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stract

ta Envelopment Analysis (DEA) allows us to capture the complex relationship between

ltiple inputs and outputs in firms and organizations. Unfortunately, managers may find

hard to understand a DEA model and this may lead to mistrust in the analyses and to

culties in deriving actionable information from the model. In this paper, we propose

use the ideas of target setting in DEA and of counterfactual analysis in Machine Learn-

to overcome these problems. We define DEA counterfactuals or targets as alternative

binations of inputs and outputs that are close to the original inputs and outputs of the

and lead to desired improvements in its performance. We formulate the problem of

ding counterfactuals as a bilevel optimization model. For a rich class of cost functions,

ecting the effort an inefficient firm will need to spend to change to its counterfactual,

ding counterfactual explanations boils down to solving Mixed Integer Convex Quadratic

oblems with linear constraints. We illustrate our approach using both a small numerical

mple and a real-world dataset on banking branches.

ywords: Data Envelopment Analysis, Benchmarking, DEA Targets, Counterfactual

planations, Bilevel Optimization

Introduction

In surveys among business managers, benchmarking is consistently ranked as one of the

st popular management tools [38, 39]. The core of benchmarking is relative performance

luation. The performance of one entity is compared to that of a group of other entities.

e evaluated “entity” can be a firm, organization, manager, product or process. In the

lowing, it will be referred to simply as a Decision Making Unit (DMU).

There are many benchmarking approaches and they can serve different purposes, such

facilitating learning, decision making and incentive design. Some approaches are very

ple and rely on the comparison of a DMU’s Key Performance Indicators (KPIs) to those

a selected peer group of DMUs. These KPIs are basically partial productivity measures
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(e.g., labour productivity, yield per hectare, etc.). This makes KPI based benchmarking

easy to understand, but also potentially misleading by ignoring the role of other inputs
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d outputs in real DMUs. More advanced benchmarking approaches rely on frontier

dels using mathematical programming, e.g., Data Envelopment Analysis (DEA), and

onometrics, e.g., Stochastic Frontier Analysis (SFA), and they allow us to explicitly

del the complex interaction between the multiple inputs and outputs among best-practice

Us, cf. e.g. [9, 12, 36, 46].

In this paper we focus on DEA based benchmarking. To construct the best practice

rformance frontier and evaluate the efficiency of a DMU relative to this frontier, DEA

roduces a minimum of production economic regularities, typically convexity, and uses

ear or mixed integer programming to capture the relationship between multiple inputs

d outputs of a DMU. In this sense, and in the eyes of the modeller, the method is

ll-defined and several of the properties of the model will be understandable from the

duction economic regularities. Still, from the point of view of the evaluated DMUs, the

del will appear very much like a black box. Understanding a multiple input and multiple

tput structure is basically difficult. Also, in DEA, there is no explicit formula showing

impact of specific inputs on specific outputs as in SFA or other econometrics based

proaches. This has led some researchers to look for extra information and structure of

A models, most notably by viewing the black box as a network of more specific process,

e.g. [15, 19, 30].

The black box nature of DEA models may lead to some algorithm aversion and mistrust

the model, and to difficulties in deriving actionable information from the model beyond

efficiency scores. To overcome this and to get insights into the functioning of a DEA

del, there are several strands of literature and tools that can be useful. The Multiple Cri-

ia Decision Making (MCDM) literature has developed several ways in which complicated

s of alternatives can be explored and presented to a decision maker. Also, in DEA, there

lready a considerable literature on finding targets that a firm can investigate in attempts

find attractive alternative production plans. Last, but not least, it may be interesting to

k for counterfactual explanations much like they are used in machine learning.

In this paper, we propose the use of counterfactual and target analyses to understand

d explain the efficiencies of individual DMUs, to learn about the estimated best practice

hnology, and to help answer what-if questions that are relevant in operational, tactical

d strategic planning efforts [7]. In a DEA context, counterfactual and target analyses can

p with learning, decision making and incentive design. In terms of learning, the DMU

y be interested to know what simple changes in features (inputs and outputs) lead to a

her efficiency level. In the application investigated in our numerical section, this can be,

instance, how many credit officers or tellers a bank branch should remove to become fully

cient. This may help the evaluated DMU learn about and gain trust in the underlying

delling. In terms of decision making, targets and counterfactual explanations may help

2
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guide the decision process by offering the smallest, the most plausible and actionable, and

the least costly changes that lead to a desired boost in performance. It depends on the
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text how to define the least costly, or the most plausible or actionable improvement

ths. In some cases it may be easier to reduce all inputs more or less the same (lawn

wing), while in other cases certain inputs should be reduced more aggressively than

ers, cf. [2]. Referring back to the application in the numerical section, reducing the use of

erent labor inputs could for example take into account the power of different labor unions

d the capacity of management to struggle with multiple employee groups simultaneously.

stly, targets and counterfactual explanations may be useful in connection with incentive

visions. DEA models are routinely used by regulators of natural monopoly networks to

entivize cost reductions and service improvement, cf. e.g. [29] and later updates in [1, 7].

gulated firms will naturally look for the easiest way to accommodate the regulator’s

ciency thresholds. Counterfactual explanations may in such cases serve to guide the

timal strategic responses to the regulator’s requirements.

Unfortunately, it is not an entirely trivial task to properly determine targets and con-

uct counterfactual explanations in a DEA context. We need to find alternative solutions

t are in some sense close to the existing input-output combination used by a DMU. This

olves finding “close” alternatives in the complement of a convex set [44]. In this paper, we

estigate different ways to measure the closeness between a DMU and its counterfactual

U, or the cost of moving from an existing input-output profile to an alternative target.

particular, we suggest to use combinations of ℓ0, ℓ1, and ℓ2 norms. We also consider both

nges in input and output features and show how to formulate the problems in DEA

dels with different returns to scale assumptions. We show how determining targets and

structing counterfactual explanations leads to a bilevel optimization model, that can be

ormulated as a Mixed Integer Convex Quadratic Problem with linear constraints. We

strate our approach on both a small numerical example as well as a large scale real-world

taset involving bank branches.

The outline of the paper is as follows. In Section 2 we review the relevant literature.

Section 3 we introduce the necessary DEA notation for constructing targets and coun-

factual explanations, as well as a small numerical example. In Section 4 we describe our

evel optimization formulation and its reformulation as a Mixed Integer Convex Quadratic

oblem with linear constraints. In Section 5 we illustrate our approach with real-world

ta on bank branches. We end the paper with conclusions in Section 6. In the Appendix,

extend the analysis by investigating alternative returns to scale and by investigating

nges in the outputs rather than the inputs.

Background and Literature

In this section, we give some background on DEA benchmarking, in particular on di-

tional and interactive benchmarking, on target setting in DEA, and on counterfactual

3
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analysis from interpretable machine learning.

Data Envelopment Analysis, DEA, was first introduced in [13, 14] as a tool for measuring
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ciency and productivity of decision making units, DMUs. The idea of DEA is to model

production possibilities of the DMUs and to measure the performance of the individual

Us relative to the production possibility frontier. The modelling is based on observed

ctices that form activities in a Linear Programming (LP) based activity analysis model.

Most studies use DEA models primarily to measure the relative efficiency of the DMUs.

e benchmarking framework, the LP based activity analysis model, does however allow us

explore a series of other questions. In fact, the benchmarking framework can serve as a

rning lab and decision support tool for managers. In the DEA literature, this perspective

s been emphasized by the idea of interactive benchmarking. Interactive benchmarking

d associated easy to use software has been used in a series of applications and consultancy

jects, cf. e.g. [7]. The idea is that a DMU can search for alternative and attractive pro-

ction possibilities and hereby learn about the technology, explore possible changes and

de-offs and look for least cost changes that allow for necessary performance improve-

nts, cf. also our discussion of learning, decision making and incentive and regulation

plications in the introduction.

One way to illustrate the idea of interactive benchmarking is as in Figure 1 below. A

U has used two inputs to produce two outputs. Based on the data from other DMUs, an

imate of the best practice technology has been established as illustrated by the piecewise

ear input and output isoquants. The DMU may now be interested in exploring alternative

ths towards best practices. One possibility is to save a lot of input 2 and somewhat less

input 1, i.e., to move in the direction dx illustrated by the arrow in the left panel. If

aim is to become fully efficient, this approach suggests that the DMU instead of the

sent (input,output) combination (x,y) should consider the alternative (x̂,y). A similar

ic could be used on the output side keeping the inputs fixed as illustrated in the right

nel where we assume that more of a proportional increase in the two outputs is strived

Of course, in reality, one can combine also changes in the inputs and outputs.

Formally, the directional distance function approach, sometimes referred to as the excess

blem, requires solving the following mathematical programming problem

max {e | (x− edx,y + edy) ∈ T ∗}, (DIR)

ere x and y are the present values of the inputs and output vectors, dx and dy are

improvement directions in input and output space, T ∗ is the estimated set of feasible

put,output) combinations, and e is the magnitude of the movement.

In the DEA literature, the direction (dx,dy) is often thought as parameters that are

en and the excess as one of many possible ways to measure distance to the frontier. A

authors have advocated that some directions are more natural than others and there

ve been attempts to endogenize the choice of this direction, cf. e.g. [8, 20, 21, 37, 47].

4
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Figure 1: Directional search for an alternative production plan to (x,y) along (dx,dy) using (DIR)

e can also think of the improvement directions as reflecting the underlying strategy of

DMU or simply as a steering tool that the DMU uses to create one or more interesting

ints on the frontier.

Figure 2 illustrates the real-world example involving bank branches from the application

tion. The analysis is here done using the directional distance function approach (DIR)

implemented in the so-called Interactive Benchmarking software, cf. [7]. The search

irection” is chosen by adjusting the horizontal handles for each input and output and

expressed in percentages of the existing inputs and outputs. The resulting best practice

ernative is illustrated in the “Benchmark” column. We see that the DMU in this example

resses an interest in reducing Supervision and Credit personnel but simultaneously seeks

increase the number of personal loan accounts.

ure 2: Directional search in Interactive Benchmarking software. Real-world dataset of bank branches in
tion 5

Applications of interactive benchmarking have typically been in settings where the DMU

a trial-and-error like process seeks alternative production plans. Such processes can

tainly be useful in attempts to learn about and gain trust in the modelling, to guide

ision making and to find the perfomance enhancing changes that a DMU may find

atively easy to implement. From the point of view of Multiple Criteria Decision Making

5
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(MCDM) we can think of such processes as based on progressive articulation of preferences

and alternatives, cf. e.g. the taxonomy of MCDM methods suggested in [40].
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It is clear from this small example, however, that the use of an interactive process guided

ely by the DMU may not always be the best approach. If there are more than a few inputs

d outputs, the process can become difficult to steer towards some underlying optimal

promise between the many possible changes in inputs and outputs. In such cases, the

called prior articulation of preferences may be more useful. If the DMU can express

preferences for different changes, e.g., as a cost of change function C((x,y), (x∗,y∗))

ing the cost of moving from the present production plan (x,y) to any new production

n (x∗,y∗), then a systematic search for the optimal change is possible. The approach

this paper is based on this idea. We consider a class of cost functions and show how

find optimal changes in inputs and outputs using bilevel optimization. In this sense, it

responds to endogenizing the directional choice so as to make the necessary changes in

uts and outputs as small as possible. Of course, by varying the parameters of the cost

ction, one can also generate a reasonably representative set of alternative production

ns that the DMU can then choose from. This would correspond to the idea of a prior

iculation of alternatives approach in the MCDM taxonomy.

The idea of introducing a cost of change function to guide the search for alternative

duction plans is closely related to the idea of targets in DEA. At a general level, a target is

e understood as an alternative production plan that a DMU should move to.1 There has

en a series of interesting DEA papers on the determination of targets using the principle

least action, see for example [4] and the references in here. In [4], the authors explicitly

roduce the principle of least action referring to the idea in physics that nature always

ds the most efficient course of action. The general argument underlying these approaches

that an inefficient firm should achieve technical efficiency with a minimum amount of

ort. Different solutions have been proposed using different distance measures or what we

l the cost of change. In many papers, this corresponds to minimizing the distance to the

cient frontier in contrast to the traditional efficiency measurement problem, where we

looking for the largest possible savings or the largest possible expansions of the services

vided. A good example is [5]. In this sense, our idea of finding close counterfactuals fits

ely into the DEA literature.

The choice of targets has also been discussed in connection with the slack problem in

ial DEA measures. A Farrell projection may not lead to a Pareto efficient point and in

econd stage, it is therefore common to discuss close alternatives that are fully Pareto

1In [6], the authors distinguish between setting targets and benchmarking in the sense that targets are
coordinates of a projection point, which is not necessarily an observed DMU, whereas benchmarks are
l observed DMUs. This distinction can certainly be relevant is several contexts, but it is not how we use
gets here. We use benchmarking as the general term for relative performance comparison, and target to
ignate an alternative production plan that a DMU should choose to improve performance in the easiest
sible way.

6
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efficient. Again, different solutions – using for example constraints or the determination of

all full facets – have been proposed, cf. [3]. Identifying all facets and measuring distance
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these like in [43] is theoretically attractive but computationally cumbersome in most

plications.

Our approach can be seen as a generalization of the literature on targets. In particular,
∗ = 1 and the considered cost function coincides with a norm or with a typical technical

ciency measure, then the previous DEA target approaches are particular cases of the

eral approach introduced in this paper. We formulate the target setting problem for

eral cost-of-change functions using a bilevel program2, and we reformulate the constraints

get tractable mathematical optimization problems. Using combinations of ℓ0, ℓ1 and ℓ2

rms, as we do in the illustrations, the resulting problems are Mixed Integer Convex

adratic Problems with linear constraints. It is worthwhile to note also, that we do not

essarily require the target to be Pareto efficient, allowing for the possibility that a DMU

y not seek to become fully efficient but, for example, just 90% Farrell efficient which also

plies that targets may be on non-full facets.

In interpretable machine learning [16, 41], counterfactual analysis is used to explain the

dictions made for individual instances [25, 31, 45]. Machine learning approaches like

ep Learning, Random Forests, Support Vector Machines, and XGBoost are often seen

powerful tools in terms of learning accuracy but also as black boxes in terms of how

model arrives at its outcome. Therefore, regulations from, among others the EU, are

orcing more transparency in the so-called field of algorithmic decision making [18, 24].

ere is a paramount of tools being developed in the nascent field of explainable artificial

elligence to help understand how tools in machine learning and artificial intelligence

ke decisions [32, 33, 34]. The focus of this paper is on counterfactual analysis tools. The

rting point is an individual instance for which the model predicts an undesired outcome.

counterfactual analysis, one is interested in building an alternative instance, the so-called

nterfactual instance, revealing how to change the features of the current instance so that

model predicts a desired outcome for the counterfactual instance. The counterfactual

lanation problem is written as a mathematical optimization problem. To define the

blem, one needs to model the feasible space, a cost function measuring the cost of the

vement from the current instance to the counterfactual one, and a set of constraints

t ensures that the counterfactual explanation is predicted with the desired outcome. In

eral, the counterfactual explanation problem reads as a constrained nonlinear problem

t, for score-based classifiers and cost functions defined by a convex combination of the

rms ℓ0, ℓ1 and ℓ2, equivalent Mixed Integer Linear Programming or Mixed Integer Convex

adratic with Linear Constraints formulations can be defined, see, e.g., [11, 22, 35].

2The idea of using a bilevel linear programming approach has also appeared in the DEA literature. It
uld be noted in particular that [3] proposed to resort to a bilevel linear programming model when strictly
cient targets are to be identified using the Russel output measure to capture cost-of-change.
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In the following, we combine the ideas of DEA, least action targets, and counterfactual

explanations. We formulate and solve bilevel optimization models to determine “close”
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ernative production plans or counterfactual explanations in DEA models that lead to

ired relative performance levels and also take into account the strategic preferences of

entity.

The Setting

We consider K + 1 DMUs (indexed by k), using I inputs, xk = (xk1, . . . , x
k
I )

⊤ ∈ RI
+, to

duce O outputs, yk = (yk1 , . . . , y
k
O)

⊤ ∈ RO
+. Hereafter, we will write (xk,yk) to refer to

duction plan of DMU k, k = 0, 1, . . . ,K.

Let T be the technology set, with

T = {(x,y) ∈ RI
+ × RO

+ | x can produce y}.

will initially estimate T by the classical DEA model. It determines the empirical ref-

nce technology T ∗ as the smallest subset of RI
+ × RO

+ that contains the actual K + 1

servations, and satisfies the classical DEA regularities of convexity, free-disposability in

uts and outputs, and Constant Returns to Scale (CRS). It is easy to see that the esti-

ted technology can be described as:

T ∗(CRS) = {(x,y) ∈ RI
+ × RO

+ | ∃λ ∈ RK+1
+ : x ≥

K∑

k=0

λkxk,y ≤
K∑

k=0

λkyk}.

To measure the efficiency of a firm, we will initially use the so-called Farrell input-

ented efficiency. It measures the efficiency of a DMU, say DMU 0, as the largest propor-

nal reduction E0 of all its inputs x0 that allows the production of its present outputs y0

the technology T ∗. Hence, it is equal to the optimal solution value of the following LP

mulation

min
E,λ0,...,λK

E (DEA)

s.t. Ex0 ≥
K∑

k=0

λkxk

y0 ≤
K∑

k=0

λkyk

0 ≤ E ≤ 1

λ ∈ RK+1
+ .

is DEA model has K+2 decision variables, I linear input constraints and O linear output

straints. Hereafter, we will refer to the optimal objective value of (DEA), say E0, as the

8
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efficiency of DMU 0.

In the following, and assuming that firm 0 with production plan (x0,y0) is not fully

effi

effi

in

of

defi

fol

W

the

dev

squ

val

cha

inc

thi

the

dep

a b

DE

an

lik

the

fou

ha

exa
Jo
ur

na
l P

re
-p

ro
of

cient, E0 < 1, we will show how to calculate a counterfactual explanation with a desired

ciency level E∗ > E0, i.e., the minimum changes needed in the inputs of the firm, x0,

order to obtain an efficiency E∗. Given a cost function C(x0, x̂) that measures the cost

moving from the present inputs x0 to the new counterfactual inputs x̂, and a set X (x0)

ning the feasible space for x̂, the counterfactual explanation for x0 is found solving the

lowing optimization problem:

min
x̂

C(x0, x̂)

s.t. x̂ ∈ X (x0)

(x̂,y0) has at least an efficiency of E∗.

ith respect to C(x0, x̂), different norms can be used to measure the difficulty of changing

inputs. A DMU may, for example, be interested to minimize the sum of the squared

iations between the present and the counterfactual inputs. We model this using the

ared Euclidean norm ℓ22. Likewise, there may be an interest in minimizing the absolute

ue of the deviations, which we can proxy using the ℓ1 norm, or the number of inputs

nged, which we can capture with the ℓ0 norm. When it comes to X (x0), this would

lude the nonnegativity of x̂, as well as domain knowledge specific constraints. With

s approach, we detect the most important inputs in terms of the impact they have on

DMU’s efficiency, and with enough flexibility to consider different costs of changing

ending on the DMU’s characteristics.

In the next section, we will show that finding counterfactual explanations involves solving

ilevel optimization problem of minimizing the changes in inputs and solving the above

A problem at the same time. In the Appendix, we will also discuss how the counterfactual

alysis approach can be extended to other technologies and to other efficiency measures

e the output-oriented Farrell efficiency and other DEA technologies.

Before turning to the details of the bilevel optimization problem, it is useful to illustrate

idea of counterfactual explanations using a small numerical example. Suppose we have

r firms with the inputs, outputs, and Farrell input efficiencies as in Table 1. The efficiency

s been calculated solving the classical DEA model with CRS, namely (DEA). In this

mple, firms 1 and 2 are fully efficient, whereas firms 3 and 4 are not.

Firm x1 x2 y E

1 0.50 1 1 1
2 1.50 0.50 1 1
3 1.75 1.25 1 0.59
4 2.50 1.25 1 0.50

Table 1: Inputs, outputs and corresponding Farrell input-efficiency of 4 different firms

9
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First, we want to know the changes needed in x3 for firm 3 to have a new efficiency

E∗ of at least 80%. Since we only have two inputs, we can illustrate this graphically as in

Fig
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ure 3a. The results are shown in Table 2 for different cost functions. It can be seen that

in all cases get exactly 80% efficiency with the new inputs. We see from column ℓ22 that

Farrell solution is further away from the original inputs than the counterfactual solution

sed on the Euclidean norm. To the extent that difficulties of change is captured by the

norm, we can conclude that the Farrell solution is not ideal. Moreover, in the Farrell

ution one must by definition change both inputs, see column ℓ0. Using a cost function

bining the ℓ0 norm and the squared Euclidean norm, denoted by ℓ0 + ℓ2, one penalizes

number of inputs changed. With this we detect the one input that should change in

er to obtain a higher efficiency, namely the second input. In contexts like negotiations

h various input suppliers, it is often more practical to focus negotiations on just one or

elect few inputs, instead of dealing with all inputs at the same time.

Cost function x̂1 x̂2 y E ℓ22 ℓ0
Farrell 1.29 0.92 1 0.8 0.32 2
ℓ0 + ℓ2 1.75 0.69 1 0.8 0.31 1
ℓ2 1.53 0.80 1 0.8 0.25 2

ble 2: Counterfactual explanations for firm 3 in Table 1 imposing E∗ = 0.8 and different cost functions

Let us now focus on firm 4 and again find a counterfactual instance with at least 80%

ciency. The results are shown in Table 3 and Figure 3b. Notice how in the Farrell case

e obtains again the farthest solution and also the least sparse from the three of them. As

the counterfactual explanations with our methodology, the inputs nearest to the original

U that give us the desired efficiency are in a non full-facet of the efficiency frontier. By

ng the Farrell to measure the desired efficiency level, we only need to change one input,

mely, the second input, and can have “slack” in the first input. We here deviate from [3],

which the authors look for targets on the strongly efficient frontier, i.e., without slack.

Cost function x̂1 x̂2 y E ℓ22 ℓ0
Farrell 1.56 0.78 1 0.8 1.10 2
ℓ0 + ℓ2 2.50 0.63 1 0.8 0.39 1
ℓ2 2.50 0.63 1 0.8 0.39 1

ble 3: Counterfactual explanations for firm 4 in Table 1 imposing E∗ = 0.8 and different cost functions

In Figure 3, the space where we search for the counterfactual explanation is shaded.

though in these illustrations the frontier is explicitly given, in general, the frontier points

convex combinations of the observed DMUs, and obtaining the isoquants is not easy.

erefore, when finding counterfactual explanations a bilevel optimization is needed to

rch for “close” inputs in the complement of a convex set.

10
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(a) Explanations for firm 3 (b) Explanations for firm 4

ure 3: Counterfactual explanations for firms 3 and 4 in Tables 2 and 3 respectively imposing E∗ = 0.8
different cost functions

Bilevel optimization for counterfactual analysis in DEA

Suppose DMU 0 is not fully efficient, i.e., the optimal objective value of Problem (DEA)

E0 < 1. In this section, we formulate the counterfactual explanation problem in DEA,

, the problem that calculates the minimum cost changes in the inputs x0 that make

U 0 have a higher efficiency. Let x̂ be the new inputs of DMU 0 that would make it at

st E∗ efficient, with E∗ > E0. With this, we have defined the counterfactual instance as

one obtained changing the inputs, but in the same sense, we could define it by changing

outputs. This alternative output-based problem will be studied in the Appendix.

Since the values of the inputs are to be changed, the efficiency of the new production

n (x̂,y0) has to be calculated using Problem (DEA). The counterfactual explanation

blem in DEA reads as follows:

min
x̂

C(x0, x̂) (1)

s.t. x̂ ∈ RI
+ (2)

E ≥ E∗ (3)

E ∈ argmin
Ē,λ0,...,λK

{ Ē : Ēx̂ ≥
K∑

k=0

λkxk,y0 ≤
K∑

k=0

λkyk, Ē ≥ 0,λ ∈ RK+1
+ } , (4)

ere in the upper level problem in (1) we minimize the cost of changing the inputs for

0, x0, to x̂, ensuring nonnegativity of the inputs, as in constraint (2), and that the

ciency is at least E∗, as in constraint (3). The lower level problem in (4) ensures that

efficiency of (x̂,y0) is correctly calculated. Therefore, as opposed to counterfactual

alysis in interpretable machine learning, here we are confronted with a bilevel optimization

11
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problem. Notice also that to calculate the efficiency in the lower level problem in (4), the

technology is already fixed, and the new DMU (x̂,y0) does not take part in its calculation.
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In what follows, we reformulate the bilevel optimization problem (1)-(4) as a single-level

del, by exploiting the optimality conditions for the lower-level problem. This can be

ne for convex lower-level problems that satisfy Slater’s conditions, e.g., if our lower-level

blem was linear. In our case, however, not all the constraints are linear, since in (4) we

ve the product of decision variables Ēx̂. To be able to handle this, we define new decision

iables, namely, F = 1
E and βk = λk

E , for k = 0, . . . ,K. Thus, (1)-(4) is equivalent to:

min
x̂,F

C(x0, x̂)

s.t. x̂ ∈ RI
+

F ≤ F ∗

F ∈ argmax
F̄ ,β

{ F̄ : x̂ ≥
K∑

k=0

βkxk, F̄y0 ≤
K∑

k=0

βkyk, F̄ ≥ 0,β ∈ RK+1
+ } . (5)

This equivalent bilevel opimization problem can now be reformulated as a single-level

del. The new lower-level problem in (5) can be seen as the x̂-parametrized problem:

max
F,β

F (6)

s.t. x̂ ≥
K∑

k=0

βkxk (7)

Fy0 ≤
K∑

k=0

βkyk (8)

F ≥ 0 (9)

β ≥ 0. (10)

The Karush-Kuhn-Tucker (KKT) conditions, which include primal and dual feasibility,

tionarity and complementarity conditions, are necessary and sufficient to characterize

optimal solution. Thus, we can replace problem (5) by its KKT conditions. Primal

sibility is given by (7)-(10). Dual feasibility is given by:

γI ,γO, δ,µ ≥ 0, (11)

the dual variables associated with constraints (7)-(10), where γI ∈ RI
+, γO ∈ RO

+,

R+, µ ∈ RK+1
+ . The stationarity conditions are as follows:

γ⊤
Oy

0 − δ = 1 (12)

γ⊤
I x

k − γ⊤
Oy

k − µk = 0 k = 0, . . . ,K. (13)

12
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Lastly, we need the complementarity conditions for all constraints (7)-(10). For constraint

(7), we have:
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γiI = 0 or x̂i −
K∑

k=0

βkxki = 0 i = 1, . . . , I. (14)

order to model this disjunction, we will introduce binary variables ui ∈ {0, 1}, i = 1, . . . , I,

d the following constraints using the big-M method:

γiI ≤ MIui, x̂i −
K∑

k=0

βkxki ≤ MI(1− ui), i = 1, . . . , I, (15)

ere MI is a sufficiently large constant.

The same can be done for the complementarity condition for constraint (8), introducing

ary variables vo ∈ {0, 1}, o = 1, . . . , O, big-M constant MO, and constraints:

γoO ≤ MOvo, −Fy0o +
K∑

k=0

βkyko ≤ MO(1− vo), o = 1, . . . , O. (16)

e complementarity condition for constraint (10) would be the disjunction βk = 0 or

= 0. Using the stationarity condition (13) and again the big-M method with binary

iables wk ∈ {0, 1}, k = 0, . . . ,K, and big-M constant Mf , one obtains the constraints:

βk ≤ Mfwk, γ⊤
I x

k − γ⊤
Oy

k ≤ Mf (1− wk), k = 0, . . . ,K. (17)

Finally, for constraint (9) the complementarity condition yields F = 0 or δ = 0. Re-

mber that F = 1/E, 0 ≤ E ≤ 1, thus F cannot be zero by definition and we must impose

0. Using stationarity condition (12), this yields:

γ⊤
Oy

0 = 1. (18)

We now reflect on the meaning of these constraints. Notice that constraints (15) and

) model the slacks of the inputs and outputs respectively, while constraint (17) models

firms that define the frontier, i.e., the firms with which DMU 0 is to be compared. If

ary variable ui = 1, then there is no slack in input i, i.e., x̂i =
∑K

k=1 β
kxki , whereas if

= 0 that means there is. The same happens with binary variable vo, namely, it indicates

ether there is a slack in output o. On the other hand, when wk = 1, then the equality

the dual constraint will hold γ⊤
I x

k = γ⊤
Oy

k, i.e., firm k is fully efficient and it is used

define the efficiency of the counterfactual instance. If wk = 0 then βk = 0, and firm k

not being used to define the efficiency of the counterfactual instance. Let us go back to

example in the previous section with four firms with 2 inputs and 1 output and several

ices of cost function C of changing the inputs. When C = ℓ22, we can see that firm 3 is

pared against firms 1 and 2, while firm 4 is compared against firm 2 only.

13
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Notice that µk is only present in (13), thus it is free. In addition, we know that δ = 0.

Therefore, we can transform the stationarity conditions (12) and (13) to
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γ⊤
Oy

0 = 1 (19)

γ⊤
I x

k − γ⊤
Oy

k ≥ 0 k = 1, . . . ,K (20)

γI ,γO ≥ 0, (21)

t are exactly the constraints in the dual DEA model for the Farrell output efficiency.

The new reformulation of the counterfactual explanation problem in DEA is as follows:

min
x̂,F,β,γI ,γO,u,v,w

C(x0, x̂)

s.t. F ≤ F ∗

x̂ ∈ RI
+

u,v,w ∈ {0, 1}
(7)− (10) primal

(19)− (21) dual

(15)− (16) slacks

(17) frontier.

So far, we have not been very specific about the objective function C(x0, x̂). Differ-

functional forms can be introduced, and this may require the introduction of further

iables to implement these.

In Section 3, we approximated the firm’s cost-of-change using combinations of the ℓ0

rm, the ℓ1 norm, and the squared ℓ2 norm. They are widely used in machine learning when

se counterfactuals are sought in attempt to understand how to getter a more attractive

tcome [10]. The ℓ0 “norm”, which strictly speaking is not a norm in the mathematical

se, counts the number of dimensions that has to be changed. The ℓ1 norm is the absolute

ue of the deviations. Lastly, ℓ22 is the Euclidean norm, that squares the deviations.

As a starting point, we therefore propose the following objective function:

C(x0, x̂) = ν0∥x0 − x̂∥0 + ν1∥x0 − x̂∥1 + ν2∥x0 − x̂∥22, (22)

ere ν0, ν1, ν2 ≥ 0. Taking into account that there may be specific product input prices

d output prices or that inputs may have varying degrees of difficulty to be changed, one

consider giving different weights to the deviations in each of the inputs.

In order to have a smooth expression of objective function (22), additional decision

iables and constraints have to be added to the counterfactual explanation problem in

14
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DEA. To linearize the ℓ0 norm, binary decision variables ξi are introduced. For input i,

ξi = 1 models x0 ̸= x̂ , i = 1, . . . , I. Using the big-M method the following constraints are
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i i

ded to our formulation:

−Mzeroξi ≤ x0i − x̂i ≤ Mzeroξi, i = 1, . . . , I (23)

ξi ∈ {0, 1}, i = 1, . . . , I, (24)

ere Mzero is a sufficiently large constant.

For the ℓ1 norm we introduce continuous decision variables ηi ≥ 0, i = 1, . . . , I, to

asure the absolute values of the deviations, ηi =
∣∣x0i − x̂i

∣∣, which is naturally implemented

the following constraints:

ηi ≥ x0i − x̂i, i = 1, . . . , I (25)

−ηi ≤ x0i − x̂i, i = 1, . . . , I (26)

ηi ≥ 0, i = 1, . . . , I. (27)

Thus, the counterfactual explanation problem in DEA with cost function C in (22),

eafter (CEDEA), reads as follows:

min
x̂,F,β,γI ,γO,u,v,w,η,ξ

ν0

I∑

i=1

ξi + ν1

I∑

i=1

ηi + ν2

I∑

i=1

η2i (CEDEA)

s.t. F ≤ F ∗

x̂ ∈ RI
+

u,v,w ∈ {0, 1}
(7)− (10), (15)− (17), (19)− (21),

(23)− (24), (25)− (27).

tice that in Problem (CEDEA) we assumed X (x0) = RI
+ as the feasible space for x̂.

her relevant constraints for the counterfactual inputs could easily be added, e.g., bounds

relative bounds on the inputs, or inputs that cannot be changed in the short run, say

ital expenses, or that represent environmental conditions beyond the control of the DMU.

In the case where only the ℓ0 and ℓ1 norms are considered, i.e., ν2 = 0, the objective

ction as well as the constraints are linear, while we have both binary and continuous

ision variables. Therefore, Problem (CEDEA) can be solved using an Mixed Integer

ear Programming (MILP) solver. Otherwise, when ν2 ̸= 0, Problem (CEDEA) is a

xed Integer Convex Quadratic model with linear constraints, which can be solved with

ndard optimization packages. When all three norms are used, Problem (CEDEA) has

+K + 2 +O continuous variables and 2I +O +K + 1 binary decision variables. It has

+ 3O + 3K + 5 constraints, plus the non-negativity and binary nature of the variables.
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The computational experiments show that this problem can be solved efficiently for our

real-world dataset.
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We can think of the objective function C in different ways.

One possibility is to see it as an instrument to explore the production possibilities. The

of a combinations of the ℓ0, ℓ1 and ℓ2 norms seems natural here. Possible extensions

ld involve other ℓp norms, ∥x0 − x̂∥p :=
(∑I

i=1

∣∣x0i − x̂i
∣∣p
)1/p

. For all p ∈ [1,∞), ℓp is

vex. This makes the use of ℓp norms convenient in generalizations of Problem (CEDEA).

course, arbitrary ℓp norms may lead to more complicated implementations in existing

twares since the objective function may no longer be quadratic.

Closely related to the instrumental view of the objective function is the idea of approx-

ations. At least as a reasonable initial approximation of more complicated functions,

ny objective functions C can be approximated by the form in (22).

To end, one can link the form of C closer to economic theory. In the economic literature

re have been many studies on factor adjustments costs. It is commonly believed that

s change their demand for inputs only gradually and with some delay, cf. e.g. [28]. For

or inputs, the factor adjustment costs include disruptions to production occurring when

nging employment causes workers’ assignments to be rearranged. Laying off or hiring

workers is also costly. There are search costs (advertising, screening, and processing new

ployees); the cost of training (including disruptions to production as previously trained

rkers’ time is devoted to on-the-job instruction of new workers); severance pay (mandated

d otherwise); and the overhead cost of maintaining that part of the personnel function

ling with recruitment and worker outflows. Following again [28], the literature on both

or and capital goods adjustments has overwhelmingly relied on one form of C, namely

t of symmetric convex adjustment costs much like we use in (22). Indeed, in the case of

ly one production factor, the most widely used function form is simply the quadratic one.

ll [27] and several others have tried to estimate the costs of adjusting labor and capital

uts. Using a Cobb-Douglas production function, and absent adjustment costs and absent

nges in the ratios of factor prices, an increase in demand or in another determinant of

ustry equilibrium would cause factor inputs to change in the same proportion as outputs.

justment costs are introduced as reductions in outputs and are assumed to depend on

squared growth rates in labor and capital inputs - the larger the percentage change, the

ger the adjustment costs. Another economic approach to the cost-of-change modelling is

think of habits. In firms - as in the private life - habits are useful. In the performance

many tasks, including complicated ones, it is easiest to go into automatic mode and

a behavior unfold. When an efficiency requirement is introduced, habits may need

change and this is costly. The relevance and strength of habit formation has also been

died empirically using panel data, cf. e.g. [17] and the references herein. Habit formation

uld ideally be considered in a dynamic framework. To keep it simple, we might consider

o periods - the past, where x0 was used and the present, where x̂ is consumed. The

16
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utility in period two will then typically depend on the difference or ratio of present to past

consumption, x̂ − x0 or, in the unidimensional case, x̂/x0. Examples of functional forms

on
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e can use are provided in for example [23].

A banking application

In this section, we illustrate our methodology using real-world data on bank branches,

], by constructing a collection of counterfactual explanations for each of the inefficient

s that can help them learn about the DEA benchmarking model and how they can

prove their efficiency.

The data is described in more detail in Section 5.1, where we consider a model of bank

nch production with I = 5 inputs and O = 3 outputs, and thus a production possibility

in R8
+, spanned by K + 1 = 267 firms. In Section 5.2, we will focus on changing

inputs, and therefore the counterfactual explanations will be obtained with Problem

EDEA). We will discuss the results obtained with different cost of change functions C,

ecting the effort an inefficient firm will need to spend to change to its counterfactual

tance, and different desired levels of efficiency E∗. The Farrell projection discussed in

tion 3 is added for reference. The counterfactual analysis sheds light on the nature of

DEA benchmarking model, which is otherwise hard to comprehend because of the many

s and inputs and outputs involved in the construction of the technology.

All optimization models have been implemented using Python 3.8 and as solver Gurobi

[26]. We have solved Problem (CEDEA) with MI = M0 = Mf = 1000 and Mzero = 1.

e validity of Mzero = 1 will be shown below. Our numerical experiments have been

ducted on a PC, with an Intel R CoreTM i7-1065G7 CPU @ 1.30GHz 1.50 GHz processor

d 16 gigabytes RAM. The operating system is 64 bits.

. The data

The data consist of five staff categories and three different types of outputs in the

tario branches of a large Canadian bank. The inputs are measured as full-time equivalents

TEs), and the outputs are the average monthly counts of the different transactions and

intenance activities. Observations with input values equal to 0 are removed, leaving us

h an actual dataset with 267 branches. Summary statistics are provided in Table 4.

After calculating all the efficiencies through Problem (DEA), one has that 236 firms of

267 ones are inefficient. Out of those, 219 firms have an efficiency below 90%, 186 below

, 144 below 70%, 89 below 60% and 49 below 50%.

. Counterfactual analysis of bank branches

To examine the inefficient firms, we will determine counterfactual explanations for these.

ior to that, we have divided each input by its maximum value across all firms. We

tice that this has no impact on the solution since DEA models are invariant to linear

17



Journal Pre-proof

Mean Min Max Std. dev.

INPUTS

tra

val

ν0,

ins

we

ℓ0

sol

tak

tha

the

sum

for

for

the

Fig

E∗

ins

diff

cha

(C

rep
 Jo
ur

na
l P

re
-p

ro
of

Teller 5.83 0.49 39.74 3.80
Typing 1.05 0.03 22.92 1.84
Accounting & ledgers 4.69 0.80 65.93 5.13
Supervision 2.05 0.43 38.29 2.66
Credit 4.40 0.35 55.73 6.19

OUTPUTS

Term accounts 2788 336 22910 2222
Personal loan accounts 117 0 1192 251
Commercial loan accounts 858 104 8689 784

Table 4: Descriptive statistics of the Canadian bank branches dataset in [42]

nsformations of inputs and outputs. Also, this makes valid choosing Mzero = 1, since the

ues of all inputs are upper bounded by 1.

We will use three different cost functions, by changing the values of the parameters

ν1, ν2 in (22), as well as two different values of the desired efficiency of the counterfactual

tance, namely E∗ = 1 and 0.8. In the first implementation of the cost function, which

denote ℓ0 + (ℓ2), we use ν0 = 1, ν2 = 10−3 and ν1 = 0, i.e., we will seek to minimize the

norm and only introduce a little bit of the squared Euclidean norm to ensure a unique

ution of Problem (CEDEA). In the second implementation, which we call ℓ0 + ℓ2, we

e ν0 = 1, ν1 = 0 and ν2 = 105, such that the squared Euclidean norm has a higher weight

n in cost function ℓ0 + (ℓ2). Finally, we denote by ℓ2 the cost function that focuses on

minimization of the squared Euclidean norm only, i.e., ν0 = ν1 = 0 and ν2 = 1. The

mary of all the cost functions used can be seen in Table 5. Calculations were also done

the ℓ1 norm, i.e., ν0 = ν2 = 0 and ν1 = 1, but as the solutions found were similar to those

cost function ℓ0 + ℓ2, for the sake of clarity of presentation, they are omitted. We start

discussion of the counterfactual explanations obtained with E∗ = 1, as summarized in

ures 4-5 and Tables 6-7. We then move on to a less demanding desired efficiency, namely,

= 0.8. These results are summarized in Figures 6-7 and Tables 8-9.

Cost function ν0 ν1 ν2

ℓ0 + (ℓ2) 1 0 10−3

ℓ0 + ℓ2 1 0 105

ℓ2 0 0 1

Table 5: Value of the parameters ν0, ν1 and ν2 in (22) for the different cost functions used

Let us first visualize the counterfactual explanations for a specific firm. Consider, for

tance, firm 238, which has an original efficiency of E0 = 0.72. We can visualize the

erent counterfactual explanations generated by the different cost functions using a spider

rt, see Figure 4. In addition to the counterfactual explanations obtained with Problem

EDEA), we also illustrate the so-called Farrell projection. In the spider chart, each axis

resents an input and the original values of the firm corresponds to the outer circle.
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ure 4: Counterfactual Explanations for firm 238 with Problem (CEDEA) and desired efficiency E∗ = 1.

ure 4 shows the different changes needed depending on the cost function used. With

ℓ0 + (ℓ2), where the focus is to mainly penalize the number of inputs changed, we see

t only the typing personnel has to be changed, leaving the rest of the inputs unchanged.

vertheless, because only one input is changed, it has to be decreased by 60% from the

ginal value. The Farrell solution decreases the typing personnel by 28% of its value, but

compensate, it changes the remaining four inputs proportionally. When the ℓ0 + ℓ2 cost

ction is used, the typing personnel keeps on needing to be changed, but the change is

aller, this time by 51% of its value. The supervision personnel needs also to be decreased

16% of its value, while the rest of the inputs remain untouched. Increasing the weight

the Euclidean norm in the cost function gives us the combination of the two inputs that

crucial to change in order to gain efficiency, as well as the exact amount that they need

be reduced. Finally, using only the Euclidean norm, the typing, supervision and credit

rsonnel are the inputs to be changed, the typing input is reduced slightly less than with

ℓ0 + ℓ2 in exchange of reducing just by 1% the credit input. Notice that the teller

d accounting and ledgers personnel are never changed in the counterfactual explanations

erated by our methodology, which leads us to think that these inputs are not the ones

ding firm 238 to have its original low efficiency.

The analysis above is for a single firm. We now present some statistics about the

nterfactual explanations obtained for all the inefficient firms. Recall that these are 236

s, and that Problem (CEDEA) has be solved for each of them. In Table 6 we show for

h cost function, how often an input has to be changed. For instance, the value 0.09 in the
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last row of the Teller column shows that in 9% of all firms, we have to change the number of

tellers when the aim is to find a counterfactual instance using the Euclidean norm. When
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re weight is given to the ℓ0 norm, few inputs are changed. Indeed, for the Teller column,

h the ℓ0 + ℓ2, 3% of all firms change it, instead of 9%, and this number decreases to 1%

en the ℓ0 + (ℓ2) is used. The same pattern can be observed in all inputs, particularly

table in the Acc. and Ledgers personnel, that goes from changing in more than half of

banks with the Euclidean norm, to changing in only 14% of the firms. The last column

Table 6, Mean ℓ0(x − x̂), shows how many inputs are changed on average when we use

different cost functions. With the ℓ0 + (ℓ2) only one input has to be decreased, thus

h this cost function one detects the crucial input to be modified to be fully efficient,

ving the rest fixed. In general, the results show that, for the inefficient firms, the most

mon changes leading to full efficiency is to reduce the number of typists and the number

credit officers. The excess of typists is likely related to the institutional setting. Bank

nches need the so-called typists for judicial regulations, but they only need the services

a limited degree, see also Table 4. In such cases, it may be difficult to match the full time

ivalents employed precisely to the need. The excess of Credit officers is more surprising

ce, in particular, they are one of the best paid personnel groups.

In Table 7, we look at the size of the changes and not just if a change has to take place or

t. The interpretation of the value 0.43 under the first row and the Teller column suggests

t when the teller numbers have to be changed, they are reduced by 43% from the initial

ue, on average. Since several inputs may have to change simultaneously, defining the

tor of the relative changes r = ((xi − x̂i)/xi)
I
i=1, the last column shows the mean value

the Euclidean norm of this vector. We see, for example, that in the relatively few cases

teller personnel has to change under ℓ0 + (ℓ2), the changes are relatively large. We see

in the difficulties the bank branches apparently have hiring the right amount of typists.

saw in Table 6 that they often have to change and we see now that the changes are

n-trivial with about a half excess full time equivalents.

Cost function Teller Typing Acc. and Ledgers Supervision Credit Mean ℓ0(x− x̂)

ℓ0 + (ℓ2) 0.01 0.38 0.14 0.13 0.34 1.00
ℓ0 + ℓ2 0.03 0.40 0.17 0.14 0.38 1.13
ℓ2 0.09 0.45 0.51 0.21 0.47 1.72

able 6: Average results on how often the inputs (personnels) change when desired efficiency is E∗ = 1.

Cost function Teller Typing Acc. and Ledgers Supervision Credit Mean ℓ2(r)

ℓ0 + (ℓ2) 0.43 0.61 0.41 0.43 0.37 0.4743
ℓ0 + ℓ2 0.21 0.58 0.33 0.38 0.35 0.4742
ℓ2 0.11 0.53 0.14 0.27 0.29 0.4701

able 7: Average results on how much the inputs (personnels) change when desired efficiency is E∗ = 1.

In Figure 5, we use a heatmap to illustrate which input factors have to change for the
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a) C = ℓ0 + (ℓ2) (b) C = ℓ0 + ℓ2 (c) C = ℓ2

Figure 5: The inputs that change when we impose a desired efficiency of E∗ = 1

ividual firms using the three different cost functions in Table 6. Rows with no markings

resent firms that were fully efficient to begin with. We see as we would expect that the

re weight we put on the Euclidean norm, the more densely populated the illustration

comes, i.e., the more inputs have to change simultaneously.

So far we have asked for counterfactual instances that are fully efficient. If we instead

ly ask for the counterfactual instances to be at least 80% efficient, only 186 firms need

be studied. As before, let us first visualize the counterfactual explanations for firm

, which had an original efficiency of E0 = 0.72. In Figure 6, we can see the different

nges when imposing E∗ = 0.8. We again see that the Farrell approach reduces all inputs

portionally, specifically by 9.5% of their values. We see also that under the ℓ0 + (ℓ2)

rm, only Credit personnel has to be reduced, by 15%. Under the Euclidean norm, Teller

d Acc. and Ledgers personnel are not affected while Typing, Supervision and Credit

cers have to be saved, by 4%, 13% and 7%, respectively. Notice that only the change

Supervision is higher in this case than in the Farrell solution, while the decrease in the

ain four inputs is significantly smaller for the Euclidean norm. Recall that in Figure

he counterfactual explanations for the same firm 238 have been calculated imposing

= 1. Altering the desired efficiency level from E∗ = 0.8 to E∗ = 1 leads to rather

matic changes in the counterfactual explanations. For the ℓ0 + (ℓ2) cost function, for

esired efficiency of E∗ = 0.8, we needed to decrease the Credit personnel dramatically
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ure 6: Counterfactual Explanations for DMU 238 with Problem (CEDEA) and desired efficiency E∗ = 0.8

ereas for a desired efficiency of E∗ = 1, it is suggested to leave unchanged the Credit

rsonnel and to change the Typing personnel instead. On the other hand, what remains

same is the fact that Teller and Acc. and Ledgers officers are never affected in the

nterfactual explanations with the three cost functions.

After the analysis for a single firm, now we present statistics about the counterfactual

lanations obtained for all 168 firms that had an original efficiency below 80%. The

quency of changes and the relative sizes of the changes are shown in Tables 8 and 9.

see, as we would expect, that the amount of changes necessary is reduced. On the

er hand, the inputs to be changed are not vastly different. The tendency to change in

rticular credit officers is slightly larger now.

Cost function Teller Typing Acc. and Ledgers Supervision Credit Mean ℓ0(x− x̂)

ℓ0 + (ℓ2) 0.01 0.30 0.18 0.08 0.44 1.00
ℓ0 + ℓ2 0.03 0.32 0.19 0.09 0.47 1.11
ℓ2 0.13 0.43 0.51 0.18 0.63 1.88

ble 8: Average results on how often the inputs (personnels) change when desired efficiency is E∗ = 0.8

In Figure 7, we show the input factors that need to change for the individual firms using

three different cost functions in Table 8 for the case now with E∗ = 0.8. As expected,

can see now an increasing number of rows with no markings compared to Figure 5,

longing to the firms that had already an efficiency of 0.8.
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Cost function Teller Typing Acc. and Ledgers Supervision Credit Mean ℓ2(r)

ℓ0 + (ℓ2) 0.28 0.56 0.28 0.41 0.27 0,3708
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ℓ0 + ℓ2 0.12 0.52 0.25 0.39 0.26 0.3707
ℓ2 0.05 0.41 0.11 0.25 0.21 0.3702

ble 9: Average results on how much the inputs (personnels) change when desired efficiency is E∗ = 0.8

a) C = ℓ0 + (ℓ2) (b) C = ℓ0 + ℓ2 (c) C = ℓ2

Figure 7: The inputs that change when we impose a desired efficiency of E∗ = 0.8

Conclusions

In this paper, we have proposed a collection of optimization models to setting targets

d finding counterfactual explanations in DEA models, i.e., the least costly changes in

inputs or outputs of a firm that leads to a pre-specified (higher) efficiency level. With

r methodology, we are able to include different ways to measure the proximity between

rm and its counterfactual, namely, using the ℓ0, ℓ1, and ℓ2 norms or a combination of

m. Calculating counterfactual explanations involves finding “close” alternatives in the

plement of a convex set. We have reformulated this bilevel optimization problem as

her an MILP or a Mixed Integer Convex Quadratic Problem with linear constraints. In

r numerical section, we can see that for our banking application, we are able to solve this

del to optimality.

DEA models can capture very complex relationships between multiple inputs and out-

ts. This allows more substantial evaluations and also offers a framework that can support

23



Journal Pre-proof

many operational, tactical and strategic planning efforts. However, there is also a risk that

such a model is seen as a pure black box which in turn can lead to mistrust and some de-
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e of model or algorithm aversion. By looking at counterfactuals, a firm can get a better

derstanding of the production space and is more likely to trust in the modelling.

Counterfactuals in DEA can also help a firm choose which changes to implement. It is

t always enough to simply think of a strategy and which factors can easily be changed, say

irection in input space. It is also important how the technology looks like and therefore

w large such changes need to be to get a desired improvement in efficiency. In this way,

analysis of close counterfactuals can help endogenize the choice of both desirable and

ective directions to move in. By varying the parameters of the cost function, the firm can

n get a menu of counterfactuals, from which it can choose, having thus more flexibility

d leading the evaluated firm to gain more trust in the underlying model.

Note also that by calculating the counterfactual explanations for all firms involved, as

did in our banking application, one can determine which combinations of inputs and

tputs that most commonly shall be changed to improve efficiency. This is interesting

m an overall system point of view. Society at large - or for example a regulator tasked

marily with incentivizing natural monopolies to improve efficiency - may not solely be

erested that everyone becomes efficient. It may as well be important how the efficiency is

proved, e.g. by reducing the use of imported or domestic resources or by laying off some

rticular types of labor and not other types.

There are several interesting extensions that can be explored in future research. Here we

t mention two. One possibility is to use alternative efficiency measures to constrain the

rch for counterfactual instances. We have here used Farrell efficiency, which is by far the

st common efficiency measure in DEA studies, but one might consider other alternative

asures, e.g. additive ones like the excess measure. Another relevant extension could be to

ke the counterfactuals less individualized. One could for example look for the common

tures that counterfactual explanations should change across all individual firms and that

d to the minimum total cost.
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] Färe, R., Pasurkac, C., and M.Vardanyan (2017). On endogenizing direction vectors in

parametric directional distance function-based models. European Journal of Operational

Research, 262:361–369.

] Fischetti, M. and Jo, J. (2018). Deep neural networks and mixed integer linear opti-

mization. Constraints, 23(3):296–309.

] Fuhrer, J. C. (2000). Habit formation in consumption and its implications for monetary-

policy models. The American Economic Review, 90(4):367–390.

] Goodman, B. and Flaxman, S. (2017). European Union regulations on algorithmic

decision-making and a “right to explanation”. AI Magazine, 38(3):50–57.

] Guidotti, R. (2022). Counterfactual explanations and how to find them: literature

review and benchmarking. Forthcoming in Data Mining and Knowledge Discovery.

] Gurobi Optimization, L. (2021). Gurobi optimizer reference manual.

] Hall, R. (2004). Measuring factor adjustment costs. The Quarterly Journal of Eco-

nomics, 119(3):899–927.

26



Journal Pre-proof

[28] Hamermesh, D. S. and Pfann, G. A. (1999). Adjustment costs in factor demand.

Journal of Economic Literature, 34(3):1264–1292.

[29

[30

[31

[32

[33

[34

[35

[36

[37

[38

[39

[40

[41
Jo
ur

na
l P

re
-p

ro
of

] Haney, A. and Pollitt, M. (2009). Efficiency analysis of energy networks: An interna-

tional survey of regulators. Energy Policy, 37(12):5814–5830.

] Kao, C. (2009). Efficiency decomposition in network data envelopment analysis: A

relational model. European Journal of Operational Research, 192:949–962.

] Karimi, A.-H., Barthe, G., Schölkopf, B., and Valera, I. (2022). A survey of algorithmic

recourse: contrastive explanations and consequential recommendations. ACM Computing

Surveys, 55(5):1–29.

] Lundberg, S. and Lee, S.-I. (2017). A unified approach to interpreting model predic-

tions. In Advances in Neural Information Processing Systems, pages 4765–4774.

] Martens, D. and Provost, F. (2014). Explaining data-driven document classifications.

MIS Quarterly, 38(1):73–99.

] Molnar, C., Casalicchio, G., and Bischl, B. (2020). Interpretable machine learning–a

brief history, state-of-the-art and challenges. In Joint European Conference on Machine

Learning and Knowledge Discovery in Databases, pages 417–431. Springer.

] Parmentier, A. and Vidal, T. (2021). Optimal counterfactual explanations in tree

ensembles. In International Conference on Machine Learning, pages 8422–8431. PMLR.

] Parmeter, C. and Zelenyuk, V. (2019). Combining the virtues of stochastic frontier

and data envelopment analysis. Operations Research, 67(6):1628–1658.

] Petersen, N. (2018). Directional Distance Functions in DEA with Optimal Endogenous

Directions. Operations Research, 66(4):1068–1085.

] Rigby, D. (2015). Management tools 2015 - an executive’s guide. Bain & Company.

] Rigby, D. and Bilodeau, B. (2015). Management tools and trends 2015. Bain &

Company.

] Rostami, S., Neri, F., and Epitropakis, M. (2017). Progressive preference articulation

for decision making in multi-objective optimisation problems. Integrated Computer-Aided

Engineering, 24(4):315–335.

] Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., and Zhong, C. (2022). Inter-

pretable machine learning: Fundamental principles and 10 grand challenges. Statistics

Surveys, 16:1–85.

27



Journal Pre-proof

[42] Schaffnit, C., Rosen, D., and Paradi, J. (1997). Best practice analysis of bank branches:

An application of DEA in a large Canadian bank. European Journal of Operational

[43

[44

[45

[46

[47

Ap

an

wil

A.

wh

bu

op

con

wil

by

mi
x̂,

s.t
 Jo
ur

na
l P

re
-p

ro
of

Research, 98(2):269–289.

] Silva Portela, M., Borges, P., and Thanassoulis, E. (2003). Finding closest targets in

non-oriented DEA models: The case of convex and non-convex technologies. Journal of

Productivity Analysis, 19:251–269.

] Thach, P. (1988). The design centering problem as a DC programming problem. Math-

ematical Programming, 41(1):229–248.

] Wachter, S., Mittelstadt, B., and Russell, C. (2017). Counterfactual explanations

without opening the black box: Automated decisions and the GDPR. Harvard Journal

of Law & Technology, 31:841–887.

] Zhu, J. (2016). Data Envelopment Analysis - A Handbook on Models and Methods.

Springer New York.

] Zofio, J. L., Pastor, J. T., and Aparicio, J. (2013). The directional profit efficiency

measure: on why profit inefficiency is either technical or allocative. Journal of Productivity

Analysis, 40:257–266.

pendix

Here, we extend the analysis in Section 4 by investigating alternative returns to scale

d by investigating changes in the outputs rather than the inputs. In both extensions, we

l consider a combination of the ℓ0, ℓ1 and ℓ2 norms as in objective function (22).

Changing the returns to scale

In Section 4, we have considered the DEA model with constant return to scale (CRS),

ere the only requirement on the values of λ is that they are positive, i.e., λ ∈ RK+1
+ ,

t we could consider other technologies. In that case, to be able to transform our bilevel

timization problem to a single-level one, we should take into account that for each new

straint derived from the conditions on λ, a new dual variable has to be introduced. We

l consider the varying return to scale (VRS) model as it is one of the most preferred one

firms [7], but extensions to other models are analogous.

Consider the input case. With the same transformation as before, we have:

n
F

C(x0, x̂)

. x̂ ∈ RI
+

F ≤ F ∗

28
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F ∈ argmin { F̄ : x̂ ≥
K∑

βkxk, F̂y0 ≤
K∑

βkyk, F̄ ≥ 0,β ∈ RK+1
+ ,

K∑
βk = F } .
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F̄ ,λ0,...,λK
k=0 k=0 k=0

Notice that the only difference is that we have a new constraint associated with the

hnology, namely,
∑K

k=0 β
k = F . Let κ ≥ 0 be the new dual variable associated with this

straint. Then, the following changes are made in constraints (19) and (20):

γ⊤
Oy

0 + κ = 1 (30)

γ⊤
I x

k − γ⊤
Oy

k − κ ≥ 0 k = 0, . . . ,K. (31)

The single-level formulation for the counterfactual problem for VRS DEA is as follows:

min
x̂,F,β,γI ,γO,u,v,w,κ,η,ξ

ν0

I∑

i=1

ξi + ν1

I∑

i=1

ηi + ν2

I∑

i=1

(x0i − x̂i)
2 (CEVDEA)

s.t. F ≤ F ∗

K∑

k=0

βk = F

x̂ ∈ RI
+

κ ≥ 0

u,v,w ∈ {0, 1}
(7)− (10), (15)− (17)

(21), (23)− (31).

Changing the outputs

We have calculated the counterfactual instance of a firm as the mininum cost changes in

inputs in order to have a better efficiency. In the same vein, we could consider instead

nges in the outputs, leaving the same inputs. Again, suppose firm 0 is not fully efficient,

< 1. Now, we are interested in calculating the minimum changes in the outputs y0 that

ke it to have a higher efficiency E∗ > E0. Let ŷ be the new outputs of firm 0 that make

o be at least E∗ efficient. We have, then, the following bilevel optimization problem:

min
ŷ,E

C(y0, ŷ)

s.t. ŷ ∈ RO
+

E ≥ E∗
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E ∈ argmin { Ē : Ēx0 ≥
K∑

λkxk, ŷ ≤
K∑

λkyk, Ē ≥ 0,λ ∈ RK+1
+ } .
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Ē,λ0,...,λK
k=0 k=0

Following similar steps as in previous section, the single-level formulation for the coun-

factual problem in DEA in the output case is as follows:

min
ŷ,E,λ,γI ,γO,u,v,w,η,ξ

ν0

O∑

o=1

ξo + ν1

O∑

o=1

ηo + ν2

O∑

o=1

(y0o − ŷo)
2 (CEODEA)

s.t. ŷ ∈ RO
+

E ≥ E∗

Ex0 ≥
K∑

k=0

λkxk

ŷ ≤
K∑

k=0

λkyk

γ⊤
I x

0 = 1

γ⊤
Oy

k − γ⊤
I x

k ≤ 0 k = 0, . . . ,K

γiI ≤ MIui i = 1, . . . , I

Ex0i −
K∑

k=0

λkxki ≤ MI(1− ui) i = 1, . . . , I

γoO ≤ MOvo o = 1, . . . , O

− ŷo +
K∑

k=0

λkyko ≤ MO(1− vo) o = 1, . . . , O

λk ≤ Mfwk k = 0, . . . ,K

γ⊤
Oy

k − γ⊤
I x

k ≤ Mf (1− wk) k = 0, . . . ,K

−Mzeroξo ≤ y0o − ŷo o = 1, . . . , O

y0o − ŷo ≤ Mzeroξo o = 1, . . . , O

ηo ≥ y0o − ŷo o = 1, . . . , O

− ηo ≤ y0o − ŷo o = 1, . . . , O

E,λ,γI ,γO,η ≥ 0

u,v,w, ξ ∈ {0, 1}.

in the input model, depending on the cost function, we either obtain an MILP model

a Mixed Integer Convex Quadratic model with linear constraints. This model could be

mulated analogously for the VRS case.
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