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A B S T R A C T

Counterfactual Analysis has shown to be a powerful tool in the burgeoning field of Explainable Artificial
Intelligence. In Supervised Classification, this means associating with each record a so-called counterfactual
explanation: an instance that is close to the record and whose probability of being classified in the opposite
class by a given classifier is high. While the literature focuses on the problem of finding one counterfactual for
one record, in this paper we take a stakeholder perspective, and we address the more general setting in which
a group of counterfactual explanations is sought for a group of instances. We introduce some mathematical
optimization models as illustration of each possible allocation rule between counterfactuals and instances, and
we identify a number of research challenges for the Operations Research community.
1. Introduction

Artificial Intelligence and Machine Learning algorithms are often
criticized by their lack of transparency, being seen as black-boxes
(Rudin, 2019). Such opaqueness is especially undesirable in high-
stakes decision making, involving important decisions to citizens such
as social benefits allocation, loan approval, medical diagnosis, or
pretrial/parole/sentencing decisions (Azizi, Vayanos, Wilder, Rice, &
Tambe, 2018; Baesens, Setiono, Mues, & Vanthienen, 2003; Zeng,
Gensheimer, Rubin, Athey, & Shachter, 2022; Zeng, Ustun, & Rudin,
2017), with the danger of yielding unfair outcomes for sensitive
groups (Besse, del Barrio, Gordaliza, Loubes, & Risser, 2022; Miron,
Tolan, Gómez, & Castillo, 2020, 2021). The importance of this issue
has already been recognized by public administrations, such as the
European Commission (European Commission, 2020; Goodman &
Flaxman, 2017; Hupont, Micheli, Delipetrev, Gómez, & Soler Garrido,
2022). In answer to this need, the field of Explainable Artificial
Intelligence (XAI) (Du, Liu, & Hu, 2019; Goethals, Martens, &
Evgeniou, 2022; Jung, Concannon, Shroff, Goel, & Goldstein, 2020;
Molnar, Casalicchio, & Bischl, 2020; Rudin et al., 2022; Zhang, Song,
Sun, Tan, & Udell, 2019) has witnessed an explosion of papers
developing novel methods.

In Explainable Artificial Intelligence, supervised classification mod-
els are sought to have a good trade-off between prediction accuracy and
interpretability. Once the classifier has been trained, it would be con-
venient to have procedures to identify how records should be changed
in their features to being classified in the ‘‘good’’ class, e.g., to be
classified as a good payer for a loan, or a healthy person for a medical
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condition, or an adequate professional in a job selection process, or
a defendant not showing recidivism. Such modified solutions, the so-
called counterfactual explanations, (Martens & Provost, 2014; Wachter,
Mittelstadt, & Russell, 2017), are addressed in this paper. See Artelt
and Hammer (2019), Guidotti (2022), Karimi, Barthe, Schölkopf, and
Valera (2022), Sokol and Flach (2019), Stepin, Alonso, Catala, and
Pereira-Fariña (2021), Verma et al. (2022) for recent surveys on Coun-
terfactual Analysis, and Browne and Swift (2020), Freiesleben (2022),
Karimi, Barthe, Schölkopf, and Valera (2022) for related problems
under different names, such as inverse classification or adversarial
perturbations.

Finding counterfactual explanations amounts to solving a mathe-
matical optimization model, whose ingredients will be detailed below.
We search for counterfactuals in a set  . We consider a binary classi-
fication problem, with labels in {−1,+1} (+1 being considered as the
‘‘good’’ class), and a classifier, identified by a function 𝑃 ∶  ⟶ [0, 1]
such that 𝑃 (𝒙) is the probability of 𝒙 being classified as positive, and
thus, if a deterministic classification is sought, the classifier labels
as positive those 𝒙 with 𝑃 (𝒙) ≥ 𝜏 for some fixed threshold value
𝜏, (Kanamori, Takagi, Kobayashi, & Arimura, 2020; Parmentier & Vidal,
2021).

The most frequent version of counterfactual analysis found in the
literature is the single-instance single-counterfactual case. There, we
have at hand just one record 𝒙0 ∈  where the classifier gives a low
probability of being classified in the positive class, and we seek a so-
called counterfactual instance 𝒙 in the feasible set (𝒙0) ⊂  such that
the cost 𝐶(𝒙0,𝒙) to perturb 𝒙0 to yield 𝒙 is low, while its probability
Please cite this article as: Emilio Carrizosa et al., European Journal of Operat
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𝑃 (𝒙) of being classified as positive is high. In sum, in the single-instance
single-counterfactual case, a counterfactual explanation for the instance
𝒙0 can be found as an efficient solution of the following bi-objective
optimization problem:

min
𝒙∈(𝒙0)

(

𝐶(𝒙0,𝒙),−𝑃 (𝒙)
)

. (CE)

Needless to say, the same problem can be solved to change the
rediction of a record from positive to negative. In this case, we have
record where the classifier gives a high probability of being classified

n the positive class, and we seek a counterfactual explanation whose
robability of being classified in the positive class is low, i.e., a high
robability of being classified in the negative class.

Different numerical solution approaches can be found in the liter-
ture to generate efficient solutions of Problem (CE). These include
mooth optimization, e.g., Joshi, Koyejo, Vijitbenjaronk, Kim, and
hosh (2019), Ramakrishnan, Lee, and Albarghouthi (2020), mixed

nteger optimization, e.g., Carrizosa, Ramírez-Ayerbe, and Romero
orales (2023), Carrizosa, Ramírez-Ayerbe, and Romero Morales (2024)
ui, Chen, He, and Chen (2015), Fischetti and Jo (2018), Kanamori
t al. (2020, 2021), Maragno, Röber, and Birbil (2022), Parmentier and
idal (2021), Russell (2019), multi-objective optimization, e.g., Dandl,
olnar, Binder, and Bischl (2020), Del Ser, Barredo-Arrieta, Díaz-
odríguez, Herrera, and Holzinger (2022), Raimundo, Nonato, and
oco (2022), robust optimization, e.g., Maragno et al. (2023), boolean
atisfiability (SAT), e.g., Karimi, Barthe, Balle, and Valera (2020),
euristic and metaheuristic approaches, e.g., Guidotti et al. (2019),
oyiadzi, Sokol, Santos-Rodriguez, De Bie, and Flach (2020). In this
aper, we study the more general setting in which we are given a group
f instances 𝒙0𝑠 , 𝑠 = 1, 2… , 𝑆, hereafter denoted by 𝒙0 = (𝒙01,… ,𝒙0𝑆 ),

to be perturbed to increase their probability of being classified in
the positive class. Instead of finding one counterfactual instance for
each instance 𝒙0𝑠 individually, we are interested in group counterfactual
analysis in which we seek for 𝒙0 a group of 𝑅 counterfactual instances
𝒙 = (𝒙1,… ,𝒙𝑅) ∈ (𝒙0) ⊂  ∶= 𝑅.

From a stakeholder perspective, there are different reasons to per-
orm a group counterfactual analysis (Carrizosa et al., 2024; Fernández,
e Diego, Aceña, Fernández-Isabel, & Moguerza, 2020; Fernández,
e Diego, Moguerza, & Herrera, 2022; Rawal & Lakkaraju, 2020; Youse-
zadeh & O’Leary, 2020, 2022). First, even if just one counterfactual is
ought for each instance 𝒙0𝑠 , 𝑠 ∈ {1, 2,… , 𝑆}, linking constraints may

exist, preventing solving the counterfactual models independently (Car-
rizosa et al., 2024). Such linking constraints appear, for example, when
counterfactuals for records which are close should also be close, or
when the statistical distribution of the counterfactuals should resemble
the one of the original instances (Slack, Hilgard, Lakkaraju, & Singh,
2021). Second, several counterfactuals may be sought for the same
instance, sufficiently far from each other (Wachter et al., 2017), and
thus the procedure would yield for each instance a collection of coun-
terfactuals that are hopefully diverse. Third, stakeholders may be in
search of just a few counterfactual instances, to be seen as benchmarks
for the group {𝒙0𝑠}

𝑆
𝑠=1, and hence several instances will share the same

ounterfactual. To end, stakeholders may want to detect a small subset
f features such that perturbing these features can increase the proba-
ility 𝑃 (𝒙0𝑟 ) of being classified in the positive class, for all 𝑟, (Eckstein,
ates, Jefferis, & Funke, 2021; Piccialli, Romero Morales, & Salvatore,
022; Sharma, Henderson, & Ghosh, 2020).

The group counterfactual analysis yields the following optimization
roblem:

min
𝒙∈(𝒙0)

(

𝑪(𝒙0,𝒙),−𝑷 (𝒙)
)

, (GroupCE)

where 𝑪(𝒙0,𝒙) measures the cost incurred when 𝒙0 is perturbed to yield
𝒙 and 𝑷 (𝒙) is defined as a componentwise nondecreasing function of the
robabilities 𝑃 (𝒙) of the counterfactuals.

To generate efficient solutions of a bi-objective optimization prob-
em such as (GroupCE), two main methods are usually found in the lit-
2

t

erature of Multi-Objective Optimization, and they differ in the way the
second objective 𝑷 is controlled. If imposed as a hard constraint, i.e., 𝑷
must be above a threshold value 𝜈 ∈ [0, 1], we obtain (GroupCEhard),

min
𝒙∈(𝒙0)

𝑪(𝒙0,𝒙) (GroupCEhard)

s.t. 𝑷 (𝒙) ≥ 𝜈. (1)

Alternatively, we may optimize a convex combination of both ob-
jectives, as done in Wachter et al. (2017) for the single-instance single-
counterfactual case. However, it is well-known that, as opposed to
(GroupCEhard), optimizing weighted sums may not generate all the
efficient solutions of Problem (GroupCE), unless both the objective
function and the feasible region are convex, assumptions which, as
shown below, are unlikely to be fulfilled in this problem. See Carrizosa
and Fliege (2002), Carrizosa and Romero Morales (2001), Ogryczak
(2001), Ruiz, Luque, and Cabello (2009) and references therein for
other ways to obtain solutions to a bi-objective optimization model.

If we leave aside for a moment the 𝑷 criterion, Problem (GroupCE)
as well as its scalarized version (GroupCEhard) strongly resemble fa-
cility location problems, (Drezner & Hamacher, 2004; Laporte, Nickel,
& Saldanha da Gama, 2020). Indeed, the 𝑆 instances 𝒙01,… ,𝒙0𝑆 in 𝒙0
may be seen as the set of users, and 𝑅 new facilities, 𝒙1,… ,𝒙𝑅, are
ought in a region (𝒙0) to minimize the transportation costs from

the users (the records) to the facilities (counterfactuals). The criterion
𝑷 , concerning the probabilities of the counterfactuals being classified
as positive, can be seen as related to the fixed cost of opening facili-
ties. As for facility location problems, different types of optimization
problems are obtained, depending on the choices of the ingredients
defining Problem (GroupCE). In this paper, we discuss the so-obtained
optimization problems, identifying a number of research challenges for
the Operations Research community.

The remainder of this paper is organized as follows. In Section 2, we
describe the ingredients of the group counterfactual analysis problem
(GroupCE). In Section 3, several mathematical optimization models for
group counterfactual analysis are illustrated, with different choices of
the ingredients. We end the paper in Section 4 with some concluding
remarks and avenues for future research.

2. Ingredients

In this section we will describe the different ingredients required
to define the mathematical optimization problems arising in coun-
terfactual analysis, namely, the ambient space, i.e., the space where
counterfactuals are taken from; the allocation rule, i.e., how counterfac-
tual explanations are assigned to instances; the constraints imposed to
build the counterfactuals; the classifier used and how the probabilities
given by such classifier to the different counterfactuals to be in the posi-
tive class are aggregated; and the cost criterion measuring how difficult
is for the instances to be perturbed to yield their counterfactuals.

2.1. Ambient space

The first modelling decision affects the set  , hereafter the ambient
pace, containing each of the 𝑅 counterfactuals. As in the literature
n Location Analysis, in which this same question induces a taxonomy
etween Discrete Location, (Mirchandani & Francis, 1990), and Con-
inuous Location, (Plastria, 1995), here we will have endogenous and
xogenous counterfactuals.

The set  can be a finite collection of observed datapoints, yielding
he so-called endogenous counterfactuals, as in Ramon, Martens, Provost,
nd Evgeniou (2020), Wexler et al. (2019). Using endogenous explana-
ions has the advantage that the counterfactual explanations obtained
ctually exist in reality (Keane & Smyth, 2020). Alternatively, and
his is the most popular approach in the literature, (Guidotti, 2022),
he counterfactuals can be synthetically built, yielding in this case

he so-called exogenous explanations. When searching for exogenous
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Fig. 1. Illustration of the different allocation rules between instances (squares) and their counterfactual explanations (circles) in group counterfactual analysis.
explanations, it is common to assume that  is a finite-dimensional
vector space of dimension 𝐽 , which is the case when the instances are
characterized by numerical features. Categorical features are typically
represented as a binary vector (in the so-called one-hot encoding, a
categorical feature with 𝑣 categories is represented by a binary vector
in {0, 1}𝑣−1), and thus can also be seen as points in a vector space. For
more complex types of data, a common practice consists of mapping
the data into a vector space via a vector embedding (Van Looveren
& Klaise, 2021), such as word embeddings for text data (Tolkachev,
Mell, Zdancewic, & Bastani, 2022) or node embeddings for graph
data (Prado-Romero, Prenkaj, Stilo, & Giannotti, 2022). While such
embeddings are very useful since they allow us to use the powerful
machinery of vector analysis, one needs to revert to the original space
(of words, graphs, etc.) the counterfactual solution obtained in the
embedded vector space. Finally, and to prevent the infinite-dimensional
nature of the problems arising in the presence of functional features,
the counterfactuals can be built as linear or convex combinations of
observed datapoints, yielding thus a finite-dimensional  , making op-
timization much easier (Ates, Aksar, Leung, & Coskun, 2021; Carrizosa,
Ramírez-Ayerbe, & Romero Morales, 2023; Delaney, Greene, & Keane,
2021; Karlsson, Rebane, Papapetrou, & Gionis, 2020).

In terms of the type of mathematical optimization problems that
are obtained, finding endogenous counterfactual explanations amounts
to solving combinatorial problems, with a very similar structure to
discrete facility location problems, such as the classic 𝑝-median prob-
lem, (Avella, Sassano, & Vasil’ev, 2007; García, Labbé, & Marín, 2011;
Grötschel & Wakabayashi, 1989; Marín & Pelegrín, 2019; Mladenović,
Brimberg, Hansen, & Moreno-Pérez, 2007), whereas searching for ex-
ogenous counterfactual explanations will lead to either continuous or
mixed integer optimization problems, such as the classic minimum-
sum-of-squared-distances problem, (Aloise, Hansen, & Liberti, 2012;
Liberti & Manca, 2022; Piccialli, Sudoso, & Wiegele, 2022), the Weber
problem, (Chandrasekaran & Tamir, 1990; Plastria, 1992; Weiszfeld &
Plastria, 2009), or its extensions to the multi-facility case, namely, the
multisource Weber problem, (Brimberg, Hansen, Mladenović, & Tail-
lard, 2000) and the minisum multifacility Weber problem, (Lefebvre,
Michelot, & Plastria, 1991). This means that some of the existing nu-
merical optimization tools developed in Discrete as well as Continuous
Location Analysis can be easily tailored to tackle group counterfactual
analysis problems successfully, and, conversely, new facility location
models are obtained motivated by this emerging field of application.

2.2. Allocation rules

Most of the literature addresses the problem of finding one coun-
terfactual explanation 𝒙 for one instance 𝒙0, as in Problem (CE). Even
if it is assumed that there is a tuple of instances 𝒙0 = (𝒙01,… ,𝒙0𝑆 ),
and a counterfactual for each individual is sought, Problem (CE) is
solved separately for the different individuals. A user perspective is
then followed. However, when a stakeholder perspective is followed,
and a tuple 𝒙 of counterfactuals is built for the tuple 𝒙0 of individuals,
the question of how to allocate instances to counterfactuals arises.

Consider a bipartite graph as the ones in Fig. 1 , where the origin
nodes (squares in red) represent the instances, and the destination
nodes (circles in blue) represent the labels for the 𝑅 counterfactuals.
Observe that the value 𝒙 ∈  corresponding to each destination node is
3

𝑟

a decision variable. Moreover, in some cases the edges of this bipartite
graph are given, and in some cases they will also be decision variables.
Let us now introduce some notation for the edges of the bipartite
graph linking instances to the labels of their counterfactuals. For each
𝑠 ∈ {1, 2,… , 𝑆}, let 𝑠 be the set of indices 𝑟 ∈ {1, 2,… , 𝑅} such
that counterfactuals 𝒙𝑟 are associated with instance 𝒙0𝑠 . Conversely, for
each 𝑟 ∈ {1, 2,… , 𝑅}, let 𝑟 be set the set of indices 𝑠 ∈ {1, 2,… , 𝑆}
such that instances 𝒙0𝑠 are associated with counterfactual 𝒙𝑟. Observe
that, by construction, 𝑟 ∈ 𝑠 iff 𝑠 ∈ 𝑟. Depending on whether the
edges in this bipartite graph are fixed or are decision variables, and
depending on the geometry of such connections, different models are
obtained. We briefly discuss four of them in what follows, which are
easy to relate to the Location Analysis literature and are versatile to
encompass the existing literature on Counterfactual Analysis. In the
first allocation rule under consideration, for each instance 𝒙0𝑠 exactly
one counterfactual 𝒙𝑠 is sought and vice versa, as in Fig. 1(a), i.e., 𝑠
and 𝑟 are both a singleton and known in advance, yielding what we
call the one-for-one allocation model, in which just the locations of the
𝑅 = 𝑆 counterfactuals are sought.

In the second allocation rule, the many-for-one allocation model, as
in Fig. 1(b), all edges are known in advance too, satisfying that 𝑟 is a
singleton for each 𝑠 ∈ {1, 2,… , 𝑆} and each 𝑠 ≠ ∅: each instance 𝒙0𝑠
has associated its tuple (𝒙𝑟)𝑟∈𝑠

of counterfactuals, (Mothilal, Sharma,
& Tan, 2020), fixing the concern raised in Wachter et al. (2017),
where it is stated that one single counterfactual instance could be too
restrictive and not take into account the user’s personal circumstances.

In the third allocation rule, the one-for-all allocation model, as in
Fig. 1(c), 𝑅 = 1 and 1 = {1, 2,… , 𝑆}: all instances 𝒙0𝑠 , 𝑠 = 1, 2,… , 𝑆,
share the same counterfactual 𝒙1, to be seen as a benchmark for the
group. Therefore, in this allocation rule all edges are known in advance
too.

Finally, in the fourth allocation rule, the one-for-many allocation
model, as in Fig. 1(d), each 𝑠 is a singleton and each 𝑟 ≠ ∅. Here,
the edges are decision variables too, and thus, one seeks both the
location 𝒙𝑟 of the counterfactuals, 𝑟 ∈ {1, 2,… , 𝑅}, and also a partition
of {1, 2,… , 𝑆} such that each subset {𝒙0𝑠 ∶ 𝑠 ∈ 𝑟} shares the same
counterfactual.

2.3. Constraints

We discuss in what follows the type of constraints the counterfactual
explanations 𝒙 ∈  ∶= 𝑅 for the group 𝒙0 are expected to satisfy.
Most are valid for both models with endogenous and exogenous coun-
terfactuals, whereas some require a certain structure (e.g., a vector
space) on the ambient space  . Some can be found in the litera-
ture on single-instance single-counterfactual models, and some appear
naturally when, as done in this paper, a stakeholder’s perspective is
followed.

Constraints defining (𝒙0) model either the interaction between
each record 𝒙0𝑠 and the tuple

(

𝒙𝑟
)

𝑟∈𝑠
of counterfactual explanations

associated with 𝒙0𝑠 , or the interaction between counterfactuals. For
instance-counterfactual interactions, several constraints can be defined.
One may wish to limit the range of the perturbations imposed on 𝒙0𝑠 ,
and thus avoiding impossible or unrealistic perturbations. This can be
expressed as

𝑑(𝒙0,𝒙 ) ≤ 𝜏 ∀𝑟 ∈  , 𝑠 ∈ {1, 2,… , 𝑆}, (2)
𝑠 𝑟 𝑠
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for some distance, or with more generality, dissimilarity measure,
(Kaufman & Rousseeuw, 2009). If the ambient space  in which coun-
terfactuals are sought is a finite-dimensional vector space, a natural
choice for 𝑑 is the weighted 𝓁∞ norm, and thus the balls of 𝑑 are
yperrectangles centred at 𝒙0𝑠 , implying that lower and upper bounds
re given on the values of each coordinate (feature) of each 𝒙𝑟.

While constraint (2) forces counterfactuals not to be too different
rom their associated instances, one may also force them not to be
oo different from a cloud of historical data. If a finite set  ⊂ 
f data points is considered, e.g.,  = {𝒙01,… ,𝒙0𝑆}, one may force
ach counterfactual to be close to some point in . If  is a vector
pace, instead of forcing the counterfactuals to be in the union of balls
entred at points in , one can force, as in, e.g., (Maragno et al., 2022),
ounterfactuals to be close to conv(), the convex hull of .

Other constraints appear naturally when the instances in 𝒙0 have
features that cannot be moved, yielding constraints of the form (𝒙𝑟)𝑘 =
(𝒙0𝑠 )𝑘 ∀𝑟 ∈ 𝑠, or when a feature in 𝒙0 is categorical, yielding constraints
of the form ∑

𝑘∈(𝒙𝑟)𝑘 ≤ 1, where (𝒙𝑟)𝑘 are binary variables for all
𝑟 ∈ 𝑠, 𝑘 ∈ , and  is the set of indices of the binary features used
in the one-hot encoding of such categorical feature. See Maragno et al.
(2022) for further details.

The allocation of counterfactual explanations to instances (and vice
versa) may be known in advance – a natural choice in the one-for-
one, the many-for-one and the one-for-all models –, but it may also
be a decision variable. In the one-for-many model, where each 𝑠 is a
singleton, the 𝑆 instances {𝒙01,… ,𝒙0𝑆} are partitioned into 𝑅 clusters,
namely, the sets

{

𝒙0𝑠 ∶ 𝑠 ∈ 𝑟
}

, 𝑟 = 1, 2,… , 𝑅. Must-link (respectively
cannot-link) constraints, e.g., Vasilyev and Ushakov (2021), force two
instances 𝒙0𝑖 , 𝒙0𝑗 to be allocated to the same (respectively different)
counterfactual, i.e., 𝑖 = 𝑗 (respectively 𝑖 ∩𝑗 = ∅), or cardinality
constraints of type |𝑟| ≤ 𝜏, see e.g., Mulvey and Beck (1984), could be
imposed. Observe that having the sets 𝑟 to be decided implies that con-
straints such as (2) need to be rewritten as indicator constraints, (Belotti
et al., 2016; Bomze & Peng, 2023; Han, Gómez, & Atamtürk, 2023; Wei,
Gómez, & Küçükyavuz, 2022).

Different types of constraints modelling the interaction between
counterfactuals are also natural. For instance, we may want to avoid
shifting a specific categorical feature for all instances to the same cate-
gory, avoiding unrealistic scenarios, such as requiring all individuals to
be in the highest income bracket. Alternatively, we may want to ensure
that the statistical distribution of the counterfactuals should resemble
the one of the original instances by imposing a constraint of the form
𝑊 (𝒙0,𝒙) ≤ 𝜏, where 𝑊 (𝒙0,𝒙) denotes a distance, e.g., the Wasserstein
distance, (Carrizosa, Halskov, & Romero Morales, 2023; Chen, Kuhn, &
Wiesemann, 2022; Peyré & Cuturi, 2019), or divergence between the
uniform distributions on 𝒙0 and 𝒙, e.g., Klafszky, Mayer, and Terlaky
1989). In the same vein, in the one-for-many allocation model in which
he set of instances is partitioned into clusters {𝑟}𝑅𝑟=1, we may impose
onditions on the statistical distribution of instances in a given cluster
e.g., to have records with different values of a categorical feature to
odel diversity within the cluster). Finally, while it seems desirable

hat similar instances should have similar counterfactuals, it has been
oted in the literature that this does not necessarily hold for some
xisting counterfactual analysis models (Artelt et al., 2021; Slack et al.,
021). One way to fix this is to impose a Lipschitz continuity constraint
hrough a dissimilarity 𝑑:

(𝒙𝑖,𝒙𝑗 ) ≤ 𝜏𝑑(𝒙0𝑘,𝒙
0
𝑙 ), ∀𝑖 ∈ 𝑘, 𝑗 ∈ 𝑙 ,∀𝑘, 𝑙 ∈ {1, 2,… , 𝑆}, (3)

for some threshold value 𝜏.

.4. Score-based models

To build counterfactual explanations, an already trained classifier is
iven. To formulate the optimization problem, it is necessary to know
he inner-workings of the classifier and how to model them. We will
o this for a large class of well-known classifiers, namely score-based
4

c

ones, as in Carrizosa, Ramírez-Ayerbe, and Romero Morales (2023),
Carrizosa et al. (2024). In a score-based classifier (Carrizosa, Molero-
Río, & Romero Morales, 2021; Carrizosa & Romero Morales, 2013;
Gambella, Ghaddar, & Naoum-Sawaya, 2021) one has a score function
𝑓 ∶  ⟶ R and the probability of 𝒙 being classified in the positive
lass has the form

(𝒙) = 𝜑(𝑓 (𝒙)), (4)

where 𝜑 is an increasing function. The simplest case of score-based
classifier corresponds to linear classification models, (Ustun, Spangher,
& Liu, 2019), where  is assumed to be a finite-dimensional vector
space, and the score function 𝑓 is defined as 𝑓 (𝒙) = 𝒘𝒙+𝑏. In particular,
for logistic regression, the probability of 𝒙 being classified as positive
𝜑(𝑓 (𝒙)) is obtained when 𝜑 is the logistic function

(𝑡) = 1
1 + 𝑒−𝑡

, (5)

while for (linear) support vector machine (SVM), (Salazar, Denton, &
Salleb-Aouissi, 2022), 𝜑 has been assumed in Platt (1999) to have a sig-
moidal form, with parameters estimated via maximum likelihood from
a training sample. The reader is referred to the Supplementary Material
for more examples of score-based classifiers, and to e.g., Carrizosa and
Romero Morales (2013), Duarte Silva (2017), Gambella et al. (2021),
Hastie, Tibshirani, and Friedman (2009), Palagi (2019), Piccialli and
Sciandrone (2018) for further details on classification and the role
played by Mathematical Optimization in the field.

2.5. Aggregating probabilities: Modelling 𝑷

For each 𝒙 ∈  , the classifier at hand gives a score 𝑓 (𝒙), yield-
ing a probability 𝜑(𝑓 (𝒙)) of belonging to the positive class. Hence,
or a tuple 𝒙 of counterfactuals, one obtains a tuple of probabili-

ties
(

𝑃 (𝒙1),… , 𝑃 (𝒙𝑅)
)

=
(

𝜑(𝑓 (𝒙1)),… , 𝜑(𝑓 (𝒙𝑅))
)

, aggregated into the
scalar 𝑷 (𝒙), in such a way that the higher the value of 𝑷 (𝒙), the

ore reliable the tuple of counterfactuals 𝒙 is. The function 𝑷 (𝒙) can
e defined in different ways. One may want to ensure that every
ounterfactual explanation has a sufficiently high probability of being
lassified in the positive class, and thus we can take

(𝒙) = min
1≤𝑟≤𝑅

𝑃 (𝒙𝑟), (6)

hich, when applied to Problem (GroupCEhard), makes constraint (1)
ake the form

(𝒙𝑟) ≥ 𝜑−1(𝜈) ∀𝑟 = 1, 2,… , 𝑅. (7)

Some remarks follow. First, observe that, if the probabilistic classifier is
made deterministic by labelling as positive all 𝒙𝑟 with score 𝑓 (𝒙𝑟) above
ome threshold value, say 𝜑−1(𝜈), as typically done in the literature
n single-instance single-counterfactual models, constraints (7) indicate
hat all counterfactuals are to be labelled as members of the positive
lass. Second, since our aim is to generate efficient solutions of the
i-objective problem (GroupCE), different values of the parameter 𝜈
re expected to be taken in (GroupCEhard). This is equivalent to take
ifferent values of the right hand side in (7), avoiding the estimation
rocess associated with 𝜑. Finally, observe also that these are linear
onstraints when 𝑓 is the score function associated with a linear
lassifier, as, e.g., the logistic regression or the SVM with linear kernel.

Other choices for 𝑷 (𝒙) yielding tractable models for some classifiers
include taking as 𝑷 the average of the probabilities of the counter-
factuals, 𝑷 (𝒙) = 1

𝑅
∑𝑅

𝑟=1 |𝑟|𝑃 (𝒙𝑟), or their geometric mean, 𝑷 (𝒙) =
(

∏𝑅
𝑟=1 𝑃 (𝒙𝑟)

|𝑟|
)1∕𝑅

. The first model yields a linear constraint when 𝑃 is
inear, as happens, for instance, in additive tree models. For the second
odel, expressing the constraint 𝑷 (𝒙) ≥ 𝜈 as log(𝑷 (𝒙)) ≥ log(𝜈), we

obtain a concave constraint when 𝑃 is log-concave, as happens in the
ogistic regression classifier or if the score function is linear and a log-
oncave function 𝜑 is used to pass from scores to probabilities, as in (5).
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2.6. Modelling the cost criterion

To obtain a counterfactual explanation one has to define the cost
function. The most simple case is when the cost function reflects the
dissimilarity between the instances and the counterfactuals, 𝑪(𝒙0,𝒙) =

issimilarity(𝒙0,𝒙). For endogenous counterfactuals, we can take
issimilarity(𝒙0,𝒙) = ∑𝑆

𝑠=1
∑

𝑟∈𝑠
𝑑(𝒙0𝑠 ,𝒙𝑟), where each 𝑑(𝒙0𝑠 ,𝒙𝑟) repre-

ents the distance or dissimilarity between the two points involved, and
re elements of a given distance matrix. Observe that, when the alloca-
ions are decision variables, as in the one-for-many allocation model,
inimizing such 𝑪 amounts to solving a discrete 𝑅-median location
roblem eventually with some constraints, such as capacity or budget
onstraints. If instead of measuring Dissimilarity(𝒙0,𝒙) by a sum or

average of individual costs we take into consideration the largest indi-
vidual cost, i.e., Dissimilarity(𝒙0,𝒙) = max1≤𝑠≤𝑆 max𝑟∈𝑠

𝑑(𝒙0𝑠 ,𝒙𝑟), mini-
mizing 𝑪 amounts to solving (a version of) the discrete 𝑅-center prob-
lem, (Çalık, Labbé, & Yaman, 2019; Espejo, Marín, & Rodríguez-Chía,
2015).

Several modelling options appear when exogenous counterfactual
are sought. We will consider first the case in which the ambient space
 , in which counterfactuals are to be located, is a vector space of
dimension 𝐽 , i.e., we have 𝐽 numerical features. In this case, a central
ole is played by distances, or, more generally, gauges, (Carrizosa &
lastria, 2008; Plastria, 2019; Plastria & Carrizosa, 2001, 2012). A
auge in R𝐽 is a function 𝜎 ∶ R𝐽 ⟶ R+ which is definite positive
𝜎(𝒖) ≥ 0 ∀𝒖, 𝜎(𝒖) = 0 iff 𝒖 = 𝟎), it is positively homogeneous (𝜎(𝜏𝒖) =
𝜎(𝒖) ∀𝜏 ≥ 0) and it is subadditive (𝜎(𝒖 + 𝒖′) ≤ 𝜎(𝒖) + 𝜎(𝒖′)). The unit
all of 𝜎, i.e., the lower level set {𝒖 ∶ 𝜎(𝒖) ≤ 1} is a convex compact
et, containing the origin in its interior, and indicates the moves which
ost just 1 unit. When 𝜎 is absolutely homogeneous (𝜎(𝜏𝒖) = |𝜏|𝜎(𝒖) ∀𝜏),
.e., when the unit ball of 𝜎 is symmetric with respect to the origin, 𝜎
s a norm.

A natural choice for Dissimilarity(𝒙0,𝒙) is

Dissimilarity(𝒙0,𝒙) =
𝑆
∑

𝑠=1

∑

𝑟∈𝑠

𝜔𝑠𝜋(𝜎𝑠(𝒙𝑟 − 𝒙0𝑠 )), (8)

where 𝜔𝑠 > 0, 𝜋 is a convex increasing function in R+, and 𝜎𝑠 is a gauge
in R𝐽 . Under these conditions, (8) is convex in 𝒙, and thus the objective
unction is convex if 𝑠 is fixed and not a decision variable, as in the
ne-for-one, the many-for-one or the one-for-all cases.

The convexity of 𝜋 implies that movements are penalized more than
inearly. Using different weights 𝜔𝑠 for different instances 𝒙0𝑠 allows
takeholders to ask for smaller perturbations for some individuals.
his may be relevant in the framework of fairness, in which we may
ave records split into two groups, namely, those belonging to a
ensitive group and the remaining ones, and a higher weight is given
o individuals 𝒙0𝑠 in the sensitive group.

With respect to the choice of the gauges 𝜎𝑠, norms, i.e., symmetric
auges, such as 𝓁𝑝 norms, are systematically used in the single-instance
ingle-counterfactual models, (Kanamori et al., 2020; Russell, 2019;
achter et al., 2017). However, in practice, increasing in 𝛿 units one

eature may not be as costly as decreasing 𝛿 units the very same
eature, (Karimi, Schölkopf, & Valera, 2021), and thus there is a need
o depart from the state-of-the-art and address models with asymmetric
auges.

Plausible asymmetric gauges for this problem with good structural
roperties are, nevertheless, easy to build. A well-known family of
symmetric gauges are the so-called skewed norms, (Plastria, 1992),
amely, gauges 𝜎 of the form

(𝒖) = 𝜎0(𝒖) + 𝜼𝒖, (9)

here 𝜎0 is a norm, and 𝜼 is a fixed vector with 𝜎00 (𝜼) < 1, where 𝜎00
s the dual norm of 𝜎0. Observe that 𝜎 is asymmetric unless 𝜼 = 0.
5

See Plastria (1992) for a model through a skewed norm of the work
expended when moving along an inclined plane, and Drezner and
Drezner (2021), Plastria (1992) for the effort of flying under steady
wind conditions.

Let us discuss two particular cases of skewed norms, namely the
skewed 𝓁1 and 𝓁2, which yield much more realistic models than those
obtained with symmetric norms, and are as tractable as their symmetric
counterparts. Taking in (9) as 𝜎0 the 𝓁2 norm in R𝐽 , and 𝜼 such that
𝜎00 (𝜼) = 𝜎0(𝜼) < 1, the unit ball of 𝜎 is an ellipsoid whose center is the
rigin only for 𝜼 = 0, (Plastria, 1992). Another plausible alternative in

(9) is to take 𝜎0 as the 𝓁1 norm in R𝐽 , and 𝜼 with 𝜎00 (𝜼) = max𝑗 |𝜂𝑗 | < 1,
ielding

(𝒖) =
𝐽
∑

𝑗=1
|𝑢𝑗 |+

𝐽
∑

𝑗=1
𝜂𝑗𝑢𝑗 =

𝐽
∑

𝑗=1

((

1 + 𝜂𝑗
)

max(𝑢𝑗 , 0) +
(

1 − 𝜂𝑗
)

max(−𝑢𝑗 , 0)
)

,

(10)

and thus, the cost of increasing 𝛿 units the feature 𝑗 is 𝛿(1 + 𝜂𝑗 ), while
the cost of decreasing 𝛿 units the same feature is 𝛿(1−𝜂𝑗 ). Observe that
(10) is used as loss function in quantile regression, (Yu, Lu, & Stander,
2003).

Hence, taking in (8) 𝜋 affine and all 𝜎𝑠 in the form of (10),
Dissimilarity(𝒙0, ⋅) is piecewise linear, and its optimization can be done,
after adding auxiliary variables, by optimizing a linear objective. This
way we can address with the same methods as in the weighted 𝓁1
norm, (Russell, 2019; Wachter et al., 2017), a much more realistic
case in which perturbations increasing vs decreasing a feature are not
equally costly.

Another class of (asymmetric) gauges with good structural prop-
erties but seemingly unexplored in the literature of counterfactual
analysis is obtained as an extension of (10), and called hereafter quantile
gauges. Let us recall that a norm 𝜎0 in R𝐽 is said to be absolute if,
for all 𝒖 ∈ R𝐽 , one has 𝜎0(𝒖) = 𝜎0(|𝒖|), where |𝒖| is the vector
(|𝑢1|,… , |𝑢𝐽 |), (Bauer, Stoer, & Witzgall, 1961). Observe that 𝓁𝑝 norms
(and their convex combinations) are absolute norms. Given an absolute
norm 𝜎0 in R𝐽 and a vector 𝜼 ∈ R𝐽 with max𝑗 |𝜂𝑗 | < 1, define 𝜎𝜼 as

𝜎𝜼(𝒖) = 𝜎0
(

|𝒖| +𝐷𝜼𝒖
)

, (11)

where 𝐷𝜼 is the diagonal matrix with 𝜼 in its diagonal. As before, ob-
serve that 𝜎𝜼 is asymmetric unless 𝜼 = 0, and also it is a gauge. Note also
that, if we take as 𝜎0 the 𝓁1 norm, we obtain the skewed norm in (10).

Using in (8) each 𝜎𝑠 as a quantile gauge as (11), Dissimilarity(𝒙0, ⋅)
is a sum of (increasing convex functions of) gauges, its minimization be-
ing a slight variant of the problem of minimizing a sum of 𝓁𝑝 norms, for
which (Xue & Ye, 1997, 2000) give polynomial time procedures based
on the construction of logarithmically homogeneous self-concordant
barrier functions. Moreover, if we take as 𝜎0 the 𝓁2 norm and 𝜋(𝑡) = 𝑡2,
one obtains

Dissimilarity(𝒙0,𝒙) =

=
𝑆
∑

𝑠=1

∑

𝑟∈𝑠

𝜔𝑠

𝐽
∑

𝑗=1

(

(1 + 𝜂𝑗 ) max(𝑥𝑟𝑗 − 𝑥0𝑠𝑗 , 0) + (1 − 𝜂𝑗 ) max(𝑥0𝑠𝑗 − 𝑥𝑟𝑗 , 0)
)2

. (12)

f the allocations defining 𝑠 are fixed, as in the one-for-one, the
any-for-one or the one-for-all models, the function in (12) is convex
iecewise quadratic, and can be optimized as the squared Euclidean
istance 𝓁2

2 has been in the single-instance single-counterfactual case
n the literature, but now addressing the asymmetry which penalizes
ifferently the increase and decrease of the different features. More-
ver, in the one-for-many rule, in which allocations (and thus 𝑠)

are decision variables, one obtains (12) is a slight generalization of
the minimum-sum-of-squares-clustering problem, (Aloise et al., 2012;
Liberti & Manca, 2022; Piccialli, Sudoso, & Wiegele, 2022).

As a final remark on our discussion on quantile gauges, we should
mention that they can be easily extended to accommodate causality

relations between features (Karimi, von Kügelgen, Schölkopf, & Valera,
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2022; Mahajan, Tan, & Sharma, 2019; Pearl, 2009). In its simpler form,
assume that, if feature 𝑖 is perturbed from 𝑥𝑖 to 𝑥𝑖 + 𝛿, then feature 𝑗 is
perturbed automatically (for free) from 𝑥𝑗 to 𝑥𝑗 + ℎ𝑖𝑗𝛿. In other words,
paying for a perturbation 𝜹 would move the coordinates from 𝒙0 to
𝒙0 + 𝜹(𝐼 +𝐻), where 𝐼 denotes the identity matrix. Assuming 𝐼 +𝐻 is
regular, this implies paying for 𝜹 ∶= (𝒙− 𝒙0)(𝐼 +𝐻)−1 would move the
point from 𝒙0 to 𝒙, and thus in the cost function one should replace
quantile gauges 𝜎𝑠 by 𝜎𝐻𝑠

, defined as

𝜎𝐻𝑠
(𝒖) = 𝜎𝑠

(

𝒖(𝐼 +𝐻𝑠)−1
)

. (13)

The discussion above applies for the common case in which the
ambient space  is a 𝐽 -dimensional vector space. When  has a differ-
ent nature, other distance measures are to be used, see Kaufman and
Rousseeuw (2009). In the presence of mixed data, including numerical
as well as categorical data, Gower distance, (Gower, 1971), a weighted
sum of a distance measure on the numerical features and Hamming-
type measures for categorical features is the most popular choice,
see also (Brughmans, Leyman, & Martens, 2021; Wilson & Martinez,
1997). When  consists of time series and functional data, (Esling
& Agon, 2012; Xing, Pei, & Keogh, 2010), the dissimilarity between
functions can be measured by some integrated Euclidean distance
(easily extended to integrated quantile gauges), and, in case functions
are inspected at a different speed, by using the Dynamic Time Warping
distance, (Carrizosa, Ramírez-Ayerbe, & Romero Morales, 2023). If
features represent frequencies of a discrete event, dissimilarities such
as the chi-squared distance, (Carrizosa, Guerrero, & Romero Morales,
2023), can be used. When dealing with text data (Ramon et al., 2020;
Tolkachev et al., 2022), an encoder may be used to map the instances
into R𝐽 , where counterfactuals are sought. The models of norms or
gauges discussed above for data in R𝐽 may be no longer meaningful to
measure dissimilarities between mapped instances and counterfactuals,
and instead proximity measures such as the cosine similarity can be
used. Once the counterfactual has been calculated in the embedding
space, a decoder is needed in order to obtain the final counterfactual
instance in the original space. Finally, for image data, see Vermeire,
Brughmans, Goethals, de Oliveira, and Martens (2022) for an extensive
survey.

In addition to the dissimilarity, the cost function 𝑪 can also capture
how complex the perturbation to move from 𝒙0 to 𝒙 is. In this case, the
cost function may have the form:

𝑪(𝒙0,𝒙) = Dissimilarity(𝒙0,𝒙) + 𝜆𝑐Complexity(𝒙0,𝒙), (14)

with 𝜆𝑐 > 0.
When the ambient space  is a 𝐽 -dimensional vector space, com-

plexity is usually measured through the number of features one needs
to perturb, and it is therefore the complement of sparsity. Sparsity
ensures more interpretability and it has been argued that people prefer
explanations where fewer features are changed (Miller, 2019).

Sparsity can be modelled at instance level or at group level. For a
given instance 𝒙0, this can be done directly through the 𝓁0 norm, ‖𝒙0−
𝒙‖0, counting the number of features changed, or, in order to retain
convexity, one can use the 𝓁1 norm instead. If sparsity at the group level
is sought, one may minimize the total number of features changed for at
least one instance in 𝒙0. In other words, we may minimize 𝛾0 defined as:

0(𝒙0,𝒙) =
‖

‖

‖

‖

(

max
𝑖

|𝑥0𝑖𝑗 − 𝑥𝑖𝑗 |
)𝐽

𝑗=1

‖

‖

‖

‖0
, (15)

where 𝑥𝑖𝑗 denotes the value of feature 𝑗 in 𝒙𝑖. Notice that
(

max𝑖 |𝑥0𝑖𝑗
−𝑥𝑖𝑗 |

)𝐽
𝑗=1 is a vector of 𝐽 components, where each component is the

maximum change in feature 𝑗 across all the instances. Then, we count
the number of features changed globally with the 𝓁0 norm.

Note that more sophisticated forms of sparsity may be required in
the presence of complex data, as in Carrizosa, Galvis Restrepo, and
Romero Morales (2021), Carrizosa, Mortensen, Romero Morales, and
6

Sillero-Denamiel (2022), Carrizosa, Nogales-Gómez, and Romero Morale
(2017) for categorical features.

When  is defined by linear or convex combinations of observed
datapoints, sparsity can be measured as the 𝓁0 norm of the vector
of these coefficients, as in Carrizosa, Ramírez-Ayerbe, and Romero
Morales (2023). In the extreme case, the counterfactuals built in this
way are observed datapoints themselves.

To have a smooth formulation of these measures of complexity,
tractable with mixed integer optimization solvers, binary decision vari-
ables are introduced indicating whether a given feature can be per-
turbed, and constraints are expressed either via the usual big-M method
or other strategies to address indicator constraints such as those in Be-
lotti et al. (2016), Bomze and Peng (2023), Han et al. (2023), Wei et al.
(2022).

A third term is to be added to the cost function 𝑪 in the many-
or-one model, if several counterfactuals are to be built for an instance
0, (Mothilal et al., 2020), and maximal diversity is sought. Different
otions of diversity have been introduced in the Operations Research
iterature, and seem adequate for the problem at hand. The most popu-
ar criteria are the maxsum and maxmin, (Erkut & Neuman, 1989; Lan-
ete, Peiró, & Yaman, 2023; Lozano-Osorio, Martínez-Gavara, Martí,

Duarte, 2022; Parreño, Álvarez-Valdés, & Martí, 2021; Pisinger,
006), which, respectively, seek the maximization of the average and
inimum distance between the counterfactuals, see Martí, Martínez-
avara, Pérez-Peló, and Sánchez-Oro (2022), Parreño et al. (2021)

or recent surveys. In the case of exogenous counterfactuals having as
mbient space  a finite-dimensional vector space, the distances used
n the abovementioned models can be taken naturally as norms, such
s the Euclidean distance or the Mahalanobis distance if correlations
re taken into account. Since 𝑪(𝒙0, ⋅) is not convex, the literature has

mostly focused on heuristic approaches, based on solving sequentially
a collection of single-instance single-counterfactual problems, (Karimi
et al., 2020; Russell, 2019; Ustun et al., 2019; Wachter et al., 2017).
Nonetheless, optimizing 𝑪 can be expressed as a problem of optimizing
the difference of convex functions, and thus the machinery of difference
of convex (d.c.) optimization, (Le Thi & Pham Dinh, 2018, 2023), is
applicable.

3. Numerical illustrations

In this section, a collection of optimization models for group coun-
terfactual analysis are illustrated, covering all the possible allocation
rules between counterfactuals and instances. We have made different
choices for the ingredients defining Problem (GroupCEhard), namely,
we model exogenous explanations in a finite-dimensional space, with
and without linking constraints between the counterfactuals, for both
linear classifiers and Additive Tree Models (ATM), and different cost
criteria. We will use the probability criterion (6) as described in Sec-
tion 2.5, to ensure that each counterfactual explanation has a high
enough probability of being classified in the positive class. All the
numerical illustrations are done using a real-world dataset, namely the
Boston housing dataset (Harrison & Rubinfeld, 1978), which can
be accessed, e.g., from the scikit-learn library (Pedregosa et al., 2011).
There are 506 instances corresponding to houses and 𝐽 = 13 features, of
which 12 are numerical and 1 is binary. The description of the dataset
can be found in the Supplementary Material of this paper. All features
are normalized, so that all features share the scale [0, 1]. The positive
class consists of houses which have a high price.

All optimization models have been implemented using Python 3.8
and as a solver Gurobi 9.0 (Gurobi Optimization, 2021). Our numerical
experiments have been conducted on a PC, with an Intel R CoreTM i7-
1065G7 CPU @ 1.30 GHz 1.50 GHz processor and 16 GB RAM. The
operating system is 64 bits. The source code and the data to reproduce
all results, as well as all Figures in full size, are available at https:
//github.com/jasoneramirez/GroupCE.
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Fig. 2. One-for-one counterfactual explanations for instances 𝒙0
𝑠 in Table 2 in the Supplementary Material for two classifiers, the logistic regression and the random forest. The

explanations have been calculated solving model (16)–(17) with 𝜆𝑖𝑛𝑑 = 0.01, 𝜆𝑔𝑙𝑜𝑏 = 0 and 𝜈 = 0.5. The feature perturbations are displayed.
3.1. The one-for-one allocation model

In this section, we focus on the one-for-one allocation model for
two types of classifiers, namely, the logistic regression and the random
forest. We will show illustrations for which there are no linking con-
straints between the counterfactuals, i.e., the cost function is separable
and (𝒙0) =

∏𝑆
𝑠=1 (𝒙0𝑠 ), and thus, each counterfactual is found by

solving a single-instance single-counterfactual problem, as well as oth-
ers in which the counterfactuals are linked to ensure low complexity
of the explanations, change of few features, or similarity between
counterfactuals of similar instances.

We will use the cost criterion combining the 𝓁2
2 , 𝓁0 and 𝛾0 as in (15),

yielding

min
𝒙∈ (𝒙0)

𝑆
∑

𝑠=1
‖𝒙0𝑠 − 𝒙𝑠‖22 + 𝜆𝑖𝑛𝑑

𝑆
∑

𝑠=1
‖𝒙0𝑠 − 𝒙𝑠‖0 + 𝜆𝑔𝑙𝑜𝑏𝛾0(𝒙0,𝒙) (16)

s.t. 𝑓 (𝒙𝑠) ≥ 𝜑−1(𝜈) ∀𝑠 = 1, 2,… , 𝑆, (17)

with 𝜆𝑖𝑛𝑑 , 𝜆𝑔𝑙𝑜𝑏 ≥ 0.
First, we consider the most simple case, the separable one. This is

the case in which the literature is mostly focused (Kanamori et al.,
2020; Parmentier & Vidal, 2021), where the cost function is separable
on the instances, i.e., 𝜆𝑔𝑙𝑜𝑏 = 0, and there are no other linking con-
straints between the counterfactuals 𝒙𝑠 and 𝒙𝑠′ with 𝑠 ≠ 𝑠′, i.e., (𝒙0) =
∏𝑆

𝑠=1 (𝒙0𝑠 ). In such case, Problem (16)–(17) is equivalent to solving 𝑆
optimization problems, one per instance, yielding:

min
𝒙𝑠∈(𝒙0𝑠 )

‖𝒙0𝑠 − 𝒙𝑠‖22 + 𝜆𝑖𝑛𝑑‖𝒙0𝑠 − 𝒙𝑠‖0 (18)

s.t. 𝑓 (𝒙𝑠) ≥ 𝜑−1(𝜈). (19)

For (piecewise) linear score-based classifiers described in Section 2
and assuming that (𝒙0𝑠 ) is a polyhedron with eventually some integer
decision variables, Problem (18)–(19) above is a mixed integer convex
quadratic problem with linear constraints. Specifically, for a logistic
regression model with 𝜑 defined as (5), constraint (19) takes the form
𝒘𝒙𝑠 + 𝑏 ≥ − log

(

1−𝜈
𝜈

)

. For ATM models, such as random forests,
constraint (19) can be modelled through additional binary decision
variables and a set of linear constraints, see Carrizosa et al. (2024).

The presence of linking constraints, such as those modelling global
sparsity, i.e., considering 𝜆𝑔𝑙𝑜𝑏 > 0 in the cost function, destroys the
separability of Problem (16)–(17), which thus needs to be considered
as a whole. The separability is also destroyed when the Lipschitz
continuity constraint (3) is added in order to impose continuity.
7

In the following, we provide some illustrations using the Boston
housing dataset for the logistic regression model and a random forest
with 𝑇 = 100 trees, maximum depth 3 and 𝑤𝑡 = 1

𝑇 , for all 𝑡 = 1,… , 100.
First, we consider the simplest case for the one-for-one allocation

model (16)–(17), i.e., the separable case, where 𝜆𝑔𝑙𝑜𝑏 = 0 and (𝒙0) =
∏𝑆

𝑠=1 (𝒙0𝑠 ), implying the resolution of (18)–(19) for each 𝑠 = 1, 2,… , 𝑆.
We consider 𝜆𝑖𝑛𝑑 = 0.01, 𝜈 = 0.5 and in (𝒙0𝑠 ) we only impose the binary
nature of variable CHAS and lower and upper bounds of each feature to
be the minimum and maximum value observed across the 506 observa-
tions, respectively. We calculate the counterfactual explanations for 10
instances 𝒙0𝑠 , 𝑠 = 1,… , 10, that were given a probability below 0.5 by
both the logistic regression and the random forest, i.e., 𝜑(𝑓 (𝒙0𝑠 )) < 0.5,
𝑠 = 1,… , 10, specifically the instances of the dataset whose values
are detailed in Table 2 in the Supplementary Material. The feature
perturbations of the explanations are shown in Fig. 2. Obviously, the
counterfactual explanations differ across classifiers, but in both cases
LSTAT is a feature that it is often perturbed, as well as RM.

Second, we consider the case where the cost function of Problem
(16)–(17) is not separable, as we aim to maximize the global sparsity.
Specifically, we consider 𝜆𝑖𝑛𝑑 = 0 and 𝜆𝑔𝑙𝑜𝑏 = 0.1. For the same
classifiers, the logistic regression model and the random forest, the
feature perturbations for the counterfactual explanations for the same
instances as before are shown in Fig. 3. Notice the difference between
Figs. 2(a) and 3(a), where in the first case 5 features had to be changed
globally in order to obtain the 10 explanations, whereas in the second
case, only two features are changed in total. We now consider the case
where the cost function is separable, with 𝜆𝑖𝑛𝑑 = 0.01 and 𝜆𝑔𝑙𝑜𝑏 = 0, but
the Lipschitz continuity constraint (3) with 𝜏 = 10 is imposed, linking
the counterfactuals. This is calculated for instances 𝒙05 and 𝒙06 from
Table 2 in the Supplementary Material, and for the random forest. The
difference between imposing or not the Lipschitz continuity constraint
is shown in Fig. 4, where both the perturbations and feature values
are displayed. The distance between the counterfactual explanations
without imposing the Lipschitz continuity constraint is 0.51, whereas
when the constraint is imposed the distance between explanations
reduces to 0.46.

To end, we illustrate how the lower bound 𝜈 imposed on the
probabilities 𝑃 (𝒙𝑠) affects the choice of the counterfactuals. In all the
counterfactuals calculated before, the value of 𝜈 imposed has been 0.5.
We show in Fig. 5(a) the Pareto frontier when the value of 𝜈 changes
for the case where 𝜆𝑖𝑛𝑑 = 0, 𝜆𝑔𝑙𝑜𝑏 = 0.1, the classifier is the logistic
regression, and no other linking constraints have been imposed, i.e., the
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Fig. 3. One-for-one counterfactual explanations for instances 𝒙0
𝑠 in Table 2 in the Supplementary Material for two classifiers, the logistic regression and the random forest. The

explanations have been calculated solving model (16)–(17) with 𝜆𝑖𝑛𝑑 = 0, 𝜆𝑔𝑙𝑜𝑏 = 0.1 and 𝜈 = 0.5. The feature perturbations are displayed.
Fig. 4. One-for-one counterfactual explanations for instances 𝒙0
5 and 𝒙0

6 in Table 2 in the Supplementary Material where the classifier is the random forest. The explanations have
been calculated solving model (16)–(17) with 𝜆𝑖𝑛𝑑 = 0.01, 𝜆𝑔𝑙𝑜𝑏 = 0 and 𝜈 = 0.5. Features perturbations are displayed on the two pictures on the left, with the Lipschitz continuity
constraint (3) for 𝜏 = 10 and without this constraint, respectively, whereas in the two right pictures the corresponding features values are displayed.
Fig. 5. On the left, the objective function of Problem (16)–(17) vs threshold value 𝜈, when 𝜆𝑖𝑛𝑑 = 0, 𝜆𝑔𝑙𝑜𝑏 = 0.1, for the logistic regression model. On the right, the features used
in the counterfactual explanations.
same case as in Fig. 3(a). The counterfactuals have been calculated for
the 10 instances in Table 2 in the Supplementary Material. Fig. 5(b)
shows the features that need to be changed for the different values of
𝜈. We can see how the stricter constraint (17) is, i.e., the larger the
value of 𝜈 is, the more features we perturb.

3.2. The many-for-one allocation model

In this section, we consider the many-for-one allocation rule when
there are no linking constraints between counterfactuals associated
with different instances. Thus, it boils down to the problem of calculat-
ing the counterfactuals for each instance, separately. When considering
more than one explanation to an instance, some type of diversity
8

is sought between the different explanations. We will illustrate one
possible choice of diversity. Considering a specific feature of interest,
we will impose that each of the counterfactuals have different values
on this feature. In this way, we ensure that we have different options
at hand to increase the probability, without relying on this feature to
be modified to a specific value, that may be hard to obtain.

The values allowed in each case for the considered feature are
imposed in the set (𝒙0𝑠 ), that changes for each explanation. Thus
solving the problem of finding 𝑅 counterfactuals explanations for an
instance, is equivalent to solving 𝑅 optimization problems as follows:

min ‖𝒙0𝑠 − 𝒙𝑟‖22 + 𝜆𝑖𝑛𝑑‖𝒙0𝑠 − 𝒙𝑟‖0 (20)

𝒙𝑟∈𝑟(𝒙0𝑠 )
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Fig. 6. Many-for-one counterfactual explanations with 𝑅 = 3 for instances 𝒙0
1 and 𝒙0

2 in Table 2 in the Supplementary Material where the classifier is the logistic regression model.
The explanations have been calculated solving model (20)–(21) with 𝜆𝑖𝑛𝑑 = 0.01 and 𝜈 = 0.5. Each row is an explanation, calculated by adding one constraint from (22) in  𝑟(𝒙0

𝑠 ).
Features perturbations are displayed.
s.t. 𝑓 (𝒙𝑟) ≥ 𝜑−1(𝜈), (21)

where  𝑟(𝒙0𝑠 ) corresponds to the feasible set for the 𝑟th explanation
associated to 𝒙0𝑠 .

For the Boston housing dataset, we choose LSTAT as the feature
of interest. We will calculate for each instance 𝑅 = 3 counterfactuals,
imposing LSTAT to be in the first quartile, between the first and third
quartile, and above the third quartile, respectively. Specifically, we add
to  𝑟(𝒙0𝑠 ) one of the following constraints:

(𝒙𝑟)LSTAT ≤ 𝑄1 or 𝑄1 < (𝒙𝑟)LSTAT ≤ 𝑄3 or (𝒙𝑟)LSTAT > 𝑄3. (22)

We illustrate this for the logistic regression model, the first two
instances in Table 2 in the Supplementary Material and 𝑅 = 3. In
Fig. 6(a) the three counterfactuals for instance 𝒙01 are displayed. One
can see that imposing in the third explanation a high value for LSTAT,
i.e., not allowing this feature to be decreased too much, results then in
the necessity of moving other features to reach the desired probability
of being classified in the positive class. The same happens for the
counterfactuals for instance 𝒙02, displayed in Fig. 6(b).

3.3. The one-for-many and one-for-all allocation models

In this section a model for the one-for-many allocation rule and
another for the one-for-all one are presented and illustrated. Whereas in
the later the only decision variable is the location of the counterfactual,
in the former, both the location of counterfactuals and the assignment
of counterfactuals to instances are to be decided. In this case, the
constraints imposed on the explanations cannot depend on specific in-
stances 𝒙0, thus (𝒙0) =  . Of course, there may be constraints imposed
on all counterfactuals generally, and also, cannot link constraints could
be added as well. As before, one way to define 𝑷 is as (6), ensuring
in this way that each counterfactual explanation has a high enough
probability. As cost function we take the 𝓁2

2 .
To formulate the one-for-many allocation rule, binary variables 𝑦𝑠𝑟

are introduced, where 𝑦𝑠𝑟 = 1 if instance 𝒙0𝑠 is assigned to counterfactual
𝒙𝑟 and 0 otherwise. For a linear classifier such as the logistic regression
model, we can formulate Problem (GroupCEhard) as follows:

min
𝒙∈ ,𝒚

𝑅
∑

𝑟=1

𝑆
∑

𝑠=1
𝑦𝑠𝑟‖𝒙0𝑠 − 𝒙𝑟‖22 (23)

s.t. 𝒘𝒙𝑟 + 𝑏 ≥ 𝜑−1(𝜈) ∀𝑟 = 1, 2,… , 𝑅 (24)
𝑅
∑

𝑟=1
𝑦𝑠𝑟 = 1 ∀𝑠 = 1, 2,… , 𝑆 (25)

𝑦𝑠𝑟 ∈ {0, 1} ∀𝑠 = 1, 2,… , 𝑆 ∀𝑟 = 1, 2,… , 𝑅. (26)

Constraint (24) guarantees that each counterfactual explanation has
at least a probability of being classified in the positive class of 𝜈,
while constraints (25) and (26) ensure that each instance is assigned
to exactly one counterfactual explanation.
9

To solve this problem an alternating algorithm can be used, similar
to Lloyd’s algorithm (Lloyd, 1982), where two phases arise: the alloca-
tion of the instances to the counterfactual instance that minimizes the
cost function, and the location of the explanations, where the coun-
terfactual explanation is calculated in the case where the clusters are
already known. Since we are dealing with exogenous counterfactuals,
the chosen cost function is the squared distance and we are considering
a logistic regression model, this problem has a very similar structure
to the classical minimum-sum-of-squared-distances problem, with the
addition of linear constraints (24). The problem becomes more complex
when, for instance, other classifiers are chosen, such as an additive tree
model.

Setting 𝑅 = 1 in (23)–(26), one obtains the model for the one-for-
all allocation rule. In such case, the variables 𝑦𝑠𝑟 are not needed, as all
the instances are assigned to the same counterfactual explanation, and
there is no allocation phase.

To visualize the output of model (23)–(26), we consider 𝒙0𝑠 , 𝑠 =
1,… , 295, to be all the instances in the Boston housing dataset that
were given by the logistic regression model a probability of belonging
to the positive class below 0.5, i.e.,

𝜑(𝑓 (𝒙0𝑠 )) < 0.5, ∀𝑠 = 1, 2,… , 𝑆. (27)

We calculate for them 𝑅 = 3 counterfactual explanations in the many-
for-one case, and one single explanation in the all-for-one case. We
impose 𝜈 = 0.5. Fig. 7 displays the feature values of the clusters and
the explanations.

For the many-for-one allocation rule, we note that, the first cluster is
characterized by high values of the feature RM and AGE and lower val-
ues of features DIS, RAD and TAX, whereas cluster 2 is characterized by
high values of RAD, TAX and PTRATIO. Cluster 3 can be characterized
by lower values of most features except B. For the one-for-all allocation
rule, the explanation that defines the benchmark for the positive class
resembles the counterfactual associated with the first cluster in the case
𝑅 = 3, but with higher values of the features RAD and TAX. Similar
conclusions can be derived for other choices of 𝜈, as illustrated in the
Supplementary Material.

4. Conclusions

In this paper we have focused on counterfactual explanations, an
important class of explanations in Supervised Classification, following
a stakeholders perspective. We have formulated the group counterfac-
tual problem as the bi-objective model (GroupCE). We have provided
a critical discussion on how the different ingredients defining this
problem. In general, finding efficient solutions to this problem calls
for solving Mixed Integer Nonlinear Programming formulations. We
have related those to classic problems in the Continuous and Dis-
crete Location Analysis literature, such as the 𝑝-median, the 𝑝-center,
or the minimum-sum-of-squared-distances problems, and have high-

lighted the novel elements, such as constraints to ensure that the
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Fig. 7. One-for-many and one-for-all analysis for 𝒙0 as in (27) for the logistic regression and 𝑅 = 3 and 𝑅 = 1 respectively. We consider Problem (23)–(26) with 𝜈 = 0.5. The plot
represents the feature values of the counterfactual explanations (below) and their associated clusters (above).
probability of being classified in the positive class is high enough. The
link established between Counterfactual Analysis and Location Analysis
may allow to transfer to the world of Counterfactual Analysis the well
developed algorithmic machinery of Location Analysis. Conversely,
unexplored versions of Location Analysis problems appear motivated
by their counterparts in Counterfactual Analysis.

On top of exploiting the relationship between these two fields,
of rather different scientific maturity, this paper poses a number of
lines for future research for the Operations Research community, some
outlined below.

The practical success of Counterfactual Analysis in Supervised Clas-
sification as developed in this paper will be conditioned to three
premises: the counterfactuals 𝒙 built for the tuple of instances 𝒙0 should
be feasible, the perturbations suggested on 𝒙0 to yield 𝒙 should be
doable, and counterfactuals, used as benchmarks for records labelled by
the classifier used in the negative class should be indeed in the positive
class -a condition which may be differ from being classified as positive
by the classifier-. Section 2 has given an overview of different judicious
choices for the model ingredients to fulfil the three abovementioned
premises. However, if robustness of the counterfactuals generation pro-
cedure is an issue, an extra effort can be done, at the expense of possibly
making the resulting problems less tractable from the computational
viewpoint. Let us analyse the three premises.

Concerning feasibility, obtaining counterfactuals which correspond
to data that have already been observed, and are thus realistic, is done
if one restricts the ambient space  to a training set, and thus one
is considering endogenous counterfactuals. When counterfactuals are
exogenous, constraints in Section 2.3 force the counterfactuals to be,
if not close to an element of a set  of observed points, close to some
convex combination of such points.

Making perturbations doable can be controlled via (2), which allows
the stakeholder to define upper bounds on the magnitude 𝑑(𝒙0𝑠 ,𝒙𝑟)
of each individual perturbation. However, costs may be excessively
underestimated if the weights 𝜔𝑠 in (8), the asymmetry coefficients 𝜼
in (11), or the causality matrices 𝐻𝑠 in (13) are not accurate. A robust
approach, in which 𝝎, 𝜼 and 𝐻𝑠 are assumed to be uncertainty sets,
e.g., ellipsoidal or polyhedral (Ben-Tal & Nemirovski, 1999; Bertsimas,
Brown, & Caramanis, 2011; El Ghaoui & Lebret, 1997), may be then
advisable. The resulting optimization problems, even for the simplest
case of the single-instance single-counterfactual remain unexplored.

The most critical premise to make counterfactual analysis reliable
is that counterfactuals should be members of the positive class. Most of
10
the literature on counterfactual analysis focuses on finding a solution
to the single-objective problem in which the cost is minimized, while
the counterfactual 𝒙 is deterministically classified in the positive class,
by imposing 𝑃 (𝒙) ≥ 𝜏 for a given threshold 𝜏, say 𝜏 = 0.5. Although
there are studies in which two objectives are considered and combined
through a scalar, they do not model the probability of positive as-
sociated with the classifier but the value of the score function. With
our approach we have a direct control on the probability 𝑃 (𝒙), and
thus, on function 𝑷 . Therefore, by generating the Pareto frontier of
Problem (GroupCE), the stakeholder will have the chance to trade off
costs and the probability of positive associated with the classifier. A
deeper algorithmic analysis of the bi-objective problem for the different
allocation rules discussed in Section 2.2 is worthwhile.

On top of this, we are assuming in Section 2.4 that the classifier is
given by a fixed score function 𝑓 . It is expected that, if the classifier
is retrained, e.g., when the process is used over time and new data
become available, the score 𝑓 and therefore the probability 𝑃 (𝒙) will
change (Dutta, Long, Mishra, Tilli, & Magazzeni, 2022; Ferrario & Loi,
2022; Forel, Parmentier, & Vidal, 2022; Upadhyay, Joshi, & Lakkaraju,
2021). This means that we may have some uncertainty on 𝑓 , and 𝑃 (𝒙)
in (4) needs to account for this. For instance, we can replace (4) by
𝑃 (𝒙) = min𝑓∈ 𝜑(𝑓 (𝒙)) = 𝜑(min𝑓∈ 𝑓 (𝒙)) for some uncertainty set of
score functions  . This leads to tractable models when 𝑓 is affine as
in 𝑓 (𝒙) = 𝒘𝒙 + 𝑏, and  is an ellipsoid, or, for more general types of
scoring functions, when  is a finite set, implying that we have not one
score function but several. This situation correspond to, for instance,
different runs of a random forest, to a nonlinear SVM with different
kernels or parameters, or the score functions corresponding to different
classification methods.

Finally, if one suspects that, if the counterfactual 𝒙 is chosen, instead
of 𝒙 some 𝒛 will be implemented, where 𝒛 is in a neighbourhood
of 𝒙, the approach is made robust if in the definition of 𝑃 one uses
𝑃 (𝒙) = min𝒛∈𝜀(𝒙) 𝜑(𝑓 (𝒛)), where 𝜀(𝒙) = {𝒛 ∈  ∶ 𝑑(𝒙, 𝒛) ≤ 𝜀}, for
some distance or dissimilarity function 𝑑 and some 𝜀 > 0, see Maragno
et al. (2023) for further details.

In addition to enhancing the explainability of the output of ma-
chine learning algorithms, i.e., detecting the important features to the
classification task and how to change features to enhance outcomes,
there is also the urgent need to enhance the fairness of these algo-
rithms (Goethals, Martens, & Calders, 2023; Gupta, Nokhiz, Roy, &
Venkatasubramanian, 2019; Haldar, Cunningham, & Ferhatosmanoglu,

2022; Kusner, Loftus, Russell, & Silva, 2017; Von Kügelgen et al.,
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2022; Zafar, Valera, Gomez-Rodriguez, & Gummadi, 2019). The data
available to train algorithms may suffer from bias against a sensitive
group, defined, e.g., by gender (females) or income (low income). To
reduce the danger that the algorithm amplifies the bias seen in histor-
ical data, a plethora of methodologies have been developed in recent
years, see Mehrabi, Morstatter, Saxena, Lerman, and Galstyan (2022),
Mitchell, Potash, Barocas, D’Amour, and Lum (2021), Pessach and
Shmueli (2022) for recent reviews. Unfairness has also been reported
for the single-instance and single-counterfactual model. For instance,
disparity in the costs 𝐶(𝒙0,𝒙) to perturb 𝒙0 to yield 𝒙 is reported for
the Adult dataset in Ustun et al. (2019), which is a classic dataset in
the fairness literature (Fabris, Messina, Silvello, & Susto, 2022), where
females incur on higher average costs than males. In the framework
proposed in this paper, we are able to have a more direct control on this
disparity since we build the counterfactuals for both the sensitive and
the non-sensitive groups simultaneously using a single model. Indeed,
we can penalize the costs associated with the sensitive groups much
higher than for the non-sensitive group with the 𝜔𝑠 weight in (8). An
ven more direct control, at the expense of making the optimization
roblems much less tractable, is to impose that the distribution of costs
f the sensitive and the nonsensitive groups are similar, where their
issimilarity can be measured with the Wasserstein distance. In the
atter case, the structure of the problem is affected having a constraint
here the left hand side is defined by another optimization problem,

he so-called optimal transport problem.
The concepts of explainability and fairness are expanding beyond

upervised Classification (Barocas, Selbst, & Raghavan, 2020; De-
rteaga, Feuerriegel, & Saar-Tsechansky, 2022; Korikov & Beck, 2021;
orikov, Shleyfman, & Beck, 2021; Olson, Khanna, Neal, Li, & Wong,
021), although the examples are still very scarce (Verma et al., 2022).
xtending group counterfactual explanations beyond classification is
nontrivial task, even in the single-instance single-counterfactual

ase for which bilevel programs arise (Bogetoft, Ramírez-Ayerbe, &
omero Morales, 2024). This, as the other challenges discussed in

his paper, deserves further attention from the Operations Research
ommunity, whose expertise will strongly improve the algorithmic part
f the burgeoning field of Counterfactual Analysis.
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