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Stock vs. Bond Yields

and Demographic Fluctuations

19 Aug 2019

Abstract

This paper analyzes the strong comovement between real stock and nominal

bond yields at generational frequencies. Using a stochastic overlapping generations

model with cash-in-advance constraints, we show that the simulated life-cycle

patterns in savings behavior make both real stock and nominal bond yields comove

with the changing population age structure. These persistent comovements account

for the equilibrium relation between stock and bond markets. A stochastic Fisher

decomposition of nominal bond yields reveals that, while having a moderate e�ect

on both the in�ation risk premium and expected in�ation, demographic changes

a�ect nominal yields mainly through real bond yields. Using both U.S. data and

a cross-country panel, we �nd empirical support for these theoretical predictions.

Finally, we show that the strength of the demographic e�ect on real yields explains

cross-country di�erences in the comovement between stock and bond markets, while

alternative demographic channels fail to explain such cross-country heterogeneity.

Keywords: demographics, �nancial yields, OLG, in�ation risk premium.

JEL classi�cation: E27, E31, E44, G11, G12.



1 Introduction

Yields on aggregate U.S. stock and government bond markets follow surprisingly similar

paths in the post-war period, in particular post-Bretton Woods until the Great Recession

(e.g., Bekaert and Engstrom, 2010; Maio, 2013). This evidence has led to valuation

models, e.g., the Fed model, that rely on relative pricing of stock and bond markets.

However, it is di�cult to reconcile within standard macro-�nance models (Du�ee, 2018b)

and does not extend to other countries, see Figure 1(Asness, 2003; Estrada, 2009).

Insert Figure 1 here

Another striking observation is that yields on the aggregate stock market are positively

correlated with in�ation (Wei, 2010). This is also puzzling, since the stock market

representing real assets should be a good hedge against in�ation. Behavioral explanations

such as the �in�ation illusion� (Modigliani and Cohn, 1979; Campbell and Vuolteenaho,

2004; Feinman, 2005), risk-based stories (Brandt and Wang, 2003; Bekaert and Engstrom,

2010), and business cycle shocks (Burkhardt and Hasseltoft, 2012; Campbell et al., 2014;

Ermolov, 2015; Song, 2017) have been proposed to reconcile these two pieces of evidence,

but there is no consensus. In this paper, we propose an alternative explanation.

Insert Figure 2 here

Panel A (Panel B) of Figure 2 plots the 20-year correlation between stock and 10-

year nominal bond yields (in�ation) over more than a century. Several observations are

striking: regardless of the stock yield measure (dividend or cyclically adjusted earnings

yield), the stock-bond yield correlation is highly persistent and switches sign between

nearly one (pre-WWII and post-Bretton Woods) and close to minus one (Bretton Woods

and, to a lesser extent, post-Great Recession). The stock yield-in�ation correlation is

slightly less persistent in the pre-Bretton Woods period, but behaves similarly later in

the sample. These low-frequency correlations are unlikely to be driven solely by business

cycle �uctuations (Campbell et al., 2017; Hasseltoft, 2009, 2012; Song, 2017; Du�ee,

2018b). In contrast with the earlier literature that focuses on business-cycle frequencies,

the key focus of our paper is to analyze the persistent correlations at a generational

frequency.
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The U.S. population age structure features twenty-year boom and bust cycles (see

Figure 3). We conjecture that the population pyramid, characterized by the proportion

of the middle-aged to young population, theMY ratio, drives the persistent component of

�nancial yields. We develop a stochastic overlapping generations (OLG) model in which

we introduce money through cash-in-advance constraints, in order to investigate how

the demographic structure a�ects equity yields, in�ation, and the three components of

nominal bond yields: real bond yields, expected in�ation, and the in�ation risk premium.

Two earlier papers analyze the ability of the MY ratio to forecast stock returns and

bond yields, without modeling in�ation. Favero et al. (2011) show a strong empirical link

between dividend yield persistence and demographic �uctuations within the Campbell

and Shiller (1988) framework. Favero et al. (2016), on the other hand, develop a no-

arbitrage a�ne term structure model based on the assumption that the slow mean-

reverting component of the (real) spot rate is driven by demographic �uctuations. In

contrast to these papers, our proposed OLG model allows us to examine the underlying

mechanisms to analyze all the components of the nominal bond yield in a single framework

so as to understand low-frequency stock-bond correlation.

Insert Figure 3 here

Our model provides several testable predictions: not only are stock yields and real

bond yields negatively correlated with the MY ratio (Geanakoplos et al., 2004), so are

in�ation and in�ation risk premium. Demographic changes a�ect nominal yields mainly

through real bond yields, and hence, on average, nominal bond yields and real stock

yields comove positively at generational frequencies. However, it is possible that this

comovement becomes negative in a few states of the world, depending on monetary regime

switches and income shocks. Based on the demographic e�ects on yields and the in�ation

risk premium implied by the model, we also test whether the predicted future patterns

of the MY ratio can improve return predictability within a present value framework.

The middle-age to young ratio as an empirical proxy for the change in the U.S.

age structure is motivated by an OLG model developed by Geanakoplos et al. (2004,

henceforth GMQ). We develop a monetary version of the stochastic GMQ model. Our

model shows that the age structure of the U.S. population a�ects not only the real

returns of �nancial assets but also the aggregate price level, in�ation, and the in�ation

risk premium. The equilibrium relation between �nancial yields is robust to the presence
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of monetary shocks that capture monetary regime shifts. Over the life-cycle individuals

facing a hump-shaped income stream save when middle aged, which in turn increases

real asset prices causing a negative correlation between the MY ratio and the real yields.

Middle-aged workers being more productive, a large MY ratio fosters aggregate real

production and aggregate real income. As economic activity grows, money demand goes

up, which leads to a reduction in the aggregate price level to equilibrate the money

market. Therefore, the price level is inversely related to the MY ratio. In the model,

the volatility of output and income is increasing in the proportion of young individuals

as in Jaimovich and Siu (2009). Since this volatility generates a higher risk of facing low

consumption growth together with high in�ation, it increases the risk of holding nominal

bonds. When the MY ratio is low, the model predicts that the in�ation risk premium is

relatively high. As a whole, the population age structure impacts all three components

of nominal yields. Isolating and quantifying the demographic e�ect on these components

is crucial for understanding the comovement between �nancial yields.

Empirically testing the impact of demographics on �nancial variables and in�ation is

particularly challenging due to their highly persistent nature. The fact that long time

series of real bond yields are not directly observable adds a further challenge. We address

the latter problem by following two separate estimation strategies. First, over the long

time series, we estimate a large set of in�ation forecasting models to generate in�ation

expectations, and we derive real bond yields by subtracting model-generated in�ation

expectations from nominal bond yields. We demonstrate the sensitivity of our results to

di�erent model speci�cations. Second, for the post-Bretton Woods sample, we explicitly

take into account the in�ation risk premium by using survey-based in�ation expectations,

and data from the in�ation-indexed bond market, extended using models based on the

term structure of survey-based in�ation forecasts (Chernov and Mueller, 2012). To obtain

the in�ation risk premium, we subtract real bond yields (net of the liquidity premium)

and in�ation expectations from the nominal bond yields.

We test all model predictions using both Pearson correlation with bootstrapped p-

values and Müller and Watson (2018) methodology. The latter allows inference using

highly persistent variables to test the low-frequency correlation between key variables

in our OLG model. Since the model is calibrated using U.S. data, we �rst show our

results for the U.S. sample before extending the analysis to a cross-country panel. Our

results support the theoretical predictions listed above. As a general pattern, the MY
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ratio correlates negatively with nominal bond yields, real bond yields, in�ation, and

the in�ation risk premium, although the signi�cance varies across samples and model

speci�cations. Moreover, relying on a stochastic Fisher decomposition of nominal bond

yields, we maintain that the MY ratio a�ects nominal bond yields mainly through

its e�ect on real bond yields, since the demographic e�ect on both the in�ation risk

premium and expected in�ation is moderate. Consequently, both real stock and nominal

bond yields comove with the changing population age structure and hence, correlate

positively. Also, this correlation switches sign in a few sub-periods, in line with our

model predictions. Our cross-country analysis shows that cross-sectional di�erences in

stock-bond yield correlation are mainly explained by the di�erences in the magnitude

of the demographic e�ect on real yields.1 Moreover, we test the predictability of stock

market excess returns by modifying the present-value relation suggested by Maio (2013).

We incorporate information on the real stock yields, nominal bond yields and predictable

future demographic �uctuations. We show that nominal bond yields together with future

demographic information improve stock return forecasting ability compared to earlier

studies (Favero et al., 2011; Maio, 2013). However, the forecasting ability appears to be

mainly channeled through the link between the MY ratio and the level of bond yields,

in line with Favero et al. (2016), rather than through the link between the MY ratio and

the in�ation risk premium.

Although stock and bonds are the two main asset classes considered in long-term

portfolio allocation (e.g., Bali et al., 2009; Levy, 2015),2 the existing literature mainly

focuses on the comovement between stock and bond returns at business cycle frequencies.

A growing body of literature focuses on the joint dynamics of stock and bond markets

(Baele et al., 2010; Burkhardt and Hasseltoft, 2012; Campbell et al., 2017, 2014; Ermolov,

2015; Koijen et al., 2017; Lettau and Wachter, 2011; Hasseltoft, 2012; Song, 2017). For

instance, Campbell et al. (2017) develop a model based on four state variables to explain

the covariance between stock and bond returns, and �nd that stock-bond covariance

is driven by the covariance between nominal variables and the real economy. Koijen

et al. (2017) propose a arbitrage-free stochastic discount factor (SDF) model where the

pricing factors are motivated by a permanent/transitory decomposition of the pricing

1In a recent paper, Bekaert and Ermolov (2019) show that real yields play the major role in explaining
cross-country comovement in nominal yields.

2An article ("How Much Stock Should You Own in Retirement?") published on 3 Feb 2014 in the
Wall Street Journal discusses the asset allocation problem from a long-term perspective.
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kernel. Song (2017) develops a model that incorporates monetary policy aggressiveness

and macroeconomic shocks, and thereby explains the sign switch in stock-bond return

correlation. However, none of these papers consider low-frequency time-series variation

in demographics as the source of a persistent component.

The impact of demographic �uctuations on real yields and in�ation has been recently

discussed in the literature. Carvalho et al. (2016) show the di�erent channels through

which demographic changes can a�ect real interest rates. They focus on the increase in

longevity and the reduction in population growth. While the former reduces real rates

via increased saving for retirement, the latter has counteracting e�ects, leading to an

overall reduction in real rates. Aksoy et al. (2015) analyze the e�ects of demographic

changes on macroeconomic variables, and show that the proportion of the dependent

population (young and old) has a negative e�ect on real rates. Also, in�ation seems to

correlate positively with the share of dependents, that is, young and old individuals in

the economy (Aksoy et al., 2015; Juselius and Takats, 2015; Juselius and Takáts, 2018),

with net savers (Lindh and Malmberg, 2000), and with the growth rate of working age

population (Bobeica et al., 2017), but correlates negatively with the old-age dependency

ratio (Broniatowska, 2017). We deviate from these two strands of literature along several

dimensions. First, because our focus is on the composition of the workforce (young versus

middle-aged workers), and its time variation (Geanakoplos et al., 2004; Feyrer, 2007),

none of those demographic channels are present in our model. Indeed, these demographic

factors exhibit strong time trends, while our model is built upon a stationary population

pyramid. Second, we are not focusing on the demographic e�ect on the real interest rate

or in�ation in isolation. Instead, we propose a uni�ed analysis to investigate how the

demographic structure a�ects all the components of nominal yields. The decomposition

of the demographic e�ect enables us to identify the dominant channel, which is the real

yield channel. Finally, we �nd that the alternative demographic factors put forward in this

literature fail to explain the cross-country heterogeneity in stock-bond yield comovement.

The remainder of the paper is organized as follows. Section 2 introduces the

monetary OLG model. Section 3 presents three theoretical predictions about the relation

between the population age structure and �nancial markets. Section 4 tests these

predictions empirically and provides evidence that a demographic factor drives the long-

run component of �nancial yields. Section 5 concludes.
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2 A Stochastic Monetary Exchange Economy

We develop a stochastic model of a monetary exchange economy in order to show the

mechanisms through which the population age structure a�ects real returns, in�ation, the

in�ation risk premium, and nominal yields. The stochastic feature of the model introduces

an equity premium and an in�ation risk premium and demonstrates the robustness of the

yield correlation under di�erent in�ation regimes.

2.1 Model

2.1.1 Overview

We develop a stochastic 3-period OLG model of a monetary exchange economy. We

extend the stochastic model developed by GMQ (2004) to a monetary economy by

introducing a Clower (1967)-type cash-in-advance constraint. Each period lasts 20 years.

Young and middle-aged individuals supply labor inelastically and receive labor income,

while retired individuals live o� their savings. The superscripts y, m and r indicate

the individual's respective life stages: young, middle aged and retired. This life-cycle

portfolio behavior, as described by Bakshi and Chen (1994), plays an important role

in determining equilibrium asset prices. Two types of �nancial instruments, bonds and

stocks, are available and allow agents to redistribute income over time. We assume that in

odd (even) periods, a large (small) cohort enters the economy, so that in every odd (even)

period, the demographic structure is (N,n,N) ((n,N,n)). We focus on medium- to long-run

demographic �uctuations, abstracting from short-run and business cycle frequencies.

2.1.2 Stochastic Stream of Wages and Dividends

Following GMQ, we introduce random shocks to wages and dividends to circumvent

the substitutability between bonds and stocks. This assumption enables us to analyze

the impact of the age structure on stock prices and risk premium in a framework that

incorporates the risks that individuals face when planning their life-time consumption.

Labor and production plans yield real wages wj,s = (wyj,s, w
m
j,s) and real dividends

dj,s, respectively, in each period j, j = {odd, even}, and income state s. Income

shocks are such that both wages and dividends can take low or high values: wj =

{wLj , wHj } = {(wy,Lj , wm,Lj ), (wy,Hj , wm,Hj )} and dj = {dH , dL}. Therefore, the stochastic
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income structure features four income states denoted by s = {s1, s2, s3, s4}, where

s1 = (wHj , d
H), s2 = (wHj , d

L), s3 = (wLj , d
H), and s4 = (wLj , d

L). The stochastic

wage structure wj,s = (wyj,s, w
m
j,s) re�ects the higher productivity of middle-aged workers

compared to young workers, as we assume that wyj,s < wmj,s in any demographic structure

j and income state s. Moreover, each individual faces a stream of wages (wyj,s, w
m
j+1,s+1,

0) that is concave over her life time: wyj,s<w
m
j+1,s+1 in any period j and j + 1 and in any

income state s and s+ 1.

2.1.3 The Role of Money

In our setting, the essential role of money is that of a medium of payments. We build

on the cash-in-advance setting proposed by Bénassy (2005). We assume that, in each

period, each individual possesses an income composed of her labor income, for working

individuals, and the �nancial returns of previous savings, if taken. Then, the bond and

stock markets open, and each individual decides upon her �nancial investment. The rest

of her income is kept in the form of money and constitutes the individual's money demand.

This money holding is eventually traded against the consumption good. As a result,

agents face a within-period cash-in-advance constraint that embodies the assumption that

money is the only means of purchasing the consumption good. Consequently, individuals

hold money in each of their three periods of life, irrespectively of being a borrower or

saver. Because it does not pay interest, money is a dominated asset that is entirely

consumed during each period. In other words, bonds and equities are the only instruments

that are carried across periods to smooth consumption over time. Consequently, money

holdings are more closely related to consumption expenditures than to savings, a feature

that matches empirical regularities (Handa, 2002). This feature is also in line with the

periodicity of the model. Indeed, given that each period lasts 20 years, it is reasonable

to assume that money is not carried over time to allow consumption deferral over 20

years. Such a cash-in-advance constraint, as introduced by Lucas (1982),3 presents the

following advantages. First, it isolates the money demand functions from the speci�c

choice of utility functions, an issue that prevails in money in the utility function models.

Second, di�erent from models that feature both money and bonds as stores of value,

we obtain a monetary equilibrium without relying on additional assumptions regarding

demographic change or monetary policy that a�ect the return of money. Finally, as

3This cash-in-advance constraint also relates to that proposed by Artus (1995) and Heer et al. (2011).
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argued by Heer et al. (2011), cash-in-advance constraints are useful in explaining the

heterogeneity of money holdings across di�erent age groups.

2.1.4 Monetary Regimes

Since monetary regimes di�er in their success at establishing a credible framework to

control in�ation over the last century (Bordo and Haubrich, 2008; D'Agostino and Surico,

2012; Filipova et al., 2014; Meltzer, 1986), we assume that monetary policy makers pursue

a time-varying in�ation target. In such a long-run setting where changes in the stock of

money lead to changes in the price level, this assumption translates into a time-varying

adjustment MS
g , where the subscript g = {g1, g2, g3, g3} represents the four states of

money supply. In this setting, which is similar in spirit to the exogenous monetary

policy rule presented in Song (2017), expectations about future in�ation are either low

-g1- (corresponding to the Mixed Regime and QE periods), or medium -g2- (as during

the Pre-Fed, Gold Standard, Bretton Woods and Great Moderation periods), or high

-g3- (Pegged Regime), or very high -g4- (Great In�ation). For the sake of simplicity,

the monetary regimes are independent. With this exogenous structure of money supply,

we implicitly assume that money supply did not react to demographic �uctuations. We

justify this assumption of exogeneity by providing evidence that the Fed did not adjust

money supply in response to changes in in�ation and the output gap that were triggered

by changes in the demographic structure (see Appendix A).

2.1.5 Individuals

The utility function features constant relative risk aversion and is intertemporally

additive. Therefore, a young individual born in period j, j = {odd, even}, and income

state s maximizes U(cyj,s) + βU(cmj+1,s+1) + β2U(crj+2,s+2), where {cyj,s, c
m
j+1,s+1, c

r
j+2,s+2}

is her real consumption stream over the three life periods. Let qj,s and q
e
j,s be the real

bond price and real stock price in period j and income state s, respectively. In Appendix

B, we develop an equivalent model that posits the nominal price of a corresponding

nominal bond that promises to pay 1/Pj+1,s+1,g+1 units of consumption at time j + 1,

where Pj+1,s+1,g+1 is the price of the consumption good at time j + 1. In the same

appendix, we explicitly link the real and the nominal interest rate on the bond through the

Fisher equation. (zbyj,s, ze
y
j,s, zb

m
j+1,s+1, ze

m
j+1,s+1) represent the real asset holdings (bonds
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and stocks) of an individual born in period j and income state s. The real borrowing

constraints of a young individual born in period j and income state s are:

cyj,s + qj,szb
y
j,s + qej,sze

y
j,s = wyj,s

cmj+1,s+1 + qj+1,s+1zb
m
j+1,s+1 + qej+1,s+1ze

m
j+1,s+1 = wmj+1,s+1 + zbyj,s + (qej+1,s+1 + ds+1)ze

y
j,s

crj,s+2 = zbmj+1,s+1 + (qej,s+2 + ds+2)ze
m
j+1,s+1

where j + 2 = j by the cyclicity of the demographic structure.

Let 1/σ denote the intertemporal elasticity of substitution between consumption

in any two periods. The maximization by young and middle-aged agents of their

intertemporal utility functions leads to the following Euler equations that determine

optimal consumption choices over time:

(cyj,s)
−σqj,s = βEj,s(c

m
j+1,s+1)

−σ

(cmj,s)
−σqj,s = βEj,s(c

r
j+1,s+1)

−σ
(1)

and

(cyj,s)
−σEj,s

qej,s
qej+1,s+1 + ds+1

= βEj,s(c
m
j+1,s+1)

−σ

(cmj,s)
−σEj,s

qej,s
qej+1,s+1 + ds+1

= βEj,s(c
r
j+1,s+1)

−σ
(2)

These equations state that individuals who are young or middle aged in period j and

income state s choose to reduce their future consumption when the real cost of deferring

consumption from period j to period j + 1, qj,s or Ej,s
qej,s

qej+1,s+1+ds+1
, increases or when the

discount factor β decreases.

In each stage of life, the consumption good has to be paid for in cash. Because money

is a dominated store of value, each individual's stream of nominal money demand Mj,s,g

equals the optimal consumption structure speci�ed by the Euler equations times the price

of the consumption good, Pj,s,g. Therefore, the within-period cash-in-advance constraints

are as follows:

cyj,s =
My

j,s,g

Pj,s,g
cmj,s =

Mm
j,s,g

Pj,s,g
crj,s =

M r
j,s,g

Pj,s,g
(3)
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2.2 Equilibrium

The economy is in a decentralized equilibrium at all times; that is, all individuals choose

their consumption stream optimally (Equations (1) and (2)). Moreover, the cash-in-

advance constraints (Equations (3)) must be respected in equilibrium, and the following

resource constraints must be satis�ed in all periods:

Ncyo,s + ncmo,s +Ncro,s = Nwyj,s + nwmj,s + ds

ncye,s +Ncme,s + ncre,s = nwyj,s +Nwmj,s + ds
(4)

N
My

o,s,g

Po,s,g
+ n

Mm
o,s,g

Po,s,g
+N

M r
o,s,g

Po,s,g
=

MS
g

Po,s,g

n
My

e,s,g

Pe,s,g
+N

Mm
e,s,g

Pe,s,g
+ n

M r
e,s,g

Pe,s,g
=

MS
g

Pe,s,g

(5)

The �rst two equations represent the equilibrium in the goods market, whereas the

two last equations state that the money market clears in both odd and even periods.

By substituting the cash-in-advance equations into the resource constraints of the

money market, the equilibrium conditions listed here can be expressed as functions of

consumption levels (cyj,s, c
m
j,s and c

r
j,s), asset prices (qj,s and q

e
j,s), saving decisions (zbyj,s

and zbmj,s) and real money supply (
MS

g

Pj,s,g
). This means that money is neutral, that is,

increases in the nominal money supply are entirely absorbed by a proportional increase

in the price level and leave real activity una�ected. This explains why real variables are

not indexed by the money supply state g. This feature of the model is justi�ed in the

medium to long run.

2.3 Solving the Model

Solving for the equilibrium requires identifying the four elements that constitute the state

space: the population pyramid j, the state of incomes s, the state of the money supply g,

and the portfolio income received by middle-aged workers, which is determined by past

shocks. Note that while the population pyramid follows a deterministic path, incomes

and monetary regimes are stochastic. The equilibrium is characterized as follows: i)

young workers optimally choose their saving and portfolio structure, given their budget

constraint when young and their expected budget constraint when middle aged; ii) middle-

aged workers optimally choose their saving and portfolio structure, given their budget

10



constraint when middle aged and their expected budget constraint when retired; iii) the

bond market and the stock market clear; and iv) the asset prices that individuals expect

for the following period and income state, when deciding upon their portfolio, are equal

to the asset prices that clear the bond and stock markets in the following period and

income state, when agents receive such portfolio income. Moreover, the savings that

young workers expect to make in the following period and income state, when deciding

upon their portfolio, are equal to the savings that middle-aged workers actually choose in

the following period and income state, would they receive such portfolio income. The last

condition assures that expectations about asset prices and saving decisions are correct.

To solve for the equilibrium, we form a grid of portfolio incomes inherited by middle-

aged individuals from period t−1. Then, we choose initial expectation functions over asset

prices and saving decisions that will be realized in t+1. We solve for the optimal portfolio

decisions of young and middle-aged workers in t (retired individuals do not make any

portfolio decision), for each point of the grid, given the expectation functions. Next, we

solve for the optimal portfolio decisions of young and middle-aged workers, and therefore

for the equilibrium asset prices and saving decisions in t + 1, given the expectation

functions and the portfolio income inherited by middle-aged workers from period t. The

equilibrium asset prices and saving decisions are used to update the expectation functions.

We repeat the algorithm until convergence.

2.4 Calibration

For the sake of comparison, we closely follow GMQ's calibration. We interpret a period

as 20 years. We take (n,N) = (52, 79) as the size in millions of the Great Depression

(1925-1944) and Baby Boom (1945-1964) generations so that, in the model, the middle-

age to young ratio MY alternates between 0.66 in even periods and 1.52 in odd periods.

For comparison, we also provide the results obtained under the robustness speci�cation

(n,N) = (69, 79), which represents the Baby Boom (1945-1964) and Baby Bust (1965-

1984) generations.

We assume an annual discount factor of 0.97, which translates into a discount factor

of 0.5 at a 20-year frequency. The value of the intertemporal elasticity of substitution is

still debated.4 We set the value of the elasticity of substitution equal to 1/4. Robustness

4Papers that calibrate macroeconomic models to match growth and business cycle facts usually use
values around unity. After the seminal work by Kydland and Prescott (1982), who set the substitution
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checks for alternative values (σ = 1; 2; 6) show that changes in the elasticity of substitution

modify only slightly the e�ect that the population age structure has on asset prices and

does not impact the demographic e�ect on in�ation.

Concerning incomes and dividends, we set the average wage of young and middle-

aged workers over income states to 2 and 3, respectively, to match the ratio of average

annual real income of middle-aged to young individuals in the U.S. The average ratio of

dividends to wages is equal to 0.19 in the U.S. In the baseline speci�cation characterized

by the age structure (n,N) = (52, 79), total wages in odd (even) periods are, on average

across income states, equal to 314 (341), so we set the average level of dividends equal to

0.19(314+341
2

). In the robustness speci�cation, the age structure is (n,N) = (69, 79). Total

wages in odd (even periods) are, on average across income states, equal to 365 (375), so

we set the average level of dividends equal to 0.19(365+375
2

). To obtain the stochastic

structure of wages and dividends, the average coe�cient of variation of young workers'

wages, middle-aged workers' wages, and dividends across odd and even periods are set

to 15%, 20% and 19%, respectively (see GMQ). Additionally, we follow Jaimovich and

Siu (2009), who document the negative correlation between the volatility of real GDP

growth and the MY ratio,5 and we assume dependence between the young and middle-

age income coe�cients of variation and the demographic structure. Speci�cally, we allow

the income coe�cients of variation to vary in odd and even periods so as to target a

standard deviation of aggregate income growth that is 10% higher in odd periods than

in even periods. As a result, the stochastic wage structure is (wy,Lo , wm,Lo ) = (1.8, 2.55),

(wy,Ho , wm,Ho ) = (2.2, 3.45), (wy,Le , wm,Le ) = (1.6, 2.25), and (wy,He , wm,He ) = (2.4, 3.75).

The stochastic dividend structure is given by {dH , dL} = {74, 50} under the baseline

speci�cation (n,N) = (52, 79) and {dH , dL} = {83, 57} under the robustness speci�cation
(n,N) = (69, 79). We take into account the positive correlation between wages and

dividends and assign the following probabilities to each of the four income states s:

(0.4, 0.1, 0.1, 0.4).

elasticity to 0.66, most of the real business cycle literature has used a value close to one. Other studies,
which mainly estimate Euler equations using aggregate consumption data, support lower values. Hall
(1988) stands on the opposite side of the range with a value close to zero.

5Jaimovich and Siu (2009) show that output volatility rose in the U.S. from the early 1960s to the
late 1970s, a pattern that is matched with the long-run �uctuations in the volatile-age labor force share,
i.e., the share of individuals in the age ranges 15-29 and 60-64 in the 15-64 year-old labor share. Because
the volatile-age labor force share is roughly the inverse of the MY ratio, this result points towards a
negative correlation between output volatility and the MY ratio.
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We normalize the initial price level in odd periods to one and set the money supply

accordingly. The stochastic structure of the money supply is set to g = (g1, g2, g3, g4) =

(0.5%, 2.5%, 4%, 6%) in annualized terms, so as to match the observed average annual

in�ation rate over the Mixed Regime and Quantitative Easing periods (state g1), over

the Pre-Fed, Gold Standard, Bretton Woods and Great Moderation periods (state

g2), over the Pegged Regime period (state g3), and over the Great In�ation period

(state g4). We assign the following probabilities to each of the four money supply

states g: (0.15, 0.6, 0.125, 0.125) to roughly match the relative length of the respective

monetary regime(s) over the period 1900-2016. Because we do not know a priori how

in�ation expectations are formed over generational frequencies, we assume that in�ation

expectations only react to changes in monetary regimes and demographic �uctuations.

We will assess the validity of the latter assumption in the empirical section.

3 Theoretical Predictions

In this section, we present the simulation results of the stochastic case, and we detail

the static (no shocks) and deterministic (only demographic �uctuations) cases in Online

Appendix A. We simulate a 100,000-period model and average the results obtained in

each pyramid structure j, income state s, and money growth state g. We also report

averages across states. We present the results in Tables 1 and 2 for the population age

structure (n,N) = (52, 79) and in Online Appendix B for the population age structure

(n,N) = (69, 79). Standard deviations, shown in parentheses, are small for almost all

variables, which indicates that past shocks a�ect equilibrium values only marginally.

Moreover, a paired sample t-test indicates that the average values are signi�cantly

di�erent between odd and even periods.

3.1 Demographic E�ects on Real Yields and In�ation

Individuals facing a hump-shaped income stream save when middle aged and dis-save

when retired. Therefore, in odd periods, when the demographic structure is characterized

by a small cohort of middle-aged individuals, aggregate saving is low and, relatedly,

aggregate consumption is high. The opposite holds in even periods. The equilibrium in
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the goods market, and consequently in the bond and stock markets, is realized through

the adjustment of the real price of �nancial assets. Comparing the last row of each panel

of Table 2 shows that asset prices increase in even periods so as to prevent excess saving

in the economy. Symmetrically, low real asset prices stimulate savings in odd periods

when the MY ratio is low, and lead the asset and goods markets to clear. This explains

the decrease in the annualized real interest rate by 114% and the decrease in equity yields

by 50% over 20 years, on average, from odd to even periods.

While this demographic e�ect on asset prices is observed on average, income shocks

alter the results. Indeed, high wages and dividends push individuals' demand for savings

up, which makes stock prices increase and real yields fall. Inversely, stock prices are low

and real yields are high when wages and dividends are low.

Insert Table 1 here

Insert Table 2 here

Using the cash-in-advance constraints, we substitute individual consumptions into

money demands in the resource constraints of the goods market. Then, by embedding

these resource constraints into the resource constraints of the money market, we obtain

Po,s,g =
MS

g

Nwyo,s + nwmo,s + ds
Pe,s,g =

MS
g

nwye,s +Nwme,s + ds
(6)

The money supply relative to aggregate real income/output determines the price level

in the economy.6 By taking logs, Equation (6) allows for a dynamic interpretation: the

in�ation rate is equal to the di�erence between the money supply growth rate and the

growth rate of aggregate income/output. As economic activity grows (slows down), the

demand for real cash balances increases (decreases), lowering (increasing) in�ation. A

similar mechanism linking real activity and in�ation is put forward by Fama (1981).

We take a step further and show that the level of real activity directly relates to the

demographic structure. We can illustrate this relation by expressing Equations (6) as

functions ofMYj, theMY ratio in period j, and Y oungj, the number of young individuals

6Note that Equations (6) are special cases of the quantity theory exchange equation, in which the
velocity of money is constant and equal to one. Extensions of Lucas' basic model have been provided to
account for the variability of the velocity of money (see, for example Lucas, 1984; Svensson, 1985; Lucas
and Stokey, 1987), but for tractability reasons, we do not introduce them into our model.
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in period j. The following equation holds:

Pj,s,g =

MS
g

Y oungj

wyj,s +MYjwmj,s + ds
Y oungj

(7)

Middle-aged workers being more productive than young ones, a higher MY ratio

implies higher aggregate productivity and hence higher aggregate real income/output.

As economic activity grows, money demand increases, which leads to a decrease in the

aggregate price level to sustain money market equilibrium. Therefore, the price level is

inversely related to the MY ratio: prices are expected to be high (low) in odd (even)

periods. The results in Table 2 con�rm this prediction that the small proportion of

middle-aged workers in odd periods pushes aggregate productivity down, leading to a low

level of aggregate income/output and subsequently to a high price level. This mechanism

generates a negative comovement between MYj and realized in�ation πj.
7 As discussed

in Section 2.1.4, this result arises because money supply does not vary with theMY ratio

to o�set the demographic e�ect on money demand and in�ation.

Prediction 1: The MY ratio correlates negatively not only with real bond yields and

equity yields but also with in�ation.

Increases (decreases) in the MY ratio bring both equity yields and in�ation down

(up) and hence, �uctuations in the demographic structure generate comovement between

equity yields and in�ation, in line with the evidence in Panel B of Figure 2. Note that

income shocks alter this demographic e�ect on in�ation (Equation 6). In good income

states, wages and dividends are large, and so is real output. In�ation being determined

by the di�erence between money supply growth and the growth rate of aggregate real

output, high-income states are associated with low in�ation.

7Several empirical papers (Aksoy et al., 2015; Broniatowska, 2017; Juselius and Takats, 2015; Juselius
and Takáts, 2018) document a stable and signi�cant correlation between (trend) in�ation and the share
of dependents (that is, young and old individuals) in the economy, net savers (Lindh and Malmberg,
2000), and the growth rate of the working age population (Bobeica et al., 2017).
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3.2 In�ation Risk Premium and Nominal Bond Yield

Because of the uncertainty introduced by wage and dividend shocks, bonds and stocks are

imperfect substitutes. Our model does not include any additional channels that would

generate the high equity premium that is observed in the market. Therefore, the resulting

equity premium is relatively low, approximately 1%, on average. The equity premium

�uctuates with the MY ratio. Since the volatility of income growth is larger in odd

periods, agents investing in odd periods face greater variability in consumption growth,

which makes them less tolerant of the extra risk of investing in stocks. Consequently,

they demand higher compensation for taking on the greater risk in odd periods.

Using the Bekaert and Engstrom (2010) decomposition, we derive the stochastic

Fisher equation and decompose the annualized yield on the nominal bond i into three

components:

ij,s,g = rj,s + Ej,s,gπj+1,s+1,g+1 + irpj,s,g

where irpj,s,g = −1

2
V ar(πj+1,s+1,g+1) + Cov(ln

(cmj+1,s+1)
−σ

(cyj,s)
−σ , πj+1,s+1,g+1) (8)

where rj,s is the annualized real interest rate on bonds from period j to period j +

1, Ej,s,gπj+1,s+1,g+1 is the annualized expected in�ation from period j to period j + 1,

πj+1,s+1,g+1 denotes the realized future in�ation from period j to j + 1, and irpj,s,g is the

in�ation risk premium. See Appendix B.2 for the derivation.

Wage and dividend shocks generate unanticipated �uctuations in consumption growth

and in�ation. By decreasing aggregate output, adverse wage and dividend shocks increase

in�ation (Equation 6). Therefore, wage and dividend shocks drive consumption growth

and in�ation in opposite directions. This negative covariance makes nominal bonds risky

and gives rise to a positive in�ation risk premium that averages 0.65% across pyramid

structures. This order of magnitude falls within the range of estimates proposed in

previous studies: Haubrich et al. (2012) estimate the 10-year premium to average 0.44%

over the period 1982-2010, Buraschi and Jiltsov (2005) �nd that the 10-year premium

averages 0.7% over the period 1960-2000. While Ang et al. (2008) obtain a 5-year premium

of 1.15% over the period 1952-2004, it reduces substantially (0.14%) in the recent period

2004-2016 according to Bekaert and Ermolov (2019).

Changes in in�ation and consumption growth that stem from changes in the

demographic structure are anticipated by agents and therefore are not generating any
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in�ation risk premium. However, the demographic structure interacts with wage and

dividend shocks. Indeed, following Jaimovich and Siu (2009), the variability of income

growth decreases with the MY ratio. Consequently, in odd periods, agents might face

lower consumption growth together with a higher in�ation rate, compared to even periods.

In odd periods, nominal assets are therefore more risky, and investors demand a larger

premium to hold them. As a result, our estimated in�ation risk premium is negatively

correlated with the MY ratio (0.91% in odd periods, 0.40% in even periods).

Prediction 2: The in�ation risk premium is negatively correlated with the MY ratio.

This negative correlation suggests that the decline in the volatility of aggregate income

and consumption associated with the increase in theMY ratio after the early 1980s might

have contributed to the observed decrease in the in�ation risk premium over this period.

Our analysis corroborates the �nding of two studies (Buraschi and Jiltsov, 2005; Ang

et al., 2008) that outline the dynamics of the in�ation risk premium over time: the

premium seems to have increased between 1960 and 1980, to have peaked in the early

1980s, and to have decreased over the following 20 years. Our �nding also complements

the explanation put forward by Song (2017), who shows that, starting in the early 1980s,

in�ation became less risky as the Federal Reserve shifted towards an active monetary

policy by increasing the interest rates more than one-to-one with the in�ation rate, leading

to a decrease in the in�ation risk premium. Song (2017) also �nds that, from the 2000s

onwards, pro-cyclical in�ation shocks made nominal assets good hedges against income

shocks, and the in�ation risk premium turned negative. In our model, we gather from

Equation (6) that in�ation is always countercyclical and risky. For this reason, our model

cannot generate a negative in�ation risk premium observed in the recent period (Bekaert

and Ermolov, 2019).

Compared to the e�ect on real bond yields, the demographic e�ects on expected

in�ation and the in�ation risk premium are relatively moderate and of opposite sign.

However, since the demographic e�ects on real yields and the in�ation risk premium have

the same sign, �uctuations in nominal yields across pyramid structures due to the real

channel are ampli�ed when the in�ation risk premium is taken into account. Moreover,

the e�ect of income shocks on real yields transmits into changes in nominal yields across
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income states. As a result, nominal and real yields correlate positively.8

3.3 The Comovement Between Bond and Stock Yields

The demographic e�ect in the model is such that an increase in the MY ratio, from odd

to even periods, leads to a decrease in real bond returns, equity yields, and the in�ation

risk premium, and to an increase in expected in�ation, as presented in the previous

subsection. Because the demographic e�ect on expected in�ation is moderate, changes in

the demographic structure trigger positive comovement between nominal and real bond

yields, as well as positive comovement between nominal bond yields and equity yields.

Prediction 3: Because both nominal bond yields and equity yields are negatively

driven by the MY ratio, the comovement between nominal bond yields and equity yields

is positive at low frequencies, in most of the states.

The model-implied correlation between nominal bond yields and equity yields is 0.81

in the model, a magnitude that is comparable to the correlation coe�cients shown in

Figure 1 and Figure 2.9 However, it is important to note that while our model predicts

positive comovement between nominal bond and real equity yields, wage and dividend

shocks as well as changes in monetary regimes make the correlation negative in a few

speci�c subperiods: when stochastic shocks counteract the demographic e�ect. To show

this, we decompose the stochastic model results by demographic structure, income state,

and money supply state, as shown in Table 3. First, low-income states, by curbing demand

for saving, push bond and stock prices down and nominal and real yields up. As real

yields are more sensitive to income shocks than are nominal yields, real yields increase

from odd to even periods when the income shock e�ect dominates the demographic e�ect

(for example, from state (Odd, s1) to state (Even, s3)). In this case, an increase in the

8When analyzing the volatility of the nominal bond yield, shocks other than changes in the
demographic �uctuations have to be taken into account: wage and dividends shocks, and monetary
regime changes. Controlling for the MY ratio, i.e. over time horizons shorter than 20 years, we obtain
the following decomposition for the variance in bond yields: 76% is explained by the variance in real
yields, 16% is explained by the variance in expected in�ation, and 8% is explained by the variance in
the in�ation risk premium. The relative importance of expected in�ation is in line with Du�ee (2018a),
between the range in Bekaert and Ermolov (2019) and Ang et al. (2008).

9The model implied correlation coe�cient is quite robust to changes in the assumptions about the
stochastic structure of the money supply. This evidence is available from the authors upon request.
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MY ratio from odd to even periods will be associated with an increase in real yields and

a decrease in nominal yields.

Insert Table 3 here

We summarize the e�ect of income shocks on the sign of the correlation in Figure 4, Panel

A. The bottom-right quarter shows an average correlation of -0.04, indicating that, as

an economy moves from a low-MY demographic structure and high-income state (s1 or

s2) to a high-MY demographic structure and low-income state (s3 or s4), or vice versa,

the model predicts the comovement between nominal bond yields and equity yields to be

negative. This result provides a rationale for the extended period of negative correlation

observed in the 1960s, a period characterized by a falling MY ratio, pushing up both

nominal and real yields, and a booming economy counteracting the demographic e�ect

on real yields.

Insert Figure 4 here

Second, the positive correlation between nominal bond yields and equity yields is also

a�ected by money supply shocks and therefore by changes in individuals' expectations

about future in�ation. In states g3 and g4, high in�ation expectations cause nominal

yields to increase. The inverse occurs in states g1 and g2, when in�ation expectations

are relatively low. While both nominal and real yields decrease on average from odd

to even periods, nominal yields would increase if expectations about future in�ation

increase simultaneously (for example, from states s3, g1 to states s3, g4), as seen in Table

3. This would lead to a temporary negative comovement between nominal and real yields.

However, note that the model's ability to explain the recent period (unconventional

monetary policy) is limited, since it is not designed to capture the peculiarities of each

monetary regime (Song, 2017).

We summarize the e�ect of money supply shocks on the sign of the correlation in

Figure 4, Panel B. In the upper-left corner, we observe that, as the MY ratio increases

from odd to even periods, nominal bond yields and equity yields correlate negatively

when the income state remains low (income and dividend state s3 or s4) and the in�ation

rate is expected to increase sharply, from g1 to g4. This mechanism, when reversed, sheds

light upon the negative correlation between bond and stock yields observed during the

QE period, as this period is characterized by a decreasing MY ratio and relatively low

expectations about future in�ation.
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4 Empirical Evidence

4.1 Methodology

4.1.1 Data

In this section, we introduce the empirical counterparts of the key variables in the model.

We use the ratio of the number of individuals aged 40-49 to the number of individuals aged

20-29 as a proxy for the model-impliedMYt. We use real time demographic projections to

avoid look-ahead bias. We hand-collect projected values of the demographic variable from

various past U.S. Census reports (the middle series of the most recent report available at

the time of the forecast). For instance, the projected values for the period 1964-1969 are

the forecasts from the report published in 1964. We use both the dividend price ratio,

dyt, and the cyclically adjusted earnings price ratio, eyt, as a proxy for the equity yield.

The long rate it is the nominal yield on the 10-year Treasury note. Annual in�ation is

denoted πt and is computed using monthly in�ation compounded to annual frequency

(Welch and Goyal, 2008). We describe the estimation of long-run in�ation expectations

Etπlr in Section 4.1.3. For other variables, we use annual data using last month if monthly

data are available (see Appendix C for a detailed description of time series).

4.1.2 Empirical Strategy

We face several challenges to test the model predictions. First, real long-term bond yields

are not observable for a long sample. Second, most of the variables, e.g., equity yields, it,

and MYt, are highly persistent (see Table 4) over both the long sample (1900-2016) and

the recent post-Bretton Woods sample (1972-2016); hence, standard correlation measures

can be misleading. Third, it is di�cult to account for the in�ation risk premium for a

long time series since term structure data are not available.

Insert Table 4 here

Our �rst strategy is to extract real bond yields using a set of long-term in�ation

forecasting models, under the deterministic Fisher hypothesis (See Appendix B.1). Once

we compute the model-dependent in�ation expectations, we subtract them from the

nominal yields to obtain real bond yields. Then, we test the long-run correlation between
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real bond yields and the demographic variable for both a long time series (1900-2016) and

the post-Bretton Woods period (1972-2016). We report the sensitivity of the correlations

to the model choice.

We compute the long-run correlation among variables using the Müller and Watson

(2018) framework that allows inference using highly persistent variables to test the low-

frequency correlation of key variables in our OLG model. The method relies on cosine

functions to extract periodicities relevant at generational frequencies, that is, beyond 10

years. In particular, following Müller and Watson (2018), we set q=18 (q=6) for the long

sample (post-Bretton Woods) capturing periodicities of T/9=13 (T/3=15) years. The

main advantage of the framework is that one can also compute the Bayesian con�dence

sets that enable inference with highly persistent variables such as the equity and bond

yields, and the demographic variable. For comparison, we also report Pearson correlations

and bootstrapped p-values that take into account the persistence of each variable. We

explain the bootstrap procedure in Online Appendix C.

For the post-Bretton Woods sample, we take into account the in�ation risk premium.

We use survey-based long-term (10-year) in�ation expectations, extended backwards

using the Kalman �lter suggested by Bekaert and Engstrom (2010), as well as data

from the in�ation-indexed bond market (e.g., TIPS), extended using a model based on

the term structure of survey-based in�ation forecasts (Chernov and Mueller, 2012) to

obtain real rates and the in�ation risk premium. We also account for potential liquidity

problems in the in�ation-indexed bond markets, particularly in the early period of the

TIPS market and during the Great Recession (D'Amico et al., 2018; Ermolov, 2017;

P�ueger and Viceira, 2016).

We test the model predictions both in the U.S. sample and international data from

23 countries. A country is included in our sample if there are at least 30 years of data for

all observable variables. Here we report the results from a balanced panel of 20 countries

over the post-Bretton Woods period, and provide the results using the longest available

data for each country in Online Appendix D. Finally, we test whether we can explain

cross-country di�erences in stock-bond long-run correlations by taking into account

alternative explanations, via stag�ation incidents, the GDP-in�ation correlation, the

consumption growth-in�ation correlation (Bekaert and Engstrom, 2010; Song, 2017) or

other demographic channels such as population growth, life expectancy, the dependency

ratio or the share of the elderly population (Aksoy et al., 2015; Carvalho et al., 2016).
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4.1.3 Long-run In�ation Expectations

We estimate a large set of long-run in�ation forecasting models to generate in�ation

expectations. As a theoretical benchmark, we �rst compute in�ation expectations with

perfect foresight, Etπ
pf
lr , that is, the average 10-year future in�ation (up to 2006). Under

the assumption of no in�ation forecastability, we also document the naive random walk

in�ation forecast, Etπ
nrw
lr , that is, the current annual in�ation, as well as the random walk

with drift, Etπ
rwd
lr , that is, the sample average of annual in�ation. In the spirit of Atkeson

and Ohanian (2001), who use the past four quarters of in�ation to forecast future annual

in�ation, we compute the moving average of the past 10 years of in�ation to forecast long-

run in�ation, Etπ
ao
lr . Motivated by the learning literature, we also compute the discounted

10-year moving average, using the constant gain-learning parameter υ=0.987 (Cieslak and

Povala, 2015). As parsimonious speci�cations, we consider autoregressive models, AR(p)

with short lags, p={1,2}, and an ARMA(1,1) model in light of (Ang et al., 2007). We

also estimate bivariate VAR(p) models, p={1,2}, including money growth, ∆MS
t . We

use the narrow de�nition of money, i.e., currency in circulation, for the long sample, and

the broad de�nition of money, i.e., M2, for the post-Bretton Woods period. In order to

capture the time-variation in model parameters, we estimate AR(p) and VAR(p) models

with drifting coe�cients and stochastic volatility (D'Agostino and Surico, 2012).

We start with an in-sample estimation, using 20 years of data. For the long sample,

the in-sample period spans from 1880 to 1899, while for the post-Bretton Woods sample,

the in-sample period spans from 1952 to 1971. We run both recursive and rolling window

estimations to obtain long-run in�ation expectations.10 Next, we generate 10-year-ahead

forecasts by iterating forward the one-step-ahead forecasts up to 10 years to compute the

average in�ation over the period:

Πt = µt + AtΠt−1 + εt

Π̂t+1|t = µ̂t + ÂtΠt

Π̂t+n|t =
n∑
j=1

Âj−1t µ̂t + Ânt Πt

where n={1,2,..,10}, µt is the time-varying drift, and At is the time-varying matrix of

coe�cients. In the case of AR(p), Πt is equal to annual in�ation πt, while in the case of

10For brevity, we report recursive estimation results. Rolling window results are available upon request.
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VAR(p), Πt is equal to the vector

(
πt

∆MS
t

)
.

Similarly, we produce long-run in�ation forecasts from the ARMA(1,1) model (Ang

et al., 2007):

πt = µ+ ρπt−1 + θεt−1 + εt

π̂t+n|t =
1

1− ρ

[
1− ρ(1− ρn)

(1− ρ)

]
µ+

ρ(1− ρn)

(1− ρ)
πt +

(1− θn)

(1− θ)
εt

where µ is the constant term, ρ is the autoregressive coe�cient, and θ is the MA

coe�cient. We compute the average in�ation over n periods, n={1,2,..,10}.

Once we obtain all the long-run in�ation forecasts, we compare the out-of-sample

forecasting performance of each model and choose the long-run forecasting model with

the lowest root mean square (out-of-sample) forecast error (RMSFE), taking the naive

random walk model as the benchmark. This long-run in�ation expectation is denoted

Etπ
oos
lr . We also report Etπ

cw
lr , the long-run in�ation expectation obtained from the model

with the highest Clark and West (2006) test statistics, which take into account the �nite

sample bias in FRMSE comparison (Hubrich and West, 2010).

4.2 Demographic E�ect on Bonds, Equities and In�ation

U.S. Evidence. In Panel A of Table 5, we report the long-run correlation of observable

variables with MYt, both over the long sample (1900-2016) and the post-Bretton Woods

period.

Insert Table 5 here

The signs of all the long-run correlations of the MY ratio with observable variables

are in line with Prediction 1 of the model: the equity yield, measured by either dividend

or cyclically adjusted earnings yield, is negatively correlated with MY over the long

sample (ρlr(dyt,MYt)=-0.60) and highly and signi�cantly correlated with MY over the

recent sample (ρlr(dyt,MYt)=-0.87). As predicted by the model, the correlation of MY

with both long-term nominal bond yields and realized in�ation is negative, however, with

wider con�dence bands, especially in the long sample.

In Panel B of Table 5, we report the correlations of MYt with the 10-year in�ation
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expectations from various forecasting models described in Section 4.1.3. In particular,

we show the correlations with perfect foresight forecasts, Etπ
pf
lr , and forecasts using the

(discounted) moving average of past 10-year in�ation, Etπ
ao
lr (Etπ

cw
lr ). We also report the

correlations with forecasts obtained from the best forecasting models, namely Etπ
oos
lr and

Etπ
cw
lr . The results from all the remaining forecasting models are shown in the Online

Appendix D.1. Over the long sample, the sign is negative for all measures except for

Etπ
oos
lr , but none of the long-run correlations are signi�cant. The negative (or lack of)

correlation is in contrast with the model's prediction that the future in�ation should be

positively correlated with the MY ratio. The predicted positive correlation is mainly

due to the cyclical nature of prices in the model, and to the fact that investors take into

account the demographic structure when they build long-run in�ation expectations. In

reality, this is not necessarily the case. Instead, there is some evidence that in�ation

expectations are sluggish (e.g., Cieslak and Povala, 2015). In the post-Bretton Woods

period, expectations, based on past moving average of 10-year in�ation, Etπ
ao
lr and Etπ

cp
lr ,

are highly signi�cantly correlated with the MY ratio. This is however not surprising,

since these measures are based on past in�ation.

In the last Panel of Table 5, we show the correlations of MYt with the real long-term

bond yields obtained by subtracting the long-run in�ation expectations from the nominal

bond yields (under the deterministic Fisher hypothesis with no in�ation risk premium).

Over the long sample, the correlations are weak, except for the best forecasting models.

Correlations are higher in magnitude in the post-Bretton Woods period. However, there is

still considerable uncertainty about the correlations, which re�ects the weak identi�cation

of unobservable real rates using forecasting models. We address this issue in Section 4.3

by collecting data from the in�ation-indexed bonds market (e.g., TIPS, in�ation-linked

Gilts) for the recent sample.

Cross-Country Evidence. In order to provide out-of-sample evidence for Prediction

1, we repeat the exercise for 20 countries over the post-Bretton Woods (1972-2016) period.

In Online Appendix Tables D.2-D.4, we report the results for a panel of 23 countries

using the longest available data for each country. For each country, we collect dividend

yield, nominal bond yield and in�ation data. We run the same set of long-run in�ation

forecasting models to obtain real bond yields under the deterministic Fisher hypothesis.

In Online Appendix Table D.5, we show, for each country, the best forecasting models

according to RMSFE and Clark and West (2006) test statistics. Forecasting models vary
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across countries, but in many countries, modeling stochastic volatility seems to improve

forecasting performance over the post-Bretton Woods period.

Table 6 shows that, as the model predicts, real interest rates are negatively correlated

with the MY ratio in all countries except Japan, regardless of the model generating

in�ation expectations. Except Sweden and Finland, most European countries have a

correlation between real interest rates and the demographic variable that is similar to the

one prevailing in the United States. However, there is considerable uncertainty around

the long-run correlation value. This is expected, since real interest rates are computed

under the deterministic Fisher equation, thus ruling out an in�ation risk premium.

Insert Table 6 here

In Table 7, we look at the long-run correlations among observable variables to verify

whether Prediction 1 holds across countries. We �rst note that the long-run correlation

between dividend yield and MYt is the strongest in magnitude in the U.S., where the

stock market plays an important role in allocating capital over time. Apart from a few

exceptions (Austria, Italy and South Africa), the correlation is negative, although mostly

not signi�cant. The long-run negative correlation between in�ation and MYt is also

broadly in line with the model prediction. Therefore, the long-run correlation between

in�ation and the dividend yield is positive in all countries but South Africa, where there

is no connection between the population age structure and the stock market.

Insert Table 7 here

4.3 In�ation Risk Premium

4.3.1 Demographic E�ect on the In�ation Risk Premium

For the recent sample, we explicitly take into account the in�ation premium to test

Prediction 2 of the model. We use the median values of the survey-based long-term

(10-year) in�ation expectations from the Survey of Professional Forecasters. However,

since the data are not available for the earlier part of the sample, we extend the sample

backwards, via a stable VAR, using the Kalman �lter suggested by Bekaert and Engstrom

(2010). For comparison, we also use the long-run in�ation expectations generated by

the forecasting models discussed above. We collect data from the Treasury In�ation-
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Protected Securities (TIPS) market to obtain real rates. While, in principle, TIPS rates

should be a good market-based proxy for the unobservable real rates, one has to take into

account potential frictions in the market, which were particularly salient during the crisis

period. Therefore, we compute the liquidity premium (for the period 1999-2016) following

the recent literature (Bekaert and Ermolov, 2019; D'Amico et al., 2018; Ermolov, 2017;

P�ueger and Viceira, 2016) and deduct this premium to obtain the real rate.11 We extend

the sample backwards using the model exploiting the information in the term structure

of survey-based in�ation forecasts (Chernov and Mueller, 2012). Under the stochastic

Fisher Equation (B.2), we have all the data needed to compute the in�ation premium.

Insert Table 8 here

U.S. Evidence. In Panel A of Table 8, we show the long-run correlation of the

demographic variable with the real interest rate from the TIPS market and the in�ation

risk premium (irpt) computed using di�erent models of long-run in�ation expectations

These include the moving average of past 10-year in�ation (irpaot ), and the best forecasting

models chosen according to RMSFE and Clark and West (2006). The last column in

Panel A shows the correlation of MYt with the in�ation risk premium obtained via long-

run in�ation expectations from the Survey of Professional Forecasters, irpsurt . The last

row of the panel shows the average real interest rate (rt) and the average in�ation risk

premia (irpt) over the post-Bretton Woods period. We �rst note that explicitly taking

into account the in�ation risk premium reduces the magnitude of the correlation between

MYt and the real interest rate. However, and more importantly, regardless of how the

in�ation risk premium is obtained, its correlation with the MY ratio is negative (with

the exception of irpaot ), which is in line with Prediction 2, and signi�cant in most cases.

The magnitude of the premium varies between 0.63% (irpsurt ) and 2.03% (irpoost ). The

model prediction of 0.65% lies within this range, and very close to the in�ation premium

obtained using survey forecasts.

Cross-Country Evidence. Because the sample is limited by the data from the

in�ation-indexed bond market, we can repeat the analysis only for Australia and the

U.K. over the period 1985-2016. Following Ermolov (2017), we control for the liquidity

11We also take into account the de�ation protection premium which plays a minor role (D'Amico et al.,
2018; Ermolov, 2017). We provide the details of the computations in Online Appendix E.
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premium from 1996 (2007) onward in the U.K. (AU) in�ation-indexed bond market.

Panels B and C of Table 8 show that the long-run correlation between MYt and the real

interest rate remains negative and of relatively high magnitude for both countries. While

the average risk premium di�ers between Australia (negative, except for irpsurt ) and the

U.K. (positive),12 the long-run correlations with the MY ratio are similar to the U.S.

evidence.

In Table E.5 of the Online Appendix, we extend the analysis for a large cross-section

of countries with longest available data for each country (e.g., starting from 1900 in the

U.S.). Since we do not have a direct proxy for the in�ation risk premium obtained from the

in�ation-indexed bond markets, we follow Bekaert and Engstrom (2010) and assume that

the in�ation risk premium is a function of in�ation uncertainty measured by the absolute

value of forecast errors of long-run (10-year) in�ation forecasting models. Despite the

weaker identi�cation in the long sample, the proxy for irpt is negatively correlated with

the MY ratio in almost all the countries, albeit relatively low in magnitude.

Overall, these results suggest that the decomposition of the nominal interest rate

is important for identifying the channels through which demographic changes a�ect

the nominal bond yields. However, since both the real interest rate and the in�ation

risk premium co-move negatively with the demographic variable, the decomposition

under the deterministic Fisher hypothesis is a valid approximation for the real/nominal

decomposition at generational frequency. This will turn out to be useful in the cross-

country analysis of stock-bond correlation, since the in�ation-indexed bond market data

are not available for many countries.

4.3.2 Return Predictability, Is it there?

Present value models provide an ideal environment to test whether an equilibrium relation

between equity and bond yields exists. Earlier studies proposing valuation models show

equity return predictability using either bond yields (Lander et al., 1997; Asness, 2003),

a demographic variable (Favero et al., 2011), or yield spreads (Maio, 2013). For example,

Favero et al. (2011) establish the empirical link between the slowly evolving mean in the

log dividend-price ratio andMYt. Using the decomposition of the log-dividend price ratio

12For Australia, our irpt estimates are lower then the estimates proposed by Moore (2016). This is
mainly due to our higher in�ation forecasts. In fact, both the random walk model and survey forecasts
produce, on average, positive irpt.
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within the dynamic dividend growth model (Campbell and Shiller, 1988), they show that

current demographic information is useful in generating accurate forecasts for real stock

market returns but not for future changes in dividends. However, in their setting, the

future projections of the demographic variable are not exploited for forecasting excess

market returns.

The present value relation of Campbell and Shiller (1988), shown in Online Appendix

F, explains the link between the stock yield and future returns. Moreover, it justi�es the

use of the dividend yield as a predictor of future market returns (e.g., Ang and Bekaert,

2007). Under the Pure Expectations Hypothesis, hence ruling out the term premium,

Maio (2013) shows that the yield gap between the log equity yield and scaled bond yield is

better predictor of the equity premium. In contrast, in a setting characterized by a time-

varying term premium, we investigate whether a modi�ed yield gap that incorporates

information on future demographic changes can predict excess stock returns via either

the in�ation risk premium and/or the expectations on distant future risk-free rates, a

term included in the present-value relation.

Modi�ed Yield Gap. Based on our OLG model prediction (Prediction 2 ) and

the evidence in the previous section, we test whether the long-run correlation between

MYt and the time-varying in�ation risk premium can be used for return forecasting. To

the extent that the future demographic �uctuations improve our inference on future risk

premia (over the maturity of the long-term bond yield) and/or distant future level of risk-

free rates (beyond the maturity of the bond), a model including both the yield gap and

projections of MYt should improve the forecasting accuracy for market excess returns,

given the lack of dividend growth forecastability (e.g., Cochrane, 2008). We construct a

modi�ed version of the yield gap (see Online Appendix F for the derivation):13

ygt ≡ dpt − n× it
ygdt ≡ ygt + Et(MY n+h

t )

where dpt is the log dividend price ratio, n is the maturity of the long-term bond, h is

the forecast horizon, and Et(MY n+h
t ) represents the projections of the average MYt over

the maturity of the bond plus h periods beyond. We hypothesize that a modi�ed version

of yield gap variable (ygdt) or a bivariate forecasting model including both the yield gap

13In Online Appendix G we discuss the link between the yield gap and MYt.
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(ygt) and projections of MYt improve upon forecasting models for market excess returns

(e.g., Favero et al., 2011; Maio, 2013). In Table 9, we test this claim by estimating

long-run (h= 1 year, 5 years, 10 years) return predictability regressions and we conduct a

pseudo out-of-sample forecasting exercise. In line with earlier analysis, we set the forecast

period as the post-Bretton Woods period (1972-2016). Univariate models include the log

dividend yield (dyt), the yield gap (ygt) and the modi�ed yield gap (ygdt). The bivariate

model includes both the yield gap (ygt) and Et(MY n+h
t ). As a benchmark, we also report

the bivariate model including the log dividend yield (dyt) and MYt (Favero et al., 2011).

The dependent variable is the cumulative excess stock market (S&P500) returns. The

coe�cient estimates are based on the entire sample 1900-2016. The reported p-values,

in parentheses, and the asterisks are based on the IVX approach (Kostakis et al., 2015).

In square brackets we also report the p-values obtained from a bootstrap exercise, which

accounts for the persistence of predictor variables and imposes the joint null hypothesis

of no predictability (Maio, 2013). The last four columns report the IVX Joint Wald test

(full sample), adjusted R2
adj (full sample), the out-of-sample coe�cient of determination

R2
OS (Campbell and Thompson, 2008), and MSE-adjusted Clark and West (2007) test

over the forecast period (1972-2016).14

Insert Table 9 here

In univariate models, the signi�cance of the log dividend yield and yield gap variables

depends on the forecast horizon, and the out-of-sample R2
OS shows that the forecasting

performance of either does not improve upon a simple model based on historical averages.

In contrast, the modi�ed yield gap is signi�cant in all forecasting models, but the out-of-

sample R2
OS remains negative although CW test statistics hint at the forecasting ability,

at least for longer horizons. Importantly, the only model that produces positive out-of-

sample R2
OS is the bivariate model that includes the yield gap and future projections of

MYt. Based on all the statistics, and regardless of the horizon, its forecasting performance

is superior to the model with the dividend yield and currentMYt. In Online Appendix F.1,

F.2 and F.3, we show that the predictability evidence is robust to including alternative

control variables (e.g., termt, defaultt, cayt) and generates economic value (Campbell and

Thompson, 2008; Maio, 2013). For example, a trading strategy with short-sale constraints

14In univarite (bivariate) models the restricted model is the historical average (univariate model).
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that extracts signals from the modi�ed yield gap generates a Sharpe ratio up to 0.96 (over

the 1972-2016 forecast period) dominating a buy-hold strategy with a Sharpe ratio of 0.68.

Note that if the predictability of excess returns were mainly channeled through the

in�ation risk premium, the model's prediction (Prediction 2 ) would cause the sign of the

coe�cient onMYt to be negative. However, the positive and highly signi�cant coe�cient

suggests that the ability of the MY ratio to predict the level of the future risk-free rates

dominates its predictability of the future in�ation risk premium. Indeed, in Tables F.4

and F.5 of the Online Appendix, we decompose the market excess returns into nominal

returns and risk-free rates. We show that the forecasting ability is mainly due to the

equilibrium relation between future MY ratios and the level of future risk-free rates.

This channel, which is explicitly shown in Equation 6 of the Online Appendix F, has

been exploited in a bond yield forecasting setting using an a�ne term-structure model

by Favero et al. (2016), though without taking into account (expected) in�ation. This

result is somewhat in contrast with the equity premium forecasting evidence using MY

ratio (Favero et al., 2011) documented in earlier sample.

We also note that the forecasting evidence is limited to the U.S. market. In fact,

when we replicate the same out-of-sample exercise with U.K. and Australian stock market

excess returns (see Online Appendix Tables F.6-F.7), it does not reveal any forecasting

ability. This is not surprising given that the model is calibrated to U.S. data.15

4.4 Comovement: Stock and Bond Yields

4.4.1 Equilibrium Relation: Fed Model

Can we believe in a valuation model that relies on a (rational) mechanism that ties stock

and bond markets? Several earlier papers try to address this question. For example,

Bekaert and Engstrom (2010) suggest a channel where expected in�ation coincides with

periods of high uncertainty and risk aversion, hence rationalize the strong comovement

between stock and bond yields, that is, the Fed model (e.g., Asness, 2003; Lander et al.,

1997; Maio, 2013). Some papers explain the comovement by incorporating other business

cycle shocks into the models (Burkhardt and Hasseltoft, 2012; Campbell et al., 2014;

Ermolov, 2015; Song, 2017). Maio (2013), on the other hand, exploits the yield gap

15In this section, we do not focus on bond risk premium predictability, because a variance
decomposition of the modi�ed yield gap suggests that the predictability of the bond risk premium is
limited, especially in the recent forecast sample (see Online Appendix Table F.8).
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between stock and bond yields and shows strong predictability of stock returns. However,

there are still some concerns about the validity of the Fed model: i) while it is conceivable

that short-term (e.g., one-year) in�ation expectations are counter-cyclical, it is less clear

whether a similar cyclical pattern holds for long-term in�ation expectations, ii) it works

perfectly in some subsamples, but less so during the Bretton Woods and Global Financial

Crisis period (e.g., Asness, 2003; Hasseltoft, 2009), ii) there is no robust evidence on stock-

bond yield comovement across countries (Estrada, 2009). None of these papers focus on

the persistent component of the comovement and provide a long time series evidence from

a large cross-section of countries.

In this section, we �rst test the Fed model using annual data over a century. In

particular, we project stock yields (proxied either by the dividend price ratio or the

cyclically-adjusted earnings price ratio) on the long-term (10-year) nominal bond yield

and we control for the relative stock-bond volatility (Asness, 2003) as the benchmark

valuation model. Then, we augment the model controlling for demographic �uctuations

via MYt. In further speci�cations, we augment the baseline model with the demographic

variable and several other controls. We consider several supply-side variables for the

stock, bond and money markets. We also include time-varying habit-based risk aversion

(Campbell and Cochrane, 1999) as a control variable.

Insert Table 10 here

In all speci�cations, MYt enters signi�cantly with a negative sign, and improves the

adjusted R2, suggesting that MYt captures the equilibrium relation between real stock

and nominal bond yields as our model predicts. In our model, we assume the supply side

of the stock and bond markets does not respond to demographic �uctuations and the

demographic e�ect prevails through the demand channel. In our empirical analysis, we

control for supply side variables for stock, bond and money markets. The results remain

similar once we control for supply-side variables, supporting the idea that demographics

mainly e�ect stock-bond yield comovement through the demand channel. Finally, in

the last speci�cation, the signi�cance of the demographic variable still persists once we

control for time-varying risk aversion. Overall, this evidence suggests that the omitted

demographic component plays an important role in determining the long-run relation

between equity and bond yields.
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4.4.2 Cross-Country Evidence

In this subsection, we test the model Prediction 3 that the persistent comovement between

�nancial yields re�ects the time variation in population age structure and its impact

through the real vs. nominal channel. We acknowledge that the real channel may

incorporate an in�ation risk premium, but we refrain from such a decomposition due

to the lack of detailed data necessary to estimate in�ation risk premia for a large set of

countries. Nevertheless, since we �nd empirical evidence for the model's prediction that

both real interest rates and the in�ation risk premium are negatively a�ected by theMY

ratio in the previous section, we believe that this composition is less crucial to test the

real vs. nominal channel.

In the last column of Table 7, we report the long-run correlations between dividend

yield and long-term nominal bond yield for a cross-section of 20 countries (see the Online

Appendix Table D.4 for the unbalanced panel). Similar to the evidence by Estrada (2009),

the comovement varies substantially across countries. In some countries, the long-run

correlation is positive and highly signi�cant (e.g., Belgium, Denmark, South Korea, the

Netherlands, the U.K., and the U.S.), while we do not observe such correlation in other

countries. We also note that, in those countries where the stock-bond yield correlation is

high, MYt has a negative e�ect on both dividend and nominal bond yields, as the model

predicts, albeit with high uncertainty a�ecting the correlation values. The importance of

stock markets as a channel for aggregate savings varies substantially across countries. This

heterogeneity is likely to re�ect di�erent stock market participation patterns (Giannetti

and Koskinen, 2010). In fact, the U.S. is the only country where theMY ratio has a very

strong impact on the dividend yield.

While Table 7 is informative of the magnitude of the correlations, it does not allow

us to infer through which component of the nominal yield the population age structure

a�ects stock-bond yield comovement. To this end, we decompose the long-term bond

yields and investigate the cross-country di�erences in stock-bond yield correlation. In

particular, we test the model Prediction 3, as we explore whether the real channel (real

interest rate plus the in�ation risk premium) or the nominal channel (expected in�ation)

plays the dominant role in explaining yield comovement. First, we proceed with an

analysis similar to the one suggested by Bekaert and Engstrom (2010). In Figure 5, we

plot the cross-sectional stock-bond yield long-run correlations (Müller and Watson, 2018)

against the demographic e�ect on the real component of the nominal bond yields using
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di�erent speci�cations to forecast long-term in�ation expectations under the deterministic

Fisher hypothesis. The negative relationship is strong and consistent; the downward

slopes observed across panels indicate that, regardless of the model choice, the stronger

the e�ect of the demographic variable on the real channel, the stronger is the long-run

correlation between stock and bond yields.16

Insert Figure 5 here

4.4.3 Cross-sectional Regressions

Next, we test the cross-country evidence by estimating robust cross-sectional regressions.

The univariate regression results are shown in Panels A-C of Table 11. In all speci�cations,

the dependent variable is ρlr(dyj,t, ij,t), the median long-run correlation (Müller and

Watson, 2018) between the dividend yield, dyj,t, and the long term nominal bond

yield, ij,t, in country j (n=20). In Panel A, the independent variables are the long-

run correlations between the MY ratio and real yields obtained from di�erent in�ation

forecasting models, while in Panel B, the independent variables are the long-run

correlations between the MY ratio and in�ation expectations obtained from di�erent

in�ation forecasting models.

Insert Table 11 here

In Panel A, we note that the real channel is highly signi�cant, with an R2
adj. varying

between 21% and 40%, regardless of the speci�cation used to obtain real rates. The

importance of the real channel persists once we control for the dividend yield and MY

ratio correlation (Panel D). In principle, this e�ect might be operating either through

the real yields or through the in�ation risk premium, but this empirical test cannot

disentangle these two channels. However, Panel B clearly shows that the nominal channel

does not explain the cross-country di�erences in stock-bond yield correlation, except in

the case where future in�ation is correlated with MYj,t. In fact, untabulated univariate

regressions suggest that the long-run correlation between realized in�ation and the MY

ratio seems to be a signi�cant factor; however, the signi�cance disappears once we include

the correlations between the MY ratio and real yields.

16In Online Appendix Figure H.1., we plot the same �gure with the Pearson correlations.
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Business Cycle. Panel C of Table 11 shows the validation results with alternative

business cycle variables discussed in the recent literature (Bekaert and Engstrom, 2010;

Burkhardt and Hasseltoft, 2012; Song, 2017): the percentage of observations during which

the country experiences stag�ation, that is, recession (two consecutive quarters of negative

real GDP growth) and high in�ation (more than 10% annualized in�ation per quarter),

stagpercj ; the country-speci�c time-series mean of the interaction between in�ation and

recession, πj,t ∗ recj,t; the long-run correlation between annual real GDP growth and

in�ation, ρlr(∆gdpj,t, πj,t); and the long-run correlation between annual real consumption

growth and in�ation, ρlr(∆consj,t, πj,t).

The results show that none of these alternative variables can capture the persistent

comovement of stock and bond yields. Clearly, this evidence does not rule out earlier

explanations based on business cycle forces at play. On the whole, the e�ects of

a time-varying age structure on �nancial markets vary substantially across countries.

However, the demographic e�ect operating through the real channel provides a consistent

explanation for the joint path (and lack thereof) of stock and bond yields.

Other Demographic Changes. Before we conclude, we also test whether alterna-

tive demographic channels can explain the cross-country stock-bond yield comovement.

We consider demographic variables from other studies (Aksoy et al., 2015; Carvalho

et al., 2016) to explain the secular decline in real rates: annual population growth, life

expectancy at birth, the dependency ratio (the ratio of population aged 0-24 and 65+ per

working population aged 25-64) and the elderly population share (population aged 65+

over total population) in each country. Shown in Table 12, the univariate cross-sectional

robust regression results indicate that none of the alternative demographic channels can

consistently explain the cross-country variation in stock-bond yield comovement.

Insert Table 12 here

5 Conclusion

This paper documents the role of changing population age structure on stock and bond

yields. The net demand for �nancial assets by certain age groups provides important

information on the aggregate demand for �nancial assets as the population structure

changes. Thus, this paper suggests a channel through which demography shapes the
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puzzling time-series behavior of both key �nancial variables and provides an economic

rationale for the comovement of stock yields and nominal bond yields by introducing

money in an OLG model. The decomposition of the nominal bond yields reveal that

the real channel via real bond yields and in�ation risk premium play the primary role in

explaining stock-bond yield correlation. Clearly, the demographic channel in this study

cannot explain all the time variation in these variables, but the �rst-order e�ects of the

population age structure on �nancial markets are too important to be dismissed.

Our results have important implications for long-term investors with stylized portfolio

choice. If changes in the population age structure are a common source of variation both

for stock and bond markets, then keeping a substantial portion of a retirement portfolio

in local stock and bond markets might not be a good idea for diversi�cation. Finally, it

implies that excluding a country's population age structure from the information set may

harm an investor who considers international markets for long-term investment.
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Appendix A Money Supply Rule

In Section 2.1.4, we introduce the assumption that the central bank does not adjust

money supply in response to changes in in�ation and in the output gap that are triggered

by changes in the demographic structure. To justify this assumption, we �rst estimate

the following money supply rule which mirrors the Taylor rule:

µt = ρµt−1 + µπEtπt+n + µy(yt − y∗t ) + εt

as introduced by Chowdhury and Schabert (2008). µt represents the growth rate of non-

borrowed reserves, Etπt+n is the expected in�ation rate in t+ n, yt is real output, and y
∗
t

is time-varying potential output. The data are quarterly time series taken from the St.

Louis Fed's FRED database. The growth rate of non-borrowed reserves is constructed as

the annual log di�erence in non-borrowed reserves. The in�ation rate is the compounded

annual rate of change in the CPI index from time t to t + n.17 The output gap is the

percentage gap between actual and potential output.

The results presented in Table A.1 show that, over the entire period and the pre-crisis

period, money supply did not signi�cantly react to in�ation, a result that is in line with

the existing literature (Chowdhury and Schabert, 2008; Sargent and Surico, 2011) and

with the history of the Fed's monetary policy strategy (Meulendyke, 1998). We also split

the sample into two sub-periods: the pre-Volker period (1961Q1-1979Q2) and the post-

Volker period (1982Q4-2013Q1). The results suggest the absence of a consistent money

supply feedback to in�ation over these two sub-periods. Looking at the entire period, the

pre-crisis period, and the two subperiods, the results also indicate that the Fed targeted

money supply to stabilize output.

Next, we test for the reaction of money supply to changes in the MY ratio, directly

or indirectly through in�ation and the output gap. We add the MY ratio as a control

variable in our money supply rule:

µt = ρµt−1 + µπEtπt+n + µy(yt − y∗t ) + µMYMYt + εt

The estimates of the regression coe�cients of in�ation and the output gap are a�ected

17The use of the GDP de�ator instead of the CPI does not alter the results signi�cantly. Moreover,
the results are shown for n = 1, and robustness checks indicate that the results are not a�ected by a
change in the horizon (n = 4). These robustness checks are available from the authors upon request.
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only slightly, and the estimated coe�cient of the MY ratio does not signi�cantly di�er

from zero. This result indicates that the central bank does not systematically adjust the

money supply to o�set in�ationary and expansionary e�ects of the MY ratio. For this

reason, we assume that money supply growth is exogenous.

Table A.1: GMM-Estimation of the Money Supply Rule

Baseline model: µt = ρµt−1 + µπEtπt+n + µy(yt − y∗t ) + εt
Baseline model + control: µt = ρµt−1 + µπEtπt+n + µy(yt − y∗t ) + µMYMYt + εt

Whole sample Pre-crisis period Pre-Volker period Post-Volker period
1961q1-2013q1 1961q1-2007q4 1961q1-1979q2 1982q4-2013q1
(a) (b) (c) (d) (e) (f) (g) (h)

ρ 0.770∗∗ 0.861∗∗ 0.846∗∗ 0.985∗∗ 0.766∗∗ 0.724∗∗ 0.833∗∗ 0.668∗∗

(14.89) (20.31) (16.73) (19.61) (11.71) (9.98) (13.81) (11.57)

µπ 0.087∗ 0.040 0.056 0.100 0.066 0.067 −0.061 0.285
(1.78) (0.60) (1.21) (1.62) (1.14) (1.28) (-0.35) (0.81)

µy −0.521∗∗−0.398∗∗−0.368∗∗ −0.241∗ −0.204 −0.262∗ −0.650∗ −1.259∗∗

(-3.39) (-3.27) (-2.87) (-2.07) (-1.26) (-2.63) (-2.61) (-3.82)

µMY 0.347 −0.612 0.189 −0.973
(0.74) (-1.52) (0.45) (-0.92)

Adj.R2 0.69 0.68 0.67 0.64 0.52 0.52 0.70 0.69
J 0.419 0.194 0.308 0.168 0.553 0.739 0.398 0.594

The set of instruments includes four lags of money supply growth, in�ation and the output gap,
as well as four lags of theMY ratio in speci�cations that include theMY ratio. Standard errors
are in parentheses. Asterisks * and ** indicate signi�cance at the 5 percent and 1 percent levels,
respectively. The reported t-statistics are based on heteroskedastic and autocorrelated consistent
(HAC) covariance matrix estimators using Bartlett kernel weights as described in Newey and
West (1987), where the bandwidth has been selected following the procedure described in Newey
and West (1994). We test the overidentifying restrictions of our model speci�cation and report
the p-value of the Hansen's J-statistics. In columns (a), (c), (e) and (g), we estimate our baseline
model. In columns (b), (d), (f) and (h), we add the MY ratio as a control variable.

Appendix B Nominal Bond Price and Fisher Equation

In this section, we simplify the time subscript for clarity reasons and use t = {j, s, g}. Qt

and it are respectively the nominal bond price and the nominal interest rate on the bond,
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with 1 + it = 1
Qt
. Pt is the price of the consumption good. {cyt , c

m
t+1, c

r
t+2} represents the

real consumption stream over the three life periods. (zbyt , ze
y
t , zb

m
t+1, ze

m
t+1) represent the

real asset holdings (bonds and stocks) of an individual born in period t.

The real borrowing constraints of a young individual born in period t write

cyt +
Qt

Pt
zbyt + qej,sze

y
j,s = wyt

cmt+1 +
Qt+1

Pt+1

zbmt+1 + qet+1ze
m
t+1 = wmt+1 +

zbyt
Pt+1

+ (qet+1 + dt+1)ze
y
t

crt+2 =
zbmt+1

Pt+2

+ (qet+2 + dt+2)ze
m
t+1

In such a framework, the Euler equations are

(cyt )
−σ

Pt
Qt = βEt

(cmt+1)
−σ

Pt+1

(cmt )−σ

Pt
Qt = βEt

(crt+1)
−σ

Pt+1

(9)

and Equation (2) is una�ected.

B.1 Deterministic Fisher Equation

rt denotes the real interest rate on bonds, with 1 + rt = 1
qt
. In absence of stochastic

income and monetary regime shocks, the price and consumption levels in period t+ 1 are

known in period t. Therefore, using Equations (1) and (9), we obtain Qt = qt
Pt

Pt+1
. It

follows that

lnQt = ln(qt
Pt
Pt+1

)

ln
1

1 + it
= ln

1

1 + rt
+ ln

Pt
Pt+1

− ln(1 + it) ≈ − ln(1 + rt)− πt+1

it ≈ rt + πt+1
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B.2 Stochastic Fisher Equation

If Xt and Yt are two log-normal random variables, we have

lnE(Xt) = E(lnXt) +
1

2
V ar(lnXt), and

lnE(XtYt) = lnE(Xt) + lnE(Yt) + Cov(lnXt, lnYt)

We assume that Pt

Pt+1
and the ratio of marginal utilities are jointly log-normal distributed.

Applying the aforementioned rules on the �rst of the two Euler equations (9) (it is

equivalent to use the second of the Euler equation), we obtain

lnQt = lnE(β
(cmt+1)

−σ

(cyt )
−σ

Pt
Pt+1

)

lnQt = lnE(β
(cmt+1)

−σ

(cyt )
−σ ) + lnE(

Pt
Pt+1

) + Cov(ln β
(cmt+1)

−σ

(cyt )
−σ , ln

Pt
Pt+1

)

Plugging in Equation (1), we get

lnQt = ln qt + E(ln
Pt
Pt+1

) +
1

2
V ar(ln

Pt
Pt+1

) + Cov(ln β + ln
(cmt+1)

−σ

(cyt )
−σ , ln

Pt
Pt+1

)

ln(
1

1 + it
) ≈ ln(

1

1 + rt
)− E(πt+1) +

1

2
V ar(−πt+1) + Cov(ln

(cmt+1)
−σ

(cyt )
−σ ,−πt+1)

− ln(1 + it) ≈ − ln(1 + rt)− E(πt+1) +
1

2
V ar(πt+1)− Cov(ln

(cmt+1)
−σ

(cyt )
−σ , πt+1)

it ≈ rt + E(πt+1)−
1

2
V ar(πt+1) + Cov(ln

(cmt+1)
−σ

(cyt )
−σ , πt+1)

Appendix C Description of Time Series

Equity market data: S&P 500 index yearly prices, 1900-2016 (December observations),

are from Welch and Goyal (2008). Dividends (Earnings) are twelve-month moving sums

of dividends (earnings) paid on the S&P 500 index. Dividend yield is de�ned as the ratio
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of one-year trailing dividends to the one-year lagged equity market index (S&P500). We

collect cyclically adjusted earnings yield data, that is, the ratio of the ten-year moving

average of earnings to the equity market index, collected from Robert Shiller's website,

1900-2016.

In�ation: We collect the monthly CPI index from Global Financial Data for the period

1900m1-2016m12. FollowingWelch and Goyal (2008), we compute the annual in�ation, by

computing the monthly in�ation and compound to obtain annual in�ation: πm = CPIm
CPIm−1

,

πa = (π1 ∗ π2... ∗ π12)− 1

Bond yields: Long-term nominal government (real) bond yields are 10-year (in�ation

indexed) Treasury note yields obtained from Global Financial Data.

Demographic Variable: The U.S. annual population estimates series are collected from

U.S. Census Bureau and the sample covers estimates from 1900-2050. The middle-aged

to young ratio, MYt, is calculated as the ratio of the age group 40-49 to age group 20-

29. Past MYt projections for the period 1950-2016 are hand collected from various past

Census reports collected from the U.S. Census Bureau's website.

Money growth: For the long sample 1900-2016, we compute December-to-December

money growth using narrow money data (currency in circulation) from Global Financial

Data. For 1972-2016, we use the broad money measure from the Jorda-Schularick-Taylor

macrohistory database updated using OECD M3 data.

International database: Cross-country stock and bond yields are collected from Global

Financial Data up to 2016. Stock yield is the dividend yield to the benchmark index, and

bond yield is the 10-year constant maturity government bond yield. International MYt

estimates for the period 1950-2016 are from United Nations World Population Prospects

available at https://esa.un.org/unpd/wpp/DataQuery/. We collect narrow money data

(currency in circulation) from Global Financial Data and compute annual money growth

from (December to December) for the long sample 1900-2016. For the recent sample

(1972-2016), we use the broad money measure (except for Austria, South Korea, Malaysia

and South Africa) from the Jorda-Schularick-Taylor macrohistory database updated using

M3 data from OECD.
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Table 1: Stochastic Model - Consumption and Savings Decisions

Odd cyo,s cmo,s cro,s Bond Equity Bond Equity
holdingyo,s holding

y
o,s holding

m
o,s holding

m
o,s

s1(wH
o , d

H) 1.91
(0.01)

2.29
(0.06)

1.99
(0.05)

−0.64
(0.04)

0.92
(0.03)

0.97
(0.06)

0.33
(0.03)

s2(wH
o , d

L) 1.89
(0.01)

2.19
(0.05)

1.77
(0.05)

−0.57
(0.03)

0.88
(0.02)

0.87
(0.05)

0.30
(0.02)

s3(wL
o , d

H) 1.62
(0.01)

1.77
(0.06)

1.63
(0.05)

−0.28
(0.02)

0.46
(0.01)

0.42
(0.03)

0.14
(0.01)

s4(wL
o , d

L) 1.60
(0.00)

1.65
(0.05)

1.42
(0.04)

−0.24
(0.01)

0.44
(0.01)

0.36
(0.02)

0.11
(0.01)

Average across s states 1.76
(0.01)

1.97
(0.03)

1.70
(0.03)

−0.43
(0.02)

0.68
(0.01)

0.66
(0.03)

0.22
(0.01)

Even cye,s cme,s cre,s Bond Equity Bond Equity
holdingye,s holding

y
e,s holding

m
e,s holding

m
e,s

s1(wH
e , d

H) 2.99
(0.05)

2.46
(0.05)

2.78
(0.13)

−3.36
(0.27)

2.76
(0.21)

2.21
(0.18)

2.38
(0.20)

s2(wH
e , d

L) 2.89
(0.05)

2.37
(0.05)

2.56
(0.12)

−2.91
(0.22)

2.42
(0.17)

1.91
(0.15)

2.05
(0.16)

s3(wL
e , d

H) 1.86
(0.03)

1.75
(0.04)

1.91
(0.09)

−0.67
(0.06)

0.41
(0.03)

0.44
(0.04)

0.53
(0.05)

s4(wL
e , d

L) 1.76
(0.02)

1.60
(0.04)

1.79
(0.08)

−0.50
(0.04)

0.34
(0.02)

0.33
(0.03)

0.38
(0.03)

Average across s states 2.37
(0.02)

2.03
(0.03)

2.27
(0.06)

−1.90
(0.11)

1.52
(0.09)

1.25
(0.07)

1.36
(0.08)

This table presents the simulation results of the stochastic model calibrated to the population
age structure of (n,N)=(52,79). The subscripts o and e represent the demographic structure
{odd, even}. s = {s1, s2, s3, s4} represents the four wage and dividend states (see Section 2.1.2).
The superscripts y, m, and r indicate the individual's respective life stages: young, middle aged
and retired. Individual consumption is denoted by c. Bond holding is equal to qj,szb

y
j,s, and

equity holding is equal to qej,sze
y
j,s.
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Table 2: Stochastic Model - Stock and Bond Yields, and In�ation

Odd ro,s qeo,s eyo,s rpo,s io,s,g irpo,s,g πe,s,g Eo,s,gπe,s+1,g+1

Av. across Av. across Av. across
g states g states g states

s1(wH
o , d

H) 2.31%
(0.00)

90.21
(3.62)

0.08
(0.00)

1.60%
(0.00)

6.46%
(0.01)

0.92%
(0.01)

2.41%
(0.02)

3.24%
(0.01)

s2(wH
o , d

L) 2.75%
(0.00)

84.84
(2.86)

0.06
(0.00)

1.60%
(0.00)

6.65%
(0.01)

0.92%
(0.01)

2.72%
(0.02)

2.98%
(0.01)

s3(wL
o , d

H) 6.47%
(0.00)

43.37
(1.56)

0.17
(0.01)

1.66%
(0.00)

9.57%
(0.01)

0.91%
(0.01)

3.42%
(0.02)

2.19%
(0.02)

s4(wL
o , d

L) 7.10%
(0.00)

40.27
(1.11)

0.12
(0.00)

1.66%
(0.00)

9.87%
(0.01)

0.91%
(0.00)

3.81%
(0.02)

1.86%
(0.02)

Average across
s states

4.69%
(0.00)

65.02
(1.55)

0.11
(0.00)

1.63%
(0.00)

8.15%
(0.01)

0.91%
(0.01)

3.10%
(0.01)

2.56%
(0.01)

Even re,s qee,s eye,s rpe,s ie,s,g irpe,s,g πo,s,g Ee,s,gπo,s+1,g+1

Av. across Av. across Av. across
g states g states g states

s1(wH
e , d

H) −5.33%
(0.00)

332.00
(23.13)

0.02
(0.00)

0.58%
(0.00)

−0.72%
(0.01)

0.40%
(0.01)

1.41%
(0.02)

4.22%
(0.01)

s2(wH
e , d

L) −4.65%
(0.00)

287.81
(18.29)

0.02
(0.00)

0.58%
(0.00)

0.25%
(0.02)

0.40%
(0.01)

1.63%
(0.02)

3.99%
(0.01)

s3(wL
e , d

H) 2.63%
(0.00)

63.47
(6.25)

0.11
(0.01)

0.61%
(0.00)

5.32%
(0.01)

0.41%
(0.01)

3.36%
(0.02)

2.30%
(0.02)

s4(wL
e , d

L) 4.16%
(0.00)

47.65
(4.39)

0.10
(0.01)

0.62%
(0.00)

6.48%
(0.01)

0.40%
(0.01)

3.75%
(0.02)

1.92%
(0.02)

Average across
s states

−0.67%
(0.00)

186.99
(11.20)

0.06
(0.00)

0.60%
(0.00)

2.81%
(0.01)

0.40%
(0.01)

2.56%
(0.01)

3.08%
(0.01)

This table presents the simulation results of the stochastic model calibrated to the population
age structure of (n,N)=(52,79). The subscripts o and e represent the demographic structure
j = {odd, even}. s = {s1, s2, s3, s4} represents the four wage and dividend states (see Section
2.1.2). g denotes the monetary regimes. rj,s and ij,s,g are the annualized real and nominal rates
of return on bonds from period j to period j+1, respectively. qej is the real stock price in period
j. eyj,s refers to the annualized earnings yield on stocks and is de�ned as eyj,s = 2∗ (ds/20)/qej,s.

rpj,s is the annualized risk premium de�ned as rpj,s = average((
qej+1,s+1+ds+1

qej,s
)

1
20 − 1 − rj,s).

irpj,s,g is the in�ation risk premium as de�ned by Equation (8). πj,s,g is the annualized in�ation
rate from period j − 1 to period j. Ej,s,gπj+1,s+1,g+1 is annualized expected in�ation, that is,
the expected in�ation rate from period j to period j + 1.
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Table 3: Stochastic Model - Stock and Bond Yields across States

Odd g ro,s qeo,s reo,s io,s,g irpo,s,g Eo,s,gπe,s+1,g+1

s1

g1

2.31% 90.21 3.88%

4.16%

6.46%

0.90%

0.92%

0.94%

3.24%
g2 6.14% 0.92% 2.91%
g3 7.61% 0.90% 4.39%
g4 9.67% 0.94% 6.42%

s2

g1

2.75% 84.84 4.34%

4.33%

6.65%

0.97%

0.92%

0.60%

2.98%
g2 6.30% 0.92% 2.63%
g3 7.78% 0.90% 4.14%
g4 9.78% 0.90% 6.11%

s3

g1

6.47% 43.37 8.18%

7.24%

9.57%

0.90%

0.91%

−0.13%

2.19%
g2 9.25% 0.92% 1.87%
g3 10.73% 0.90% 3.36%
g4 12.76% 0.90% 5.40%

s4

g1

7.10% 40.26 8.76%

7.52%

9.87%

0.90%

0.91%

−0.48%

1.86%
g2 9.55% 0.91% 1.54%
g3 11.03% 0.90% 3.03%
g4 13.03% 0.90% 5.03%

Average 4.69% 65.01 6.31% 8.15% 0.91% 2.56%

Even g re,s qee,s ree,s ie,s,g irpe,s,g Ee,s,gπo,s+1,g+1

s1

g1

−5.33% 332.00 −4.76%

−3.01%

−0.72%

0.42%

0.40%

1.90%

4.22%
g2 −1.03% 0.39% 3.91%
g3 0.47% 0.39% 5.41%
g4 2.45% 0.39% 7.40%

s2

g1

−4.65% 287.81 −4.06%

−2.61%

−0.25%

0.39%

0.41%

1.65%

3.99%
g2 −0.59% 0.40% 3.66%
g3 0.97% 0.47% 5.15%
g4 2.91% 0.39% 7.16%

s3

g1

2.63% 63.47 3.25%

3.04%

5.32%

0.45%

0.40%

−0.05%

2.30%
g2 4.97% 0.39% 1.95%
g3 6.46% 0.39% 3.46%
g4 8.47% 0.39% 5.47%

s4

g1

4.16% 47.64 4.79%

4.14%

6.48%

0.39%

0.40%

−0.42%

1.92%
g2 6.14% 0.40% 1.58%
g3 7.63% 0.39% 3.08%
g4 9.65% 0.41% 5.08%

Average −0.67% 186.99 −0.07% 2.81% 0.40% 3.08%

This table presents the simulation results of the stochastic model calibrated to the population
age structure of (n,N)=(52,79). The subscripts o and e represent the demographic structure j =
{odd, even}. s = {s1, s2, s3, s4} represents the four wage and dividend states (see Section 2.1.2).
g = {g1, g2, g3, g3} represents the four states of money supply (see Section 2.1.4). rj,s and ij,s,g are
the annualized real and nominal rates of return on bonds from period j to period j+1, respectively.
qej,s and rej,s are the real stock price and real interest rate on stocks, respectively. irpj,s,g is the
in�ation risk premium as de�ned by Equation (8). Ej,s,gπj+1,s+1,g+1 is annualized expected in�ation,
that is, the expected in�ation rate from period j to period j + 1.
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Table 4: Data Summary Statistics

Panel A. Long Sample mean std.dev. skew. kurt. min max AC(1)

dyt 0.04 0.02 0.09 2.53 0.01 0.09 0.901
eyt 0.07 0.03 1.30 5.21 0.02 0.21 0.869
it 0.05 0.03 1.46 4.95 0.02 0.14 0.934
πt 0.03 0.05 0.65 6.00 -0.11 0.20 0.548
MYt 0.79 0.18 0.43 1.97 0.56 1.16 0.982

Panel B. Post-Bretton Woods mean std.dev. skew. kurt. min max AC(1)

dyt 0.03 0.01 0.50 2.08 0.01 0.06 0.926
eyt 0.06 0.03 0.75 2.21 0.02 0.13 0.906
it 0.06 0.03 0.47 2.70 0.02 0.14 0.887
πt 0.04 0.03 1.54 4.82 0.00 0.13 0.743
MYt 0.87 0.22 -0.14 1.41 0.57 1.16 0.985

This table presents the descriptive statistics of the U.S. observable variables: dividend yield (dyt),
that is, annual dividend divided by lagged price of the S&P 500 index; the cyclically adjusted
earnings-price ratio (eyt) obtained from Robert Shiller's website; the 10-year U.S. nominal bond
yield (it, p.a.); annual in�ation (πt); and middle aged-young ratio MYt. The last column reports
the �rst-order autocorrelations. Panel A shows the summary statistics over the long sample, 1900-
2016, while Panel B shows the summary statistics over the post-Bretton Woods sample, 1972-2016.
Annual data.
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Table 5: Long-run Correlations with the MY Ratio

Long Sample
(1900-2016)

Post-Bretton Woods
(1972-2016)

ρlr(xt,MYt) ρ(xt,MYt) ρlr(xt,MYt) ρ(xt,MYt)

Panel A. Observables
dyt −0.597∗

(−0.800,−0.273)
−0.614???

(<0.000)
−0.865∗∗∗

(−0.980,−0.604)
−0.917???

(<0.000)

eyt −0.408∗∗
(−0.762,−0.184)

−0.567??
(<0.000)

−0.756∗∗∗
(−0.956,−0.443)

−0.885???
(<0.000)

it −0.331
(−0.638,0.100)

−0.233
(<0.012)

−0.513∗
(−0.862,−0.199)

−0.783??
(<0.000)

πt −0.273∗
(−0.497,−0.001)

−0.174
(<0.060)

−0.414∗
(−0.862,−0.013)

−0.632??
(<0.000)

Panel B. Expected In�ation

Etπ
pf
lr −0.226

(−0.401,0.291)
−0.118
(0.225)

−0.030
(−0.664,0.537)

−0.581???
(<0.000)

Etπ
ao
lr −0.273

(−0.477,0.291)
−0.194
(0.036)

−0.807∗∗∗
(−0.956,−0.502)

−0.929???
(<0.000)

Etπ
cp
lr −0.273

(−0.495,0.291)
−0.235
(0.011)

−0.670∗∗
(−0.935,−0.331)

−0.884???
(<0.000)

Etπ
oos
lr 0.226

(−0.226,0.664)
0.525??
(<0.000)

−0.477∗
(−0.885,−0.100)

−0.707??
(<0.000)

Etπ
cw
lr −0.001

(−0.273,0.604)
0.295
(0.001)

−0.350
(−0.834,0.011)

−0.606?
(<0.000)

Panel C. Real Rates

rpft −0.103
(−0.386,0.291)

−0.048
(0.620)

−0.408∗
(−0.716,−0.030)

−0.430
(0.010)

raot −0.001
(−0.462,0.269)

−0.050
(0.595)

−0.209
(−0.664,0.162)

−0.418
(0.004)

rcpt −0.003
(−0.462,0.269)

−0.048
(0.609)

−0.340
(−0.762,0.001)

−0.556?
(<0.000)

roost −0.474∗
(−0.716,−0.100)

−0.432?
(<0.000)

−0.480∗
(−0.834,−0.131)

−0.721?
(<0.000)

rcwt −0.401∗
(−0.716,−0.226)

−0.402?
(<0.000)

−0.500∗
(−0.862,−0.178)

−0.755??
(<0.000)

Panel A reports the correlation between the MY ratio and the following observable variables:
dividend yield (dyt), the earnings yield (eyt) proxied by cyclically adjusted earnings price ratio, the
10-year nominal bond yield (it), and annual in�ation (πt). Panel B shows the correlation of MYt
with di�erent long-run (10-year) in�ation expectations obtained by estimating di�erent in�ation

forecasting models: Etπ
pf
lr is the in�ation expectation with perfect foresight, that is, the average

10-year future in�ation, up to 2006; Etπ
ao
lr (Etπ

cp
lr ) is the in�ation forecast obtained using the

(discounted) average past 10-year in�ation; Etπ
oos
lr is 10-year average in�ation forecast obtained

from the forecasting model with the lowest RMSFE; and Etπ
cw
lr is 10-year average in�ation forecast

obtained from the forecasting model with the highest Clark and West (2006) test statistics. Panel C
reports the correlations between the MY ratio and the corresponding real interest rates calculated
by subtracting the long-run in�ation expectations from the nominal bond yield (it). The long-
run correlation, ρlr, is the median of the posterior obtained using the Müller and Watson (2018)
framework, with 67% con�dence set in parentheses. For the long sample (post-Bretton Woods
sample), we set q=18 (q=6), which captures periodicities longer than 13 (15) years. Asterisks *,**
and *** denote signi�cance according to 67, 90 and 95 percent con�dence set, respectively. We also
report Pearson's correlation ρ (p-values using Student's t-distribution in parentheses). Stars ?, ??

and ??? show signi�cance at 10, 5 and 1 percent based on bootstrapped p-values that account for
the persistence of each variable. Annual data. 52



Table 6: International Evidence: Real Rates

Countries ρlr(r
pf
t ,MYt)

ρ(rpft ,MYt)

ρlr(r
ao
t ,MYt)

ρ(raot ,MYt)

ρlr(r
oos
t ,MYt)

ρ(roost ,MYt)

ρlr(r
cw
t ,MYt)

ρ(rcwt ,MYt)

AT −0.744∗∗∗
(−0.760??)

−0.321
(−0.622?)

−0.456
(−0.757??)

−0.477
(−0.799??)

AU −0.273
(−0.180)

0.008
(−0.148)

−0.438∗
(−0.666?)

−0.337∗
(−0.513)

BE −0.597∗
(−0.696???)

−0.296
(−0.547)

−0.594∗
(−0.812??)

−0.709∗∗
(−0.847??)

CA −0.273
(−0.216)

0.106
(−0.226)

−0.178
(−0.276)

−0.477∗
(−0.791??)

CH −0.052
(0.141)

0.027
(0.144)

−0.445∗
(−0.770??)

0.102
(0.106)

DE −0.734∗∗
(−0.669??)

−0.421∗
(−0.643?)

−0.379
(−0.718???)

−0.456∗
(−0.767???)

DK −0.200
(−0.486)

−0.438∗
(−0.740??)

−0.474∗
(−0.844???)

−0.474∗
(−0.844???)

ES −0.539∗
(−0.728???)

−0.013
(−0.041)

−0.304
(−0.502?)

−0.317
(−0.410??)

FI 0.013
(0.154)

0.302
(0.438)

−0.206
(−0.463)

−0.226
(−0.509?)

FR −0.401∗
(−0.450???)

−0.036
(−0.304)

−0.890∗∗∗
(−0.908???)

−0.911∗∗∗
(−0.934???)

IT −0.198
(−0.370)

−0.027
(−0.140)

−0.178
(−0.261)

−0.282
(−0.666)

JP 0.463∗
(0.461)

0.184
(0.299)

−0.168
(−0.434)

0.082
(0.125)

KR −0.319
(−0.544?)

−0.321∗
(−0.566?)

−0.493∗
(−0.810??)

−0.321∗
(−0.566?)

MY −0.269
(−0.602??)

−0.292
(−0.539)

−0.418
(−0.730???)

−0.319
(−0.475??)

NL −0.317
(−0.573??)

−0.045
(−0.323)

−0.474
(−0.846??)

−0.477
(−0.856???)

NO −0.130
(−0.019)

−0.034
(−0.183)

0.001
(−0.011)

−0.477∗
(−0.809??)

SE 0.319
(0.479)

0.386
(0.012)

0.377
(−0.232)

−0.036
(−0.534??)

UK −0.321∗
(−0.508??)

−0.003
(−0.103)

−0.448
(−0.809???)

−0.493
(−0.875???)

US −0.408∗
(−0.430)

−0.209
(−0.418)

−0.480∗
(−0.721?)

−0.500∗
(−0.754??)

ZA 0.001
(0.094)

0.630∗
(0.396??)

0.304
(0.313)

−0.421∗
(−0.652??)

The table shows the median long-run correlations, ρlr, and the Pearson correlations, ρ, (in
parentheses) between each country's MY ratio and the real interest rate that is obtained by

estimating di�erent in�ation forecasting models: rpft is the real interest rate obtained by assuming
perfect foresight for in�ation expectations, that is, using the average 10-year future in�ation (up to
2006); raot is obtained by using average past 10-year in�ation for in�ation forecasts (Atkeson and
Ohanian, 2001); roost is obtained by using the best in�ation forecast based on RMSFE; and rcwt is
obtained by using the best in�ation forecast based on the Clark and West (2006) test statistics.
The long-run correlation is the median of the posterior obtained using the Müller and Watson
(2018) framework. Asterisks *,** and *** denote signi�cance according to 67, 90 and 95 percent
con�dence interval, respectively. Statistical signi�cance of Pearson correlations is assessed based on
bootstrapped p-values that account for the persistence of each variable. Stars ?, ?? and ??? show
signi�cance at 10, 5 and 1 percent, respectively. Post-Bretton Woods period (1972-2016). Annual
data. 53



Table 7: International Evidence: Observables

Countries ρlr(dyt,MYt)
ρ(dyt,MYt)

ρlr(πt,MYt)
ρ(πt,MYt)

ρlr(πt, dyt)
ρ(πt,dyt)

ρlr(it,MYt)
ρ(it,MYt)

ρlr(it, dyt)
ρ(it,dyt)

AT 0.027
(−0.032)

−0.129
(−0.452???)

0.421∗
(0.442??)

−0.460
(−0.808???)

0.184
(0.254)

AU −0.445∗
(−0.625??)

−0.480
(−0.760??)

0.545∗
(0.764???)

−0.502∗
(−0.791??)

−0.001
(0.325)

BE −0.281
(−0.447?)

−0.013
(−0.474)

0.500∗
(0.578???)

−0.653∗∗
(−0.863???)

0.651∗∗
(0.557??)

CA −0.571∗
(−0.771??)

−0.480∗
(−0.769??)

0.513∗
(0.750???)

−0.477∗
(−0.783??)

0.209
(−0.458)

CH −0.209
(−0.320)

−0.493∗
(−0.650??)

0.103
(0.334?)

−0.460∗
(−0.784??)

−0.102
(0.086)

DE −0.234
(−0.435)

−0.184
(−0.400???)

0.448∗
(0.583???)

−0.418
(−0.746??)

0.273
(0.549??)

DK −0.447∗
(−0.717??)

−0.477∗
(−0.770???)

0.951∗∗∗
(0.837???)

−0.493∗
(−0.863???)

0.653∗∗
(0.750??)

ES −0.020
(−0.146)

−0.212
(−0.433)

0.480∗
(0.597??)

−0.413∗
(−0.686?)

0.630∗
(0.681??)

FI −0.502∗
(−0.629??)

−0.651∗∗
(−0.818??)

0.385∗
(0.527??)

−0.230
(−0.533?)

0.178
(0.265)

FR −0.317
(−0.560?)

−0.445∗
(−0.748??)

0.892∗∗∗
(0.856???)

−0.889∗∗∗
(−0.932???)

0.597∗
(0.687???)

IT 0.377∗
(0.411?)

−0.103
(−0.504)

0.042
(−0.008)

−0.317
(−0.704?)

−0.050
(−0.144)

JP −0.158
(−0.144)

−0.412∗
(−0.514?)

0.445∗
(0.452?)

−0.226
(−0.530?)

0.011
(−0.046)

KR −0.103
(−0.478)

−0.255
(−0.478?)

0.841∗∗∗
(0.844???)

−0.477∗
(−0.830??)

0.709∗∗∗
(0.826???)

MY −0.013
(0.055)

−0.162
(−0.321??)

0.054
(0.078)

−0.401
(−0.762??)

−0.226
(−0.070)

NL −0.319
(−0.725??)

−0.226
(−0.558???)

0.445∗
(0.658??)

−0.448
(−0.847??)

0.653∗∗
(0.741???)

NO −0.273
(−0.220)

−0.750∗∗∗
(−0.844???)

0.480∗
(0.424??)

−0.462∗
(−0.793??)

0.045
(0.051)

SE −0.255
(−0.327)

−0.477
(−0.766??)

0.333
(0.288)

−0.013
(−0.515?)

−0.070
(−0.169)

UK −0.350
(−0.592???)

−0.168
(−0.569)

0.911∗∗∗
(0.783???)

−0.493
(−0.878???)

0.648∗∗
(0.779???)

US −0.865∗∗∗
(−0.917???)

−0.414∗
(−0.632??)

0.712∗∗∗
(0.746???)

−0.513∗
(−0.783??)

0.667∗∗
(0.787???)

ZA 0.000
(−0.211)

−0.776∗∗∗
(−0.760???)

−0.013
(0.311)

−0.408
(−0.633??)

−0.480
(−0.092)

The table shows the median long-run correlation, ρlr, and the Pearson correlations, ρ, (in
parentheses) between each country's MY ratio and the following variables: the dividend yield
(dyt), annual in�ation (πt), and the long-term (10-year) nominal bond yield (it). The fourth column
reports the correlation between the dividend yield (dyt) and annual in�ation (πt), while the last
column shows the correlation between the dividend yield (dyt) and nominal bond yield (it). The
long-run correlation is the median of the posterior obtained using the Müller and Watson (2018)
framework. Asterisks *,** and *** denote signi�cance according to 67, 90 and 95 percent con�dence
set, respectively. Statistical signi�cance of Pearson correlations is assessed based on bootstrapped
p-values that account for the persistence of each variable. Stars ?, ?? and ??? show signi�cance at
10, 5 and 1 percent, respectively. Post-Bretton Woods period (1972-2016). Annual data.
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Table 8: In�ation Risk Premium

rt irpaot irpoost irpcwt irpsurt

Panel A. US (1972-2016)

ρlr(xt,MYt)
(ρ(xt,MYt))

−0.304
(−0.514???)

0.131
(0.075)

−0.638∗∗
(−0.761???)

−0.530∗
(−0.727???)

−0.304
(−0.298??)

xt 1.98% 0.76% 2.03% 1.50% 0.63%

Panel B. AU (1985-2016)

ρlr(xt,MYt)
(ρ(xt,MYt))

−0.282
(−0.577???)

0.036
(0.213)

−0.777∗∗∗
(−0.816???)

−0.757∗∗∗
(−0.799???)

−0.653∗∗
(−0.679???)

xt 3.37% −0.47% −0.69% −1.00% 0.21%

Panel C. UK (1985-2016)

ρlr(xt,MYt)
(ρ(xt,MYt))

−0.321
(−0.776???)

0.462∗
(0.703???)

−0.273
(−0.429??)

−0.714∗∗∗
(−0.867???)

−0.706∗∗
(−0.901???)

xt 1.93% 0.19% 0.19% 1.01% 1.63%

The table shows the median long-run correlations, ρlr, and the Pearson correlations, ρ, (in
parentheses) between the MY ratio and both the real interest rate, rt, obtained from the in�ation-
indexed bond market (net of liquidity premium) and the in�ation risk premium (irpt) obtained by
using di�erent models for long-run in�ation expectations. The last column in each panel shows the
correlation of MYt with the in�ation risk premium (irpsurt ) obtained via long-run in�ation survey
expectations. The last row of each panel shows both the average real interest rate (rt) and the
average in�ation risk premium (irpt) over the sample period. Panel A shows the results obtained
with the U.S. data over the post-Bretton Woods period. Panels B and C repeat the analysis for
Australia and the U.K., respectively, for the period 1985-2016 (the sample is limited by the data
from the TIPS market). The long-run correlation is the median of the posterior obtained using
the Müller and Watson (2018) framework. Asterisks *,** and *** denote signi�cance according to
67, 90 and 95 percent con�dence set, respectively. Statistical signi�cance of Pearson correlations is
assessed based on bootstrapped p-values that account for the persistence of each variable. Stars ?,
?? and ??? show signi�cance at 10, 5 and 1 percent, respectively. Annual data.
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Table 9: Out-of-Sample Forecasts

Excess Stock Returns: xrett,t+h = α0 + α1xt + εt,t+h

Panel A. h=1 dyt ygt ygdt MYt/Et(MY n+h
t ) Wald R2

adj R2
OS CW

xrett,t+1 0.062∗
(0.10)[0.10]

2.77∗ 0.01 −0.08 0.44

xrett,t+1 0.055∗
(0.07)[0.04]

3.29∗ 0.02 −0.07 0.73

xrett,t+1 0.087∗∗
(0.01)[0.00]

6.15∗∗ 0.04 −0.01 1.13

xrett,t+1 0.175∗∗∗
(0.00)[0.01]

0.368∗∗
(0.03)[0.01]

8.23∗∗ 0.06 0.01 2.03∗∗

xrett,t+1 0.101∗∗∗
(0.01)[0.00]

0.321∗∗
(0.05)[0.00]

8.62∗∗ 0.07 0.06 2.29∗∗

Panel B. h=5 dyt ygt ygdt MYt/Et(MY n+h
t ) Wald R2

adj R2
OS CW

xrett,t+5 0.045∗∗
(0.03)[0.00]

4.85∗∗ 0.05 −0.23 1.20

xrett,t+5 0.045
(0.14)[0.00]

1.83 0.10 −0.40 1.34∗

xrett,t+5 0.072∗∗∗
(0.01)[0.00]

6.63∗∗ 0.20 −0.27 2.05∗∗

xrett,t+5 0.103∗∗∗
(0.03)[0.00]

0.189∗∗∗
(0.00)[0.00]

22.27∗∗∗ 0.14 −0.22 1.44∗

xrett,t+5 0.085∗∗∗
(0.00)[0.00]

0.301∗∗∗
(0.00)[0.00]

29.87∗∗∗ 0.38 0.23 4.04∗∗∗

Panel C. h=10 dyt ygt ygdt MYt/Et(MY n+h
t ) Wald R2

adj R2
OS CW

xrett,t+10 0.051∗∗
(0.04)[0.00]

4.41∗∗ 0.18 −0.25 2.26∗∗

xrett,t+10 0.035∗∗
(0.03)[0.00]

4.84∗∗ 0.14 −0.70 1.20

xrett,t+10 0.055∗∗∗
(0.00)[0.00]

13.39∗∗∗ 0.30 −0.54 1.72∗∗

xrett,t+10 0.084∗∗∗
(0.00)[0.00]

0.108∗∗∗
(0.00)[0.00]

45.86∗∗∗ 0.25 −0.32 0.50

xrett,t+10 0.067∗∗∗
(0.00)[0.00]

0.277∗∗∗
(0.00)[0.00]

39.03∗∗∗ 0.64 0.31 4.91∗∗∗

This table reports the results of long-run (1, 5, 10 years) excess stock return forecasting regressions
based on univariate and bivariate models. Univariate models are based on the log dividend yield
(dyt), the yield gap (ygt), and the augmented yield gap that includes expectations of distant future
middle-aged to young ratio Et(MY n+h

t ). In the univariate model, the coe�cient of Et(MY n+h
t ) is

restricted to one. The unrestricted bivariate model includes both the yield gap, that is, log dividend
price ratio minus n times the log of 10-year nominal bond yield (n=10), and Et(MY n+h

t ). As a
benchmark, we also report the bivariate model including the log dividend yield and MYt (Favero
et al., 2011). The dependent variable is the cumulative excess stock market (S&P500) returns. The
coe�cient estimates and in-sample R2

adj are based on the full sample (1900-2016). The reported
p-values (in parentheses) are based on the IVX approach (Kostakis et al., 2015). In square brackets
we also report the p-values obtained from a bootstrap exercise that accounts for the persistence of
predictor variables and imposes the joint null hypothesis of no predictability of returns (Maio, 2013).
The last three columns report the IVX Joint Wald test (full sample), the out-of-sample coe�cient
of determination R2

OS , and the CW test statistics (Clark and West, 2007) for the in-sample period
(1900-1971) and the forecast period (1972-2016). Asterisks *,**, and *** show signi�cance at 10, 5
and 1 percent, respectively. Annual data.
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Table 10: FED Model

FED Model Speci�cations

Panel A. dpt const it MYt σEB
t ctrlt R2

adj

(1) Fed Model + σEB
t −0.031∗∗∗

(−2.70)
0.354∗∗∗

(4.41)
0.017∗∗∗

(6.81)
0.42

(2) Model (1) + MYt 0.037
(1.54)

0.117
(1.10)

−0.045
(−2.76)

∗∗∗ 0.011∗∗∗
(3.55)

0.56

(2) + ctrlt = est 0.065
(3.73)

∗∗∗ −0.005
(−0.06)

−0.065∗∗∗
(−6.72)

0.009∗∗∗
(4.04)

0.002
(0.04)

0.66

(2) + ctrlt = bst 0.042
(1.96)

0.096
(0.93)

−0.052∗∗∗
(−3.41)

0.010∗∗∗
(3.29)

0.010
(0.86)

0.55

(2) + ctrlt = mst 0.014
(0.56)

0.152
(1.62)

−0.044∗∗∗
(−3.73)

0.010∗∗∗
(3.29)

0.039
(1.39)

0.59

(2) + ctrlt = rat 0.039
(1.77)

0.116
(1.10)

−0.046∗∗∗
(−3.00)

0.011∗∗∗
(3.63)

−0.010
(−0.29)

0.56

Panel B. ept const it MYt σEB
t ctrlt R2

adj

(1) Fed Model + σEB
t −0.067∗∗

(−2.21)
0.998∗∗∗

(4.76)
0.028∗∗∗

(3.58)
0.36

(2) Model (1) + MYt 0.031
(0.76)

0.660∗∗∗
(3.06)

−0.065
(−2.08)

∗∗ 0.019∗∗∗
(2.71)

0.44

(2) + ctrlt = est 0.099
(3.75)

∗∗∗ 0.323∗∗
(2.26)

−0.103∗∗∗
(−5.65)

0.013∗∗∗
5.08)

−0.184∗∗
(2.06)

0.74

(2) + ctrlt = bst 0.033
(0.91)

0.693∗∗∗
(3.20)

−0.084∗∗∗
(−3.75)

0.019∗∗
(2.45)

0.033
(1.62)

0.45

(2) + ctrlt = mst −0.001
(−0.02)

0.708∗∗∗
(3.77)

−0.062∗∗
(−2.31)

0.018∗∗
(2.16)

0.053
(0.65)

0.45

(2) + ctrlt = rat 0.046
(1.35)

0.656∗∗∗
(3.16)

−0.068∗∗
(−2.60)

0.018∗∗
(2.55)

−0.084
(−1.21)

0.46

This table reports the estimates of the Fed model that posits a long-run relation between equity
yields, proxied either by the dividend price ratio (Panel A) or the cyclically-adjusted earnings yield
(Panel B), and long-term nominal bond yields, and controls for the relative stock-bond volatility
(baseline model 1). Model 2 is the augmented version of Model 1 and includes theMY ratio. Further
controls include est, net equity expansion (twelve month moving sums of net issues, Welch and Goyal
(2008)) over total NYSE market capitalization; bst, the bond supply measured by government debt
over GDP (1900-2012); mst, the money supply (M2) over GDP; and rat, the time-varying habit-
based risk aversion proxied by the surplus ratio, that is, real personal consumption relative to its
10-year moving average. Relative stock-bond volatility is the logarithm of the ratio of the realized
volatilities of stock and bond markets. Bond volatility is measured as the standard deviation of
monthly observations using a 10-year rolling window. Stock volatility is obtained from daily stock
returns (Welch and Goyal, 2008), that is, square root of svar (sum of squared daily returns on
S&P500). The reported t-statistics are based on heteroskedastic and autocorrelated consistent
(HAC) covariance matrix estimators using Bartlett kernel weights as described in Newey and West
(1987), where the bandwidth has been selected following the procedure described in Newey and
West (1994). Asterisks *, ** and *** indicate signi�cance at 10, 5 and 1 percent, respectively. The
last column reports adjusted R2

adj . Annual data. Sample 1900-2016.
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Table 11: Cross-Country Regressions

Speci�cation: ρlr,j(dyj,t, ij,t) = α0 + α1xj + εj

Panel A. Real Rates ρlr,j(r
pf
j,t ,MYj,t) ρlr,j(r

ao
j,t,MYj,t) ρlr,j(r

oos
j,t ,MYj,t) ρlr,j(r

cw
j,t ,MYj,t)

coef.
(z-stat)

−0.555∗∗
(−2.308)

−0.764∗∗∗
(−2.773)

−0.826∗∗∗
(−3.509)

−0.797∗∗
(−2.505)

R2
adj. 0.21 0.27 0.40 0.22

Panel B. Exp. In�ation ρlr,j(Etπ
pf
lr,j ,MYj,t) ρlr,j(Etπ

ao
lr,j ,MYj,t) ρlr,j(Etπ

oos
lr,j ,MYj,t) ρlr,j(Etπ

cw
lr,j ,MYj,t)

coef.
(z-stat)

0.674∗∗
(2.370)

−0.192
(−0.463)

0.532
(1.161)

−0.281
(−1.180)

R2
adj. 0.25 −0.04 0.02 0.03

Panel C. Business Cycle stagpercj πj,t ∗ recj,t ρlr,j(∆gdpj,t, πj,t) ρlr,j(∆consj,t, πj,t)

coef.
(z-stat)

−0.063∗
(−1.757)

−0.273
(−1.256)

0.158
(0.396)

−0.075
(−0.416)

R2
adj. 0.12 0.04 0.01 −0.04

Panel D. Real Rates (Biv.) ρlr,j(r
pf
j,t ,MYj,t) ρlr,j(r

ao
j,t,MYj,t) ρlr,j(r

oos
j,t ,MYj,t) ρlr,j(r

cw
j,t ,MYj,t)

coef.
(z-stat)

−0.729∗∗∗
(−3.161)

−0.732∗∗∗
(−2.882)

−0.757∗∗∗
(−3.220)

−0.682∗∗
(−2.220)

coef.(ρlr,j(dyj,t,MYj,t))
(z-stat)

−0.570∗∗
(−2.166)

−0.520∗
(−1.950)

−0.396
(−1.512)

−0.423
(−1.519)

R2
adj. 0.36 0.38 0.44 0.27

The table reports the robust cross-sectional regression results. In all speci�cations, the dependent
variable is ρlr,j(dyj,t, ij,t), the median long-run correlation from Müller and Watson (2018) between
the dividend yield, dyj,t, and the long term nominal bond yield, ij,t, in country j (n=20), over
the period 1972-2016 (except for the speci�cations that include variables with perfect foresight
(1972-2006) and ∆consj,t (1984-2016), n=15). xj represents the independent variables. In Panel
A, the independent variables are the long-run correlations between MYj,t and the real interest

rates obtained from di�erent in�ation forecasting models: rpfj,t is the real interest rate obtained
by assuming perfect foresight for in�ation expectations, that is, using the average 10-year future
in�ation (up to 2006); raoj,t is obtained by using average past 10-year in�ation for in�ation forecasts
(Atkeson and Ohanian, 2001); roosj,t is obtained by using the best in�ation forecast based on
RMSFE; and rcwj,t is obtained by using the best in�ation forecast based on the Clark and West
(2006) test statistics. In Panel B, the independent variables are the long-run correlations between
MYj,t and the in�ation expectations obtained from di�erent in�ation forecasting models. Panel
C shows the validity results with alternative variables: stagpercj , the percentage of observations
during which country j experiences stag�ation, that is, recession (two consecutive quarters of
negative real GDP growth) and high in�ation (more than 10% annualized in�ation per quarter);
πj,t ∗ recj,t, the country-speci�c time-series mean of the interaction between in�ation and recession;
ρlr,j(∆gdpj,t, πj,t), the long-run correlation between annual real GDP growth and in�ation; and
ρlr,j(∆consj,t, πj,t), the long-run correlation between annual real consumption growth and in�ation.
In panel C, n=19, as Malaysia is excluded. Panel D reports the bivariate cross-sectional regressions
where the independent variables are the long-run correlations between MYj,t and the real interest
rates obtained from di�erent in�ation forecasting models, controlling for the long-run correlation
between dividend yield dyj,t and the demographic variable MYj,t. The reported z-statistics are
based on the robust regression using bisquare weighting function. Asterisks *, ** and *** indicate
signi�cance at 10, 5 and 1 percent levels, respectively. n is the number of countries in each
speci�cation. The last row of each panel reports the OLS adjusted R2.

58



Table 12: Alternative Demographic Channels

Speci�cation: ρlr,j(dyj,t, ij,t) = α0 + α1xj + εj ρlr,j(r
pf
j,t , xj,t) ρlr,j(r

ao
j,t, xj,t) ρlr,j(r

oos
j,t , xj,t) ρlr,j(r

cw
j,t , xj,t)

Panel A. Population Growth

coef.
(z-stat)

−0.290
(−1.203)

0.198
(0.627)

−0.028
(−0.128)

−0.224
(−0.894)

R2
adj. 0.02 −0.03 −0.06 −0.01

Panel B. Life Expectancy

coef.
(z-stat)

−0.256
(−0.599)

−0.353
(−0.584)

−0.325
(−1.132)

−0.653∗∗
(−2.324)

R2
adj. −0.04 −0.04 0.02 0.21

Panel C. Dependency Ratio

coef.
(z-stat)

0.034
(0.109)

0.454
(0.989)

0.437
(1.406)

0.325
(0.974)

R2
adj. −0.06 −0.01 0.02 −0.01

Panel D. Share of Old (65+)

coef.
(z-stat)

0.155
(0.726)

−0.611∗
(−1.780)

−0.363
(−1.471)

−0.429
(−1.437)

R2
adj. −0.02 0.12 0.08 0.05

The table reports the robust univariate cross-sectional regression results. In all speci�cations, the
dependent variable is ρlr(dyj , ij), the median long-run correlation from Müller and Watson (2018)
between the dividend yield dyj and the long term nominal bond yield, ij , in country j (n=20),
over the period 1972-2016 (except for the speci�cations that include variables with perfect foresight
(1972-2006)). xj represents the independent variables. In Panel A, the independent variables are the
long-run correlations between annual population growth and the real interest rates obtained from
di�erent in�ation forecasting models: rpflr is the real interest rate obtained by assuming perfect
foresight for in�ation expectations, that is, using the average 10-year future in�ation (up to 2006);
raolr is obtained by using the average past 10-year in�ation for in�ation forecasts (Atkeson and
Ohanian, 2001); rooslr is obtained by using the best in�ation forecast based on RMSFE; and rcwlr is
obtained by using the best in�ation forecast based on the Clark and West (2006) test statistics.
In Panel B, the independent variables are the long-run correlations between life expectancy at
birth and the real interest rates obtained from di�erent in�ation forecasting models. In Panel
C, the independent variables are the long-run correlations between the dependency ratio (that is,
the share of the 25-64 population aged either 0-24 or 65+) and the real interest rates obtained
from di�erent in�ation forecasting models. In Panel D, the independent variables are the long-run
correlations between the share of the elderly population (that is, the share of population that is aged
65+) and the real interest rates obtained from di�erent in�ation forecasting models. The reported
z-statistics are based on the robust regression using bisquare weighting function. Asterisks *, **
and *** indicate signi�cance at 10, 5 and 1 percent levels, respectively. n is the number of countries
in each speci�cation. The last row of each panel reports the OLS adjusted R2.
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Figure 1: Correlations: International Panel

This �gure plots the correlation between dividend yields and nominal bond yields (blue-bars), as
well as the correlation between dividend yields and in�ation (red bars), over the post-Bretton Woods
sample, for a sample of 20 countries.
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Figure 2: Time varying Correlations: Stocks, Bonds and In�ation

Panel A plots the 20-year (240 months) rolling correlation between dividend yields and the 10-year
nominal bond yield (solid blue), and the 20-year (240 months) rolling correlation between cyclically
adjusted earnings yields and bond yields (dashed red). Panel B plots the 20-year (240 months)
rolling correlation between dividend yields and annual in�ation (solid blue), and the 20-year (240
months) rolling correlation between cyclically adjusted earnings yields and annual in�ation (dashed
red). Grey shaded areas are NBER recessions. Sample 1880m1-2016m12. Monthly data.

61



Figure 3: Boom Bust Cycles in Live Births

This �gure plots the total number of life births (bar graph with dashed-line) at age 20 (the start
of economic life) and the demographic variable, MYt, (solid line) measured as the proportion of
middle-aged (40-49) to young (20-29) population. Sample 1925-2024. Annual data.
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Figure 4: Correlation between Bond and Stock Yields across States

(a)

(b)

Panels A and B report the correlation between nominal bond yields and equity yields. In panel
A, the correlation shows the comovement between yields from state (j,s,g) to state (j+1,s+1,g+1),
where j = {odd, even}, s = {s1, s2, s3, s4} and g = {g1, g2, g3, g4}. In panel B, the correlation shows
the comovement between yields from state (j,g,s) to state (j+1,g+1,s+1).
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Figure 5: Stock-Bond Yield Comovement: Real Channel

(a) (b)

(c) (d)

All panels provide a scatter plot of the demographic e�ect on real bond yields (x-axis) and stock-
bond yield correlation (y-axis). The demographic e�ect on real bond yields is proxied by the median
of the posterior correlation obtained using the Müller and Watson (2018) framework between real
interest rates and MYt in each country. rpf is the real interest rate obtained by assuming perfect
foresight for in�ation expectations (Panel A); rao is obtained by using the average past 10-year
in�ation for in�ation forecasts (Panel B); roos is obtained by using the best in�ation forecast based
on RMSFE (Panel C); and rcw is obtained by using the best model based on the Clark and West
(2006) test statistics (Panel D). The panels show the regression line (red) and the 95% con�dence
interval (gray shaded area).
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