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Matt Germonprez, College of Information Science & Technology – University of Nebraska Omaha 

Aaron Schecter, Terry College of Business – University of Georgia 

 

ABSTRACT Bots are increasingly being used to 

coordinate work in open source software projects. As 

mechanisms that ensure the smooth functioning of 

open source software projects, bot activity has 

implications for how scholars and practitioners 

understand open source software development. In this 

article, we identify four typical classes of bots and 

discuss their role in the coordination of open source 

software projects. 

 

 

Introduction  

Bots—algorithms that automatically interact with humans—are everywhere [1]. A bot could be a 

conversational agent on a smartphone, a participant in the chatter on social media, or a trader in the 

financial markets. In more and more areas non-human actors are automatically interacting with their 

human counterparts. 

Therefore, it should come as no surprise that bots are also used to help coordinate open source 

software projects. From our research, we have identified four different classes of bots that help 

coordinate work in open source software projects: broker, checker, gatekeeper, and manager bots. In 

this article, we introduce these classes of bots and provide examples from Kubernetes—a popular open 

source software project spun out of Google. As is evident from this, and many other examples, bots are 

increasingly important to open source software. Recognizing these four general classes of bots is useful 

as they serve very different purposes. Bots support workflows of various complexities and criticalities. 

This gives software project organizations a lot of options in deciding where to deploy bots. Despite their 

widespread use in open source development, the role of bots remains unexplored in research. It is time 
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for practitioners and scholars to recognize bots as a popular coordinating mechanism in distributed 

software development. 

The Ubiquity and Importance of Bots 

Bots are increasingly important to open source software projects. In the case of Kubernetes, the usage 

of bots has grown steadily. Bots are now integral to the interaction within the project community. For 

instance, in 2017, 97% of all source code changes in the project involved some bot activity—up from 

28% during the project’s first year. Over the same period, the volume and the variety of tasks involving 

bots have also risen substantially. Figure 1 depicts the number and the type of bot activity in the project. 

The chart shows a steep incline in the number (the height of each of the stacked bars) and the diversity 

(the colors that make up each of the stacked bars) of the various bot tasks over time. This development 

suggests that tasks that involve bots drive a lot of interactions in the community.  

 

Figure 1. The volume and the diversity of bot commands used in the Kubernetes project over time. Each color in 

the stacked bar represents the usage of one type of bot command (chart and data licensed under Apache 2.0 by 

the Cloud Native Computing Foundation, Source: https://devstats.k8s.io/) 

 

https://devstats.k8s.io/
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Most bot commands in Figure 1 are pre-scripted tasks that extend existing GitHub functionality 

to help support collaboration among developers. For instance, bot commands provide shorthand 

interfaces to GitHub features such as labeling discussions or patches with descriptions. However, bot 

activity in the project goes beyond such simple scripted commands. Bot activity routinely involves both 

automatic and continuous interactions with developers at crucial intersections of project workflows. 

Additionally, our analysis shows that bots trigger such commands themselves. Hence, bots include the 

above scripts and extend GitHub functionality to interact with developers.  

 

Auditing Algorithms 

We conducted an algorithm audit [2] and analyzed the activity of bots deployed in the Kubernetes 

source code repository on GitHub. Algorithm auditing refers to a set of analysis techniques aimed at 

scrutinizing—often proprietary—programmatic parts of software-enabled services. As in all algorithm 

audits, we seek to discover the mechanisms that determine activity of non-human actors [3]. 

We followed an inductive, data-driven approach to deepen our understanding of bots in open 

source software [4]. Kubernetes uses the online version control and management platform GitHub.com 

to coordinate development work [5]. One of the features of the GitHub platform is the ability of 

developers to collaborate on pull requests. A pull request is an activity in open source software 

development in which developers request to “pull” source code changes into an open source project. 

GitHub makes these changes, metadata, and the discussions among the developers openly accessible. 

We downloaded all pull request discussions in the project from the time Google open sourced the project 

in June 2014 to October 2017. 

We include bots in our analysis based on three criteria; First, bots must be regularly active in 

the repository—this excludes inactive, older, or decommissioned bots. Second, the Kubernetes project 

organization must deploy the bots—this excludes bots under the assumed control of other developers. 

Third, the bots must be part of the general project workflow—this excludes bots aimed at supporting 
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individual developers. For instance, some bots support small groups of developers whose tasks are not 

part of Kubernetes’ overall workflow. 

Bots interact with human developers mostly through comments on pull requests. Using a 

random sample of 150 pull requests with bot activity, we proceeded with a manual content analysis of 

the pull request discussions. We listed the typical actions carried out by different bots that fit the above 

criteria. To corroborate the activity in the pull request comments, we consulted additional information 

sources such as the Google groups email list used by the community and the documentation that was 

provided by the project. Based on the bot activity in the pull requests, we created task profiles for each 

bot, that is, a summary of the tasks typically performed by the bot. These profiles are the foundation for 

the classification of the bots which we present below. 

We have identified four classes of bots in the Kubernetes project that fit the criteria above. We 

found that bot activity occurs from the earliest point of the project workflow—when developers first 

submit changes—through review, testing, and implementation of source code. Figure 2 highlights the 

focus of activity of four bots that are examples of the four classes of bots that we identified in the 

Kubernetes project.  

 

 

Figure 2. A simplified workflow and the corresponding domains for bot activity in the Kubernetes project  
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Four Classes of Bots 

We identified four general classes of bots that are involved in coordinating work in the Kubernetes 

project. Listed in the order of the simplest to the most complicated, we refer to them as brokers, 

checkers, gatekeepers, and managers. Each class encompasses the functionality of the simpler classes 

and extends it. As a result, the complexity of bot activity increases as the bots automate higher level 

tasks [6]. Brokers scan and re-post information, whereas checkers additionally evaluate the information. 

Gatekeepers have formal authority associated with their evaluation and managers combine evaluation 

and formal authority with interactive coordination.  

 

The Broker 

In their simplest form, bots act as brokers. This class of bots follows simple ‘if-this-then-that’ 

procedures. The objective of this class of bots is to perform brokerage-like tasks. Brokers are deployed 

to automate tasks that require little-to-no human involvement and tasks that do not critically impact the 

output of a workflow. As such, they process information (e.g., messages or comments) and relay a 

message to pre-defined audiences. As a simple “action support” automation [6], brokers are common 

in the context of social networking where their importance is increasingly recognized [1], [7]. On 

platforms such as GitHub, brokers are widely used, for example, to facilitate discussions among 

developers.  

In the Kubernetes project, the bot ‘k8s-reviewable-bot’ is a broker. The length of the pull 

request discussion or the size of the suggested change in the source code triggers this bot. Above a 

threshold value of number of comments in the discussion or lines of code in a patch, this bot copies the 

communication around software changes that are currently under review. The bot automatically adds a 

comment to the respective pull request discussion with a link to an external application. The link directs 

the developers to a tool that the project organization prefers to use to keep track of complex patches. In 

the following example, the bot refers to the location where the suggested changes in the source code are 

tracked, grouped, and visualized for review. Figure 3 illustrates how the bot is making the project 
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members aware of the option to follow the review process elsewhere. This bot completes this task by 

posting a permanent link to the external review environment (‘reviewable’) in the pull request 

discussion.  

 

 

Figure 3. A Kubernetes broker-bot automatically posting to a pull request discussion (‘k8s-reviewable-bot’)  

Source: Kubernetes Code Repository on GitHub.com 

 

The Checker 

Another class of bots found in open source software projects is the checker. Checkers follow simple 

rules similar to brokers. A crucial difference is that checkers additionally includes an intervention to 

automate decision making support [6]. Checkers are triggered when information is scanned according 

to the pre-defined rules. Similar to the process of using a dictionary, checkers use a look-up and cross-

reference process for the information that is presented using the pre-set rules. Thus, checkers can ensure 

consistency within the area that they monitor. Aside from this difference in their objective, checkers 

also have a different scope than brokers. Checkers regularly involve human actors by alerting them of 

the necessity to double-check information or communicating when an intervention is needed. 

Consequently, it is possible to deploy checkers in support of workflows that are more critical to the 

final development output. 

In the Kubernetes project, the bot ‘k8s-cherrypick-robot’ is a checker. The bot leverages a core 

feature on the GitHub platform to help developers coordinate their work. GitHub assigns free-text labels 

to each conversation. Standard labels include tagging a conversation as a bug, an enhancement, or a 

question. GitHub also allows to create custom labels. One such custom label in the Kubernetes project 
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is the ‘cherrypick’. So-called ‘cherrypicks’ are patches meant for major releases of the project. As such, 

changes with that label are typically passed on to whitelisted contributors for further review. The bot is 

triggered when a developer marks a source code change with the ‘cherrypick’-label to help to support 

this workflow. By pre-screening the ‘cherrypick’ labels and assigning or removing descriptions, the 

checker acts as a mediator between the wider developer community and whitelisted project members. 

In Figure 4, community members discuss the inclusion of a suggested change in the project’s release 

cycle and propose to label their patch as a ‘cherrypick’. However, the intended major release has already 

been closed and no longer accepts submissions. The k8s-cherrypick-bot intervenes as a consequence of 

the patch not being associated with a major release and removes the ‘cherrypick’-label automatically.  

 

 

Figure 4. A Kubernetes checker-bot commenting (‘k8s-cherrypick-robot’) [Note: the conversation was truncated 

for illustration] Source: Kubernetes Code Repository on GitHub.com 

 

 

The Gatekeeper 
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Gatekeepers automatically exercise control [6] over parts of the workflow. Therefore, this bot class 

supports actions with higher levels of criticality for the development of open source software. When 

deployed at crucial intersections of the project workflow, gatekeepers confirm adherence to predefined 

requirements so that work can proceed to subsequent steps in the process. Bots of this class differ from 

the previous classes mentioned above because their activities exercise direct control over the workflow. 

Activity in the preceding bots could have been ignored without jeopardizing the project workflow. In 

contrast, the gatekeeper bot enforces a mandatory checkpoint for developer activity at a crucial 

bottleneck. Without passing the gatekeeper bot, work will not proceed. 

In the Kubernetes project, the bot ‘k8s-ci-bot’ is a gatekeeper bot. Deployed in the general 

testing workflow, the bot first checks whether the author of a suggested change in the source code has 

signed the Contributor Licensing Agreement (CLA). If necessary, the bot then redirects to the respective 

compliance page before the developer can submit changes for review (Figure 5).  
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Figure 5. A Kubernetes gatekeeper bot screening a pull request for CLA compliance (‘k8s-ci-robot’) 

Source: Kubernetes Code Repository on GitHub.com 

 

If CLA compliance is confirmed, the bot checks if the change in the source code has been 

properly labeled and reviewed according to the procedures agreed to by the project organization. Only 

once all preceding checks are met does the gatekeeper automatically forward the source code change to 

standardized testing. Figure 6 illustrates how the bot communicates the code test results and coordinates 

further steps. 
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Figure 6. A Kubernetes gatekeeper bot sharing test results (‘k8s-ci-robot’) 

Source: Kubernetes Code Repository on GitHub.com 

 

The Manager 

Managers are deployed to complex and critical tasks in open source software development. While this 

class includes functions that are also carried out by other bots, their activity extends to vital development 

tasks—often hand-in-hand with developers. One unique functionality of managers is the allocation and 

prioritization of resources to their workflow. Thus, managers help guide work by automating 

supervisory control [6]. 

In the Kubernetes project, the bot ‘k8s-merge-bot’ is a manager. The bot is triggered when a 

source code change has been submitted by checking if the developer is on a whitelist. If not, the bot 

assigns reviewers from the whitelist and tasks them with a review of the proposed changes. After review 

by a whitelisted developer of the project, the manager feeds the patch into the testing workflow 

monitored by a gatekeeper (i.e., k8s-ci-robot). Upon completion of the standardized tests, the manager 

schedules the changes for production according to a prioritization that is defined by the project 

developers. This prioritization occurs by confirming that no dependencies or redundancies occur during 

the time that is needed to review and test a patch. Only the k8s-merge-bot and a limited number of 

project developers have permission to schedule source code changes for implementation.  

Additionally, the k8s-merge-bot undertakes a wide spectrum of actions. For instance, triggered 

by checking timestamps on patches, the bot reminds project developers that a discussion has not been 
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active for a while. Additionally, the bot plugs patches into a variety of starting points across project 

workflows. For example, the bot controls the re-testing workflow by flagging patches with so-called 

‘flaky’ (i.e., inconsistent) test results. When a patch has been identified as ‘flaky’ the manager re-directs 

the ‘flaky’ patch back to the testing workflow. This process repeats itself until the test results are no 

longer suspicious. The bot also ensures that free-text descriptions by users (such as labels) are applied 

consistently to support developer coordination.  

In Figure 7, the ‘k8s-merge-bot’ is triggered by a reviewing developer through the command 

“/approve”. The bot confirms approval of whitelisted developers, automatically re-tests the patch, and 

finally schedules the source code change for production. It does so by automatically calling the “/test” 

command which triggers another bot and initiates the testing workflow. 
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Figure 7. A Kubernetes manager-bot coordinating work to completion (‘k8s-merge-robot’) 

Source: Kubernetes Code Repository on GitHub.com 

 

 

Open Source Bots and Organizations 

Open source software development communities were long thought to resemble egalitarian bazaars [8]. 

In these communities, individuals found interesting ways to democratically coordinate their work, 

resulting in surprisingly complex code [9]–[11]. This phenomenon is interesting because it is difficult 

to coordinate complex activities without the benefit of an organizational hierarchy such as those found 
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in corporations. Increasingly, researchers and practitioners have come to realize that open source 

software projects are not as egalitarian as once perceived. Large-scale open source software projects 

are structured and regularized in ways that connect with organizational work. As such, open source 

software projects can be quite hierarchical [12] and often involve a significant amount of corporate 

engagement [13], [14]. 

In these corporate contexts, bots are one of many instruments in the coordination and structuring 

of open source software project work. While bots are by no means an attribute exclusively found in 

open source software projects with corporate engagement, it is important to recognize that the 

deployment of bots makes sense for corporations – as sponsors as well as users of open source software 

projects. In the context of a maturing open source software development, bots are one of many 

indicators of an increasing move towards professional development practices in open source projects. 

Our illustrations, using data from Kubernetes, suggest that bots provide procedural control to 

maintain and reinforce order in the project. First, with the help of bots, developers extend their ability 

to coordinate development in-line with the agreed-upon procedures. Second, bots take over mundane 

tasks (e.g., the checker bot) which in turn frees up developer efforts so that they can focus their energy 

elsewhere. Finally, bots accurately relay feedback. For example, the checker bots and the manager bots 

are unequivocal about failed tests and articulate exactly what is expected from developers. Enforcing 

the agreed-upon rules for quality and process facilitates collaborative work in the project. Collectively, 

these factors provide stability and reliability at scale.  

This is a critical aspect for the continued use of the software. As projects grow in size, bots 

represent an important mechanism for reinforcing and managing the procedures that were initially 

agreed-upon to coordinate the development work for a project. Bots increase the reliability and stability 

that corporations require to build on and trust open source software. It is no coincidence that Kubernetes 

was once an internal Google project and now involves a variety of corporations—some of its biggest 

contributors are Red Hat, Microsoft, and Huawei. Corporations likely favor open source projects with 

a certain level of domestication to be useful [15]. Nobel laureate Herb Simon argued that it is procedural 

rationality which enables the execution of complex tasks in organizations [16]. By addressing the 
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housekeeping, quality control, and routing of common activities, bots help to keep work in open source 

projects predictable and enforce procedural rationality. Bots augment developer reach and enforce the 

rules of the project by enacting desired procedures through the execution of various tasks—often 

automatically. Akin to clerks, bots instantiate process intentions, making them important stabilizing 

mechanisms for open source software projects. 

 

Conclusion 

How important bots are to open source projects is highlighted by the four general classes of bots that 

we identified and illustrated. As illustrated by our case study, bots leverage and extend the functionality 

of version control repository management systems such as GitHub. As a popular representative of such 

systems, GitHub provides ample sources of projects using bots in their development work. For instance, 

we found evidence for bots similar to our classification in a variety of prominent open source projects 

such as Node.js (https://github.com/nodejs), Bootstrap (https://github.com/twbs), and brew 

(https://github.com/Homebrew). Indeed, Google’s internal software development operation relies 

substantially on bots such as the ones described here [17]. For our research, we fit bots into one of four 

classes. Further insights might come from investigations that were beyond our focus and might discover 

classes of bots that we did not address in this paper. Consider, for instance, that some projects use bots 

to automate singular yet cumbersome tasks such as code migration. Additionally, certain bots operate 

across projects because of an attribute these projects share, for example, their programming language. 

There are all sorts of bots that can conceivably impact open source projects – from code generating bots 

to malicious bots. Our research offers a view on bots that help with routine coordination within one 

project. This highlights the importance of bots in open source software projects and proposes a 

parsimonious taxonomy of bots that help coordinating work on those projects.  

The role of bots has implications for how practitioners and scholars think about open source 

software projects. Bots serve as coordination mechanisms that are important to the smooth functioning 

of open source software projects. For practitioners, bots are a useful tool for implementing and 

understanding project workflows. Software development practices can be supported and advanced 

https://github.com/nodejs
https://github.com/twbs
https://github.com/Homebrew
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through bot deployment by covering various degrees of task complexities and criticalities. For scholars, 

the presence of bots affects ways of researching open source software projects, especially in applications 

of social network analysis or sequence analyses. It is critical to incorporate an understanding of bots 

when attempting to explore the dynamics of open source software project relationships and processes. 

Research on open source software projects that does not actively attend to the role of bots risks 

conflating different forms and purposes of activity in a project. Disregarding bot activity as 

uninteresting altogether may restrict the conclusions that can be drawn from studies on open source 

software projects. 

Lastly, it is important to understand bots in the context of the maturing open source software 

space. Of course, such projects still involve hackers creating software for their own needs, but open 

source software is increasingly part of many commercial operations [18]. As bots extend developer 

influence, they help to enforce procedural rules to implement pre-defined workflows; their existence 

indicates much more regularized work than previously discussed in studies of open source [19]. 
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