

Bots Coordinating Work in Open Source Software Projects

Hukal, Philipp; Berente, Nicholas; Germonprez, Matt; Schecter, Aaron

Document Version
Accepted author manuscript

Published in:
Computer

DOI:
10.1109/MC.2018.2885970

Publication date:
2019

License
Unspecified

Citation for published version (APA):
Hukal, P., Berente, N., Germonprez, M., & Schecter, A. (2019). Bots Coordinating Work in Open Source
Software Projects. Computer, 52(9), 52-60. https://doi.org/10.1109/MC.2018.2885970

Link to publication in CBS Research Portal

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us (research.lib@cbs.dk) providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 18. Jun. 2025

https://doi.org/10.1109/MC.2018.2885970
https://doi.org/10.1109/MC.2018.2885970
https://research.cbs.dk/en/publications/c68730da-3394-4813-9303-1f92168eecd2

Bots Coordinating Work in Open Source Software Projects
Philipp Hukal, Nicholas Berente, Matt Germonprez, and Aaron Schecter

Journal article (Accepted manuscript*)

Please cite this article as:
Hukal, P., Berente, N., Germonprez, M., & Schecter, A. (2019). Bots Coordinating Work in Open Source

Software Projects. Computer, 52(9), 52-60. https://doi.org/10.1109/MC.2018.2885970

DOI: https://doi.org/10.1109/MC.2018.2885970

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material

for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other

works.

* This version of the article has been accepted for publication and undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may lead to

differences between this version and the publisher’s final version AKA Version of Record.

Uploaded to CBS Research Portal: August 2020

https://doi.org/10.1109/MC.2018.2885970
https://research.cbs.dk/da/publications/bots-coordinating-work-in-open-source-software-projects

1

Bots Coordinating Work in Open Source Software Projects

Philipp Hukal, Copenhagen Business School

Nicholas Berente, Mendoza College of Business – University of Notre Dame

Matt Germonprez, College of Information Science & Technology – University of Nebraska Omaha

Aaron Schecter, Terry College of Business – University of Georgia

ABSTRACT Bots are increasingly being used to

coordinate work in open source software projects. As

mechanisms that ensure the smooth functioning of

open source software projects, bot activity has

implications for how scholars and practitioners

understand open source software development. In this

article, we identify four typical classes of bots and

discuss their role in the coordination of open source

software projects.

Introduction

Bots—algorithms that automatically interact with humans—are everywhere [1]. A bot could be a

conversational agent on a smartphone, a participant in the chatter on social media, or a trader in the

financial markets. In more and more areas non-human actors are automatically interacting with their

human counterparts.

Therefore, it should come as no surprise that bots are also used to help coordinate open source

software projects. From our research, we have identified four different classes of bots that help

coordinate work in open source software projects: broker, checker, gatekeeper, and manager bots. In

this article, we introduce these classes of bots and provide examples from Kubernetes—a popular open

source software project spun out of Google. As is evident from this, and many other examples, bots are

increasingly important to open source software. Recognizing these four general classes of bots is useful

as they serve very different purposes. Bots support workflows of various complexities and criticalities.

This gives software project organizations a lot of options in deciding where to deploy bots. Despite their

widespread use in open source development, the role of bots remains unexplored in research. It is time

2

for practitioners and scholars to recognize bots as a popular coordinating mechanism in distributed

software development.

The Ubiquity and Importance of Bots

Bots are increasingly important to open source software projects. In the case of Kubernetes, the usage

of bots has grown steadily. Bots are now integral to the interaction within the project community. For

instance, in 2017, 97% of all source code changes in the project involved some bot activity—up from

28% during the project’s first year. Over the same period, the volume and the variety of tasks involving

bots have also risen substantially. Figure 1 depicts the number and the type of bot activity in the project.

The chart shows a steep incline in the number (the height of each of the stacked bars) and the diversity

(the colors that make up each of the stacked bars) of the various bot tasks over time. This development

suggests that tasks that involve bots drive a lot of interactions in the community.

Figure 1. The volume and the diversity of bot commands used in the Kubernetes project over time. Each color in

the stacked bar represents the usage of one type of bot command (chart and data licensed under Apache 2.0 by

the Cloud Native Computing Foundation, Source: https://devstats.k8s.io/)

https://devstats.k8s.io/

3

Most bot commands in Figure 1 are pre-scripted tasks that extend existing GitHub functionality

to help support collaboration among developers. For instance, bot commands provide shorthand

interfaces to GitHub features such as labeling discussions or patches with descriptions. However, bot

activity in the project goes beyond such simple scripted commands. Bot activity routinely involves both

automatic and continuous interactions with developers at crucial intersections of project workflows.

Additionally, our analysis shows that bots trigger such commands themselves. Hence, bots include the

above scripts and extend GitHub functionality to interact with developers.

Auditing Algorithms

We conducted an algorithm audit [2] and analyzed the activity of bots deployed in the Kubernetes

source code repository on GitHub. Algorithm auditing refers to a set of analysis techniques aimed at

scrutinizing—often proprietary—programmatic parts of software-enabled services. As in all algorithm

audits, we seek to discover the mechanisms that determine activity of non-human actors [3].

We followed an inductive, data-driven approach to deepen our understanding of bots in open

source software [4]. Kubernetes uses the online version control and management platform GitHub.com

to coordinate development work [5]. One of the features of the GitHub platform is the ability of

developers to collaborate on pull requests. A pull request is an activity in open source software

development in which developers request to “pull” source code changes into an open source project.

GitHub makes these changes, metadata, and the discussions among the developers openly accessible.

We downloaded all pull request discussions in the project from the time Google open sourced the project

in June 2014 to October 2017.

We include bots in our analysis based on three criteria; First, bots must be regularly active in

the repository—this excludes inactive, older, or decommissioned bots. Second, the Kubernetes project

organization must deploy the bots—this excludes bots under the assumed control of other developers.

Third, the bots must be part of the general project workflow—this excludes bots aimed at supporting

4

individual developers. For instance, some bots support small groups of developers whose tasks are not

part of Kubernetes’ overall workflow.

Bots interact with human developers mostly through comments on pull requests. Using a

random sample of 150 pull requests with bot activity, we proceeded with a manual content analysis of

the pull request discussions. We listed the typical actions carried out by different bots that fit the above

criteria. To corroborate the activity in the pull request comments, we consulted additional information

sources such as the Google groups email list used by the community and the documentation that was

provided by the project. Based on the bot activity in the pull requests, we created task profiles for each

bot, that is, a summary of the tasks typically performed by the bot. These profiles are the foundation for

the classification of the bots which we present below.

We have identified four classes of bots in the Kubernetes project that fit the criteria above. We

found that bot activity occurs from the earliest point of the project workflow—when developers first

submit changes—through review, testing, and implementation of source code. Figure 2 highlights the

focus of activity of four bots that are examples of the four classes of bots that we identified in the

Kubernetes project.

Figure 2. A simplified workflow and the corresponding domains for bot activity in the Kubernetes project

5

Four Classes of Bots

We identified four general classes of bots that are involved in coordinating work in the Kubernetes

project. Listed in the order of the simplest to the most complicated, we refer to them as brokers,

checkers, gatekeepers, and managers. Each class encompasses the functionality of the simpler classes

and extends it. As a result, the complexity of bot activity increases as the bots automate higher level

tasks [6]. Brokers scan and re-post information, whereas checkers additionally evaluate the information.

Gatekeepers have formal authority associated with their evaluation and managers combine evaluation

and formal authority with interactive coordination.

The Broker

In their simplest form, bots act as brokers. This class of bots follows simple ‘if-this-then-that’

procedures. The objective of this class of bots is to perform brokerage-like tasks. Brokers are deployed

to automate tasks that require little-to-no human involvement and tasks that do not critically impact the

output of a workflow. As such, they process information (e.g., messages or comments) and relay a

message to pre-defined audiences. As a simple “action support” automation [6], brokers are common

in the context of social networking where their importance is increasingly recognized [1], [7]. On

platforms such as GitHub, brokers are widely used, for example, to facilitate discussions among

developers.

In the Kubernetes project, the bot ‘k8s-reviewable-bot’ is a broker. The length of the pull

request discussion or the size of the suggested change in the source code triggers this bot. Above a

threshold value of number of comments in the discussion or lines of code in a patch, this bot copies the

communication around software changes that are currently under review. The bot automatically adds a

comment to the respective pull request discussion with a link to an external application. The link directs

the developers to a tool that the project organization prefers to use to keep track of complex patches. In

the following example, the bot refers to the location where the suggested changes in the source code are

tracked, grouped, and visualized for review. Figure 3 illustrates how the bot is making the project

6

members aware of the option to follow the review process elsewhere. This bot completes this task by

posting a permanent link to the external review environment (‘reviewable’) in the pull request

discussion.

Figure 3. A Kubernetes broker-bot automatically posting to a pull request discussion (‘k8s-reviewable-bot’)

Source: Kubernetes Code Repository on GitHub.com

The Checker

Another class of bots found in open source software projects is the checker. Checkers follow simple

rules similar to brokers. A crucial difference is that checkers additionally includes an intervention to

automate decision making support [6]. Checkers are triggered when information is scanned according

to the pre-defined rules. Similar to the process of using a dictionary, checkers use a look-up and cross-

reference process for the information that is presented using the pre-set rules. Thus, checkers can ensure

consistency within the area that they monitor. Aside from this difference in their objective, checkers

also have a different scope than brokers. Checkers regularly involve human actors by alerting them of

the necessity to double-check information or communicating when an intervention is needed.

Consequently, it is possible to deploy checkers in support of workflows that are more critical to the

final development output.

In the Kubernetes project, the bot ‘k8s-cherrypick-robot’ is a checker. The bot leverages a core

feature on the GitHub platform to help developers coordinate their work. GitHub assigns free-text labels

to each conversation. Standard labels include tagging a conversation as a bug, an enhancement, or a

question. GitHub also allows to create custom labels. One such custom label in the Kubernetes project

7

is the ‘cherrypick’. So-called ‘cherrypicks’ are patches meant for major releases of the project. As such,

changes with that label are typically passed on to whitelisted contributors for further review. The bot is

triggered when a developer marks a source code change with the ‘cherrypick’-label to help to support

this workflow. By pre-screening the ‘cherrypick’ labels and assigning or removing descriptions, the

checker acts as a mediator between the wider developer community and whitelisted project members.

In Figure 4, community members discuss the inclusion of a suggested change in the project’s release

cycle and propose to label their patch as a ‘cherrypick’. However, the intended major release has already

been closed and no longer accepts submissions. The k8s-cherrypick-bot intervenes as a consequence of

the patch not being associated with a major release and removes the ‘cherrypick’-label automatically.

Figure 4. A Kubernetes checker-bot commenting (‘k8s-cherrypick-robot’) [Note: the conversation was truncated

for illustration] Source: Kubernetes Code Repository on GitHub.com

The Gatekeeper

8

Gatekeepers automatically exercise control [6] over parts of the workflow. Therefore, this bot class

supports actions with higher levels of criticality for the development of open source software. When

deployed at crucial intersections of the project workflow, gatekeepers confirm adherence to predefined

requirements so that work can proceed to subsequent steps in the process. Bots of this class differ from

the previous classes mentioned above because their activities exercise direct control over the workflow.

Activity in the preceding bots could have been ignored without jeopardizing the project workflow. In

contrast, the gatekeeper bot enforces a mandatory checkpoint for developer activity at a crucial

bottleneck. Without passing the gatekeeper bot, work will not proceed.

In the Kubernetes project, the bot ‘k8s-ci-bot’ is a gatekeeper bot. Deployed in the general

testing workflow, the bot first checks whether the author of a suggested change in the source code has

signed the Contributor Licensing Agreement (CLA). If necessary, the bot then redirects to the respective

compliance page before the developer can submit changes for review (Figure 5).

9

Figure 5. A Kubernetes gatekeeper bot screening a pull request for CLA compliance (‘k8s-ci-robot’)

Source: Kubernetes Code Repository on GitHub.com

If CLA compliance is confirmed, the bot checks if the change in the source code has been

properly labeled and reviewed according to the procedures agreed to by the project organization. Only

once all preceding checks are met does the gatekeeper automatically forward the source code change to

standardized testing. Figure 6 illustrates how the bot communicates the code test results and coordinates

further steps.

10

Figure 6. A Kubernetes gatekeeper bot sharing test results (‘k8s-ci-robot’)

Source: Kubernetes Code Repository on GitHub.com

The Manager

Managers are deployed to complex and critical tasks in open source software development. While this

class includes functions that are also carried out by other bots, their activity extends to vital development

tasks—often hand-in-hand with developers. One unique functionality of managers is the allocation and

prioritization of resources to their workflow. Thus, managers help guide work by automating

supervisory control [6].

In the Kubernetes project, the bot ‘k8s-merge-bot’ is a manager. The bot is triggered when a

source code change has been submitted by checking if the developer is on a whitelist. If not, the bot

assigns reviewers from the whitelist and tasks them with a review of the proposed changes. After review

by a whitelisted developer of the project, the manager feeds the patch into the testing workflow

monitored by a gatekeeper (i.e., k8s-ci-robot). Upon completion of the standardized tests, the manager

schedules the changes for production according to a prioritization that is defined by the project

developers. This prioritization occurs by confirming that no dependencies or redundancies occur during

the time that is needed to review and test a patch. Only the k8s-merge-bot and a limited number of

project developers have permission to schedule source code changes for implementation.

Additionally, the k8s-merge-bot undertakes a wide spectrum of actions. For instance, triggered

by checking timestamps on patches, the bot reminds project developers that a discussion has not been

11

active for a while. Additionally, the bot plugs patches into a variety of starting points across project

workflows. For example, the bot controls the re-testing workflow by flagging patches with so-called

‘flaky’ (i.e., inconsistent) test results. When a patch has been identified as ‘flaky’ the manager re-directs

the ‘flaky’ patch back to the testing workflow. This process repeats itself until the test results are no

longer suspicious. The bot also ensures that free-text descriptions by users (such as labels) are applied

consistently to support developer coordination.

In Figure 7, the ‘k8s-merge-bot’ is triggered by a reviewing developer through the command

“/approve”. The bot confirms approval of whitelisted developers, automatically re-tests the patch, and

finally schedules the source code change for production. It does so by automatically calling the “/test”

command which triggers another bot and initiates the testing workflow.

12

Figure 7. A Kubernetes manager-bot coordinating work to completion (‘k8s-merge-robot’)

Source: Kubernetes Code Repository on GitHub.com

Open Source Bots and Organizations

Open source software development communities were long thought to resemble egalitarian bazaars [8].

In these communities, individuals found interesting ways to democratically coordinate their work,

resulting in surprisingly complex code [9]–[11]. This phenomenon is interesting because it is difficult

to coordinate complex activities without the benefit of an organizational hierarchy such as those found

13

in corporations. Increasingly, researchers and practitioners have come to realize that open source

software projects are not as egalitarian as once perceived. Large-scale open source software projects

are structured and regularized in ways that connect with organizational work. As such, open source

software projects can be quite hierarchical [12] and often involve a significant amount of corporate

engagement [13], [14].

In these corporate contexts, bots are one of many instruments in the coordination and structuring

of open source software project work. While bots are by no means an attribute exclusively found in

open source software projects with corporate engagement, it is important to recognize that the

deployment of bots makes sense for corporations – as sponsors as well as users of open source software

projects. In the context of a maturing open source software development, bots are one of many

indicators of an increasing move towards professional development practices in open source projects.

Our illustrations, using data from Kubernetes, suggest that bots provide procedural control to

maintain and reinforce order in the project. First, with the help of bots, developers extend their ability

to coordinate development in-line with the agreed-upon procedures. Second, bots take over mundane

tasks (e.g., the checker bot) which in turn frees up developer efforts so that they can focus their energy

elsewhere. Finally, bots accurately relay feedback. For example, the checker bots and the manager bots

are unequivocal about failed tests and articulate exactly what is expected from developers. Enforcing

the agreed-upon rules for quality and process facilitates collaborative work in the project. Collectively,

these factors provide stability and reliability at scale.

This is a critical aspect for the continued use of the software. As projects grow in size, bots

represent an important mechanism for reinforcing and managing the procedures that were initially

agreed-upon to coordinate the development work for a project. Bots increase the reliability and stability

that corporations require to build on and trust open source software. It is no coincidence that Kubernetes

was once an internal Google project and now involves a variety of corporations—some of its biggest

contributors are Red Hat, Microsoft, and Huawei. Corporations likely favor open source projects with

a certain level of domestication to be useful [15]. Nobel laureate Herb Simon argued that it is procedural

rationality which enables the execution of complex tasks in organizations [16]. By addressing the

14

housekeeping, quality control, and routing of common activities, bots help to keep work in open source

projects predictable and enforce procedural rationality. Bots augment developer reach and enforce the

rules of the project by enacting desired procedures through the execution of various tasks—often

automatically. Akin to clerks, bots instantiate process intentions, making them important stabilizing

mechanisms for open source software projects.

Conclusion

How important bots are to open source projects is highlighted by the four general classes of bots that

we identified and illustrated. As illustrated by our case study, bots leverage and extend the functionality

of version control repository management systems such as GitHub. As a popular representative of such

systems, GitHub provides ample sources of projects using bots in their development work. For instance,

we found evidence for bots similar to our classification in a variety of prominent open source projects

such as Node.js (https://github.com/nodejs), Bootstrap (https://github.com/twbs), and brew

(https://github.com/Homebrew). Indeed, Google’s internal software development operation relies

substantially on bots such as the ones described here [17]. For our research, we fit bots into one of four

classes. Further insights might come from investigations that were beyond our focus and might discover

classes of bots that we did not address in this paper. Consider, for instance, that some projects use bots

to automate singular yet cumbersome tasks such as code migration. Additionally, certain bots operate

across projects because of an attribute these projects share, for example, their programming language.

There are all sorts of bots that can conceivably impact open source projects – from code generating bots

to malicious bots. Our research offers a view on bots that help with routine coordination within one

project. This highlights the importance of bots in open source software projects and proposes a

parsimonious taxonomy of bots that help coordinating work on those projects.

The role of bots has implications for how practitioners and scholars think about open source

software projects. Bots serve as coordination mechanisms that are important to the smooth functioning

of open source software projects. For practitioners, bots are a useful tool for implementing and

understanding project workflows. Software development practices can be supported and advanced

https://github.com/nodejs
https://github.com/twbs
https://github.com/Homebrew

15

through bot deployment by covering various degrees of task complexities and criticalities. For scholars,

the presence of bots affects ways of researching open source software projects, especially in applications

of social network analysis or sequence analyses. It is critical to incorporate an understanding of bots

when attempting to explore the dynamics of open source software project relationships and processes.

Research on open source software projects that does not actively attend to the role of bots risks

conflating different forms and purposes of activity in a project. Disregarding bot activity as

uninteresting altogether may restrict the conclusions that can be drawn from studies on open source

software projects.

Lastly, it is important to understand bots in the context of the maturing open source software

space. Of course, such projects still involve hackers creating software for their own needs, but open

source software is increasingly part of many commercial operations [18]. As bots extend developer

influence, they help to enforce procedural rules to implement pre-defined workflows; their existence

indicates much more regularized work than previously discussed in studies of open source [19].

16

Acknowledgement

This project received funding from the Alfred P. Sloan Foundation Digital Technology grant on

Open Source Health and Sustainability, Num: 8434 (https://sloan.org/grant-detail/8434).

About the Authors

Philipp Hukal is an Assistant Professor at Copenhagen Business School, Department of Digitalization. His

research examines digitally-enabled innovation within and across organizations covering topics such as digital

platforms, open source software development, and digital entrepreneurship. He holds a PhD in Information

Systems and Management from Warwick Business School, University of Warwick (UK).

Nicholas Berente is an Associate Professor in the Mendoza College of Business, University of Notre Dame. He

studies how digital innovation drives large-scale change in organizations and institutions. He teaches courses on

IT Strategy and Digital Innovation. Prof. Berente received his PhD from Case Western Reserve University’s

Weatherhead School of Management. He was an entrepreneur prior to his academic career, founding two

technology companies. He is the principal investigator for a number of U.S. National Science Foundation

projects and has won multiple awards for his teaching and his research. Prof. Berente is associate editor for MIS

Quarterly.

Matt Germonprez is the Mutual of Omaha Associate Professor of Information Systems in the College of

Information Science & Technology, University of Nebraska at Omaha. He uses qualitative field-studies to research

corporate engagement with open communities and the dynamics of design in these engagements. His lines of

research have been funded by numerous organizations including the National Science Foundation, the Alfred P.

Sloan Foundation, and Mozilla. Matt is the co-founder of the Association for Information Systems SIGOPEN and

the Linux Foundation Community Health Analytics OSS Project (CHAOSS).

Aaron Schecter is an Assistant Professor of Management Information Systems at the University of Georgia, Terry

College of Business. His research focuses on dynamic theories of team functioning and the development of

supporting analytical methods. He holds a PhD from Kellogg School of Management, Northwestern Universtiy.

References

[1] E. Ferrara, O. Varol, C. Davis, F. Menczer, and A. Flammini, “The Rise of Social Bots,”

Commun. ACM, vol. 59, no. 7, pp. 96–104, 2016.

[2] N. Diakopoulos, “Accountability in Algorithmic Decision Making,” Commun. ACM, vol. 59,

no. 2, pp. 56–62, 2016.

[3] S. Wachter, B. Mittelstadt, and L. Floridi, “Transparent, Explainable, and Accountable AI for

Robotics,” Sci. Robot., vol. 2, no. 6, pp. 1–17, 2017.

[4] N. Berente, S. Seidel, and H. Safadi, “Data-Driven Computationally-Intensive Theory

Development,” Inf. Syst. Res.

[5] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social Coding in GitHub : Transparency and

Collaboration in an Open Software Repository,” in CSCW Feburary 11-15, 2012.

https://sloan.org/grant-detail/8434

17

[6] M.-P. Pacaux, S. Debernard, A. Godin, B. Rajaonah, F. Anceaux, and F. Vanderhaegen,

“Levels of Automation and Human-Machine Cooperation: Application to Human-Robot

Interaction,” in Proceedings of the 18th World Congress of The International Federation of

Automatic Control Aug 28 - Sep 2, 2011.

[7] C. Salge and E. Karahanna, “Protesting Corruption on Twitter: Is it a bot or is it a person,”

Acad. Manag. Discov., 2016.

[8] E. Raymond, “The Cathedral and the Bazaar,” Philos. Technol., vol. 12, no. 3, 1999.

[9] A. Lindberg, N. Berente, J. Gaskin, and K. Lyytinen, “Coordinating Interdependencies in

Online Communities: A Study of an Open Source Software Project,” Inf. Syst. Res., vol. 27,

no. 4, pp. 751–772, 2016.

[10] J. Howison and K. Crowston, “Collaboration Through Open Superstition: A Theory of The

Open Source Way,” MIS Q., vol. 38, no. 1, pp. 29–50, 2014.

[11] A. Aaltonen and G. F. Lanzara, “Building Governance Capability in Online Social Production:

Insights from Wikipedia,” Organ. Stud., vol. 36, no. 12, pp. 1649–1673, 2015.

[12] T. Cornford, M. Shaikh, and C. Ciborra, “Hierarchy, Laboratory and Collective: Unveiling

Linux as Innovation, Machination and Constitution,” J. Assoc. Inf. Syst., vol. 11, no. 12, pp.

809–837, 2010.

[13] M. Germonprez, J. P. Allen, B. Warner, J. Hill, and G. McClements, “Open Source

Communities of Competitors,” Interactions, vol. 20, no. 6, pp. 54–59, 2013.

[14] M. Germonprez, J. E. Kendall, K. E. Kendall, L. Mathiassen, and B. Young, “A Theory of

Responsive Design: A Field Study of Corporate Engagement with Open Source

Communities,” Inf. Syst. Res., vol. 28, no. 1, pp. 64–83, 2017.

[15] C. Kelty, “There Is No Free Software,” J. Peer Prod., 2013.

[16] H. Simon, Sciences of the Artificial. MIT Press, 1996.

[17] R. Potvin and J. Levenberg, “Why Google stores billions of lines of code in a single

repository,” Commun. ACM, vol. 59, no. 7, pp. 78–87, 2016.

[18] B. Fitzgerald, “The Transformation of Open Source Software,” MIS Q., vol. 30, no. 3, pp.

587–598, 2006.

[19] B. Butler, E. Joyce, and J. Pike, “Don’t look now, but we’ve created a bureaucracy: the nature

and roles of policies and rules in Wikipedia,” in Proceeding of the twenty-sixth annual SIGCHI

conference on Human factors in computing systems, 2008.

