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Abstract

In the aftermath of the global financial crisis and ongoing COVID-19 pandemic, investors face chal-

lenges in understanding price dynamics across assets. This paper explores the performance of the

various type of machine learning algorithms (MLAs) to predict mid-price movement for Bitcoin

futures prices. We use high-frequency intraday data to evaluate the relative forecasting perfor-

mances across various time frequencies, ranging between 5-minutes and 60-minutes. Our findings

show that the average classification accuracy for five out of the six MLAs is consistently above the

50% threshold, indicating that MLAs outperform benchmark models such as ARIMA and random

walk in forecasting Bitcoin futures prices. This highlights the importance and relevance of MLAs

to produce accurate forecasts for bitcoin futures prices during the COVID-19 turmoil.
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1. Introduction

In this research, we use high-frequency Bitcoin pricing data together with machine learning

algorithms to predict mid-price movement for bitcoin futures price series across a variety of time

frequencies, ranging between 5-minutes and 60-minutes. The novelty of our research surrounds the

use of all available Bitcoin futures series from the Chicago Mercantile Exchange (CME). The CME

had offered the product as a mechanism to hedge Bitcoin exposure or harness its performance with

futures and options on futures, both of which have been markets presenting tremendous growth

since their introduction [Akyildirim et al., 2020, Corbet et al., 2018a,b]. While liquidity proved

to be a substantial issue for some long-ranged futures such as those 6-months and 7-months into

the future, after several specification tests, we present results based on the first 5-month futures

products1. The contract is found to be quite substantial in size, representing the ownership of 5

bitcoin, as defined by the CME CF Bitcoin Reference Rate (BRR), quoted in U.S. dollars and cents

per bitcoin. This exposure to Bitcoin is based on a leverage rate of 43%, therefore the investment

outlay is below that of the face-value of 5 BTC. The minimum price fluctuation is $5.00 per bitcoin,

where calendar spreads are $1.00 per bitcoin. Monthly contracts are listed for six consecutive

months and two additional December contract months2.

The decision for the CME to provide Bitcoin futures on 10 December 2017 was viewed as a

significant milestone in the development of such a relatively young financial product, where to

this point, few major exchanges, underpinning with such reputation and historic experience had

considered similar responses. The launch of CME Bitcoin futures was viewed as the first step in the

new cryptocurrency’s path toward legitimacy, hoping to entice institutional investors who had been,

until late 2017, had been unwilling to enter the market for a variety of issues. In late 2020, CME

futures possessed over $1 billion in open interest, representing the significant growth of the market

over a very short amount of time. The use of settlement pricing from multiple sources was initially

identified as a strong beneficial characteristic, particularly with the many problems pertaining to

cyber-criminality and illicit behaviour across exchanges and directly through product development

and creation.

1Such a decision was made for the brevity of presentation, although further estimates and variations of time-
frequency of analysis are available on request

2As per the CME, Trading terminates at 4:00 p.m. London time on the last Friday of the contract month. If this
is not both a London and U.S. business day, trading terminates on the prior London and the U.S. business day.
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We contribute to the literature by evaluating the application of high-frequency bitcoin futures

prices using six machine learning algorithms during the outbreak of COVID-19. We attempt to

forecast the mid-point movement of CME Bitcoin futures pricing across multiple futures products

during COVID-19 where we use the sign prediction rate or accuracy rate which is calculated as

the proportion of times the related methodology correctly predicts the next time mid-price return

direction. If the underlying process were fully random then the correct sign prediction ratio would be

50%, where any accuracy rate greater than 50% would indicate the ability of the algorithm to beat

the market, further supported with the use of optimal profit ratios to measure the performance of

the related classification algorithm. Furthermore, we report most of the methods to provide close

results to each other, the best performing model which is the support vector machine yields on

average out-sample success rates of around 56%. Another important point to note is that while

the maximum value of accuracy one can obtain with the ARIMA model is only 56% among all

cases considered, this number even increases up to 71% for the support vector machine algorithm.

Further evidence suggests that such predictability increases in magnitude as we focus on futures

with larger maturities, particularly those of 4- and 5-month duration. Such evidence indicates that

Bitcoin futures products present evidence of sign predictability using machine learning.

The paper is structured as follows: previous research that guides our selected theoretical and

methodological approaches are summarised in Section 2. Section 3 presents a thorough explanation

of the wide variety of data used in our analyses, while Section 4 presents a concise overview of the

methodologies utilised. Section 5 presents a concise overview of the results and their relevance for

policy-makers and regulatory authorities, while Section 6 concludes.

2. Previous Literature

This research develops upon three key areas of research. The first is built on the development

of machine learning and the inherent processes contained therein. The second is based on the

development of cryptocurrencies with an emphasis on futures pricing behaviour, while finally, the

third area through which we develop our work is based on several pieces that have examined the

predictability of cryptocurrency spot prices. Primarily, machine learning has been used across

a variety of areas such as that of stock markets [Wittkemper and Steiner, 1996, Ntakaris et al.,

2018, Sirignano, 2019, Huck, 2019, Sirignano and Cont, 2019, Huang and Liu, 2020, Philip, 2020];

currency markets during crises [El Shazly and El Shazly, 1999, Zimmermann et al., 2001, Auld
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and Linton, 2019]; energy markets such as West Texas Intermediate [Chai et al., 2018], crude oil

markets [Fan et al., 2016], Cushing oil and gasoline markets [Wang et al., 2018], gold markets [Chen

et al., 2020]; gas markets [Ftiti et al., 2020], agricultural futures [Fang et al., 2020]; copper markets

[Sánchez Lasheras et al., 2015]; and coal markets [Matyjaszek et al., 2019, Alameer et al., 2020];

cryptocurrency spot markets [Akyildirim et al., 2020, Chowdhury et al., 2020, Chen et al., 2021]

options markets [Lajbcygier, 2004, De Spiegeleer et al., 2018]; and futures markets [Kim et al.,

2020].

Our work further develops on that based on the use of neural networks for forecasting purposes,

through which a concise synthesis of the earlier literature is provided by Zhang et al. [1998]. Ghod-

dusi et al. [2019] presented a critical review of the literature based on the application of machine

learning, suggesting that Support Vector Machine (SVM), Artificial Neural Network (ANN), and

Genetic Algorithms (GAs) are among the most popular techniques used to focus on energy markets.

Nakano et al. [2018] previously investigated Bitcoin intraday technical trading based on artificial

neural networks for the return prediction, through which Akyildirim et al. [2020] further developed

by examining the predictability of the most liquid twelve cryptocurrencies are analysed at the daily

and minute level frequencies. The authors found that machine learning classification algorithms

reach about 55–65% predictive accuracy on average at the daily or minute level frequencies, while

the support vector machines demonstrate the best and consistent results in terms of predictive accu-

racy compared to the logistic regression, artificial neural networks, and random forest classification

algorithms. Saad et al. [2020] provided evidence of prediction accuracy of up to 99% for Bitcoin

and Ethereum prices. Whereas Hubáček et al. [2019] introduced a forecasting system designed to

profit from the sports-betting market specifically developing their work through the application of

convolutional neural networks for match outcome prediction.

Previous research on cryptocurrency futures has been quite extensive to date. An extensive

overview of the key areas of research was presented by Corbet et al. [2019], through which areas

surrounding market efficiency, the development of futures exchanges and illicit behaviour are out-

lined. Akyildirim et al. [2020] utilised a high-frequency analysis to show significant pricing effects

sourced from both fraudulent and regulatory unease within the industry, verifying that CME Bit-

coin futures dominate price discovery relative to spot markets. Alexander et al. [2020] found similar

evidence when considering the role that BitMEX derivatives played when similarly, information-

ally leading spot markets. Corbet et al. [2020] found further evidence of Bitcoin market maturity

4



through significant response to macroeconomic news, while Koutmos [2020] found that interest rates

and implied stock market and foreign exchange market volatilities are important determinants of

Bitcoin returns. de la Horra et al. [2019] analysed the demand for Bitcoin to determine whether

it stems from Bitcoin’s utility as a medium of exchange, a speculative asset, or as a safe-haven

commodity, finding that the asset is highly speculative in the short run. Giudici and Polinesi [2019]

primarily identified that Bitcoin exchange prices are positively related to each other and large ex-

changes Bitstamp, drive the prices. Such destabilising effects of fraud and regulatory events had

also been identified by Akyildirim et al. [2020], Corbet et al. [2020], Katsiampa et al. [2019a,b] and

Hu et al. [2020]. Evidence supporting the predictability of Bitcoin futures prices through the use of

machine learning would not explicitly be a unique characteristic to cryptocurrency markets, as it

has been previously identified across several assets such as foreign exchange markets [Plakandaras

et al., 2015] and several other asset markets [Akyildirim et al., 2020], it is essential to note that

it is contrary to the efficient markets hypotheses, where prices should follow a martingale process.

However, such a result could present another evidence supporting the developing growth of opera-

tional and technical efficiency that has been observed in such markets in recent years. Such markets

have grown to such an international status, that substantial amounts of research have identified the

usage of cryptocurrency markets as a hedging mechanism against the significant financial market

pressures and contagion effects that were associated with the development and broad confusion as-

sociated with the COVID-19 pandemic, with emphasis on contagion effects [Akhtaruzzaman et al.,

2020, Corbet et al., 2020, 2021, Mensi et al., 2020], asset price discovery [Corbet et al., 2020], safe

haven effects [Conlon et al., 2020], hedge fund performance [Yarovaya et al., 2020], sentiment [Cor-

bet et al., 2020], political risk [Sharif et al., 2020], and the basis of future research focus [Goodell,

2020]. As Bitcoin futures market development was observed to be a significant milestone in the

transition of not only Bitcoin in isolation, but cryptocurrency as a broad financial product, it is

important to specifically understand whether there exist differentials of behaviour in comparison to

traditional financial market assets.

While specifically forecasting Bitcoin spot prices, using neuro-fuzzy techniques, Atsalakis et al.

[2019] estimated that their selected PATSOS methodological structure performed 71% than buy-

and-hold strategies. Similarly, Faghih Mohammadi Jalali and Heidari [2020] found that through

the use of a first-order grey model (GM (1,1)), Bitcoin’s price could be predicted accurately, to the

extent of a confidence level of approximately 98% through the selection of specific periods. Alonso-
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Monsalve et al. [2020] found that Convolutional LSTM neural networks outperformed all the rest

significantly, while CNN neural networks were also able to provide satisfactory results. especially in

the Bitcoin, Ether and Litecoin cryptocurrency markets. Further, Ma et al. [2020] found that the

proposed novel MRS-MIDAS model exhibits statistically significant improvement for forecasting the

RV of Bitcoin Between 2011 and 2018, Adcock and Gradojevic [2019] found that backpropagation

neural networks dominate various competing models in terms of their forecast accuracy. Further,

when attempting to predict Bitcoin bubble crashes, Shu and Zhu [2020] showed that an LPPLS

confidence indicator presented superior detection capability to bubbles and accurately forecast the

bubble crashes, even if a bubble existed for only a short period of time. Such work built on that of the

same structure of Samitas et al. [2020], who found that the effectiveness of machine learning reached

98.8% as an early warning system to predict the financial crisis. Zoumpekas et al. [2020] found that

Convolutional Neural Network and four types of Recurrent Neural Network including the Long Short

Term Memory network, the Stacked Long Short Term Memory network, the Bidirectional Long

Short Term Memory network, and the Gated Recurrent Unit network could be utilised to predict the

Ethereum closing price in real-time with promising accuracy and experimentally proven profitability.

Such results present evidence that prediction of cryptocurrency markets was statistically possible in

direct opposition to that of the efficient markets hypothesis (previously examined in cryptocurrency

markets by Sensoy [2019] and Akyildirim et al. [2020]), but this is not the first market to have

presented such evidence as Plakandaras et al. [2015] had previously identified similar atheoretical

outcomes had been identified on spot foreign exchange markets3.

3. Data

In this study, we use dollar-denominated Bitcoin futures data from Chicago Mercantile Ex-

change. We obtain the data for 1-month futures up to 9-month futures at a minutely level which

have the earliest starting points at different dates. To have enough observations to draw meaning-

ful and robust conclusions we use only 1-month to 5-month futures data with an initial date of 2

January 2020 and an end date of 10 September 2020. Bitcoin futures can be traded at any time

during the day at CME after 11:00 PM on Sunday until 10:00 PM on Friday (because of daylight

3The authors present evidence against the efficient markets hypotheses based on the spot markets for EUR/USD,
USD/JPY, AUD/NOK, NZD/BRL and ZAR/PHP.
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saving time change on March 8, 2020, the trading hours shifted as after 10:00 PM on Sunday till

9:00 PM on Friday). The time interval that we studied corresponds to 217 trading days which we

sample at 5-, 10-, 15-, 30-, 60-min frequencies. For each time frequency, we compute the mid-price

from the best ask and bid prices using the last observation in that time interval. Then we compute

the log-returns for each time scale from these mid-prices. Table 1 shows the total number of obser-

vations for the mid-price returns of bitcoin futures at different time scales, while Figure 1 presents

a plot of the 1-month futures price at 5-minute frequency during 2020. For instance, while there are

4345 observations at the 60-min frequency, this number increases to 51733 at the 5-min frequency.

Table 2 provides descriptive statistics for mid-price future returns for different maturities and time

scales. As it is clear from the table, mean and median values are always around zero independent

of time to maturity and time-frequency. As an expected min, max and standard deviation values

get larger in absolute value as the time to maturity increases.

4. Classification Algorithms

4.1. Machine learning models

We apply six different machine learning algorithms (k-Nearest Neighbours, Logistic Regression,

Naive Bayes, Random Forest, Support Vector Machine, Extreme Gradient Boosting) to classify the

target variable (it refers to the return of mid-price of the bitcoin futures in our study) as “up" or

“down" at varying time frequencies. These methods are selected due to their popularity and fast

implementation, and they are performed with Python’s well-known scikit-learn package. In what

follows, we briefly describe how each of these classification algorithms helps to forecast the sign of

the target variable.

4.1.1. k-Nearest Neighbours Classifier

The k-nearest neighbours’ algorithm (kNN) is a commonly used, simple yet successful classifi-

cation method that has been applied in a large number of classification and regression problems

such as handwritten digits and satellite image scenes [Melgani and Bruzzone, 2004, Munder and

Gavrila, 2006]. The kNN is a supervised machine learning model where the model learns from the

labelled data how to map the inputs to the desired output so that it can make predictions on test

data. It is a non-parametric algorithm as it does not make any assumptions about the data, such

as normality. The kNN model picks an entry in the database and then looks at the ‘k’ entries in
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the database which are closest to the chosen point. Then, the data point is assigned the label of

the majority of the ‘k’ closest points. For instance, if k = 6 with 4 of points being as ‘up’ and 2 as

‘down’, the data point in question would be labelled ‘up’ since ‘up’ is the majority class.

More generally, the kNN algorithm works as follows: For a given value of k, it computes the

distance between the test data and each row of the training data by using a distance metric like

Euclidean metric (some of the other metrics that can also be used are cityblock, Chebychev, cor-

relation, and cosine). The distance values are sorted in ascending order and then top k elements

are extracted from the sorted array. It finds the most frequent class among these k elements and

returns as the predicted class. In our application of kNN, we optimize the algorithm over the k

values from 1 to 20.

4.1.2. Naive Bayes Classifier

The Naive Bayes is another widely used classification algorithm as it is easy to build and

particularly useful for very large data sets [Chawla et al., 2002, Zhang et al., 2014]. This method is

a supervised learning algorithm based on the application of the Bayes’ theorem, and also called a

probabilistic machine learning algorithm. It makes the “naive" assumption that the input features

are conditionally independent of each other given the classification. If this assumption holds then

the naive Bayes classifier may perform even better than more complicated models. However, in real

life, most of the time it is not possible to get a set of predictors which are completely independent.

The naive Bayes classifier assigns observations to the most probable class by first estimating the

densities of the predictors within each class. As a second step, it computes the posterior probabilities

according to Bayes’ rule:

PP̂ (Y = k | X1, ..., XP ) =

π(Y = k)

P∏
j=1

P (Xj | Y = k)

K∑
k=1

π(Y = k)

P∏
j=1

P (Xj | Y = k)

(1)

where Y is the random variable corresponding to the class index of an observation, X1, ..., XP are

the random predictors of an observation, and π(Y = k) is the prior probability that a class index

is k. Finally, it classifies an observation by estimating the posterior probability for each class, and
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then assigns the observation to the class yielding the maximum posterior probability.

4.1.3. Logistic Regression Classifier

The Logistic Regression is a machine learning classification algorithm that is used to forecast

the probability of a categorical dependent variable [Chen et al., 2013, Fischer and Krauss, 2018].

In logistic regression, the outcome of the target variable is dichotomous (i.e., there are only two

possible classes). The classification algorithm forecasts the probability of occurrence of a binary

event utilizing a logit function. More explicitly, logistic regression outputs a probability value by

using the logistic sigmoid function and then this probability value is mapped to two discrete classes.

In our case, we have a binary classification problem of identifying the next time excess return as

up or down. Logistic regression assigns probabilities to each row of the feature’s matrix X. Let us

denote the sample size of the dataset with N and thus we have N rows of the input vector. Given

the set of d features, i.e., x = (x1, ..., xd), and parameter vector w, the logistic regression with the

penalty term minimizes the following optimization problem:

min
w,c

wTw

2
+ C

N∑
i=1

log(exp(−yi(xTi w + c)) + 1) (2)

where we find the optimal value of C by making a grid search over a set of reasonable values for C.

4.1.4. Random Forest Classifier

The Random Forest Classifier is an ensemble algorithm such that it combines more than one

algorithm of the same or different kind for classifying objects. Decision trees are the building

blocks of the random forest model. In other words, the random forest consists of a large number

of individual decision trees that function as an ensemble. Random forest classifier creates a set

of decision trees from a randomly selected subset of the training set, and each tree makes a class

prediction. It then sums the votes from different decision trees to decide the final class of the

test object. For instance, assume that there are 5 points in our training set that is (x1, x2, ..., x5)

with corresponding labels (y1, y2, ..., y5) then random forest may create four decision trees taking

the input of subset such as (x1, x2, x3, x4), (x1, x2, x3, x5), (x1, x2, x4, x5), (x2, x3, x4, x5). If three

of the decision trees vote for “up" against “down" then the random forest predicts “up". This

works efficiently because a single decision tree may produce noise but a large number of relatively
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uncorrelated trees operating as a choir will reduce the effect of noise, resulting in more accurate

results.

More generally, in the random forest method as proposed by Breiman [2001], a random vector

θk is generated, independent of the past random vectors θ1, ..., θk−1 but with the same distribution;

and a tree is grown using the training set and θk resulting in a classifier h(x, θk) where x is an input

vector. In random selection, θ consists of several independent random integers between 1 and K.

The nature and dimension of θ depend on its use in tree construction. After a large number of

trees are generated, they vote for the most popular class. This procedure is called random forest. A

random forest is a classifier consisting of a collection of tree-structured classifiers h(x, θk), k = 1, ...

where the θk’s are independent identically distributed random vectors and each tree casts a unit

vote for the most popular class at input x.

4.1.5. Support Vector Machine Classifier

The Support Vector Machine (SVM) is a supervised machine learning algorithm used for both

regression and classification tasks [Fauvel et al., 2008, Suykens and Vandewalle, 1999]. The support

vector machine algorithm’s objective is to find a hyperplane in an N -dimensional space where N

is the number of features that distinctly classify the data points. Hyperplanes can be thought of

as decision boundaries that classify the data points. Data points falling on different sides of the

hyperplane can be assigned to different classes. Support vectors are described as the data points

that are closer to the hyperplane and influence the position and orientation of the hyperplane.

The margin of the classifier is maximized using these support vectors. In more technical terms,

the above process can be summarized as follows. Given the training vectors xi for i = 1, 2, ..., N

with a sample size of N observations, the support vector machine classification algorithm solves the

following problem given by

min
w,h,ξ

wTw

2
+ C

N∑
i=1

ξi (3)

subject to yi(wTφ(xi)) ≥ 1− ξi and ξi ≥ 0, i = 1, 2, ..., N . The dual of the above problem is given

by

min
α

αTQα

2
− eTα (4)
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subject to yTα = 0 and 0 ≤ αi ≤ C for i = 1, 2, ..., N , where e is the vector of all ones, C > 0 is the

upper bound. Q is an n by n positive semi-definite matrix. Qij = yiyjK(xi, xj), where K(xi, xj) =

φ(xi)
Tφ(x) is the kernel. Here training vectors are implicitly mapped into higher dimensional space

by the function φ. The decision function in the support vector machines classification is given by

sign

(
N∑
i=1

yiαiK(xi, x) + ρ

)
. (5)

The optimization problem in Equation 3 can be solved globally using the Karush-Kuhn-Tucker

(KKT) conditions. This optimization problem depends on the choice of the Kernel functions. Our

study employs the Gaussian (rbf) kernel, which is denoted by exp(−γ‖x − x′‖2) where γ must be

greater than 0. When SVM is implemented, we try to find an optimal value of C and γ for each

stock by using a grid search for each of these parameters.

4.1.6. Extreme Gradient Boosting Classifier

The Extreme Gradient Boosting (XGBoost) is a decision-tree-based ensemble machine learning

algorithm that uses a gradient boosting framework. As we said before, an ensemble method is a

machine learning technique that combines several base models to produce one optimal predictive

model [Weldegebriel et al., 2020]. An algorithm is called boosting if it works by adding models on

top of each other iteratively, the errors of the previous model are corrected by the next predictor

until the training data is accurately predicted or reproduced by the model. A method is called

gradient boosting if, instead of assigning different weights to the classifiers after every iteration, it

fits the new model to new residuals of the previous prediction and then minimizes the loss when

adding the latest prediction. Namely, if a model is updated using gradient descent, then it is

called gradient boosting. XGBoost improves upon the base gradient boosting framework through

systems optimization and algorithmic enhancements. Some of these enhancements can be listed

as parallelised tree building, tree pruning using a depth-first approach, cache awareness and out-

of-core computing, regularisation for avoiding over-fitting, efficient handling of missing data, and

in-built cross-validation capability.

4.2. Calculating the prediction success and potential profitability

Assume that the real label of the target variable is denoted by Y and predicted label is denoted

by Y
′
, we employ the following two measures to assess the usefulness of our selected forecasting
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techniques:

• The Sign Prediction Ratio (SPR): Correctly predicted excess return direction is assigned 1

and 0 otherwise, then sign prediction ratio is calculated by

SPR =

∑M
j=1matches(Yj , Y

′
j )

M
, (6)

where

matches(Yj , Y
′
j ) =

 1 if Yj = Y ′j

0 otherwise
(7)

and M denotes the size of the set for which the sign prediction ratio is measured.

• The Maximum Return is obtained by adding absolute value of all the excess returns (denoted

by h)

MaxReturn =

M∑
j=1

abs(hj) (8)

and represents the maximum achievable return assuming perfect forecast.

• The Total Return is computed in the following way

TotalReturn =

M∑
j=1

sign(Y ′j ) ∗ hj (9)

where sign is the standard sign function and ∗ denotes the usual multiplication. Notice that

the better the prediction method, the larger the total return is.

• Ideal Profit Ratio is the ratio of the total return in Eq.(9) and the maximum return in Eq.(8).

IPR =
TotalReturn

MaxReturn
(10)
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5. Empirical Results

As explained in Section 3, we sample our data at five different time scales including 5-, 10-, 15-,

30-, 60-min time scales and then implement six different machine learning algorithms that is kNN,

logistic regression, naive Bayes, random forest, SVM, XGBoost which are described in the previous

section.The target variable for all of these classification methods is the sign of the one-step ahead

mid-price return of Bitcoin futures with different maturities at different frequencies. As features

again we use the one-step before mid-price returns of Bitcoin futures. As an example, when the

target variable is the sign of 5-minute mid-price return of 1-month futures at time t + 1, we use

the 5- minute returns of 1-, 2-, 3-, 4-, 5-month futures at time t as features in the machine learning

algorithm. We consider three different divisions of the dataset as train and test sets, called hold-

outs. For the first hold-out, we take 70% of the total sample size rounded to the closest integer

value as the training sample size and the remaining 30% as the test sample size. Similarly, we also

look at the 0.8/0.2 and 0.9/0.1 divisions as train/test set partitions.

The number of observations for the mid-price returns of Bitcoin futures at different time fre-

quencies for different train/test set divisions is reported in Table 1. For instance, while there are

51,733 mid-price returns in total at the 5-minute scale, only 4,345 mid-price returns are available

at the 60-minute scale. 0.7/0.3 hold-out at 5-minute frequency corresponds to 36,213-time intervals

in the train set and 15,520-time intervals in the test set. Similarly, 0.8/0.2 and 0.9/0.1 train vs test

set partitions correspond to 41,386/10,347 and 46,559/5,174 five-minute time intervals, respectively.

The descriptive statistics for mid-price returns of Bitcoin futures at different time scales with dif-

ferent maturities are presented in Table 2, showing that both mean and median values are almost

zero across different maturities and time frequencies. Minimum (maximum) values of the returns

are getting smaller (larger) as the time to maturity increases across all the time scales. However,

minimum and maximum values do not change significantly from a one-time scale to another within

the same Bitcoin futures (except the 1-month futures). As expected, standard deviations increase

both with time to maturity and time-frequency within the same futures.

The performance of the different machine learning algorithms is compared based on two key

metrics. First, we use the sign prediction rate or accuracy rate calculated as the proportion of

times the related methodology correctly predicts the next time mid-price return direction. If the

underlying process were entirely random, then the correct sign prediction ratio would be 50%.

However, in our case, it is essential to note that we use the information contained only in the
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Bitcoin futures. In other words, we do not use any other information source, which can also be

challenging to determine as they are many different parameters affecting Bitcoin prices. Hence,

any accuracy rate greater than 50% already indicates the success of the algorithm to beat the

market. Second, we also apply the ideal profit ratio to measure the performance of the related

classification algorithm. As formalized in Section 4, the ideal profit ratio is the ratio of the return

generated by a given algorithm to the perfect sign forecast. The numerical results are produced

with a 2.6 GHz Intel Core i7 computer utilizing Python 3.7 with the Scikit-learn machine learning

package. Running the algorithms at the hourly timescale can be completed in the order of seconds,

whereas at higher frequencies, such as the five minutes sampling frequency, the computational time

requirements for training and prediction increase to the order of minutes for the random forest

algorithm.

Tables 3-8 present the accuracy rates for the train (in-sample) and test (out-sample) periods in

the first two columns for Bitcoin futures with maturities from 1-month to 5-month at different time

scales. Similarly, ideal profit ratios are given in the following column for out of the sample period.

Mean value (together with t-stat), standard deviation, maximum, and minimum of each column

across different maturities and time frequencies are given below the tables. Table 3 provides results

for the kNN algorithm, which are computed by optimizing over neighbourhood numbers from 1 to

20. The kNN methodology yields an average out-of-sample (in-sample) success ratio of 55% (77%)

for the first hold-out, 55% (75%) for the second hold-out, and 56% (75%) for the third hold-out. The

maximum average ideal profit ratio is computed around 6% for the 0.9/0.1 division of the data set.

The kNN methodology yields the highest in-sample accuracy results after a random forest algorithm

with a maximum value reaching as high as %94 for 5-month futures at 5-min frequency. Similarly,

the maximum value for the out-of-sample success rate (66%) is attained by month futures at 15-min

frequency. In most cases, we observe that the accuracy rate increases for the same maturity futures

under the kNN method as the time frequency decreases. It is also evident from Table 3 that for

most of the cases, we obtain a positive ideal profit ratio with a maximum value of 23 % in the first

hold-out (27% for the second hold-out, 31% for the third hold-out) with 3-months futures at 60

minutes frequency.

Table 4 provides the results for the logistic regression algorithm, which is based on a linear

classification. We observe that this method yields relatively stable results across different maturities

and time scales. For instance, the average success rate for both in the sample and out-sample periods
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is almost always 54% for three different hold-outs. The same is also true for the min (51%) and max

(57%) values for different cases. Again, we obtain a positive ideal profit ratio with this prediction

method in most cases. Although the average values of the ideal profit ratios are not quite high,

the maximum value of them (29% for 0.7/0.3 division, 32% for 0.8/0.2 division, 35% for 0.9/0.1

division) can be considered satisfactory. Table 5 shows the results for Naïve Bayes classification

which is the worst-performing one among the six different methodologies. The in-sample success

ratios are almost always indistinguishable from 50% which is nothing but the result coming from a

random walk model for which the empirical results are given in Table 9. Although the max accuracy

rate can reach even up to 60% for 1-month futures at 5 minutes frequency for the first hold-out,

the average accuracy rate is only 45% across the different cases. This result also holds for 0.8/0.2

and 0.9/0.1 divisions. Similar results are also obtained for the ideal profit ratios. We receive an

average negative ideal profit ratio only for the Naïve Bayes algorithm.

As can be noted in Table 6, the in-sample fits of the random forest algorithm are the highest

among all the machine learning algorithms considered. The highest average in-sample success rate

can even reach up to 87% for the first hold-out, 83% for the second hold-out, and 87% for the third

hold-out. However, the out-of-sample average performance is significantly worse than the in-sample

fits. This designates the high variance in the random forest classification with high sample fit to the

noisy data but lower out-of-sample performance. For all of the data divisions, the average success

rate is around 56% with a maximum value of 67%, which is attained for 5-months futures at 5-

minutes frequency. It is also observed that except in a few cases, one can gain positive ideal profit

ratios with a maximum value of 36% for 3-month futures at a 60-min time scale.

Table 7 shows the best out-of-sample forecasting results across different maturities and frequen-

cies is acquired from the implementation of a nonlinear classification method by choosing a radial

kernel in the support vector machine. A maximum value of 61% is obtained for the first division,

64% for the second division, and 71% for the third division. The average out-sample success rate

is stable, around 56% for different hold-outs. The results are also similar to the ideal profit ratios.

It is evident from the results given in Table 8 that the XGBoost method provides similar results

to the kNN algorithm but with a lower level of average in-sample fits. The average out-sample fit

accuracy is around 55% for different hold-outs.

As a benchmark for our models, we also utilize the classical ARIMA model to predict the next

time return direction of the mid-price. At first sight, one can argue that most of the methods
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provide close results to each other and the ARIMA model. For instance, while the average of the

out-sample success rates is around 56% for the support vector machine, it is also around 52% for

the ARIMA model, as can be seen from the results are presented in Table 9. For a small-sized

sample, 1% of difference may not mean a significant difference in terms of the robustness of the

method. However, in our case of a large sample, on average only 1% of increase in the success

rate of 5-minute frequency (0.7/0.1 hold-out) means 1,552 more correct predictions of the target

variable. In our case, 4% of difference corresponds to 6,208 more accurate predictions of the target

variable at 5 minutes level, which is not a substantiative amount when considering the sample size

analysed. We also have similar results for the other frequencies. Another critical point to note is

that the maximum value of accuracy one can obtain with the ARIMA model is only 56% among all

cases considered. However, this number even increases up to 71% for the support vector machine

algorithm.

In Table 10, t-test is applied to check the statistical significance of the estimation results between

alternative algorithms. We compare the methods using the success ratio results for each in-sample

and out-of-sample period across the different maturities and time scales. For instance, to compare

kNN and ARIMA models for the in-sample period, we use the success ratio values from the same

0.7 / 0.3 in-sample period across different maturities and time scales. We test the null hypothesis

that the difference of the values computed from Logistic and ARIMA models comes from a normal

distribution with a mean equal to zero and unknown variance. The results show that except for a

few cases, the pairwise differences between these algorithms are statistically significant.

6. Conclusion

We examine the forecast performance of the midpoint movement of CME Bitcoin futures starting

from 2 January 2020 to 10 September 2020 by using 1-, 2-, 3-, 4-, 5-month futures at 5-, 10-, 15-,

30-, 60-minute frequencies. To this end, we employ machine learning algorithms (MLAs) which

are compared with standard ARIMA and random walk models. Sign prediction ratios together

with the ideal profit ratios are utilized to measure the forecasting performance of the suggested

MLAs. Our findings indicate that the k-nearest neighbour (kNN) approach and the random forest

(RF) algorithm yield the highest in- and out-of-sample accuracy rates at varying frequencies. For

instance, for the random forest algorithm in-sample success rate can reach up to 87% for the first

hold-out (0.7/0.3), 83% for the second hold-out (0.8/0.3), and 87% for the third hold-out (0.9/0.1).
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However, the highest out-of-sample success rates are obtained by SVM. For instance, an accuracy

rate of 71% can be achieved for the third hold-out. On the other hand, the logistic regression, the

Naïve Bayes, and the XGBoost algorithm yield relatively stable results across different maturities

with an average out-of-sample accuracy rate of 54%, 45%, and 55%, respectively. As a benchmark

model, ARIMA model provides an average out-of-sample accuracy rate of around 52%. In general,

our findings indicate that most of the MLAs outperform the benchmark model, with both in-

and out-of-sample forecasting accuracy. This highlights the importance and relevance of MLAs to

forecast bitcoin futures prices during periods of turmoil. From a policy perspective, such research

has important implications regarding the monitoring of cryptocurrency market developments, and

of course, from a regulatory perspective, signals of market discontinuity could demonstrate the

sources of atypical influence. Furthermore, it is a known fact that derivative products complete the

market and increases efficiency. Hence, as the cryptocurrency derivatives market enlarges, machine

learning algorithms can also be used for the prediction and valuation of the products such as options

and swaps in the future.
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Figure 1: 1-month futures mid-price at 5-minute frequency

Note: The above figure presents a plot of the 1-month futures price at 5-minute frequency during 2020

Table 1: Number of observations for the mid price returns of bitcoin futures at different time scales for different
train/test set divisions

5-min 10-min 15-min 30-min 60-min
total 51,733 25,885 17,269 8,653 4,345

0.7/0.3 train 36,213 18,119 12,088 6,057 3,041
test 15,520 7,766 5,181 2,596 1,304

0.8/0.2 train 41,386 20,708 13,815 6,922 3,476
test 10,347 5,177 3,454 1,731 869

0.9/0.1 train 46,559 23,296 15,542 7,787 3,910
test 5,174 2,589 1,727 866 435

Note: We use 1-month through 5-month CME Bitcoin futures data with initial date of 2 January 2020 and end date of 10
September 2020. Bitcoin futures can be traded at any time during day at CME after 23:00 PM on Sunday till 22:00 PM on
Friday (due to daylight saving time change on March 8, 2020, the trading hours shifted as after 22:00 PM on Sunday till
21:00 PM on Friday). Results based on a variety of other time frequencies and other Bitcoin futures markets are available
from the authors upon request and have been omitted from the above table due to brevity of presentation.
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Table 2: Descriptive Statistics for mid price future returns for different maturities and time scales

1-month futures 5-min 10-min 15-min 30-min 60-min
Mean 0.000007 0.000014 0.000021 0.000042 0.000084
Median 0.00 0.00 0.00 0.00 0.00
Min -0.13 -0.13 -0.15 -0.19 -0.22
Max 0.12 0.14 0.13 0.15 0.12
Std.Dev. 0.003 0.005 0.006 0.008 0.011
2-month futures 5-min 10-min 15-min 30-min 60-min
Mean 0.000007 0.000014 0.000021 0.000043 0.000085
Median 0.00 0.00 0.00 0.00 0.00
Min -0.41 -0.41 -0.41 -0.41 -0.41
Max 0.40 0.41 0.41 0.42 0.42
Std.Dev. 0.005 0.007 0.008 0.012 0.016
3-month futures 5-min 10-min 15-min 30-min 60-min
Mean 0.000007 0.000014 0.000021 0.000042 0.000084
Median 0.00 0.00 0.00 0.00 0.00
Min -0.40 -0.40 -0.40 -0.40 -0.40
Max 0.41 0.41 0.41 0.41 0.41
Std.Dev. 0.007 0.010 0.012 0.017 0.024
4-month futures 5-min 10-min 15-min 30-min 60-min
Mean 0.000006 0.000013 0.000019 0.000038 0.000076
Median 0.00 0.00 0.00 0.00 0.00
Min -0.61 -0.61 -0.60 -0.61 -0.61
Max 0.60 0.60 0.60 0.60 0.60
Std.Dev. 0.010 0.014 0.017 0.023 0.033
5-month futures 5-min 10-min 15-min 30-min 60-min
Mean 0.000007 0.000014 0.000021 0.000042 0.000083
Median 0.00 0.00 0.00 0.00 0.00
Min -0.69 -0.69 -0.69 -0.70 -0.72
Max 0.79 0.79 0.74 0.74 0.77
Std.Dev. 0.018 0.024 0.028 0.038 0.054

Note: We use 1-month through 5-month CME Bitcoin futures data with initial date of 2 January 2020 and end date of 10
September 2020. Bitcoin futures can be traded at any time during day at CME after 23:00 PM on Sunday till 22:00 PM on
Friday (due to daylight saving time change on March 8, 2020, the trading hours shifted as after 22:00 PM on Sunday till
21:00 PM on Friday). Results based on a variety of other time frequencies and other Bitcoin futures markets are available
from the authors upon request and have been omitted from the above table due to brevity of presentation.
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Table 3: KNN classification: in-sample and out-of-sample accuracy results and ideal profit ratios for different train/test combinations for the static
analysis.

train/test = 0.7/0.3 train/test = 0.8/0.2 train/test = 0.9/0.1

success ratio ideal-profit ratio success ratio ideal-profit ratio success ratio ideal-profit ratio

target variable time-scale in-sample out-sample out-sample in-sample out-sample out-sample in-sample out-sample out-sample

1-month futures

5-min 0.86 0.56 -0.002 0.86 0.55 0.009 0.86 0.54 0.033
10-min 0.83 0.54 0.004 0.83 0.55 0.024 0.69 0.56 0.091
15-min 0.81 0.54 -0.004 0.82 0.53 0.016 0.66 0.54 0.100
30-min 0.66 0.54 0.074 0.66 0.54 0.022 0.62 0.57 0.090
60-min 0.62 0.53 0.065 0.62 0.53 0.083 0.64 0.52 0.032

2-month futures

5-min 0.84 0.55 0.000 0.85 0.54 -0.002 0.85 0.54 0.020
10-min 0.81 0.55 0.028 0.82 0.55 0.034 0.72 0.56 0.084
15-min 0.79 0.54 -0.006 0.68 0.53 0.041 0.71 0.54 0.038
30-min 0.64 0.55 0.107 0.69 0.54 0.040 0.61 0.55 0.147
60-min 0.61 0.53 0.051 0.60 0.55 0.115 1.00 0.52 0.083

3-month futures

5-min 0.84 0.55 -0.030 0.85 0.54 -0.016 0.84 0.54 -0.080
10-min 0.81 0.54 0.043 0.81 0.54 0.063 0.72 0.55 0.101
15-min 0.80 0.54 0.021 0.62 0.54 0.101 0.66 0.55 0.222
30-min 0.63 0.55 0.168 0.63 0.55 0.177 0.63 0.55 0.295
60-min 0.61 0.53 0.231 0.60 0.54 0.279 0.62 0.53 0.311

4-month futures

5-min 0.84 0.56 -0.109 0.85 0.56 -0.114 0.85 0.55 0.017
10-min 0.82 0.54 0.003 0.83 0.54 0.018 0.82 0.55 -0.264
15-min 0.80 0.54 -0.181 0.66 0.54 -0.256 0.66 0.56 -0.251
30-min 0.60 0.54 -0.252 0.66 0.54 -0.318 0.71 0.53 0.030
60-min 0.60 0.55 -0.056 0.61 0.53 -0.070 0.61 0.52 0.072

5-month futures

5-min 0.94 0.61 0.026 0.94 0.61 0.038 0.93 0.64 0.032
10-min 0.93 0.61 -0.008 0.93 0.61 -0.002 0.92 0.65 -0.056
15-min 0.91 0.60 0.012 0.79 0.61 0.001 0.91 0.66 0.146
30-min 0.79 0.60 0.116 0.78 0.60 -0.013 0.69 0.65 0.177
60-min 0.90 0.57 0.029 0.66 0.57 -0.053 0.89 0.65 0.045

mean 0.77*** 0.55*** 0.01 0.75*** 0.55*** 0.01 0.75*** 0.56*** 0.06
t-stat 11.96 11.36 11.28 10.44 10.56 7.28
std 0.11 0.02 0.10 0.11 0.03 0.12 0.12 0.05 0.13
max 0.94 0.61 0.23 0.94 0.61 0.28 1.00 0.66 0.31
min 0.60 0.53 -0.25 0.60 0.53 -0.32 0.61 0.52 -0.26

Note: The t-statistics values are for the one-sided t-test. ***, ** and * denote significant at the 1%, 5% and 10% level respectively.
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Table 4: Logistic Regression: in-sample and out-of-sample accuracy results and ideal profit ratios for different train/test combinations for the static
analysis.

train/test = 0.7/0.3 train/test = 0.8/0.2 train/test = 0.9/0.1

success ratio ideal-profit ratio success ratio ideal-profit ratio success ratio ideal-profit ratio

target variable time-scale in-sample out-sample out-sample in-sample out-sample out-sample in-sample out-sample out-sample

1-month futures

5-min 0.54 0.54 0.038 0.54 0.54 0.065 0.54 0.55 0.087
10-min 0.53 0.52 -0.013 0.53 0.53 0.018 0.53 0.53 0.017
15-min 0.54 0.53 0.019 0.54 0.53 0.040 0.54 0.53 0.018
30-min 0.56 0.55 0.056 0.56 0.55 0.092 0.55 0.55 0.064
60-min 0.54 0.56 0.061 0.53 0.56 0.066 0.54 0.55 0.050

2-month futures

5-min 0.54 0.54 0.064 0.54 0.55 0.069 0.54 0.55 0.093
10-min 0.54 0.52 0.012 0.53 0.53 0.017 0.54 0.53 0.027
15-min 0.54 0.53 0.035 0.52 0.52 0.061 0.52 0.51 0.027
30-min 0.55 0.55 0.048 0.55 0.54 0.082 0.55 0.54 0.035
60-min 0.55 0.55 0.109 0.55 0.55 0.088 0.55 0.54 0.088

3-month futures

5-min 0.54 0.54 0.081 0.54 0.55 0.092 0.54 0.56 0.093
10-min 0.54 0.52 0.068 0.53 0.53 0.087 0.51 0.51 0.030
15-min 0.55 0.54 0.151 0.54 0.54 0.176 0.52 0.51 0.004
30-min 0.56 0.56 0.163 0.56 0.55 0.173 0.55 0.54 -0.240
60-min 0.54 0.56 0.291 0.54 0.57 0.319 0.55 0.56 0.349

4-month futures

5-min 0.54 0.52 0.011 0.54 0.53 0.020 0.53 0.53 -0.105
10-min 0.54 0.51 -0.067 0.53 0.52 -0.059 0.53 0.53 0.004
15-min 0.54 0.52 -0.055 0.51 0.51 0.049 0.51 0.50 0.000
30-min 0.56 0.55 0.045 0.55 0.54 0.151 0.55 0.53 0.188
60-min 0.55 0.56 0.181 0.55 0.57 0.194 0.54 0.55 0.065

5-month futures

5-min 0.53 0.53 -0.070 0.53 0.53 -0.068 0.53 0.53 0.023
10-min 0.52 0.51 -0.167 0.52 0.52 -0.160 0.53 0.51 0.090
15-min 0.54 0.53 -0.066 0.54 0.53 -0.072 0.54 0.50 0.145
30-min 0.55 0.56 0.028 0.56 0.54 0.020 0.56 0.54 -0.119
60-min 0.51 0.57 -0.011 0.53 0.55 -0.008 0.53 0.53 0.035

mean 0.54*** 0.54*** 0.04 0.54*** 0.54*** 0.06 0.54*** 0.53*** 0.04
t-stat 19.52 11.07 15.62 12.21 13.66 9.46
std 0.01 0.02 0.09 0.01 0.02 0.10 0.01 0.02 0.11
max 0.56 0.57 0.29 0.56 0.57 0.32 0.56 0.56 0.35
min 0.51 0.51 -0.17 0.51 0.51 -0.16 0.51 0.50 -0.24

Note: The t-statistics values are for the one-sided t-test. ***, ** and * denote significant at the 1%, 5% and 10% level respectively.
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Table 5: Naive Bayes Classification: in-sample and out-of-sample accuracy results and ideal profit ratios for different train/test combinations for the
static analysis.

train/test = 0.7/0.3 train/test = 0.8/0.2 train/test = 0.9/0.1

success ratio ideal-profit ratio success ratio ideal-profit ratio success ratio ideal-profit ratio

target variable time-scale in-sample out-sample out-sample in-sample out-sample out-sample in-sample out-sample out-sample

1-month futures

5-min 0.51 0.60 0.015 0.51 0.57 0.024 0.51 0.58 0.045
10-min 0.50 0.43 0.001 0.50 0.45 -0.007 0.50 0.44 -0.031
15-min 0.50 0.45 0.008 0.50 0.46 0.005 0.50 0.45 -0.031
30-min 0.51 0.47 0.020 0.51 0.47 0.022 0.51 0.46 -0.040
60-min 0.51 0.54 -0.011 0.51 0.52 -0.010 0.52 0.53 0.069

2-month futures

5-min 0.50 0.41 0.014 0.50 0.44 0.009 0.50 0.43 -0.006
10-min 0.50 0.44 0.009 0.50 0.46 0.002 0.50 0.45 -0.038
15-min 0.50 0.46 0.014 0.50 0.47 0.007 0.50 0.46 -0.042
30-min 0.51 0.47 0.015 0.51 0.48 0.016 0.51 0.47 -0.050
60-min 0.51 0.48 0.051 0.51 0.49 0.014 0.50 0.48 -0.081

3-month futures

5-min 0.50 0.42 0.022 0.53 0.56 0.070 0.52 0.57 0.005
10-min 0.50 0.45 0.026 0.50 0.46 0.017 0.50 0.45 -0.044
15-min 0.51 0.46 0.032 0.50 0.47 0.022 0.50 0.46 -0.041
30-min 0.51 0.48 0.037 0.51 0.48 0.038 0.51 0.47 -0.042
60-min 0.52 0.50 0.359 0.52 0.53 0.402 0.51 0.47 0.262

4-month futures

5-min 0.50 0.41 0.002 0.50 0.44 0.014 0.50 0.42 -0.005
10-min 0.50 0.44 -0.001 0.50 0.45 -0.006 0.50 0.44 -0.029
15-min 0.51 0.46 -0.076 0.51 0.47 -0.095 0.51 0.45 -0.032
30-min 0.51 0.47 -0.096 0.51 0.47 -0.123 0.51 0.46 -0.027
60-min 0.53 0.54 0.257 0.53 0.54 0.289 0.51 0.49 -0.187

5-month futures

5-min 0.51 0.33 -0.045 0.51 0.36 -0.049 0.50 0.30 -0.057
10-min 0.51 0.37 -0.042 0.51 0.38 -0.046 0.51 0.31 0.004
15-min 0.51 0.38 -0.042 0.51 0.39 -0.047 0.51 0.32 -0.032
30-min 0.52 0.41 -0.058 0.52 0.41 -0.067 0.52 0.34 -0.088
60-min 0.52 0.43 -0.094 0.52 0.43 -0.116 0.52 0.34 -0.061

mean 0.51*** 0.45*** 0.02 0.51*** 0.47*** 0.02 0.51*** 0.44*** -0.02
t-stat 5.67 -4.43 5.06 -3.34 5.94 -4.03
std 0.01 0.06 0.10 0.01 0.05 0.11 0.01 0.07 0.08
max 0.53 0.60 0.36 0.53 0.57 0.40 0.52 0.58 0.26
min 0.50 0.33 -0.10 0.50 0.36 -0.12 0.50 0.30 -0.19

Note: The t-statistics values are for the one-sided t-test. ***, ** and * denote significant at the 1%, 5% and 10% level respectively.
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Table 6: Random Forest (RF) classification: in-sample and out-of-sample accuracy results and ideal profit ratios for different train/test combinations
for the static analysis.

train/test = 0.7/0.3 train/test = 0.8/0.2 train/test = 0.9/0.1

success ratio ideal-profit ratio success ratio ideal-profit ratio success ratio ideal-profit ratio

target variable time-frequency in-sample out-sample out-sample in-sample out-sample out-sample in-sample out-sample out-sample

1-month futures

5-min 0.98 0.55 -0.002 0.98 0.54 0.004 0.99 0.53 0.030
10-min 0.99 0.54 0.031 0.99 0.54 0.060 0.99 0.53 0.065
15-min 0.98 0.54 0.026 0.71 0.55 0.052 0.70 0.54 0.049
30-min 0.74 0.55 0.053 0.73 0.56 0.066 0.73 0.56 0.062
60-min 0.84 0.54 0.062 0.80 0.55 0.042 0.79 0.54 0.034

2-month futures

5-min 0.69 0.55 0.091 0.69 0.55 0.069 0.68 0.54 0.087
10-min 0.98 0.54 0.025 0.99 0.54 0.024 0.98 0.53 0.018
15-min 0.68 0.53 0.037 0.72 0.53 0.053 0.71 0.53 0.054
30-min 0.73 0.56 0.089 0.69 0.55 0.078 0.69 0.56 0.109
60-min 0.82 0.53 0.069 0.80 0.54 0.096 0.79 0.52 0.056

3-month futures

5-min 0.68 0.55 0.141 0.68 0.54 0.165 0.99 0.54 -0.066
10-min 0.98 0.54 0.120 0.71 0.53 0.215 0.68 0.53 0.208
15-min 0.72 0.54 0.166 0.70 0.55 0.214 0.69 0.55 0.101
30-min 0.73 0.55 0.137 0.71 0.56 0.142 0.71 0.55 0.049
60-min 0.77 0.55 0.291 0.82 0.58 0.299 0.79 0.56 0.362

4-month futures

5-min 0.98 0.55 -0.157 0.98 0.54 -0.138 0.99 0.53 -0.128
10-min 0.98 0.53 -0.006 0.98 0.53 0.013 1.00 0.53 -0.090
15-min 1.00 0.54 -0.201 0.73 0.54 -0.126 0.71 0.54 -0.268
30-min 0.74 0.54 -0.057 0.70 0.55 -0.062 0.69 0.55 0.054
60-min 0.80 0.56 0.135 0.79 0.56 -0.071 0.78 0.54 0.055

5-month futures

5-min 0.99 0.62 0.042 0.98 0.62 0.061 0.98 0.67 0.100
10-min 0.99 0.60 0.051 1.00 0.61 0.130 0.99 0.66 0.051
15-min 0.99 0.60 0.130 0.99 0.61 0.013 0.99 0.67 0.174
30-min 0.99 0.60 -0.022 1.00 0.61 0.009 1.00 0.66 0.144
60-min 1.00 0.56 0.017 0.99 0.58 0.017 1.00 0.63 -0.006

mean 0.87*** 0.55*** 0.05 0.83*** 0.56*** 0.06 0.84*** 0.56*** 0.05
t-test 14.38 11.25 12.57 10.42 12.27 6.59
std 0.13 0.02 0.10 0.13 0.03 0.10 0.14 0.05 0.12
max 1.00 0.62 0.29 1.00 0.62 0.30 1.00 0.67 0.36
min 0.68 0.53 -0.20 0.68 0.53 -0.14 0.68 0.52 -0.27

Note: The t-statistics values are for the one-sided t-test. ***, ** and * denote significant at the 1%, 5% and 10% level respectively.
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Table 7: Support Vector Machine (SVM) classification: in-sample and out-of-sample accuracy results and ideal profit ratios for different train/test
combinations for the static analysis.

train/test = 0.7/0.3 train/test = 0.8/0.2 train/test = 0.9/0.1

success ratio ideal-profit ratio success ratio ideal-profit ratio success ratio ideal-profit ratio

target variable time-scale in-sample out-sample out-sample in-sample out-sample out-sample in-sample out-sample out-sample

1-month future

5-min 0.53 0.59 0.020 0.52 0.57 0.026 0.52 0.58 0.049
10-min 0.52 0.57 -0.023 0.53 0.56 -0.004 0.53 0.55 0.019
15-min 0.55 0.57 0.023 0.54 0.57 0.028 0.54 0.57 0.136
30-min 0.57 0.57 0.065 0.57 0.56 0.072 0.57 0.56 0.100
60-min 0.56 0.56 0.021 0.56 0.55 0.004 0.52 0.54 0.122

2-month future

5-min 0.53 0.59 0.043 0.52 0.57 0.026 0.52 0.57 0.052
10-min 0.53 0.56 0.005 0.54 0.55 0.002 0.52 0.55 -0.009
15-min 0.54 0.56 0.032 0.54 0.55 0.045 0.55 0.55 0.114
30-min 0.57 0.55 0.064 0.57 0.54 0.059 0.57 0.55 0.056
60-min 0.56 0.55 0.119 0.56 0.55 0.074 0.56 0.54 0.108

3-month future

5-min 0.53 0.58 0.041 0.54 0.56 0.043 0.53 0.57 0.051
10-min 0.53 0.55 0.057 0.53 0.55 0.075 0.54 0.56 0.054
15-min 0.55 0.56 0.095 0.55 0.56 0.126 0.55 0.56 0.101
30-min 0.56 0.54 -0.036 0.57 0.53 -0.049 0.56 0.54 -0.226
60-min 0.56 0.57 0.296 0.55 0.58 0.312 0.56 0.55 0.322

4-month future

5-min 0.55 0.59 0.019 0.52 0.57 0.006 0.52 0.58 0.031
10-min 0.54 0.56 -0.076 0.52 0.55 -0.015 0.52 0.56 0.013
15-min 0.54 0.56 -0.136 0.54 0.55 -0.069 0.53 0.56 -0.093
30-min 0.57 0.56 -0.064 0.57 0.54 -0.086 0.57 0.55 0.038
60-min 0.55 0.56 0.055 0.55 0.56 -0.054 0.54 0.56 -0.325

5-month future

5-min 0.58 0.59 0.094 0.57 0.64 0.072 0.57 0.71 0.122
10-min 0.58 0.61 -0.092 0.58 0.63 0.015 0.57 0.69 0.148
15-min 0.57 0.60 -0.084 0.58 0.61 -0.093 0.57 0.62 0.122
30-min 0.57 0.54 0.098 0.57 0.52 0.061 0.57 0.52 -0.177
60-min 0.54 0.44 -0.064 0.55 0.45 -0.152 0.55 0.40 0.056

mean 0.55*** 0.56*** 0.02 0.55*** 0.56*** 0.02 0.55*** 0.56*** 0.04
t-test 13.97 9.99 12.73 8.43 11.78 5.91
std 0.02 0.03 0.09 0.02 0.04 0.09 0.02 0.06 0.13
max 0.58 0.61 0.30 0.58 0.64 0.31 0.57 0.71 0.32
min 0.52 0.44 -0.14 0.52 0.45 -0.15 0.52 0.40 -0.33

Note: The t-statistics values are for the one-sided t-test. ***, ** and * denote significant at the 1%, 5% and 10% level respectively.
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Table 8: XGBOOST classification: in-sample and out-of-sample accuracy results and ideal profit ratios for different train/test combinations for the
static analysis.

train/test = 0.7/0.3 train/test = 0.8/0.2 train/test = 0.9/0.1

success ratio ideal-profit ratio success ratio ideal-profit ratio success ratio ideal-profit ratio

target variable time-scale in-sample out-sample out-sample in-sample out-sample out-sample in-sample out-sample out-sample

1-month future

5-min 0.57 0.56 0.049 0.57 0.55 0.052 0.57 0.52 0.029
10-min 0.58 0.50 -0.011 0.58 0.51 -0.008 0.58 0.49 -0.063
15-min 0.59 0.53 0.007 0.58 0.54 0.043 0.59 0.54 0.046
30-min 0.62 0.56 0.063 0.61 0.56 0.094 0.61 0.55 0.055
60-min 0.64 0.54 0.006 0.64 0.55 0.014 0.63 0.53 0.005

2-month future

5-min 0.58 0.56 0.076 0.58 0.54 0.065 0.58 0.54 0.059
10-min 0.58 0.52 0.014 0.58 0.51 -0.017 0.57 0.52 -0.010
15-min 0.59 0.53 0.049 0.59 0.54 0.064 0.58 0.53 0.028
30-min 0.61 0.55 0.105 0.60 0.55 0.126 0.60 0.55 0.085
60-min 0.65 0.55 0.087 0.63 0.55 0.092 0.63 0.54 0.065

3-month future

5-min 0.57 0.54 0.150 0.58 0.54 0.167 0.57 0.54 0.083
10-min 0.58 0.53 0.128 0.59 0.53 0.207 0.58 0.53 0.198
15-min 0.59 0.54 0.156 0.59 0.56 0.220 0.58 0.55 0.104
30-min 0.61 0.56 0.170 0.61 0.55 0.166 0.60 0.55 0.053
60-min 0.66 0.55 0.246 0.64 0.57 0.298 0.65 0.55 0.359

4-month future

5-min 0.58 0.54 -0.026 0.58 0.53 0.029 0.58 0.52 0.115
10-min 0.59 0.52 -0.216 0.59 0.52 -0.318 0.58 0.51 -0.422
15-min 0.59 0.53 -0.122 0.59 0.54 -0.139 0.59 0.53 -0.129
30-min 0.62 0.55 -0.052 0.61 0.55 -0.071 0.60 0.55 0.052
60-min 0.63 0.55 0.054 0.64 0.54 -0.105 0.63 0.53 -0.124

5-month future

5-min 0.66 0.58 0.087 0.66 0.59 0.113 0.65 0.63 0.067
10-min 0.67 0.56 0.063 0.66 0.58 -0.034 0.65 0.63 0.137
15-min 0.67 0.55 0.097 0.66 0.58 0.115 0.65 0.63 0.228
30-min 0.69 0.57 0.107 0.67 0.59 0.028 0.67 0.64 0.120
60-min 0.69 0.53 -0.109 0.67 0.55 -0.275 0.67 0.61 -0.004

mean 0.62*** 0.54*** 0.05 0.61*** 0.55*** 0.04 0.61*** 0.55*** 0.05
t-stat 14.75 13.25 16.46 11.63 16.51 6.22
std 0.04 0.02 0.10 0.03 0.02 0.14 0.03 0.04 0.14
max 0.69 0.58 0.25 0.67 0.59 0.30 0.67 0.64 0.36
min 0.57 0.50 -0.22 0.57 0.51 -0.32 0.57 0.49 -0.42

Note: The t-statistics values are for the one-sided t-test. ***, ** and * denote significant at the 1%, 5% and 10% level respectively.
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Table 9: Performance of Random walk and ARIMA time series forecasting over different maturities and different time scales.

Random walk Time Scale
Target Variable 5-min 10-min 15-min 30-min 60-min
1-month futures 0.5002 0.5000 0.4997 0.4999 0.4996
2-month futures 0.5002 0.4999 0.4997 0.5000 0.4997
3-month futures 0.5002 0.4999 0.4996 0.5000 0.4996
4-month futures 0.5002 0.4998 0.4998 0.5000 0.4995
5-month futures 0.5001 0.4999 0.4998 0.5000 0.4997

ARIMA MODEL train/test = 0.7/0.3 train/test = 0.8/0.2 train/test = 0.9/0.1
success ratio success ratio success ratio

target variable time-scale in-sample out-sample in-sample out-sample in-sample out-sample

1-month future

5-min 0.53 0.52 0.52 0.54 0.53 0.54
10-min 0.51 0.50 0.51 0.50 0.51 0.50
15-min 0.51 0.50 0.51 0.51 0.51 0.51
30-min 0.52 0.52 0.52 0.52 0.52 0.53
60-min 0.53 0.55 0.53 0.54 0.54 0.54

2-month future

5-min 0.53 0.52 0.53 0.53 0.53 0.54
10-min 0.53 0.52 0.53 0.52 0.53 0.52
15-min 0.52 0.50 0.51 0.50 0.51 0.50
30-min 0.54 0.50 0.53 0.50 0.52 0.53
60-min 0.56 0.56 0.56 0.55 0.56 0.54

3-month future

5-min 0.53 0.53 0.53 0.53 0.53 0.55
10-min 0.52 0.50 0.52 0.51 0.51 0.51
15-min 0.52 0.51 0.52 0.51 0.52 0.51
30-min 0.54 0.53 0.54 0.52 0.53 0.53
60-min 0.56 0.54 0.55 0.55 0.55 0.55

4-month future

5-min 0.54 0.51 0.54 0.52 0.53 0.51
10-min 0.53 0.51 0.52 0.51 0.53 0.50
15-min 0.52 0.52 0.52 0.51 0.52 0.51
30-min 0.54 0.54 0.54 0.52 0.54 0.53
60-min 0.55 0.56 0.56 0.53 0.55 0.51

5-month future

5-min 0.50 0.52 0.50 0.54 0.51 0.55
10-min 0.50 0.53 0.50 0.54 0.51 0.54
15-min 0.51 0.54 0.51 0.54 0.51 0.51
30-min 0.51 0.54 0.51 0.52 0.52 0.52
60-min 0.51 0.55 0.51 0.55 0.52 0.55

mean 0.53*** 0.52*** 0.53*** 0.52*** 0.53*** 0.52***
t-stat 8.30 6.20 8.28 7.33 9.05 7.30
std 0.02 0.02 0.02 0.02 0.01 0.02
max 0.56 0.56 0.56 0.55 0.56 0.55
min 0.50 0.50 0.50 0.50 0.51 0.50

Note: The t-statistics values are for the one-sided t-test. ***, ** and * denote significant at the 1%, 5% and 10% level respectively.
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Table 10: t-test results for the mean of pairwise difference of seven classification algorithms, including ARIMA, kNN, logistic regression (Logistic),
Naïve Bayes (NB), Random Forest (RF), Support Vector Machines (SVM), and XGBoost over different time train and test sets.

Train/test = 0.7/0.3 Train/test = 0.8/0.2 Train/test = 0.9/0.1
Success ratio Success ratio Success ratio

In-sample Out-sample In-sample Out-sample In-sample Out-sample
kNN vs ARIMA 0.2447*** 0.0307*** 0.2199*** 0.0286*** 0.2266*** 0.0398***
Logistic vs ARIMA 0.0147*** 0.0151*** 0.0123*** 0.0146*** 0.0106*** 0.0074**
NB vs ARIMA -0.0185*** -0.0717*** -0.0169*** -0.0586*** -0.019*** -0.0834***
RF vs ARIMA 0.3439*** 0.0307*** 0.3083*** 0.0338*** 0.3154*** 0.0386***
SVM vs ARIMA 0.0243*** 0.0395*** 0.0235*** 0.0342*** 0.0198*** 0.0386***
XGBoost vs ARIMA 0.0895*** 0.0203*** 0.0859*** 0.0242*** 0.0814*** 0.0274***
kNN vs XGBoost 0.1552*** 0.0104** 0.134*** 0.2777 0.1452*** 0.0124**
Logistic vs XGBoost -0.0748*** 0.1925 -0.0736*** 0.0592* -0.0708*** -0.0200**
NB vs XGBoost -0.1080*** -0.092*** -0.1028*** -0.0828*** -0.1004*** -0.1108***
RF vs XGBoost 0.2544*** 0.0104** 0.2224*** 0.0096*** 0.2340*** 0.0112***
SVM vs XGBoost -0.0652*** 0.0192*** -0.0624*** 0.1646 -0.0616*** 0.3584
kNN vs SVM 0.2204*** 0.2346 0.1964*** 0.4332 0.2068*** 0.9254
Logistic vs SVM -0.0096** -0.0244*** -0.0112*** -0.0196** -0.0092** -0.0312**
NB vs SVM -0.0428*** -0.1112*** -0.0404*** -0.0928*** -0.0388*** -0.1220***
RF vs SVM 0.3196*** 0.2243 0.2848*** 0.9567 0.2956*** 0.9999
kNN vs RF -0.0992*** 0.9999 -0.0884*** 0.0790* -0.0888*** 0.7366
Logistic vs RF -0.3292*** -0.0156** -0.296*** -0.0192*** -0.3048*** -0.0312**
NB vs RF -0.3624*** -0.1024*** -0.3252*** -0.0924*** -0.3344*** -0.122***
kNN vs NB 0.2632*** 0.1024*** 0.2368*** 0.0872*** 0.2456*** 0.1232***
Logistic vs NB 0.0332*** 0.0868*** 0.0292*** 0.0732*** 0.0296*** 0.0908***
kNN vs Logistic 0.2300*** 0.0156** 0.2076*** 0.0140** 0.2160*** 0.0324***

Note: ***, ** and * denote significance at the 1%, 5% and 10% level respectively.
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