃ f
t+k

]1−A .

We find that the conclusions are identical.
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indications of an appealing overall economic gain across all stocks. For certain stocks

and high risk-aversion value, the performance fee can be as high as 70 basis points

for REGARCH-S, 60 for FloEGARCH and 40 for REGARCH-MIDAS.

V. Concluding remarks

We introduce two extensions of the otherwise successful REGARCH model to cap-

ture the evident high persistence observed in stock return volatility series. Both

extensions exploit a multiplicative decomposition of the conditional variance process

into a short-term and a long-term component. The latter is modeled either using

mixed-data sampling or a heterogeneous autoregressive structure, giving rise to

the REGARCH-MIDAS and REGARCH-HAR, respectively. Both models lead to

substantial in-sample improvements of the REGARCH with the REGARCH-MIDAS

dominating the REGARCH-HAR. Evidently, the backward-looking horizon of the

HAR specification is too short to adequately capture the autocorrelation structure of

volatility for horizons longer than a month.

Our suggested models are dynamically complete, facilitating multi-period forecasting.

Coupled with a lower estimated β and time-varying baseline volatility, we show

in a forecasting exercise that the REGARCH-MIDAS and REGARCH-HAR lead to

significant improvements in predictive ability of the REGARCH at both short and

long horizons. A volatility-timing trading strategy shows that capturing volatility

persistence yields substantial utility gains for a mean-variance investor at longer

investment horizons.

Our proposed models enable an easy inclusion of additional realized measures,

macroeconomic variables or event-related dummies (e.g. from policy announce-

ments). Some additional questions remain for future research. On the empirical side,

applications to other asset classes exhibiting high persistence such as commodities,22

bonds or exchange rates, or the use of our proposed models in estimating the (term

structure of) variance risk premia, or investigating the risk-return relationship via

the return equation (see e.g. Christensen et al. (2010)) are of potential interest. On

the theoretical side, development of a misspecification test for comparison of our

models with the nested REGARCH and asymptotic properties of the QML estimator

would prove very useful.

22See e.g. Lunde and Olesen (2013) for an application of the REGARCH to commodities.
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A. Figures
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Figure 1: Summary statistics for SPY daily returns and realized kernel
This figure depicts the evolution of SPY daily returns (upper-left panel), annualized squared
returns (upper-right panel), annualized realized kernel (lower-left panel), and autocorre-
lation function of the logarithm of the realized kernel (lower-right panel). The solid line
indicates the conventional autocorrelation function, whereas the dashed line indicates the
instrumented variable autocorrelation function of Hansen and Lunde (2014) using their
preferred instruments (four through ten) and optimal combination.
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Figure 2: Estimated SPY weighting functions
This figure depicts the estimated weighting functions in our proposed models for SPY with
K = 52 and K = 12 in the weekly and monthly REGARCH-MIDAS, respectively. Blue lines
relate to the weekly REGARCH-MIDAS, red lines relate to the monthly REGARCH-MIDAS,
and the green line to the REGARCH-HAR. Solid lines refer to the two-parameter weighting
function, whereas dashed lines refer to the restricted, single-parameter weighting function.
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Figure 3: Fitted conditional variance and the long-term component
This figure depicts the evolution of the fitted annualized conditional variance together with
its long-term component from the multiplicative REGARCH modifications in Table 1.
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Figure 4: Simulated and sample autocorrelation function of logσ2
t

This figure depicts the simulated (dashed line) and sample (solid line) autocorrelation
function of logσ2

t for the REGARCH, REGARCH(5,5), REGARCH-MIDAS, REGARCH-HAR
and the FloEGARCH. We use the estimated parameters for SPY reported in Table 1 and
K = 52 (K = 12) for the weekly (monthly) REGARCH-MIDAS. See Section B.3 for additional
details on their computation.
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Figure 5: Forecast evaluation of REGARCH-MIDAS and REGARCH-HAR
This figure depicts the ratio of forecast losses of the REGARCH-MIDAS and REGARCH-
HAR to the original REGARCH. Values exceeding unity indicate improvements in predictive
ability of our proposed models. Full circles indicate whether difference in forecast loss (for
a given forecast horizon) is significant on a 5% significance level using a Diebold-Mariano
test for equal predictive ability. Empty circles indicate insignificance. See Section C.1 for
additional details. The left panel uses the QLIKE loss function in (15), whereas the right
panel uses the SPE loss function in (14). The upper panel reports results for the weekly
single-parameter REGARCH-MIDAS and the lower panel for the REGARCH-HAR (results
for the remaining REGARCH-MIDAS specifications are similar and are available upon
request).
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High risk aversion: A = 10

k = 1 k = 5 k = 10 k = 22
-5

0

5

10

15

20

25

30

Weekly REGARCH-MIDAS

Weekly REGARCH-MIDAS (single-parameter)

Monthly REGARCH-MIDAS

Monthly REGARCH-MIDAS (single-parameter)

REGARCH-HAR

REGARCH-S

FloEGARCH

Figure 6: Economic value of volatility-timing strategy
This figure depicts the performance fee in annualized basis points as computed via (16) for
the REGARCH-MIDAS, REGARCH-HAR, REGARCH-S and FLoEGARCH relative to the
original REGARCH. The investment horizon is set to 1,5,10, and 22 days as indicated by
the x-axis. The left figure contains results for a low risk-aversion parameter, A = 3, and the
right figure for a high risk-aversion parameter, A = 10.
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Supplementary Appendix for

Capturing volatility persistence: A dynamically

complete Realized EGARCH-MIDAS model

Abstract

This Supplementary Appendix provides results, in this order, on the score
function of the log-likelihood functions associated with the REGARCH-
MIDAS and REGARCH-HAR, the choice of the lag length of the MIDAS
filter for the use in our empirical analysis, the autocorrelation function of
the realized kernel of the models under consideration as well as summary
statistics and in- and out-of-sample results for our sample of 20 individual
stocks.
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A. Score function

Since the scores define the first order conditions for the maximum-likelihood

estimator and facilitate direct computation of standard errors for the coefficients,

we present closed-form expressions for the scores in the following. To simplify

notation, we write τ(z)= τ′a(z) and δ(z)= δ′b(z) with a(z)= b(z)= (
z, z2 −1

)′, and

let ȧzt = ∂a(zt)/∂zt and ḃzt = ∂b(zt)/∂zt. In addition, we define θ1 = (β,τ1,τ2,α)′,
θ2 = (ξ,φ,δ1,δ2)′, mt = (loght,a(zt)′,ut)′, and nt = (1, logσ2

t ,b(zt)′)′.

Proposition 1 (Scores). The scores, ∂`
∂θ

=∑T
t=1

∂`t
∂θ

, are given from

∂`t

∂θ
=



B(zt,ut)ḣµ,t −
[
zt −δ′ ut

σ2
u
ḃzt

]
1
σt

B(zt,ut)ḣθ1,t

B(zt,ut)ḣθ2,t + ut
σ2

u
nt

B(zt,ut)ḣω,t +D(zt,ut) ġω,t

B(zt,ut)ḣη,t +D(zt,ut) ġη,t
1
2

u2
t−σ2

u
σ4

u


, (A.1)

and

A(zt) = ∂ loght+1

∂ loght
= (

β−αφ)+ 1
2

(
αδ′ḃzt −τ′ȧzt

)
zt, (A.2)

B(zt,ut) = ∂`t

∂ loght
=−1

2

[
(1− z2

t )+ ut

σ2
u

(
δ′ḃzt zt −2φ

)]
, (A.3)

C(zt) = ∂ loght+1

∂ log gt
=−αφ+ 1

2
(
αδ′ḃzt −τ′ȧzt

)
zt, (A.4)

D(zt,ut) = ∂`t

∂ log gt
=−1

2

[
(1− z2

t )+ ut

σ2
u

(
δ′ḃzt zt −2φ

)]
. (A.5)
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Furthermore, we have

ḣµ,t+1 = ∂ loght+1

∂µ
= A(zt)ḣµ,t +

(
αδ′ḃzt −τ′ȧzt

) 1
σt

, (A.6)

ḣθ1,t+1 = ∂ loght+1

∂θ1
= A(zt)ḣθ1,t +mt, (A.7)

ḣθ2,t+1 = ∂ loght+1

∂θ2
= A(zt)ḣθ2,t +αnt, (A.8)

ḣω,t+1 = ∂ loght+1

∂ω
= A(zt)ḣω,t +C(zt), (A.9)

ḣη,t+1 = ∂ loght+1

∂η
= A(zt)ḣη,t +C(zt) ġη,t, (A.10)

where ġη,t depends on the specification of f (·;η) and is presented below in the proof.

By corollary, the score function is a Martingale Difference Sequence (MDS), pro-

vided that E [zt|Ft−1] = 0, E
[
z2

t |Ft−1
] = 1, E [ut|zt,Ft−1] = 0, and E

[
u2

t |zt,Ft−1
] =

σ2
u, which is useful for future analysis of the asymptotic properties of the QML

estimator.1

Proof: First, consider A(zt)= ∂ loght+1/∂ loght and C(zt)= ∂ loght+1/∂ log gt. From

zt = r t−µ
σt

, it can easily be shown that

zt

loght
= zt

log gt
=−1

2
zt. (A.11)

From ut = log xt −φ logσ2
t −δ(zt), we find

∂ut

∂ loght
= −δ′∂b(zt)

∂zt

∂zt

loght
−φ=−δ′ḃzt

∂zt

loght
−φ, (A.12)

∂ut

∂ log gt
= −δ′∂b(zt)

∂zt

∂zt

log gt
−φ=−δ′ḃzt

∂zt

log gt
−φ. (A.13)

Similarly, we have

∂τ(zt)
∂ loght

= τ′
∂a(zt)
∂zt

∂zt

loght
= τ′ȧzt

∂zt

loght
, (A.14)

∂τ(zt)
∂ log gt

= τ′
∂a(zt)
∂zt

∂zt

log gt
= τ′ȧzt

∂zt

log gt
. (A.15)

1These are the same conditions as in Hansen and Huang (2016) and we refer the reader hereto
for further details.
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Inserting the above components in the following expressions for A(zt) and C(zt)

A(zt)= ∂ loght+1

∂ loght
= β+ ∂τ(zt)

∂ loght
+α ∂ut

∂ loght
, (A.16)

C(zt)= ∂ loght+1

∂ log gt
= ∂τ(zt)

∂ log gt
+α ∂ut

∂ log gt
, (A.17)

yields

A(zt) = (β−αφ)+ 1
2

(
αδ′ḃzt −τ′ȧzt

)
zt, (A.18)

C(zt) = −αφ+ 1
2

(
αδ′ḃzt −τ′ȧzt

)
zt. (A.19)

Next, we turn to B(zt,ut) = ∂`t/∂ loght and D(zt,ut) = ∂`t/∂ log gt. The terms

loght and log gt enter the log-likelihood contribution at time t directly due to

logσ2
t = loght + log gt and indirectly through z2

t and u2
t . Thus, we have

B(zt,ut) = −1
2

[
1+ ∂z2

t

∂ loght
+ 1
σ2

u
2ut

∂ut

∂ loght

]
, (A.20)

D(zt,ut) = −1
2

[
1+ ∂z2

t

∂ log gt
+ 1
σ2

u
2ut

∂ut

∂ log gt

]
. (A.21)

We note that
∂`t

∂ log gt
= ∂`t

∂ loght
=−z2

t . (A.22)

Combining the different expressions yields

B(zt,ut) = −1
2

[
(1− z2

t )+ ut

σ2
u

(
δ′ḃzt zt −2φ

)]
, (A.23)

D(zt,ut) = −1
2

[
(1− z2

t )+ ut

σ2
u

(
δ′ḃzt zt −2φ

)]
. (A.24)

Now, we turn to the derivatives of loght+1 with respect to the different parameters.

For ḣµ,t+1 = ∂ht+1/∂µ, we have

ḣµ,t+1 =β∂ loght

∂µ
+ ∂τ(zt)

∂µ
+α∂ut

∂µ
, (A.25)
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where

∂τ(zt)
∂µ

= ∂τ(zt)
∂zt

∂zt

∂µ
= τ′ȧzt

[
−1

2
zt
∂ loght

∂µ
− 1
σt

]
, (A.26)

∂ut

∂µ
= −φ∂ loght

∂µ
−δ′ḃzt

∂zt

∂µ

= −φ∂ loght

∂µ
−δ′ḃzt

[
−1

2
zt
∂ loght

∂µ
− 1
σt

]
. (A.27)

Inserting (A.26) and (A.27) in (A.25) and rearranging yields

ḣµ,t+1 =
[(
β−αφ)+ 1

2
[
αδ′ḃzt −τ′ȧzt

]
zt

]
∂ loght

∂µ
+ [

αδ′ḃzt −τ′ȧzt

] 1
σt

= A(zt)ḣµ,t +
[
αδ′ḃzt −τ′ȧzt

] 1
σt

. (A.28)

For ḣθ1,t+1 = ∂ht+1/∂θ1, we have

ḣθ1,t+1 =β∂ loght

∂θ1
+ ∂τ(zt)

∂θ1
+α∂ut

∂θ1
+ (loght, zt, z2

t −1,ut)′. (A.29)

However, we remember that τ(zt) and ut only depend on θ1 through loght such

that we can reduce the first three terms into one

ḣθ1,t+1 = ∂ loght+1

∂ loght

∂ loght

∂θ1
+ (loght, zt, z2

t −1,ut)′

= A(zt)ḣθ1,t +mt. (A.30)

For ḣθ2,t+1 = ∂ht+1/∂θ2, ḣω,t+1 = ∂ht+1/∂ω and ḣη,t+1 = ∂ht+1/∂η, we obtain

ḣθ2,t+1 = ∂ loght+1

∂ loght

∂ loght

∂θ2
+α(1, logσ2

t , zt, z2
t −1)′

= A(zt)ḣθ2,t +nt, (A.31)

ḣω,t+1 = ∂ loght+1

∂ loght

∂ loght

∂ω
+ ∂ loght+1

∂ log gt

∂ log gt

∂ω

= A(zt)ḣω,t +C(zt), (A.32)

ḣη,t+1 = ∂ loght+1

∂ loght

∂ loght

∂η
+ ∂ loght+1

∂ log gt

∂ log gt

∂η

= A(zt)ḣη,t +C(zt) ġη,t, (A.33)

respectively. Finally, we turn to the scores. The parameter µ enters the log-

5



likelihood contribution at time t through loght, zt, and u2
t such that

∂`t

∂µ
= −1

2
ḣµ,t −

z2
t

∂µ
− 1

2
1
σ2

u

∂u2
t

∂µ

= ∂`t

∂ loght

∂ loght

∂µ
−

[
zt −δ′ ut

σ2
u

ḃzt

]
1
σt

= B(zt,ut)ḣµ,t −
[

zt −δ′ ut

σ2
u

ḃzt

]
1
σt

. (A.34)

Since θ1 only enters the log-likelihood contribution at time t indirectly through

loght, an application of the chain-rule yields

∂`t

∂θ1
= B(zt,ut)ḣθ1,t. (A.35)

The parameter vector θ2 also enters through u2
t ,

∂`t

∂θ2
= B(zt,ut)ḣθ2,t + ut

σ2
u

nt. (A.36)

The parameters ω and η enter through loght and log gt,

∂`t

∂ω
= B(zt,ut)ḣω,t +D(zt,ut) ġω,t,

∂`t

∂η
= B(zt,ut)ḣη,t +D(zt,ut) ġη,t. (A.37)

The parameter σ2
u only enters directly in the log-likelihood contribution such that

∂`t

∂σ2
u

= 1
2

u2
t −σ2

u

σ2
u

. (A.38)

Stacking the above scores,

∂`t

∂θ
=

(
∂`t

∂µ
,
∂`t

∂θ′1
,
∂`t

∂θ′2
,
∂`t

∂ω
,
∂`t

∂η′
,
∂`t

∂σ2
u

)′
, (A.39)

yields the result in Proposition 1.
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A.1. Derivatives specific to the long-run component

In the REGARCH-HAR, we have η= (γ1,γ2)′ such that

ġη,t =
(

1
5
∑5

i=1 log xt−i−1
1
22

∑22
i=1 log xt−i−1

)
. (A.40)

In the two-parameter REGARCH-MIDAS, we have η= (λ,γ1,γ2)′ such that

ġη,t =



∑K
k=1πk(γ1,γ2)yt−1,k∑K

k=1

(γ1−1)
(
1− k

K

)γ2−1(
k
K

)γ1−1 ∑K
j=1

(
1− j

K

)γ2−1
(

k
K −

(
j

K

)−1
)(

j
K

)γ1,i−1

[∑K
j=1

(
j

K

)γ1−1(
1− j

K

)γ2−1
]2 yt−1,k

∑K
k=1

(γ2−1)
(
1− k

K

)γ2−1(
k
K

)γ1−1 ∑K
j=1

(
1− j

K

)γ2−1
(
1− k

K −
(
1− j

K

)−1
)(

j
K

)γ1−1

[∑K
j=1

(
j

K

)γ1−1(
1− j

K

)γ2−1
]2 yt−1,k


.

(A.41)

In the single-parameter REGARCH-MIDAS, we have η= (λ,γ2)′ such that

ġη,t =


∑K

k=1πk(γ1,γ2)yt−1,k∑K
k=1

(γ2−1)
(
1− k

K

)γ2−1 ∑K
j=1

(
1− j

K

)γ2−1
(
1− k

K −
(
1− j

K

)−1
)

[∑K
j=1

(
1− j

K

)γ2−1
]2 yt−1,k

 . (A.42)
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B. Checking validity of the asymptotic distribution of the
estimators

To check the validity of the assumed asymptotic distribution of the estimators, we

employ a parametric bootstrapping technique (Paparoditis and Politis, 2009). We

use 999 replications, a sample size of 2,500 observations (approximately 10 years,

similar to the size of the rolling in-sample window used in the forecasting exercise

below), and re-sampled residuals from the empirical distribution to bootstrap

observations. Figure 1 depicts the empirical standardized distribution of a subset

of the estimated parameters.

It stands out that the in-sample distribution of the estimated parameters for

both the REGARCH, REGARCH-MIDAS and REGRACH-HAR is generally in

agreement with a standard normal distribution. We also compared the boot-

strapped standard errors with the robust QML standard errors computed from

the sandwich-formula, which are reported in the empirical section below. The

standard errors were quite similar, which in conjunction with Figure 1 does not

contradict the assertion that the QML approach and associated inferences are

valid. We do, however, note that the QML standard errors are slightly smaller on

average relative to the bootstrapped standard errors, causing us to be careful in

not putting too much weight on the role of standard errors in the interpretation

of the results in the paper.
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Figure 1: Standardized empirical distribution of estimated parameters
This figure depicts the standardized empirical distribution of a subset of the model
parameters using a parametric bootstrap with resampling of the empirical residuals from
the estimation on SPY (Paparoditis and Politis, 2009). We use 999 bootstrap replications
and a sample size of 2,500 observations. The left column depicts results for the original
REGARCH, the middle column for the weekly, single-parameter REGARCH-MIDAS, and
the right column for the REGARCH-HAR.



C. Fractional integration parameter d and unit root tests

We estimate the fractional integrated parameter d in the logarithm of the realized

kernel with the two-step exact local Whittle estimator of Shimotsu (2010). Over

the full sample all series have d > 0.5, suggesting that volatility is highly per-

sistent.2 This finding is supported by the slowly decaying ACF of the logarithm

of the realized kernel for SPY. Since the conventional ACF may be biased for

the unobserved ACF of the logarithm conditional variance due to the presence

of measurement errors,3 we also compute the instrumented ACF proposed by

Hansen and Lunde (2014). We use the authors’ preferred specification with multi-

ple instruments (four through ten) and optimal combination. The instrumented

ACF show a similar pattern as the conventional ACF, but points toward an even

higher degree of persistence. We also conducted a (Dickey-Fuller) unit root test

across all assets considered using the instrumented persistence parameter (cf.

Table 1).

The (biased) conventional least square estimates point to moderate persistence

and strong rejection of a unit root. The persistence parameter is, as expected,

notably higher when using the instrumented variables estimator of Hansen and

Lunde (2014), however the null hypothesis of a unit root remains rejected for all

assets. Collectively, these findings motivate a modeling framework that is capable

of capturing a high degree of persistence. Given the requirement that |β| < 1,

this also motivates a framework that pulls β away from unity. This is where the

proposed REGARCH-MIDAS and REGARCH-HAR prove useful.

2We estimated the parameters with m = bTqc for q =∈ {0.50,0.55, . . . ,0.80}, leading to no
alterations of the conclusions obtained for q = 0.65. See also Wenger, Leschinski, and Sibbertsen
(2017) for a comprehensive empirical study on long memory in volatility and the choice of estimator
of d.

3The element of microstructure noise is, arguably, low, given the construction of the realized
kernel, however sampling error may still be present, causing the differences in the conventional
and instrumented ACF.
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Table 1: Persistence analysis of realized kernel
This table reports estimated autoregressive persistence pa-
rameters, π, unit root tests, DF, and the fractional integration
order of the logarithm of the realized kernel. The first column
contains the conventional least squares estimator, whereas
the following two columns contain the instrumented variables
estimator from Hansen and Lunde (2014) using the first lag
as instrument and their preferred specification (four through
ten) with optimal combination, respectively. The following
three columns contain the Dickey-Fuller unit root test using
each estimate of the persistence parameter. The 1%, 5% and
10% critical values are -20.7, -14.1 and -11.3, respectively (see
Fuller (1996), Table 10.A.1). The last column contains the
fractional integrated parameter d, which is estimated using
the two-step exact local Whittle estimator of Shimotsu (2010)
and bandwidth choice of m = bT0.65c. The standard error of
these estimates is approximately 0.04.

πOLS π1 π4:10 DFOLS DF1 DF4:10 d

SP500 0.883 0.959 0.985 -354.3 -124.8 -45.8 0.66

AA 0.865 0.961 0.985 -405.3 -116.6 -44.8 0.64
AIG 0.919 0.966 0.990 -242.4 -103.1 -30.5 0.64
AXP 0.926 0.980 0.992 -222.7 -59.0 -23.5 0.70
BA 0.847 0.956 0.987 -458.6 -131.7 -37.4 0.64
CAT 0.866 0.949 0.988 -400.6 -151.9 -35.6 0.67
DD 0.856 0.952 0.983 -431.6 -143.8 -51.8 0.63
DIS 0.866 0.956 0.986 -401.6 -132.3 -41.4 0.66
GE 0.904 0.969 0.990 -287.6 -93.8 -30.6 0.68
IBM 0.870 0.959 0.983 -389.5 -122.3 -52.0 0.65
INTC 0.869 0.951 0.985 -395.4 -148.0 -45.5 0.63
JNJ 0.852 0.955 0.988 -443.6 -134.3 -37.0 0.68
KO 0.836 0.953 0.985 -492.7 -140.4 -45.7 0.63
MMM 0.833 0.940 0.981 -499.5 -178.2 -57.3 0.64
MRK 0.815 0.942 0.983 -552.7 -174.7 -49.6 0.61
MSFT 0.857 0.951 0.981 -429.7 -146.7 -56.3 0.63
PG 0.818 0.937 0.980 -546.2 -188.9 -58.5 0.61
VZ 0.861 0.961 0.987 -414.7 -118.0 -38.5 0.67
WHR 0.823 0.938 0.986 -528.4 -186.6 -41.5 0.58
WMT 0.844 0.957 0.985 -467.4 -127.8 -43.8 0.65
XOM 0.878 0.954 0.980 -366.7 -137.8 -59.4 0.68
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D. Choice of lag length, K

This section details a procedure for choosing a uniform value for the lag length of

the MIDAS filter, K , or picking an optimal value.

As noted in the paper, the REGARCH-HAR utilizes by construction lagged infor-

mation equal to four weeks (approximately one month) to describe the dynamics

of the realized measure, whereas the REGARCH-MIDAS allows the researcher

to explore and subsequently choose a suitable lag length, possibly beyond four

weeks. For the original two-parameter setting as well as the single-parameter

setting, Figure 2 depicts the estimated lag weights and associated maximized

log-likelihood values of the weekly REGRACH-MIDAS on SPY for a range of K
starting with four lags up to 104 lags (approximately two years).
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Figure 2: Lag length, K , for weekly REGARCH-MIDAS
This figure depicts in the upper panel the maximized log-likelihood values for SPY in
the weekly two-parameter setting (left panel) and weekly single-parameter setting (right
panel) for K = 4, . . . ,104 weeks. The lower panel depicts the estimated lag function for a
range of values of K .
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Figure 3: Lag length, K , for monthly REGARCH-MIDAS
This figure depicts in the upper panel the maximized log-likelihood values for SPY in the
monthly two-parameter setting (left panel) and monthly single-parameter setting (right
panel) for K = 4, . . . ,104 weeks. The lower panel depicts the estimated lag function for a
range of values of K .

The figure yields a number of interesting insights. First, the maximized log-

likelihood values and associated patterns are very similar across the single-

parameter and two-parameter case. The maximized log-likelihood values initially

increase until lag 25-50, after which the values reach a ceiling. This observation is

corroborated by the estimated lag functions in the lower panel of the figure. Their

patterns show that recent information matters the most with the information

content decaying to zero for lags approximately equal to 20 in the two-parameter

setting and 25 in the single-parameter setting. Hence, based on the figure we

may conclude that information up to half a year in the past is most important for

explaining the dynamics of the conditional variance. This is generally supported

by a similar analysis using monthly averages rather than weekly in the MIDAS

component, but the monthly specification seems to indicate that additional past

information is relevant (cf. Figure 3).

13



Second, a REGARCH-MIDAS with information only up to the past four weeks

provides only a slightly greater log-likelihood value than the REGARCH-HAR

(cf. Table 1 in the paper). This indicates that the step-function approximation in

the REGARCH-HAR does a reasonable job at capturing the information content

up to four weeks in the past. Collectively, however, these findings also suggest

that the information lag in the REGARCH-HAR is too short. Based on these

findings, we proceed in the paper with a value of K = 52 for the weekly MIDAS and

K = 12 for the monthly MIDAS uniformly in all subsequent analyses, including

the individual stock results. Note that we choose K larger than what the initial

analysis suggests for the weekly specification, since we want consistency between

the weekly and monthly specifications and greater flexibility when applying the

choice to the individual stocks. We do, however, emphasize that it is free for the

researcher to optimize over the choice of K for each individual asset to achieve an

even better fit.

14



E. Autocorrelation function of realized kernel

This section contains the autocorrelation function of the logarithm realized kernel

as observed in the market versus the one simulated from the models under

consideration. Additional details can be found in the paper.
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Figure 4: Simulated and sample autocorrelation function of logRKt
This figure depicts the simulated (dashed line) and sample (solid line) autocorrelation
function of logRKt for the REGARCH, REGARCH(5,5), REGARCH-MIDAS, REGARCH-
HAR and the FloEGARCH. We use the estimated parameters for SPY reported in Table 1
in the paper and K = 52 (K = 12) for the weekly (monthly) REGARCH-MIDAS. See the
paper for additional details on their computation.
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F. Empirical results for individual stocks

This section presents in-sample and out-of-sample results for our parallel analysis

on 20 individual stocks as referred to in the paper. Additional details are provided

in the table text.
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Table 3: REGARCH
This table reports full-sample estimated parameters, information criteria as well as full
maximized log-likelihood value for the original REGARCH.

AA AIG AXP BA CAT DD DIS GE IBM INTC

µ 0.015 -0.017 0.051 0.074 0.074 0.041 0.053 0.021 0.029 0.026

β 0.972 0.972 0.987 0.977 0.973 0.972 0.981 0.982 0.974 0.972

α 0.355 0.606 0.394 0.322 0.376 0.413 0.356 0.418 0.438 0.478

ξ -0.518 -0.296 -0.385 -0.446 -0.590 -0.207 -0.327 -0.342 -0.375 -0.285

σ2
u 0.136 0.201 0.148 0.135 0.130 0.147 0.146 0.153 0.129 0.129

τ1 -0.054 -0.086 -0.085 -0.062 -0.056 -0.076 -0.076 -0.063 -0.072 -0.051

τ2 0.039 0.039 0.039 0.036 0.016 0.023 0.022 0.029 0.014 0.021

δ1 -0.061 -0.049 -0.065 -0.054 -0.069 -0.071 -0.079 -0.045 -0.063 -0.038

δ2 0.063 0.042 0.060 0.076 0.043 0.048 0.047 0.049 0.037 0.036

φ 1.055 0.855 0.993 1.046 1.105 0.961 0.981 0.985 0.962 0.924

ω 1.544 1.513 1.135 1.041 1.155 0.770 1.067 0.865 0.549 1.353

L -7,883.37 -8,493.81 -7,122.76 -7,000.25 -7,237.72 -6,751.76 -6,965.93 -6,832.49 -6,176.02 -7,343.71

AIC 15,788.74 17,009.63 14,267.52 14,022.51 14,497.45 13,525.52 13,953.85 13,686.98 12,374.05 14,709.42

BIC 15,854.83 17,075.70 14,333.57 14,088.57 14,563.51 13,591.57 14,019.91 13,753.08 12,440.11 14,775.55

HQIC 15,942.92 17,163.77 14,421.62 14,176.62 14,651.58 13,679.63 14,107.98 13,841.17 12,528.17 14,863.68

JNJ KO MMM MRK MSFT PG VZ WHR WMT XOM

µ 0.030 0.029 0.044 0.023 0.035 0.026 0.028 0.074 0.017 0.042

β 0.976 0.973 0.967 0.971 0.968 0.961 0.979 0.963 0.979 0.967

α 0.359 0.399 0.357 0.257 0.447 0.373 0.334 0.287 0.307 0.357

ξ -0.123 -0.150 -0.342 -1.017 -0.381 -0.159 -0.185 -1.112 -0.259 -0.291

σ2
u 0.151 0.144 0.147 0.191 0.137 0.151 0.153 0.171 0.137 0.123

τ1 -0.066 -0.065 -0.080 -0.034 -0.044 -0.059 -0.064 -0.040 -0.035 -0.087

τ2 0.038 0.027 0.010 0.001 0.013 0.025 0.039 0.024 0.028 0.041

δ1 -0.031 -0.053 -0.071 -0.057 -0.036 -0.053 -0.061 -0.043 -0.028 -0.105

δ2 0.058 0.064 0.041 0.010 0.033 0.056 0.059 0.068 0.058 0.050

φ 0.961 0.949 1.067 1.450 1.003 1.084 1.009 1.344 1.120 1.082

ω -0.071 0.112 0.437 0.974 0.900 0.021 0.530 1.538 0.350 0.554

L -5,426.50 -5,694.49 -6,291.30 -7,470.15 -6,832.84 -5,651.66 -6,419.04 -8,210.50 -5,951.18 -6,113.27

AIC 10,875.01 11,410.98 12,604.59 14,962.29 13,687.67 11,325.33 12,860.09 16,443.00 11,924.36 12,248.54

BIC 10,941.07 11,477.05 12,670.64 15,028.34 13,753.80 11,391.39 12,926.14 16,509.04 11,990.44 12,314.61

HQIC 11,029.13 11,565.12 12,758.68 15,116.40 13,841.94 11,479.46 13,014.20 16,597.08 12,078.52 12,402.69
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Table 4: Weekly REGARCH-MIDAS
This table reports full-sample estimated parameters, information criteria, variance ratio
as well as full maximized log-likelihood value for the weekly two-parameter REGARCH-
MIDAS. Results are for K = 52.

AA AIG AXP BA CAT DD DIS GE IBM INTC

µ 0.011 -0.016 0.056 0.078 0.071 0.044 0.063 0.025 0.033 0.031

β 0.649 0.577 0.710 0.606 0.553 0.623 0.520 0.817 0.612 0.602

α 0.392 0.589 0.410 0.360 0.432 0.455 0.429 0.452 0.479 0.531

ξ -0.487 -0.291 -0.392 -0.441 -0.572 -0.202 -0.322 -0.333 -0.378 -0.276

σ2
u 0.133 0.191 0.144 0.132 0.126 0.144 0.142 0.149 0.127 0.125

τ1 -0.062 -0.094 -0.096 -0.076 -0.062 -0.090 -0.089 -0.068 -0.086 -0.061

τ2 0.044 0.050 0.048 0.047 0.022 0.025 0.029 0.035 0.015 0.018

δ1 -0.063 -0.048 -0.065 -0.054 -0.069 -0.071 -0.080 -0.046 -0.064 -0.040

δ2 0.061 0.047 0.059 0.075 0.042 0.047 0.045 0.050 0.037 0.032

φ 1.039 0.872 0.999 1.044 1.093 0.959 0.976 0.978 0.963 0.920

ω 0.538 0.361 0.402 0.448 0.547 0.224 0.340 0.362 0.392 0.331

λ 0.900 1.117 0.973 0.908 0.873 0.999 0.993 0.945 0.981 1.038

γ1 -0.156 -0.577 -0.041 -0.214 -0.822 -0.758 -0.866 2.003 -0.971 -0.296

γ2 6.538 1.481 6.938 6.994 2.134 1.000 1.130 27.928 1.004 4.883

L -7,836.88 -8,367.58 -7,081.18 -6,956.80 -7,187.14 -6,716.86 -6,912.97 -6,791.63 -6,144.97 -7,280.34

AIC 15,701.75 16,763.15 14,190.36 13,941.60 14,402.28 13,461.72 13,853.93 13,611.26 12,317.94 14,588.67

BIC 15,785.86 16,847.24 14,274.42 14,025.67 14,486.36 13,545.79 13,938.01 13,695.38 12,402.01 14,672.84

HQIC 15,897.98 16,959.33 14,386.49 14,137.75 14,598.44 13,657.86 14,050.09 13,807.49 12,514.09 14,785.01

VR 0.82 0.87 0.89 0.85 0.85 0.82 0.89 0.80 0.83 0.84

JNJ KO MMM MRK MSFT PG VZ WHR WMT XOM

µ 0.034 0.032 0.045 0.025 0.038 0.028 0.031 0.067 0.021 0.051

β 0.627 0.562 0.587 0.552 0.613 0.547 0.649 0.554 0.536 0.598

α 0.411 0.453 0.415 0.297 0.492 0.416 0.384 0.315 0.342 0.382

ξ -0.128 -0.149 -0.340 -1.002 -0.365 -0.158 -0.177 -1.055 -0.254 -0.288

σ2
u 0.147 0.141 0.143 0.188 0.133 0.147 0.150 0.164 0.133 0.120

τ1 -0.076 -0.071 -0.086 -0.039 -0.048 -0.068 -0.071 -0.048 -0.045 -0.102

τ2 0.049 0.036 0.018 0.002 0.015 0.031 0.048 0.032 0.036 0.046

δ1 -0.029 -0.053 -0.070 -0.057 -0.038 -0.053 -0.060 -0.045 -0.027 -0.105

δ2 0.058 0.065 0.041 0.010 0.033 0.055 0.058 0.067 0.056 0.049

φ 0.958 0.936 1.060 1.437 0.986 1.071 1.000 1.315 1.117 1.084

ω 0.103 0.149 0.324 0.712 0.391 0.132 0.192 0.861 0.225 0.279

λ 0.949 1.017 0.873 0.647 0.951 0.863 0.938 0.701 0.855 0.851

γ1 1.471 -0.875 -0.638 -0.563 -0.477 -0.957 0.001 -0.034 -0.776 -1.116

γ2 48.950 1.000 3.334 4.365 3.124 1.000 11.393 7.918 2.321 1.000

L -5,395.67 -5,652.84 -6,256.25 -7,438.83 -6,785.22 -5,604.99 -6,390.01 -8,138.73 -5,910.60 -6,069.31

AIC 10,819.34 11,333.68 12,540.50 14,905.66 13,598.45 11,237.98 12,808.02 16,305.46 11,849.19 12,166.62

BIC 10,903.42 11,417.77 12,624.56 14,989.73 13,682.61 11,322.06 12,892.09 16,389.52 11,933.29 12,250.72

HQIC 11,015.50 11,529.86 12,736.61 15,101.79 13,794.78 11,434.14 13,004.16 16,501.58 12,045.39 12,362.82

VR 0.83 0.84 0.80 0.83 0.82 0.80 0.84 0.81 0.87 0.80
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Table 5: Weekly REGARCH-MIDAS (single-parameter)
This table reports full-sample estimated parameters, information criteria, variance ratio
as well as full maximized log-likelihood value for the weekly single-parameter REGARCH-
MIDAS. Results are for K = 52.

AA AIG AXP BA CAT DD DIS GE IBM INTC

µ 0.011 -0.017 0.057 0.078 0.071 0.044 0.064 0.025 0.033 0.032

β 0.711 0.623 0.790 0.656 0.584 0.710 0.554 0.742 0.638 0.654

α 0.390 0.592 0.408 0.359 0.433 0.451 0.431 0.459 0.482 0.532

ξ -0.491 -0.301 -0.392 -0.442 -0.573 -0.204 -0.321 -0.333 -0.378 -0.276

σ2
u 0.133 0.191 0.144 0.132 0.126 0.144 0.142 0.149 0.127 0.125

τ1 -0.062 -0.095 -0.095 -0.076 -0.061 -0.089 -0.089 -0.068 -0.085 -0.060

τ2 0.043 0.049 0.046 0.046 0.022 0.025 0.029 0.036 0.016 0.018

δ1 -0.063 -0.048 -0.065 -0.054 -0.069 -0.071 -0.079 -0.046 -0.063 -0.040

δ2 0.061 0.047 0.059 0.075 0.043 0.048 0.045 0.049 0.037 0.032

φ 1.041 0.876 1.000 1.045 1.093 0.959 0.975 0.978 0.962 0.920

ω 0.563 0.406 0.409 0.459 0.571 0.256 0.358 0.356 0.398 0.353

λ 0.878 1.078 0.959 0.889 0.844 0.945 0.964 0.964 0.942 1.014

γ2 22.519 26.382 17.205 27.678 40.966 27.351 39.739 19.960 44.999 25.944

L -7,838.40 -8,373.86 -7,081.88 -6,957.85 -7,190.46 -6,720.73 -6,915.24 -6,791.92 -6,148.72 -7,283.34

AIC 15,702.80 16,773.72 14,189.76 13,941.71 14,406.93 13,467.46 13,856.48 13,609.84 12,323.44 14,592.68

BIC 15,780.90 16,851.80 14,267.82 14,019.78 14,485.01 13,545.53 13,934.55 13,687.95 12,401.51 14,670.83

HQIC 15,885.01 16,955.88 14,371.88 14,123.85 14,589.08 13,649.59 14,038.63 13,792.06 12,505.58 14,774.99

VR 0.80 0.86 0.87 0.83 0.84 0.78 0.88 0.84 0.82 0.82

JNJ KO MMM MRK MSFT PG VZ WHR WMT XOM

µ 0.034 0.032 0.045 0.024 0.038 0.028 0.031 0.068 0.021 0.050

β 0.620 0.617 0.634 0.657 0.689 0.567 0.691 0.631 0.582 0.610

α 0.411 0.453 0.414 0.293 0.492 0.420 0.381 0.315 0.343 0.388

ξ -0.129 -0.150 -0.343 -1.012 -0.364 -0.157 -0.177 -1.052 -0.256 -0.287

σ2
u 0.147 0.141 0.144 0.188 0.134 0.148 0.150 0.164 0.134 0.120

τ1 -0.076 -0.071 -0.086 -0.039 -0.048 -0.068 -0.071 -0.048 -0.045 -0.103

τ2 0.049 0.036 0.017 0.002 0.015 0.031 0.048 0.032 0.036 0.046

δ1 -0.029 -0.053 -0.070 -0.057 -0.038 -0.054 -0.060 -0.044 -0.027 -0.105

δ2 0.058 0.064 0.041 0.010 0.033 0.055 0.058 0.067 0.056 0.048

φ 0.958 0.939 1.064 1.446 0.986 1.073 1.001 1.313 1.119 1.082

ω 0.104 0.148 0.332 0.723 0.407 0.125 0.197 0.871 0.229 0.288

λ 0.953 0.973 0.838 0.625 0.920 0.820 0.923 0.691 0.828 0.820

γ2 37.685 35.949 35.219 28.038 24.932 46.647 28.890 20.578 39.253 53.373

L -5,395.73 -5,657.00 -6,258.62 -7,442.47 -6,789.21 -5,609.35 -6,390.15 -8,141.40 -5,915.05 -6,072.96

AIC 10,817.46 11,340.01 12,543.24 14,910.94 13,604.43 11,244.70 12,806.31 16,308.79 11,856.10 12,171.92

BIC 10,895.53 11,418.09 12,621.29 14,989.00 13,682.59 11,322.78 12,884.37 16,386.85 11,934.20 12,250.01

HQIC 10,999.61 11,522.17 12,725.34 15,093.06 13,786.74 11,426.86 12,988.44 16,490.90 12,038.29 12,354.10

VR 0.83 0.83 0.78 0.79 0.79 0.78 0.83 0.79 0.86 0.79
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Table 6: Monthly REGARCH-MIDAS
This table reports full-sample estimated parameters, information criteria, variance ratio
as well as full maximized log-likelihood value for the monthly two-parameter REGARCH-
MIDAS. Results are for K = 12.

AA AIG AXP BA CAT DD DIS GE IBM INTC

µ 0.011 -0.018 0.057 0.078 0.071 0.044 0.064 0.025 0.034 0.032

β 0.820 0.742 0.861 0.837 0.825 0.864 0.832 0.843 0.891 0.812

α 0.383 0.590 0.404 0.345 0.414 0.432 0.390 0.445 0.451 0.515

ξ -0.492 -0.306 -0.391 -0.441 -0.567 -0.201 -0.335 -0.333 -0.379 -0.276

σ2
u 0.133 0.193 0.144 0.132 0.127 0.144 0.143 0.149 0.127 0.126

τ1 -0.062 -0.092 -0.094 -0.073 -0.063 -0.086 -0.087 -0.069 -0.078 -0.060

τ2 0.041 0.048 0.044 0.042 0.020 0.023 0.026 0.034 0.014 0.018

δ1 -0.063 -0.048 -0.065 -0.054 -0.070 -0.071 -0.080 -0.046 -0.063 -0.040

δ2 0.061 0.049 0.059 0.075 0.044 0.048 0.044 0.050 0.036 0.033

φ 1.042 0.881 0.999 1.044 1.089 0.957 0.987 0.978 0.966 0.920

ω 0.577 0.405 0.404 0.467 0.565 0.241 0.361 0.355 0.390 0.349

λ 0.864 1.080 0.959 0.869 0.842 0.951 0.951 0.952 0.897 1.009

γ1 -0.583 -1.605 0.025 1.398 -0.865 -0.266 -0.878 0.424 0.800 1.028

γ2 4.112 1.000 5.262 13.651 3.036 2.728 1.933 8.113 6.714 9.921

L -7,842.06 -8,377.55 -7,081.13 -6,963.39 -7,202.89 -6,721.18 -6,928.36 -6,792.40 -6,153.55 -7,292.92

AIC 15,712.13 16,783.10 14,190.26 13,954.77 14,433.77 13,470.37 13,884.72 13,612.79 12,335.11 14,613.85

BIC 15,796.24 16,867.19 14,274.33 14,038.85 14,517.86 13,554.44 13,968.80 13,696.91 12,419.18 14,698.01

HQIC 15,908.35 16,979.28 14,386.39 14,150.92 14,629.94 13,666.51 14,080.88 13,809.03 12,531.26 14,810.18

VR 0.72 0.82 0.83 0.73 0.70 0.65 0.76 0.78 0.60 0.74

JNJ KO MMM MRK MSFT PG VZ WHR WMT XOM

µ 0.034 0.032 0.045 0.024 0.038 0.028 0.031 0.067 0.021 0.049

β 0.850 0.827 0.863 0.864 0.826 0.831 0.875 0.745 0.852 0.873

α 0.388 0.434 0.380 0.277 0.476 0.400 0.359 0.314 0.325 0.361

ξ -0.127 -0.149 -0.344 -1.006 -0.367 -0.159 -0.180 -1.032 -0.256 -0.294

σ2
u 0.148 0.142 0.144 0.188 0.134 0.149 0.151 0.165 0.134 0.121

τ1 -0.074 -0.069 -0.084 -0.038 -0.050 -0.065 -0.069 -0.048 -0.040 -0.095

τ2 0.045 0.033 0.013 0.001 0.014 0.028 0.044 0.031 0.032 0.044

δ1 -0.030 -0.053 -0.070 -0.057 -0.039 -0.053 -0.060 -0.045 -0.028 -0.105

δ2 0.058 0.064 0.041 0.010 0.033 0.056 0.058 0.067 0.057 0.049

φ 0.958 0.941 1.071 1.439 0.988 1.080 1.005 1.301 1.120 1.089

ω 0.082 0.141 0.330 0.730 0.407 0.118 0.205 0.874 0.225 0.297

λ 0.914 0.962 0.783 0.595 0.906 0.794 0.877 0.686 0.807 0.761

γ1 -1.427 -1.388 2.524 3.325 0.013 -0.931 1.769 3.777 1.456 -0.651

γ2 1.000 1.000 18.021 21.725 5.094 1.783 13.707 33.579 13.546 2.319

L -5,404.34 -5,662.62 -6,265.13 -7,446.52 -6,791.44 -5,623.29 -6,395.34 -8,141.29 -5,921.83 -6,087.31

AIC 10,836.68 11,353.24 12,558.27 14,921.04 13,610.88 11,274.58 12,818.68 16,310.58 11,871.65 12,202.61

BIC 10,920.76 11,437.32 12,642.32 15,005.10 13,695.05 11,358.66 12,902.75 16,394.64 11,955.75 12,286.71

HQIC 11,032.84 11,549.41 12,754.38 15,117.17 13,807.22 11,470.75 13,014.82 16,506.70 12,067.85 12,398.81

VR 0.67 0.70 0.58 0.63 0.69 0.59 0.68 0.74 0.72 0.54

21



Table 7: Monthly REGARCH-MIDAS (single-parameter)
This table reports full-sample estimated parameters, information criteria, variance ra-
tio as well as full maximized log-likelihood value for the monthly single-parameter
REGARCH-MIDAS. Results are for K = 12.

AA AIG AXP BA CAT DD DIS GE IBM INTC

µ 0.012 -0.017 0.057 0.078 0.071 0.045 0.065 0.025 0.034 0.032

β 0.824 0.737 0.865 0.836 0.831 0.871 0.841 0.845 0.893 0.812

α 0.383 0.591 0.404 0.345 0.413 0.431 0.387 0.445 0.450 0.515

ξ -0.492 -0.311 -0.391 -0.441 -0.568 -0.201 -0.337 -0.333 -0.378 -0.276

σ2
u 0.134 0.192 0.144 0.132 0.127 0.144 0.143 0.149 0.127 0.126

τ1 -0.062 -0.093 -0.094 -0.073 -0.063 -0.085 -0.087 -0.069 -0.078 -0.060

τ2 0.041 0.048 0.044 0.042 0.019 0.023 0.026 0.034 0.014 0.018

δ1 -0.063 -0.047 -0.065 -0.054 -0.070 -0.071 -0.080 -0.046 -0.063 -0.040

δ2 0.061 0.048 0.059 0.075 0.044 0.048 0.044 0.050 0.036 0.033

φ 1.042 0.883 0.999 1.045 1.090 0.957 0.988 0.978 0.966 0.920

ω 0.587 0.431 0.406 0.466 0.576 0.252 0.373 0.356 0.390 0.349

λ 0.855 1.054 0.955 0.871 0.828 0.930 0.933 0.950 0.894 1.009

γ2 12.772 21.575 9.843 11.378 13.169 8.224 10.921 11.252 7.447 9.787

L -7,842.51 -8,381.29 -7,081.41 -6,963.39 -7,203.34 -6,721.53 -6,929.11 -6,792.42 -6,153.56 -7,292.92

AIC 15,711.02 16,788.57 14,188.81 13,952.79 14,432.67 13,469.06 13,884.22 13,610.84 12,333.13 14,611.85

BIC 15,789.13 16,866.65 14,266.87 14,030.86 14,510.75 13,547.13 13,962.29 13,688.95 12,411.20 14,690.00

HQIC 15,893.23 16,970.74 14,370.94 14,134.93 14,614.83 13,651.19 14,066.36 13,793.06 12,515.27 14,794.16

VR 0.72 0.82 0.83 0.73 0.70 0.64 0.76 0.78 0.59 0.74

JNJ KO MMM MRK MSFT PG VZ WHR WMT XOM

µ 0.034 0.033 0.045 0.024 0.038 0.028 0.031 0.067 0.021 0.049

β 0.856 0.829 0.856 0.849 0.834 0.837 0.871 0.742 0.850 0.880

α 0.387 0.434 0.381 0.277 0.474 0.399 0.360 0.314 0.326 0.361

ξ -0.127 -0.149 -0.345 -1.016 -0.367 -0.159 -0.180 -1.037 -0.256 -0.293

σ2
u 0.148 0.142 0.144 0.188 0.134 0.149 0.151 0.165 0.134 0.121

τ1 -0.073 -0.069 -0.085 -0.038 -0.050 -0.065 -0.069 -0.048 -0.041 -0.095

τ2 0.045 0.033 0.013 0.001 0.014 0.028 0.044 0.030 0.032 0.044

δ1 -0.030 -0.052 -0.070 -0.058 -0.039 -0.053 -0.060 -0.044 -0.028 -0.105

δ2 0.058 0.064 0.041 0.010 0.033 0.056 0.058 0.067 0.057 0.049

φ 0.958 0.940 1.072 1.448 0.988 1.080 1.005 1.304 1.120 1.089

ω 0.077 0.140 0.329 0.728 0.409 0.116 0.203 0.874 0.224 0.304

λ 0.889 0.938 0.792 0.602 0.901 0.772 0.883 0.686 0.809 0.739

γ2 14.140 14.689 10.161 10.076 9.315 11.923 9.798 15.579 11.051 10.146

L -5,405.05 -5,663.48 -6,265.40 -7,447.15 -6,791.78 -5,623.97 -6,395.39 -8,141.55 -5,921.85 -6,087.94

AIC 10,836.10 11,352.96 12,556.81 14,920.31 13,609.55 11,273.94 12,816.77 16,309.10 11,869.70 12,201.87

BIC 10,914.18 11,431.04 12,634.86 14,998.37 13,687.71 11,352.02 12,894.84 16,387.16 11,947.79 12,279.96

HQIC 11,018.25 11,535.13 12,738.91 15,102.43 13,791.87 11,456.10 12,998.90 16,491.21 12,051.89 12,384.05

VR 0.65 0.70 0.59 0.65 0.69 0.58 0.68 0.74 0.72 0.52
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Table 8: REGARCH-HAR
This table reports full-sample estimated parameters, information criteria, variance ratio
as well as full maximized log-likelihood value for the REGARCH-HAR.

AA AIG AXP BA CAT DD DIS GE IBM INTC

µ 0.011 -0.017 0.056 0.077 0.071 0.043 0.063 0.024 0.032 0.030

β 0.638 0.578 0.811 0.583 0.537 0.591 0.508 0.801 0.568 0.565

α 0.396 0.585 0.420 0.367 0.434 0.465 0.438 0.459 0.486 0.538

ξ -0.495 -0.310 -0.391 -0.445 -0.576 -0.203 -0.322 -0.337 -0.377 -0.280

σ2
u 0.134 0.191 0.145 0.133 0.127 0.145 0.143 0.150 0.127 0.126

τ1 -0.062 -0.094 -0.095 -0.076 -0.061 -0.089 -0.089 -0.069 -0.086 -0.060

τ2 0.045 0.050 0.046 0.048 0.022 0.026 0.029 0.036 0.016 0.019

δ1 -0.063 -0.047 -0.065 -0.055 -0.069 -0.070 -0.080 -0.046 -0.064 -0.040

δ2 0.061 0.048 0.060 0.075 0.043 0.048 0.044 0.051 0.037 0.033

φ 1.043 0.881 0.998 1.047 1.096 0.958 0.976 0.980 0.959 0.922

ω 0.572 0.418 0.429 0.465 0.571 0.256 0.360 0.377 0.398 0.366

γ1 0.321 0.391 0.033 0.373 0.465 0.497 0.506 0.000 0.597 0.453

γ2 0.552 0.677 0.898 0.510 0.381 0.453 0.457 0.920 0.356 0.551

L -7,847.46 -8,374.10 -7,095.31 -6,972.04 -7,196.44 -6,731.86 -6,927.53 -6,804.48 -6,156.54 -7,298.11

AIC 15,720.92 16,774.20 14,216.63 13,970.07 14,418.88 13,489.73 13,881.07 13,634.95 12,339.08 14,622.23

BIC 15,799.03 16,852.28 14,294.69 14,048.14 14,496.96 13,567.79 13,959.14 13,713.06 12,417.15 14,700.38

HQIC 15,903.13 16,956.37 14,398.75 14,152.21 14,601.04 13,671.86 14,063.21 13,817.17 12,521.22 14,804.54

VR 0.82 0.86 0.84 0.85 0.85 0.82 0.88 0.80 0.84 0.84

JNJ KO MMM MRK MSFT PG VZ WHR WMT XOM

µ 0.034 0.032 0.044 0.025 0.039 0.028 0.030 0.068 0.020 0.049

β 0.570 0.558 0.554 0.494 0.585 0.521 0.599 0.531 0.500 0.561

α 0.419 0.458 0.423 0.303 0.502 0.421 0.394 0.317 0.349 0.389

ξ -0.130 -0.149 -0.339 -0.998 -0.362 -0.157 -0.180 -1.066 -0.254 -0.288

σ2
u 0.148 0.141 0.145 0.189 0.134 0.148 0.152 0.165 0.135 0.120

τ1 -0.076 -0.072 -0.085 -0.039 -0.046 -0.068 -0.072 -0.047 -0.045 -0.103

τ2 0.050 0.037 0.018 0.002 0.016 0.031 0.049 0.032 0.037 0.046

δ1 -0.029 -0.053 -0.069 -0.056 -0.038 -0.053 -0.061 -0.044 -0.028 -0.105

δ2 0.059 0.065 0.042 0.010 0.033 0.055 0.059 0.066 0.056 0.049

φ 0.959 0.936 1.058 1.433 0.982 1.069 1.001 1.321 1.117 1.082

ω 0.106 0.148 0.331 0.719 0.408 0.126 0.200 0.881 0.228 0.287

γ1 0.480 0.499 0.457 0.356 0.423 0.500 0.437 0.246 0.472 0.556

γ2 0.474 0.480 0.388 0.275 0.501 0.329 0.485 0.435 0.361 0.273

L -5,407.30 -5,659.23 -6,269.06 -7,449.17 -6,796.98 -5,613.81 -6,404.37 -8,143.54 -5,922.70 -6,077.50

AIC 10,840.60 11,344.46 12,564.13 14,924.33 13,619.96 11,253.63 12,834.74 16,313.08 11,871.40 12,181.01

BIC 10,918.68 11,422.54 12,642.18 15,002.40 13,698.11 11,331.71 12,912.80 16,391.13 11,949.49 12,259.10

HQIC 11,022.75 11,526.62 12,746.23 15,106.46 13,802.27 11,435.78 13,016.87 16,495.18 12,053.58 12,363.19

VR 0.84 0.84 0.80 0.84 0.82 0.80 0.85 0.81 0.87 0.81
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Table 9: REGARCH-Spline
This table reports full-sample estimated parameters, information criteria as well as full
maximized log-likelihood value for the REGARCH-Spline. Results are for K = 6.

AA AIG AXP BA CAT DD DIS GE IBM INTC

µ -0.017 0.048 0.059 0.088 0.075 0.047 0.068 0.023 0.035 0.017

β 0.933 0.864 0.943 0.936 0.941 0.932 0.942 0.935 0.948 0.913

α 0.359 0.588 0.389 0.342 0.376 0.417 0.355 0.428 0.440 0.487

ξ -0.510 -0.274 -0.379 -0.399 -0.591 -0.199 -0.328 -0.326 -0.375 -0.275

σ2
u 0.134 0.195 0.144 0.133 0.128 0.144 0.143 0.150 0.128 0.127

τ1 -0.058 -0.075 -0.088 -0.069 -0.058 -0.079 -0.081 -0.065 -0.073 -0.055

τ2 0.039 0.045 0.040 0.043 0.016 0.023 0.024 0.031 0.013 0.018

δ1 -0.063 -0.039 -0.064 -0.055 -0.069 -0.069 -0.078 -0.045 -0.062 -0.037

δ2 0.062 0.048 0.058 0.076 0.042 0.047 0.046 0.050 0.036 0.034

φ 1.052 0.864 0.994 1.000 1.108 0.953 0.980 0.973 0.959 0.919

ω 1.684 1.435 1.726 2.015 1.375 1.398 2.009 1.860 1.632 2.769

L -7,854.94 -8,390.56 -7,086.92 -6,972.56 -7,214.19 -6,718.88 -6,931.05 -6,795.12 -6,156.17 -7,300.44

AIC 15,745.89 16,817.12 14,209.84 13,981.11 14,464.37 13,473.76 13,898.10 13,626.24 12,348.33 14,636.88

BIC 15,854.03 16,925.23 14,317.92 14,089.21 14,572.48 13,581.85 14,006.20 13,734.39 12,456.43 14,745.10

HQIC 15,998.18 17,069.35 14,462.00 14,233.30 14,716.59 13,725.94 14,150.30 13,878.54 12,600.52 14,889.32

VR 0.51 0.79 0.75 0.62 0.50 0.56 0.63 0.68 0.40 0.61

JNJ KO MMM MRK MSFT PG VZ WHR WMT XOM

µ 0.035 0.033 0.047 0.039 0.050 0.021 0.033 0.067 0.020 0.049

β 0.950 0.932 0.938 0.926 0.917 0.930 0.953 0.905 0.947 0.947

α 0.353 0.404 0.353 0.283 0.449 0.371 0.343 0.307 0.310 0.343

ξ -0.123 -0.147 -0.351 -0.902 -0.383 -0.143 -0.177 -0.988 -0.252 -0.295

σ2
u 0.148 0.142 0.144 0.190 0.134 0.149 0.152 0.167 0.135 0.121

τ1 -0.068 -0.067 -0.081 -0.031 -0.047 -0.059 -0.064 -0.045 -0.036 -0.087

τ2 0.040 0.028 0.012 0.002 0.013 0.025 0.040 0.027 0.028 0.043

δ1 -0.030 -0.052 -0.070 -0.052 -0.037 -0.053 -0.060 -0.044 -0.028 -0.104

δ2 0.057 0.064 0.040 0.011 0.032 0.055 0.058 0.069 0.057 0.050

φ 0.964 0.941 1.077 1.349 1.002 1.087 1.004 1.273 1.113 1.094

ω 0.962 0.738 0.936 1.168 2.001 0.169 1.366 1.490 1.164 1.040

L -5,403.06 -5,663.08 -6,270.65 -7,434.19 -6,796.46 -5,629.11 -6,401.72 -8,162.50 -5,927.05 -6,090.50

AIC 10,842.13 11,362.17 12,577.29 14,904.38 13,628.92 11,294.23 12,839.43 16,361.01 11,890.10 12,217.00

BIC 10,950.23 11,470.28 12,685.37 15,012.46 13,737.14 11,402.34 12,947.52 16,469.08 11,998.23 12,325.13

HQIC 11,094.33 11,614.40 12,829.44 15,156.55 13,881.35 11,546.45 13,091.61 16,613.15 12,142.36 12,469.26

VR 0.46 0.59 0.40 0.63 0.57 0.42 0.44 0.61 0.53 0.35
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Table 10: FloEGARCH
This table reports full-sample estimated parameters, information criteria as well as full
maximized log-likelihood value for the FloEGARCH.

AA AIG AXP BA CAT DD DIS GE IBM INTC

µ 0.017 -0.009 0.045 0.061 0.072 0.035 0.042 0.021 0.025 0.010

β 0.195 0.121 0.195 0.133 0.104 0.179 0.080 0.117 0.161 0.131

α 0.400 0.589 0.418 0.373 0.436 0.460 0.424 0.473 0.484 0.536

ξ -0.476 -0.293 -0.389 -0.440 -0.566 -0.205 -0.327 -0.332 -0.378 -0.272

σ2
u 0.134 0.192 0.144 0.132 0.127 0.144 0.142 0.149 0.128 0.126

τ1 -0.065 -0.096 -0.098 -0.078 -0.066 -0.089 -0.095 -0.072 -0.084 -0.063

τ2 0.041 0.048 0.045 0.045 0.020 0.025 0.029 0.037 0.015 0.020

δ1 -0.063 -0.047 -0.067 -0.057 -0.069 -0.071 -0.082 -0.047 -0.064 -0.042

δ2 0.060 0.048 0.060 0.076 0.043 0.047 0.045 0.050 0.036 0.033

φ 1.036 0.872 0.999 1.041 1.092 0.964 0.985 0.979 0.975 0.923

ω 1.393 1.076 1.299 1.365 0.950 0.961 1.510 0.980 0.825 1.898

d 0.633 0.620 0.678 0.658 0.673 0.645 0.673 0.678 0.672 0.644

L -7,843.29 -8,370.57 -7,082.26 -6,960.83 -7,195.15 -6,722.47 -6,922.21 -6,791.17 -6,159.11 -7,291.01

AIC 15,710.58 16,765.13 14,188.52 13,945.66 14,414.29 13,468.95 13,868.42 13,606.34 12,342.22 14,606.02

BIC 15,782.68 16,837.21 14,260.57 14,017.72 14,486.36 13,541.01 13,940.48 13,678.44 12,414.28 14,678.16

HQIC 15,878.78 16,933.28 14,356.63 14,113.79 14,582.44 13,637.07 14,036.55 13,774.54 12,510.34 14,774.31

JNJ KO MMM MRK MSFT PG VZ WHR WMT XOM

µ 0.030 0.029 0.042 0.029 0.029 0.024 0.028 0.088 0.014 0.040

β 0.093 0.121 0.137 0.108 0.158 0.138 0.156 0.092 0.113 0.150

α 0.430 0.458 0.413 0.298 0.498 0.425 0.396 0.317 0.361 0.413

ξ -0.130 -0.147 -0.343 -1.010 -0.368 -0.159 -0.178 -1.062 -0.258 -0.292

σ2
u 0.147 0.141 0.144 0.188 0.134 0.148 0.151 0.165 0.134 0.122

τ1 -0.078 -0.072 -0.088 -0.041 -0.051 -0.068 -0.071 -0.051 -0.045 -0.101

τ2 0.049 0.035 0.015 0.002 0.015 0.031 0.049 0.030 0.035 0.049

δ1 -0.030 -0.053 -0.070 -0.057 -0.039 -0.055 -0.060 -0.044 -0.029 -0.106

δ2 0.058 0.065 0.041 0.010 0.033 0.056 0.059 0.065 0.057 0.050

φ 0.955 0.939 1.073 1.448 0.998 1.080 1.001 1.325 1.116 1.078

ω 0.300 0.367 0.466 0.827 1.307 0.307 0.726 1.171 0.643 0.832

d 0.692 0.674 0.655 0.666 0.641 0.643 0.671 0.618 0.681 0.656

L -5,399.76 -5,660.47 -6,259.27 -7,442.64 -6,796.38 -5,620.41 -6,398.68 -8,152.11 -5,922.81 -6,097.09

AIC 10,823.52 11,344.93 12,542.53 14,909.29 13,616.76 11,264.82 12,821.36 16,328.22 11,869.62 12,218.18

BIC 10,895.59 11,417.01 12,614.58 14,981.34 13,688.90 11,336.89 12,893.42 16,400.27 11,941.70 12,290.26

HQIC 10,991.66 11,513.09 12,710.63 15,077.40 13,785.05 11,432.97 12,989.49 16,496.32 12,037.79 12,386.35
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Low risk aversion: A = 3
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High risk aversion: A = 10
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Figure 5: Economic value of volatility-timing strategy
This figure depicts the average performance fee in annualized basis points for the
REGARCH-MIDAS, REGARCH-HAR, REGARCH-S and FLoEGARCH relative to the
original REGARCH across all 20 individual stocks. The error bars represent +/− two
cross-sectional standard errors. The investment horizon is set to 1,5,10, and 22 days as
indicated by the x-axis. The left figure contains results for a low risk-aversion parameter,
A = 3, and the right figure for a high risk-aversion parameter, A = 10.
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