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How Integrated are Credit and Equity Markets?
Evidence from Index Options

PIERRE COLLIN-DUFRESNE, BENJAMIN JUNGE, and ANDERS B. TROLLE*

ABSTRACT

We study the extent to which credit index (CDX) options are priced consistent with
S&P 500 (SPX) equity index options. We derive analytical expressions for CDX and
SPX options within a structural credit-risk model with stochastic volatility and jumps
using new results for pricing compound options via multivariate affine transform
analysis. The model captures many aspects of the joint dynamics of CDX and SPX
options. However, it cannot reconcile the relative levels of option prices, suggesting
that credit and equity markets are not fully integrated. A strategy of selling CDX
volatility yields significantly higher excess returns than selling SPX volatility.

CLASSIC FINANCIAL THEORY VIEWS CORPORATE debt and equity as contin-
gent claims on the firm’s underlying asset value (Merton (1974)). Accordingly,
credit spreads and equity returns should be tightly connected because they de-
pend on the same set of risk factors in the asset value process. Consistent with

*Pierre Collin-Dufresne is at EPFL and Swiss Finance Institute. Benjamin Junge is at Cap-
ital Fund Management. Anders B. Trolle is at Copenhagen Business School. We thank Stefan
Nagel (the Editor), the Associate Editor, two anonymous referees, Jack Bao, Jan Ericsson, David
Lando, Hugues Langlois, Allan Mortensen, Yoshio Nozawa, Nicki Rasmussen, Martin Scheicher,
and seminar participants at the AFA 2022 annual meeting, the CEPR Advanced Forum for Fi-
nancial Economics, the EFA 2020 annual meeting, the 10th ITAM Finance conference, the sec-
ond LFE Workshop in Finance at ICEF, the 2021 SFI Research Days, the Virtual Derivatives
Workshop, the UCLA Virtual Finance Workshop, Boston University, Erasmus University, Florida
International University, HEC Paris, Sharif University of Technology, Tilburg University, Tinber-
gen Institute, University College Dublin, and University of Zurich for comments and suggestions.
Collin-Dufresne gratefully acknowledges support from the Swiss Finance Institute. Trolle grate-
fully acknowledges support from the Center for Big Data in Finance (Grant no. DNRF167) and
the Danish Finance Institute. The authors do not have any conflicts of interest as identified in The
Journal of Finance disclosure policy.

Correspondence: Anders B. Trolle, Copenhagen Business School, Department of Finance, Solb-
jerg Plads 3, A4.02, DK-2000 Frederiksberg, Denmark; e-mail: abtr.fi@cbs.dk.

This is an open access article under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided
the original work is properly cited, the use is non-commercial and no modifications or adaptations
are made.

DOI: 10.1111/jofi.13300

© 2023 The Authors. The Journal of Finance published by Wiley Periodicals LLC on behalf of
American Finance Association.

1

mailto:abtr.fi@cbs.dk
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjofi.13300&domain=pdf&date_stamp=2024-01-09


2 The Journal of Finance®

much of the literature on structural models, this is how we define “integration”
in this paper.1

Early tests of first-generation structural models find that these models tend
to underpredict the level of credit spreads, especially for investment-grade
bonds (Jones, Mason, and Rosenfeld (1984), Huang and Huang (2012)). More
complex second-generation structural models, which allow for time-varying
risk premia and/or richer asset value dynamics, are more successful at explain-
ing the level of credit spreads (Cremers, Driessen, and Maenhout (2008), Chen,
Collin-Dufresne, and Goldstein (2009), Du, Elkamhi, and Ericsson (2019)). In
particular, Cremers, Driessen, and Maenhout (2008) demonstrate a close con-
nection between credit spreads and prices of equity index options. More re-
cently, Culp, Nozawa, and Veronesi (2018) propose the use of equity options
and contingent-claim pricing to construct “pseudo firms” whose derived credit
spreads they find to be consistent with actual credit spreads, suggesting “a
good deal of integration between corporate bond and options markets.”2

In this paper, we extend the question of integration between credit and eq-
uity markets to higher-order moments by investigating whether, in addition to
credit spreads, structural models can also match the relative prices of credit
and equity index options. Specifically, we use a novel data set of options on a
broad credit index to infer implied credit volatilities across a range of mon-
eyness and maturities. We characterize the dynamics of the resulting credit-
implied volatility surface and its relation to the volatility surface obtained
from equity index options, and we explore whether the two surfaces and their
time variation are consistent when examined through the lens of a rich struc-
tural model.

Credit indexes constitute the most liquid component of the corporate
credit derivatives market.3 We focus on the credit index for North American
investment-grade firms—the CDX.NA.IG, henceforth CDX. The years after the
financial crisis saw the development of an active market for credit index op-
tions, and our first contribution is to characterize the trading activity in CDX
options since trade reporting became mandatory at the end of 2012. Trades are
generally large, with about two-thirds of the trades having a notional amount
of the underlying CDX that is at or above the level for which the reported no-
tional is capped (typically either USD 100 million or USD 110 million).4 We
estimate that the average daily trading volume during our sample period was
USD 4.35 billion, but trading volume exhibits an upward trend and peaks at
the height of the COVID-19 crisis in March 2020, where we estimate that it

1 Admittedly this is a restrictive definition. A broader definition of integration might only re-
quire that all prices are compatible with a common pricing kernel; see, e.g., Chen and Knez (1995)
and Sandulescu (2020).

2 See Culp, Nozawa, and Veronesi (2018, p. 458).
3 See Collin-Dufresne, Junge, and Trolle (2020) for a detailed description of this market.
4 Trading between clients and dealers takes place almost exclusively over the counter, while

interdealer trading often takes place on dedicated trading platforms. For the subset of trades that
are executed on the main interdealer trading platform, we have additional data from which we
can infer that the capped trades on that platform have an average notional of USD 353 million.
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How Integrated are Credit and Equity Markets? 3

reached an average of USD 11.08 billion per day. In the vast majority of option
trades, the underlying is the five-year on-the-run (i.e., most recently issued)
CDX contract, and these options are the focus of the paper. We further show
that trading activity is concentrated in relatively short-term (up to three to
four months) options, and that there is relatively more trading in high-strike
options, which pay off when credit spreads are high.

We next use composite dealer quotes to characterize the pricing of CDX
options and the relation to S&P 500 (SPX) options.5 CDX implied volatility
smiles are consistently positively skewed, which is economically consistent
with the well-known negative skew of SPX implied volatility smiles because
CDX options are quoted in terms of implied credit-spread volatilities, and
credit spreads and equity values are negatively related. Therefore, the positive
(negative) skews of credit (equity) implied volatility smiles reflect a higher pre-
mium for options that pay off in adverse economic states, when credit spreads
are high and equity values are low.

We also investigate the joint dynamics of the underlying index, volatility, and
skewness, both within each market and across markets. We find that much like
CDX and SPX returns are highly (negatively) correlated, the smile dynamics
are also correlated. Specifically, at-the-money (ATM) CDX and SPX implied
volatilities are highly positively correlated, while the skewness of CDX and
SPX volatility smiles are negatively correlated.

Since the model-independent analysis shows a strong connection between
CDX and SPX options, we next examine whether they can be linked through a
rich structural credit-risk model. We consider a general specification for the as-
set value dynamics of a representative index constituent in which both idiosyn-
cratic and systematic risk have a diffusive component and a jump component.
In addition, the common factor exhibits stochastic volatility and a variance-
dependent jump intensity. We allow for both short-term and long-term debt
in order to generate a term structure of credit spreads. Indexes and index op-
tions are given as compound options, and we develop new results on multivari-
ate transform analysis for affine processes to price these options analytically,
thereby facilitating our empirical analysis.6

We estimate the model using data at a weekly frequency on the CDX
term structure, the SPX level, and the SPX option surface (as well as short-
term and long-term index leverage ratios and the index dividend yield), and
then price the CDX option surface out-of-sample. Consistent with the data,
the fitted CDX implied volatility surfaces are consistently positively skewed.

5 We follow standard market practice and express CDX option prices in terms of log-normal
implied credit-spread volatilities using a reduced-form model.

6 Our model builds on the classic structural approach to pricing corporate debt (Merton (1974),
Geske (1977)). Carr and Wu (2010) propose a “hybrid” pricing framework in which credit default
swaps (CDSs) are priced using a reduced-form approach given an exogenous default intensity and
equity options are priced using standard transform analysis applied to the underlying default-
adjusted stock price process. This is unlike in traditional structural models, where the stock price,
bond price, and default time are determined endogenously by the dynamics of the underlying asset
value process.
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4 The Journal of Finance®

Moreover, the magnitude and variation in skewness generated by the model is
similar to that observed in the data. The model also largely replicates the joint
index-volatility-skewness dynamics observed in the data, both within the CDX
market and across the two markets.

However, the model cannot match the level of the CDX implied volatility
surfaces. Indeed, the CDX implied volatilities generated by the model are, on
average, 28% lower than those observed in the market. Viewed through the
lens of the model, this price difference suggests that market prices of CDX
options are too expensive relative to SPX options, indicating that credit and
equity markets are not fully integrated.7

We explore the robustness of our findings along several dimensions. First,
our model assumes an infinite number of homogeneous constituents in the
two indexes—the “large homogeneous pool” (LHP) approximation of Vasicek
(1987)—in order to obtain analytic pricing formulas. We extend the model and
perform numerical analyses to investigate the effects of heterogeneity and a
finite number of index constituents, and find that these extensions are unlikely
to explain our empirical results.

Second, while our analysis does not require the two indexes to be identi-
cal in terms of constituents, it requires a high degree of similarity in terms of
index risk characteristics. We compare the two indexes in terms of the distribu-
tions of rating, leverage, and total and systematic asset return volatility across
constituents—four characteristics that are central to our structural model. We
find the distributions to be very similar in terms of mean and median val-
ues, even though the SPX distributions display more dispersion. In particular,
because index option prices are increasing in systematic asset volatility, one
potential resolution of the observed price differential for CDX options could
be higher average systematic asset volatility among CDX constituents, but we
find it to be marginally lower.

Third, the relative valuation analysis requires that the two sets of option
contracts span similar economic states. By converting option strikes to a com-
mon scale, namely, expressing strikes in terms of asset value, we show that
this is indeed the case.

Finally, we corroborate our results on the relative valuation of CDX and
SPX options by comparing the profitability of selling volatility in the two mar-
kets. We show that a strategy of selling CDX volatility yields significantly
higher average excess returns and Sharpe ratios than selling SPX volatility.8

A short-long strategy of selling CDX volatility versus buying SPX volatility
also generates a high Sharpe ratio, although lower than what is attained by
selling CDX volatility outright. However, its higher-order moments are more

7 We also consider the reverse estimation approach, where we fit to the CDX option surface and
price the SPX option surface out-of-sample. Consistent with our main analysis, in this case the
model fails to match the level of the SPX implied volatility surface.

8 For instance, a strategy of selling an equally weighted portfolio of option straddles (appropri-
ately sized) yields a Sharpe ratio of 1.744 in the CDX market compared to a Sharpe ratio of 0.659
in the SPX market.
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How Integrated are Credit and Equity Markets? 5

attractive, with the return distribution being roughly symmetric (instead of
highly negatively skewed) and much less leptokurtic.

In the conclusion, we discuss several possibilities for follow-up research.
Clearly, in interpreting our results, we face the joint hypothesis problem (e.g.,
Fama (1970)) that we can never definitively tell whether the results reflect lack
of integration between the two markets or model misspecification. Although
our model incorporates salient features of asset value dynamics, it would be
relevant to explore whether our findings hold true in various model extensions.
Adding credit-specific factors to the model seems particularly promising, and
we suggest one such extension—systematic variation in bankruptcy costs—
and show how it can be incorporated in our model.

Another possibility is that there are institutional features that can lead to
market segmentation and distort the relative prices of index options. For in-
stance, even if CDX and SPX options are close substitutes, they are not treated
as such by regulators in the context of credit-risk hedging by financial institu-
tions. We provide suggestive evidence for significant regulatory-driven demand
from banks for CDX options. However, quantifying such demand and linking it
to variation in the relative valuation of index options is left for future research.

The paper is related to several strands of literature. The model is related
to Bai, Goldstein, and Yang (2019), who focus on pricing equity index options
in a structural model using the LHP approximation. Relative to their paper,
we also treat credit index options, allow option expiries to differ from debt
maturity (thereby treating options as true compound options on the firm asset
value), and derive full analytical solutions to option prices in a more general
stochastic-volatility jump-diffusion setting using new results on multivariate
transform analysis for affine processes.9 Our results on multivariate trans-
form analysis generalize the univariate analysis of Duffie, Pan, and Singleton
(2000) and have many applications beyond our specific use in this paper for
valuing compound options.10

In contrast to the aforementioned papers on the level of credit spreads, a
number of papers provide evidence that points toward imperfectly integrated
equity and corporate credit markets. Collin-Dufresne, Goldstein, and Martin
(2001) find that a large fraction of changes in credit spreads cannot be ex-
plained by variables suggested by the Merton (1974) model. The unexplained
residuals seem to be driven by few common factors that subsequent papers
have linked to illiquidity factors (Friewald and Nagler (2019)) or intermediary
balance-sheet factors (He, Khorrami, and Song (2022)). A number of recent
papers (Chordia et al. (2017), Choi and Kim (2018), and Bai, Bali, and Wen
(2019)) document differences in the set of factors and characteristics that
explain the cross sections of corporate bond and stock returns. Schaefer and

9 Allowing option expiries to differ from debt maturity is important in our setting in which
option expiries are typically less than four months while the underlying credit index has a ma-
turity of approximately five years. Bai, Goldstein, and Yang (2019) derive option prices up to an
expectation that is computed via numerical integration.

10 For instance, our results can be used to value complex “cliquet outperformance options” (op-
tions that depend on the maximum realization of one or several prices at various fixed dates prior
to the option maturity) in general affine models.
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6 The Journal of Finance®

Strebulaev (2008) find that the Merton (1974) model produces reasonable
sensitivities of bond returns to stock returns, although a sizable excess bond
return volatility remains, which Bao and Pan (2013) link to time-varying
bond illiquidity. Kapadia and Pu (2012) find short-lived divergences between
CDS and stock prices, especially for firms with high arbitrage costs. A com-
mon feature of all these papers is that they study bond returns or credit
spread changes of individual firms, for which illiquidity effects are likely to be
important. In contrast, we focus on a highly liquid credit index and its options.

Finally, the paper is related to a recent literature on the relative pricing
of CDX tranche swaps and SPX options (Coval, Jurek, and Stafford (2009),
Collin-Dufresne, Goldstein, and Yang (2012), and Seo and Wachter (2018)). In
principle, this literature also provides insights into the integration of equity
and credit derivatives markets. However, in practice the relative pricing of
these instruments is complicated by several factors: (i) CDX tranche swaps are
long-dated contracts while the most liquid SPX options have short expiries,11

(ii) the range of (negative) economic states spanned by CDX tranche swaps is
much wider than that spanned by SPX options (Collin-Dufresne, Goldstein,
and Yang (2012)), and (iii) trading in CDX tranche swaps has languished after
the financial crisis. In contrast, CDX and SPX options are much more closely
aligned in terms of which option maturities are liquid and the range of eco-
nomic states that are spanned. Moreover, CDX options have flourished since
the financial crisis.12

The paper is structured as follows. Section I describes the CDX options mar-
ket and the transaction and quote data. Section II characterizes the relation
between CDX and SPX options. Section III presents the structural model,
Section IV shows how to use multivariate transform analysis for affine pro-
cesses to price indexes and index options, Section V describes model estimation
and results, and Section VI discusses robustness checks. Section VII concludes.
Proofs are given in the Appendix, and an Internet Appendix contains supple-
mentary results.13

I. CDX and CDX Options

A. CDX

A credit index is a CDS that provides default protection on a set of compa-
nies belonging to an index, with the notional of the swap divided evenly among
the index constituents. We focus on the investment-grade CDX that provides
default protection on 125 investment-grade companies. CDX contracts are is-
sued with initial maturities between one and ten years. A new set of CDX

11 This literature, therefore, uses less liquid long-term SPX options that are traded over
the counter.

12 Based on all (capped) trade reports since 2013 and aggregating across all North American
credit indexes, we find that trading volume in tranche swaps is only 9% of the trading volume
in options.

13 The Internet Appendix may be found in the online version of this article.
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How Integrated are Credit and Equity Markets? 7

contracts referencing a “refreshed” index is issued every March and Septem-
ber.14 The most recently launched contracts are called on-the-run; all previ-
ously launched contracts are referred to as off-the-run. Most trading activity
is in the five-year on-the-run contract. Virtually all such trades are centrally
cleared and executed on dedicated trading platforms (so-called swap execution
facilities or SEFs) at very low transaction costs. See Collin-Dufresne, Junge,
and Trolle (2020) for details about the market structure and transaction costs
of CDX.

Coupon payments in a CDX contract are standardized and occur at a fixed
rate of 100 basis points (bps) per year.15 The present value of the premium leg,
therefore, typically does not correspond to the present value of the protection
leg, which reflects the market’s perceived credit risk of the underlying index
constituents. As a consequence, when entering the contract, the buyer of pro-
tection pays an upfront amount equal to the difference between the present
values of the two legs. However, traders usually quote a CDX contract in terms
of a “par spread,” which is the fixed coupon rate that would be required for the
upfront amount to be zero. There is a one-to-one correspondence between up-
front amount and par spread, and market participants conventionally use the
ISDA CDS Standard Model for the conversion, as we explain in more detail in
Section I of the Internet Appendix.16

When an index constituent defaults, the loss is settled in the same way
as a single-name CDS, and the outstanding notional of the swap is reduced.
From then on, the swap references a new version of the index without the de-
faulted name.

B. CDX Options

A CDX option is an option to enter into a CDX contract at a given strike
price. A payer option gives the right to buy credit protection (paying the strike
and the subsequent coupons) while a receiver option gives the right to sell
credit protection (receiving the strike and the subsequent coupons). Options
are European style and are quoted for a wide set of strikes and monthly expi-
rations. Options expire on the third Wednesday of each month. Contractually,
the option payoff is given in upfront terms. For quotation purposes, however,
it is standard practice to write the payoff in spread terms and express the
option price as a log-normal spread implied volatility. Details—including how

14 These roll dates are March 20 and September 20 (in the second half of 2014, the roll date was
postponed to October 6 due to delays in signing up market participants to the 2014 International
Swaps and Derivatives Association (ISDA) Credit Derivatives Definitions). The index constituents
are selected from the investment-grade companies that have the most liquid single-name CDSs
traded on them. Each index is identified by its series number.

15 Throughout the paper, we assume that coupons are paid continuously at a rate of C =
100 bps, which greatly simplifies notation. In reality, coupons are paid quarterly on standardized
coupon dates.

16 Note that the upfront amount can be negative, in which case the par spread will be less than
the fixed coupon rate.
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8 The Journal of Finance®

Table I
Descriptive Statistics for CDX and CDX Option Trades

The table shows descriptive statistics for CDX and CDX option trades. Tenor is the initial time
to expiration of the CDX contract (the underlying CDX contract in the case of CDX options). The
on-the-run series is the most recently launched CDX contract. Typically, reported trade sizes
are capped when the notional amount traded exceeds USD 100 million or USD 110 million. The
sample period is December 31, 2012 to April 30, 2020. The sample comprises 371,693 CDX trades
and 32,669 CDX option trades.

CDX CDX Options

Trades per day 202 18
Median trade size (in million USD) 50 100
Capped trade size (% of trades) 22.3 66.5
Average daily volume (in million USD) 11,133 1,442
Five-year tenor (% of trades) 96.1 98.1
On-the-run series (% of trades) 88.9 94.0
On-SEF execution (% of trades) 83.9 3.8
Cleared (% of trades) 90.4 17.6
Payer (% of trades) — 63.1

defaults during the life of the option are handled—are provided in Section I of
the Internet Appendix. Note that a payer (receiver) option is a call (put) option
on the upfront/spread.

C. Trading in CDX Options

To understand the trading activity in CDX options, we analyze all re-
ported transactions from December 31, 2012 (when reporting to swap data
repositories became mandatory) to the end of our sample period on April
30, 2020. Table I displays descriptive statistics of the transaction data. For
completeness, the table also reports statistics on CDX transactions. In con-
trast to CDX, trading in CDX options takes place predominantly over the
counter, and the SEF trades that we do observe are almost exclusively inter-
dealer trades. Central clearing is also less prevalent in CDX options than in
CDX.17

CDX option trades are relatively infrequent (18 trades per day, on average)
but large in size (measured in terms of the notional amount of the underly-
ing CDX). The median of the reported trade sizes is USD 100 million. How-
ever, about two-thirds of the trades are reported with a capped notional, which
implies that trade sizes are typically much larger.18 For the subset of trades
that take place on the main interdealer trading platform (GFI SEF), we have

17 For CDX, five-year on-the-run (and immediate off-the-run) trades are, with a few exceptions,
required to be executed on SEFs and to be centrally cleared. For CDX options, there are no such
requirements.

18 The level of the cap is determined by the Commodity Futures Trading Commission and varies
over time and with option strike. In most trade reports, the notional is capped at either USD
100 million or USD 110 million.
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How Integrated are Credit and Equity Markets? 9

Panel A: CDX

Panel C: CDX Panel D: CDX options

Panel B: CDX options

Figure 1. Trading activity for CDX and CDX options. Panels A and B show the average
daily trading volume for CDX and CDX options. Panels C and D show the average number of
trades per day for CDX and CDX options. Daily market activity reports from the GFI SEF are
used to compute the average amount by which the actual notionals of capped trades on the GFI
SEF exceed the reported notionals. This is done separately for CDX and CDX options (see footnote
19 for details). The estimated true volume in Panels A and B is obtained by adding the average
amount to the reported notionals for all capped trades. The frequency of observations is monthly.
The sample period is December 31, 2012 to April 30, 2020 (88 observations).

additional data from which we can infer that the capped trades in that sub-
set have an average size of USD 353 million.19 The average daily trading vol-
ume based on the capped trade reports is USD 1.44 billion. Assuming that
all capped trades exceed their reported notionals by the same amount as on
the GFI SEF, we obtain an estimate of the true average daily trading volume

19 Daily market activity reports from the GFI SEF show that the aggregate uncapped notional
amount traded is USD 108,410 million for CDX options during the period from October 2, 2013
to April 30, 2020. Identifying GFI SEF trades in the transaction data shows that the aggregate
capped notional amount is USD 34,829 million, and that there are 300 capped trades with an
average reported notional of USD 108 million. This implies that these capped trades have an
average size of USD 353.27 (=108 + (108,410 − 34,829)/300) million.
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10 The Journal of Finance®

Table II
Distribution of Trading Volume across the CDX Volatility Surface

The table shows the percentage of CDX option volume across the volatility surface. Moneyness
is defined as m = log(K/F (τ ))/(σ

√
τ ), where K is the strike, F (τ ) is the front-end-protected τ -

forward spread, σ is at-the-money implied volatility, τ = d/365 is time to expiration, and d is days
to expiration. The underlying of all options is the five-year on-the-run index. The sample period is
December 31, 2012 to April 30, 2020. The sample comprises 28,409 CDX option trades.

Days to Expiration

Moneyness <15 15–44 45–74 75–104 105–134 ≥135 Total

m < −1.5 0.20 0.24 0.06 0.01 0.00 0.00 0.52
−1.5 ≤ m < −0.5 0.94 3.99 2.94 1.62 0.54 0.39 10.42
|m| ≤ 0.5 2.12 15.28 9.61 6.48 2.27 1.28 37.03
0.5 < m ≤ 1.5 1.53 9.01 10.34 8.75 4.17 2.30 36.10
m > 1.5 1.42 5.96 4.45 2.65 0.97 0.47 15.92

Total 6.21 34.47 27.40 19.51 7.95 4.45

of USD 4.35 billion.20 Note that this is a downward-biased estimate because
the trade reporting requirement only pertains to trades for which at least one
counterparty is a U.S. institution.

Figure 1 displays the evolution in trading activity on a monthly basis.
Panels A and B show the average daily trading volume for CDX and CDX
options, respectively, while Panels C and D show the average number of trades
per day. Underscoring the growing popularity of CDX options, trading volume
exhibits an upward trend during the sample period. The average daily trading
volume based on the capped trade reports (estimated true volume) increased
from USD 0.88 billion (USD 2.72 billion) in January 2013 to USD 2.08 billion
(USD 6.23 billion) in April 2020. Trading volume peaks at the height of the
COVID-19 crisis in March 2020 at USD 3.59 billion (USD 11.08 billion) per
day. The highest trade count for CDX options is in February 2020 at 88 trades
per day, on average.

Table I shows that in the vast majority of option trades, the underlying CDX
is the five-year on-the-run contract. We therefore focus on those options in the
remainder of the paper.

Table II shows the distribution of trading volume across moneyness and op-
tion maturity. We define moneyness as

m =
log

(
K

F (τ )

)
σATM

√
τ

, (1)

20 Compared with CDX option trades, CDX trades are more frequent (202 trades per day, on
average) but smaller in size, with a median trade size of USD 50 million and less than a quarter of
the trade sizes being above the cap. The average daily trading volume based on the capped trade
reports is USD 11.13 billion but we estimate that the true volume is USD 17.80 billion using the
same method as for CDX options.
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How Integrated are Credit and Equity Markets? 11

where K is the strike, F (τ ) is the forward spread, σATM is the ATM log-normal
spread implied volatility, and τ is the maturity. Intuitively, m measures the
number of standard deviations that an option is in or out of the money given
log-normally distributed spreads. The table shows that there is more trading in
high-strike than low-strike options. It also shows that trading is concentrated
in relatively short-term options with maturities out to three to four months.

D. CDX Option Quotes

To have synchronized data across the option surface, we use quotes rather
than trades. Specifically, we use end-of-day composite dealer quotes from
Markit.21 The sample period is from February 24, 2012 to April 30, 2020.

Details on the quote data are given in Sections II and III of the Internet
Appendix. There we find that when option maturities become very short (typ-
ically less than one week), dealers stop quoting prices. Beyond that, there are
almost always quotes for at least three monthly expirations. At longer maturi-
ties, quotes are more sporadic. In light of these findings as well as the evidence
on option transactions in Table II, on each observation date we select the first
three monthly expirations among the options that have more than two weeks
to expiration. These options are denoted M1, M2, and M3. The average option
maturities are 29.9, 60.2, and 90.6 calendar days, respectively.

For each maturity, we consider 13 moneyness “buckets”: −3.25 < m ≤ −2.75,
−2.75 < m ≤ −2.25,…, 2.75 < m ≤ 3.25, where m is defined in (1). Within each
bucket, we search for the option that is closest to the midpoint of the interval.
We only search among out-of-the-money (OTM) options due to their higher
liquidity. In the ATM category, we give priority to payer options.

The result of this data-sorting is a uniform maturity-moneyness grid that
preserves the information in the data without overweighing those dates on
which more maturities and/or strikes are quoted. In the Internet Appendix,
we show that quotations are tilted toward higher-strike options. This probably
reflects both the higher interest in trading those options (see Table II) and
the fact that the risk-neutral spread distribution is heavily skewed toward
higher spreads (see below) so that deep OTM payer options (by our moneyness
measure) have meaningful prices even when deep OTM receiver options have
little value.

E. SPX Option Quotes

SPX options trade on the Chicago Board Options Exchange (CBOE), from
which we obtain end-of-day quotes. Regular SPX options expire on the third
Friday of each month (there are also weekly and end-of-month expirations that
we do not consider). On each observation date, we search for the three SPX
option maturities that are closest to the three CDX option maturities. These
SPX options expire either two days after or five days before and hence there

21 Markit is arguably the leading data provider for credit derivatives. According to the “Markit
Credit Options” user guide, the “credit index option composite is calculated from quotes received
from market makers.”
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12 The Journal of Finance®

Figure 2. CDX and SPX implied volatility smiles. The figure shows weekly (Wednesday) two-
month implied volatility smiles for CDX and SPX. CDX data are displayed in the left panel and
SPX data are displayed in the right panel. Moneyness is defined as m = log(K/F (τ ))/(σ

√
τ ), where

K is the strike, F (τ ) is the forward (front-end-protected) spread in the case of CDX options and
the forward price in the case of SPX options, σ is the at-the-money implied volatility, and τ is the
maturity of the option. The sample period is February 29, 2012 to April 29, 2020 (427 observations).

is a close match in maturity between SPX and CDX options. The average SPX
option maturities are 30.6, 61.2, and 91.5 calendar days, respectively.

For each maturity, we next find the OTM options that are closest to the mid-
points of the following 13 moneyness intervals: −8.5 < m ≤ −7.5, −7.5 < m ≤
−6.5,…, 3.5 < m ≤ 4.5, where m is again defined in (1), but with F (τ ) denot-
ing the forward SPX value. Note that the m-range is not directly comparable
across CDX and SPX options (one is in spread terms while the other is in price
terms). Rather, given the m-range for CDX options, we choose the m-range for
SPX options so that the moneyness range is roughly similar when expressed
on a common scale, namely, in asset-value terms; see Section VI.C.

II. Stylized Facts

To provide an initial sense of the data, Figure 2 shows weekly CDX and SPX
implied volatility smiles for the two-month maturity. Weekly data are sampled
each Wednesday.22 It is immediately apparent that implied volatility smiles
for CDX options are positively skewed, in contrast to the negatively skewed
SPX implied volatility smiles. This is economically intuitive in that adverse
economic states are characterized by low equity prices and high credit spreads.

22 If Wednesday is not a trading day, we consider the preceding Tuesday instead. The sample
comprises 427 weekly observation dates from February 29, 2012 to April 29, 2020.
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How Integrated are Credit and Equity Markets? 13

Therefore, if such states carry a high risk and/or price of risk, prices of OTM
SPX put options and OTM CDX call options will be elevated.

To summarize the information in implied volatilities across moneyness, op-
tion maturity, and time, we follow the approach in Foresi and Wu (2005). On
each date and for each option maturity, we run the cross-sectional regression

σ IV (m) = β0 + β1m + β2m2 + ε, (2)

where m is the measure of moneyness given in (1) and ε is an error term. In this
regression, β0 captures the ATM implied volatility, β1 captures the skewness
of the implied volatility smile, and β2 captures the curvature of the implied
volatility smile. The β-coefficients are highly correlated across option maturity.
Therefore, for ease of exposition, we average the β-coefficients across option
maturity to produce single time series of β0, β1, and β2. Note that β2 is sensitive
to the moneyness range, which varies over time, especially for CDX options
(see Figure IA3 in the Internet Appendix). This variation introduces noise in
the estimate of curvature. For this reason, we mainly focus on the dynamics of
volatility and skewness.

Figure 3 provides an overview of the data with the left (right) panels show-
ing data for the CDX (SPX) market. The top-left panel shows time series of
the 1Y and 5Y CDX spreads. Normally, the CDX term structure is strongly
upward-sloping. During the COVID-19 crisis, however, the slope flattens as
the 1Y spread increases more than the 5Y spread. At the peak of the crisis, the
5Y spread reaches 151 bps.

The middle-left panel (blue line) shows the time series of CDX volatility.
Clearly, CDX volatility exhibits significant variation. In particular, it spikes
during the COVID-19 crisis in March 2020, when it reaches a maximum of
1.35 relative to the sample average of 0.47. Moreover, variation in CDX and
SPX volatility (middle-right panel) appears to be highly positively correlated.

The lower-left panel (blue line) shows the time series of CDX skewness. This
confirms the observation in Figure 2 that the CDX implied volatility smiles
are always positively skewed. CDX skewness varies over time and reaches a
maximum of 0.149 during the COVID-19 crisis relative to a sample average of
0.073. It appears that variation in CDX and SPX skewness (lower-right panel)
is moderately negatively correlated so that, when the SPX volatility smile be-
comes more skewed toward OTM put options, the CDX volatility smile tends
to become more skewed toward OTM call options.23

We next investigate more formally the joint dynamics of the underlying in-
dex, volatility, and skewness, both within each market and across markets. To
this end, the left part of Table III reports correlations (in weekly changes) be-
tween the log CDX spread, CDX volatility, CDX skewness, log SPX index, SPX
volatility, and SPX skewness. To ensure that our findings are not driven by the

23 One exception is during the COVID-19 crisis. Initially, both CDX and SPX skewness be-
come more pronounced, but CDX skewness already reverses on March 9 while SPX skewness
reverses on March 18. Figure IA11 in the Internet Appendix shows the smile dynamics during the
COVID-19 crisis.
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14 The Journal of Finance®

Figure 3. Key metrics in CDX and SPX options markets. The top left (right) panel shows
time series of the CDX spread (SPX level). The middle left (right) panel shows time series of the
at-the-money CDX (SPX) implied volatility proxied by β0. The bottom left (right) panel shows time
series of the skewness of the CDX (SPX) implied volatility smile proxied by β1. Blue lines show the
data. Red lines show the fitted data for the model calibrated to SPX options. The sample period
is February 29, 2012 to April 29, 2020 (427 weekly observations). The shaded area marks the
COVID-19 period starting on January 1, 2020.
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How Integrated are Credit and Equity Markets? 15

Table III
Correlations within and across Markets

The table reports correlations between weekly changes in the log CDX spread (�ICDX ), CDX
volatility (�βCDX

0 ), CDX skewness (�βCDX
1 ), log SPX index (�ISPX , i.e., the log SPX return), SPX

volatility (�βSPX
0 ), and SPX skewness (�βSPX

1 ). The correlation matrices to the left (“Data”) are
computed from the data, and those to the right (“Model”) are computed from the fitted data using
the model calibrated to SPX options. The full sample period is February 29, 2012 to April 29, 2020
(427 weekly observations). The ex-COVID-19 sample period is February 29, 2012 to December 31,
2019 (410 weekly observations).

Panel A: Full Sample

Data Model

�ICDX �βCDX
0 �βCDX

1 �ISPX �βSPX
0 �ICDX �βCDX

0 �βCDX
1 �ISPX �βSPX

0

�βCDX
0 0.62 0.49

�βCDX
1 0.20 0.39 0.11 0.22

�ISPX −0.80 −0.65 −0.23 −0.80 −0.60 −0.11
�βSPX

0 0.67 0.69 0.22 −0.86 0.68 0.83 0.12 −0.85
�βSPX

1 −0.65 −0.58 −0.33 0.74 −0.80 −0.68 −0.68 −0.25 0.70 −0.74

Panel B: Ex-COVID-19 Sample

Data Model

�ICDX �βCDX
0 �βCDX

1 �ISPX �βSPX
0 �ICDX �βCDX

0 �βCDX
1 �ISPX �βSPX

0

�βCDX
0 0.56 0.40

�βCDX
1 0.22 0.53 0.15 0.33

�ISPX −0.79 −0.56 −0.28 −0.79 −0.62 −0.17
�βSPX

0 0.67 0.62 0.31 −0.83 0.63 0.86 0.20 −0.81
�βSPX

1 −0.55 −0.49 −0.33 0.62 −0.69 −0.56 −0.55 −0.30 0.68 −0.69

COVID-19 crisis, we report results both for the full sample (Panel A) and for
an ex-COVID-19 sample that ends on December 31, 2019 (Panel B). For CDX,
there is a highly positive correlation between changes in spread and volatility
(0.62), which is consistent with the positively skewed implied volatility smiles.
We also observe a somewhat weaker positive correlation between changes in
spread and skewness (0.20), and a moderately positive correlation between
changes in volatility and skewness (0.39). For SPX, the table confirms the well-
known negative return-volatility correlation (−0.86), positive return-skewness
correlation (0.74), and negative volatility-skewness correlation (−0.80). Re-
garding the cross-market interactions, we highlight the strongly negative cor-
relation between CDX spread changes and SPX returns (−0.80), the highly
positive correlation between volatility changes (0.69), and a somewhat more
moderate negative correlation between skewness changes (−0.33). This corre-
lation structure is robust to excluding the COVID-19 period.
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16 The Journal of Finance®

III. A Structural Model for Pricing Index Options

We now propose a structural model to price credit and equity index options
consistent with the debt and equity claims on each firm in the index. Asset
value dynamics have a factor structure in which both idiosyncratic and sys-
tematic risk have a diffusive component and a jump component, and the com-
mon factor additionally features stochastic volatility and a variance-dependent
jump intensity. Following Merton’s (1974) seminal paper, we model each indi-
vidual firm’s CDS and equity as, respectively, a put option and a call option
on the firm’s asset value. To address the term structure of credit spreads, we
allow outstanding debt to have different maturities as in Geske (1977), and
we use the LHP approximation of Vasicek (1987) to model the index portfolios.
Indexes and index options are given as compound options. In Section IV, we
develop new results on multivariate transform analysis for affine processes to
price these options analytically.

A. The Firms’ Assets

We assume that each individual firm in the index has an asset value Ai
t that

is driven by a common component At , which has stochastic volatility (ωt) and is
exposed to systematic Brownian (dWt) and pure-jump (dNt) shocks, and a firm-
specific residual component, which is exposed to idiosyncratic Brownian (dWi

t )
and pure-jump (dNi

t ) shocks. Specifically, we assume that the risk-neutral asset
value dynamics of (ex ante identical) individual firms are given by

dAi
t

Ai
t−

= dAt

At−
+ σidWi

t + (eγi − 1)dNi
t − λiνidt

dAt

At−
= (r − δ)dt + √

ωtdWt + (eγ − 1)dNt − λtνdt

dωt = κ (ω̄ − ωt )dt + σ
ω

√
ωt

(
ρ

ω
dWt +

√
1 − ρ

ω
2dZt

)
,

where Wi
t , Wt , and Zt are independent Brownian motions, Nt and Ni

t are
independent Poisson counting processes with intensities λt = λ0 + λωωt and
λi, respectively, γ ∼ N(m, v) and γi ∼ N(mi, vi) are independent normal ran-
dom variables, and we define ν = E[eγ − 1] = em+ v

2 − 1 and νi = E[eγi − 1] =
emi+ vi

2 − 1. We assume that the firm pays continuous dividends, δAi
t , to eq-

uity holders.
It is helpful to define ai

t = log Ai
t , at = log At , and ξ i

t = ai
t − at , with ξ i

t captur-
ing firm-specific risk. The state vector

xt = [at, ωt]�
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How Integrated are Credit and Equity Markets? 17

captures the systematic risk components, whereas the relevant state vector
when considering a specific firm can be defined as

xi
t = [

at, ωt, ξ
i
t

]�
.

The dynamics of these state variables are given in the Appendix, but here we
note three properties that will be instrumental to deriving index option values:
(i) both xt and xi

t are affine jump-diffusion processes (as defined in Duffie, Pan,
and Singleton (2000)), (ii) ∀i ξ i

t are independent of xt , and (iii) ∀i ai
T have i.i.d.

distributions conditional on xT .

B. The Firms’ Debt

We consider a simplified debt structure with two outstanding zero-coupon
bonds: a short-term bond with principal D1 and maturity date T1, and a long-
term bond with principal D2 and maturity date T2 > T1.24 We assume that
repayments of principals are made by equity holders, via “out-of-pocket” side
payments, so that the asset value process is not affected.25 Thus, equity holders
will choose to default at T1 if the continuation value from holding on to the
equity is worth less than the principal payment D1 they owe to debt holders
at that time. This determines an endogenous default threshold, �T1

, at T1,
where �T1

is the asset value such that, right after D1 has been paid by equity
holders, the equity value equals D1. At T2, the default threshold is D2, as in the
standard Merton (1974) model. In case of default, we assume that a fraction
α of assets is paid out to debt holders, while a fraction 1 − α is lost because of
bankruptcy costs. Finally, if the firm defaults at T1, we assume that payments
to debt holders are proportional to principal, so that holders of the short-term
bond are paid a fraction R1 = α D1

D1+D2
of assets, while holders of the long-term

bond are paid a fraction R2 = α D2
D1+D2

.

C. Valuation of Bond, Equity, and CDS

Consider any firm i and let t ≤ T1. The value of the short-term bond is given
by

BT1,i
t = e−r(T1−t)

(
D1Et

[
1{

Ai
T1

≥�T1

}
]

+ Et

[
R1Ai

T1
1{

Ai
T1

<�T1

}
])

,

where the first term is the present value of the bond’s principle when it is
repaid and the second term is the present value of the bond’s recovery amount

24 This is the simplest debt structure that allows us to get a term structure of credit spreads
and generate variation in the risky annuity for long-term CDX contracts. The model can handle
any number of bonds.

25 This is a standard assumption in dynamic capital structure models (Black and Cox (1976),
Leland (1994)).
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18 The Journal of Finance®

when the firm defaults at T1. The value of the long-term bond is given by

BT2,i
t = e−r(T1−t)Et

[
R2Ai

T1
1{

Ai
T1

<�T1

}
]

+ e−r(T2−t)

(
D2Et

[
1{

Ai
T1

≥�T1
,Ai

T2
≥D2

}
]

+ Et

[
αAi

T2
1{

Ai
T1

≥�T1
,Ai

T2
<D2

}
])

,

where the first term is the present value of the bond’s recovery amount when
the firm defaults at T1, and the second and third terms are, respectively, the
present values of the bond’s principle when it is repaid and the bond’s recovery
amount when the firm defaults at T2, provided that the firm did not default at
T1.

The equity value is given by the asset value less the value of the two bonds
and the present value of the expected bankruptcy costs, that is,

Si
t = Ai

t − e−r(T1−t)

(
D1Et

[
1{

Ai
T1

≥�T1

}
]

+ Et

[
Ai

T1
1{

Ai
T1

<�T1

}
])

−e−r(T2−t)

(
D2Et

[
1{

Ai
T1

≥�T1
,Ai

T2
≥D2

}
]

+ Et

[
Ai

T2
1{

Ai
T1

≥�T1
,Ai

T2
<D2

}
])

.

(3)

Consider a unit-notional CDS contract from t to T2. The value of the protec-
tion leg is

V Protection leg,i
t = e−r(T1−t)Et

[(
1 − αAi

T1

D1 + D2

)
1{

Ai
T1

<�T1

}
]

+ e−r(T2−t)Et

[(
1 − αAi

T2

D2

)
1{

Ai
T1

≥�T1
,Ai

T2
<D2

}
]

,

where the first term is the present value of loss given default (LGD) at T1 and
the second term is the present value of LGD at T2, provided that the firm did
not default at T1. The value of the premium leg with a coupon rate of C paid
continuously is

V Premium leg,i
t =

(∫ T1

t
e−r(u−t)du +

∫ T2

T1

e−r(u−t)duEt

[
1{

Ai
T1

≥�T1

}
])

× C,

where the coupon up to date T1 always has to be paid because the firm cannot
default before T1 (the first term), whereas the coupon from T1 to T2 only has
to be paid if the firm did not default at T1 (the second term). Therefore, the
upfront amount of the CDS contract is

Ui
t =V Protection leg,i

t − V Premium leg,i
t

= e−r(T1−t)

(
(1 + C1)Et

[
1{

Ai
T1

<�T1

}
]

− α

D1 + D2
Et

[
Ai

T1
1{

Ai
T1

<�T1

}
]

− C1

)
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+ e−r(T2−t)

(
Et

[
1{

Ai
T1

≥�T1
,Ai

T2
<D2

}
]

− α

D2
Et

[
Ai

T2
1{

Ai
T1

≥�T1
,Ai

T2
<D2

}
])

− C0, (4)

where we have defined C0 = C
∫ T1

t e−r(u−t)du and C1 = C
∫ T2

T1
e−r(u−T1 )du.

D. The Default Boundary at T1

Valuation in the previous section depends on the default boundary at T1.
Note that after the payment of D1 is made, the equity value becomes

Si
T1

(ai
T1

, ωT1 ) = Ai
T1

− e−r(T2−T1 )

(
D2ET1

[
1{

Ai
T2

≥D2

}
]

+ ET1

[
Ai

T2
1{

Ai
T2

<D2

}
])

.

Therefore, the default boundary �(ω), such that it is optimal to default at T1
if Ai

T1
≤ �(ωT1 ), is given by the solution to the equation Si

T1
(log �(ω), ω) = D1.

To obtain analytical valuations, we approximate the log-default boundary with
an affine function:

log �(ω) ≈ φ0 + φ1ω. (5)

We verify in Section V of the Internet Appendix that (5) is an accurate
approximation.

E. Valuation of CDX and SPX

The upfront amount of the CDX is a simple average of the upfront amounts of
the N = 125 single-name CDSs for the index constituents. Because N is large,
we approximate the index upfront amount by letting N → ∞. In this case, we
obtain a simple analytical expression for the index upfront amount via the law
of large numbers, which in turn allows us to price CDX options analytically.
From (4), the index upfront amount, conditional on the common factors in xt ,
is given by

Ut (xt ) = lim
N→∞

1
N

N∑
i=1

Ui
t

= E
[
Ui

t |xt
]

= e−r(T1−t)

(
(1 + C1)E

[
1{

Ai
T1

<�(ωT1
)
} | xt

]
− α

D1 + D2
E

[
Ai

T1
1{

Ai
T1

<�(ωT1
)
} | xt

]
− C1

)

+ e−r(T2−t)

(
E

[
1{

Ai
T1

≥�(ωT1
),Ai

T2
<D2

} | xt

]
− α

D2
E

[
Ai

T2
1{

Ai
T1

≥�(ωT1
),Ai

T2
<D2

} | xt

])
− C0.
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20 The Journal of Finance®

Similarly, from (3), the value of the SPX is given by

St (xt ) = lim
N→∞

1
N

N∑
i=1

Si
t

= E
[
Si

t|xt
]

= At − e−r(T1−t)

(
D1E

[
1{

Ai
T1

≥�(ωT1
)
} |xt

]
+ E

[
Ai

T1
1{

Ai
T1

<�(ωT1
)
} |xt

])

−e−r(T2−t)

(
D2E

[
1{

Ai
T1

≥�(ωT1
),Ai

T2
≥D2

} |xt

]
+ E

[
Ai

T2
1{

Ai
T1

≥�(ωT1
),Ai

T2
<D2

} |xt

])
.

F. Valuation of CDX and SPX Options

Using the notation E0[·] := E[· | x0], the time-0 value of a CDX call option
with strike K and expiration at T0 is

CCDX
0 = e−rT0 E0

[
max(UT0 (xT0 ) − K, 0)

]
= e−rT0 E0

[
(UT0 (xT0 ) − K )1{

AT0
<A(ωT0

)
}
]

= e−rT1

(
(1 + C1)E0

[
1{

AT0
<A(ωT0

),Ai
T1

<�(ωT1
)
}
]

− α

D1 + D2
E0

[
Ai

T1
1{

AT0
<A(ωT0

),Ai
T1

<�(ωT1
)
}
])

+ e−rT2

(
E0

[
1{

AT0
<A(ωT0

),Ai
T1

≥�(ωT1
),Ai

T2
<D2

}
]

− α

D2
E0

[
Ai

T2
1{

AT0
<A(ωT0

),Ai
T1

≥�(ωT1
),Ai

T2
<D2

}
])

− e−rT0 K̃E0

[
1{

AT0
<A(ωT0

)
}
]

,

where K̃ = K + C0 + C1e−r(T1−T0 ) and a(ω) = log A(ω) is the exercise boundary,
implicitly defined by the equation UT0 (a(ω), ω) = K, such that it is optimal to
exercise the CDX call at T0 when aT0 ≤ a(ωT0 ). To value CDX options analyti-
cally, we approximate the exercise boundary with an affine function:

a(ω) = a0 + a1ω. (6)

Similarly, the time-0 value of an SPX call option with strike K and expiration
at T0 is

CSPX
0 = e−rT0 E0

[
max(ST0 (xT0 ) − K, 0)

]
= e−rT0 E0

[
(ST0 (xT0 ) − K )1{

AT0
≥A(ωT0

)
}
]
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= e−rT0 E0

[
AT01{

AT0
≥A(ωT0

)
}
]

− e−rT1

(
D1E0

[
1{

AT0
≥A(ωT0

),Ai
T1

≥�(ωT1
)
}
]

+ E0

[
Ai

T1
1{

AT0
≥A(ωT0

),Ai
T1

<�(ωT1
)
}
])

− e−rT2

(
D2E0

[
1{

AT0
≥A(ωT0

),Ai
T1

≥�(ωT1
),Ai

T2
≥D2

}
]

+ E0

[
Ai

T2
1{

AT0
≥A(ωT0

),Ai
T1

≥�(ωT1
),Ai

T2
<D2

}
])

− e−rT0 KE0

[
1{

AT0
≥A(ωT0

)
}
]

,

where a(ω) = log A(ω) is the exercise boundary, implicitly defined by the equa-
tion ST0 (a(ω), ω) = K, such that it is optimal to exercise the SPX call at T0 if
aT0 ≥ a(ωT0 ). To value SPX options analytically, we approximate the exercise
boundary with an affine function:

a(ω) = a0 + a1ω. (7)

We verify in Section V of the Internet Appendix that (6) and (7) are accurate
approximations to the respective exercise boundaries.

IV. Multivariate Transform Analysis for Affine Processes

The valuation of indexes and index options described above can be reduced
to computing the following generalized affine transform:

Gα
β(y1, . . . , yn; X T0 , T ) = E

[
eα·XTn 1{

β1 ·XT1
≤y1 ,...,βn ·XTn ≤yn

} | X T0

]
(8)

defined for an N-dimensional affine state vector Xt with a subvector Xt (i.e.,
Xt = [ Xt

Xt
]), a vector T = [T0, . . . , Tn] of increasing dates, an (N, n)-matrix β with

column vectors βi (i.e., β = [β1, . . . , βn]), and an N-vector α.
This is a multivariate extension of the generalized affine transform pre-

sented in the classic paper by Duffie, Pan, and Singleton (2000), who con-
sider the case with n = 1 and Xt = Xt , and use it to value standard deriva-
tives, such as European call and put options, written on an underlying with
N-dimensional affine dynamics.

The multivariate case that we present here is useful to value more complex
derivatives with payoffs involving multiple dates, such as compound options
and cliquet options, or payoffs that depend on several underlyings, such as
outperformance options or basket options.

Duffie, Pan, and Singleton (2000) obtain the univariate solution using the
Fourier inversion theorem of Gil-Pelaez (1951). Here, we follow a similar ap-
proach by relying on the multidimensional version of that theorem derived in
Shephard (1991).
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22 The Journal of Finance®

To solve the generalized affine transform, we first rewrite (where, to simplify
notation, we drop the dependence on T)

Gα
β(y1, . . . , yn; X T0 ) = E

[
eα·XTn | X T0

]
Eα

[
1{

β1 ·XT1
≤y1 ,...,βn ·XTn ≤yn

} | X T0

]
:= �(α; X T0 , T0, Tn) Gα

β(y1, . . . , yn; X T0 ), (9)

where, for some n-dimensional parameter vector α,

�(α; X T0 , T0, T ) := E
[
eα·XT | X T0

]
(10)

is the moment-generating function of XT conditional on the subvector X T0 ,
which in general need not have an exponential affine solution. Instead, the
classic exponential affine moment-generating function that defines the affine
process Xt is26

�(α; XT0 , T0, T ) := E
[
eα·XT | XT0

]
(11)

= ebα (T0,T )+cα (T0,T )·XT0 , (12)

where bα (T0, T ) and cα (T0, T ) are deterministic functions.27

Note that Gα
β(y1, . . . , yn; X T0 ) ≡ Pα (βi · XTi ≤ yi ∀i = 1, . . . , n) is the multi-

variate cumulative distribution function (conditional on T0, X T0 ) of the n ran-
dom variables xi = βi · XTi , i = 1, . . . , n under the probability measure Pα de-
fined by

dPα

dP
= eα·XTn

�(α; X T0 , T0, Tn)
.

We then obtain the following theorem from multivariate Fourier inversion.

THEOREM 1: Define

U (y1, . . . , yn) = 2nGα
{β1,...,βn}(y1, . . . , yn)

− 2n−1
[
Gα

{β2,...,βn}(y2, . . . , yn) + · · · + Gα
{β1,...,βn−1}(y1, . . . , yn−1)

]
+ 2n−2

[
Gα

{β3,...,βn}(y3, . . . , yn) + · · · + Gα
{β1,...,βn−2}(y1, . . . , yn−2)

]
+ · · · + (−1)n.

Then if n is odd we have

U (y1, . . . , yn ) =

26 We note the slight abuse of notation: �(β; X, t, T ) and �(β; X , t, T ) are different functions.
We hope this leads to no confusion as the two vectors X and X have different sizes.

27 These functions are related to the generator of the affine process via a system of ordinary
differential equations; see Duffie, Filipović, and Schachermayer (2003).
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(−2)n

(2π )n

∫ ∞

0
. . .

∫ ∞

0
2in−1�

u2
· · · �

un
Im

[
e−i u·y�α (iu1β1, . . . , iunβn; X T0 , T0, T1, . . . , Tn )

u1 . . . un

]
du1 . . . dun,

and if n is even we have

U (y1, . . . , yn ) =

(−2)n

(2π )n

∫ ∞

0
. . .

∫ ∞

0
2in�

u2
· · · �

un
Re

[
e−i u·y�α (iu1β1, . . . , iunβn; X T0 , T0, T1, . . . , Tn )

u1 . . . un

]
du1 . . . dun,

where for 1 ≤ j ≤ n and f : Rn → R, the operator �
uj

is defined by

�
uj

f (u) = f (u1, . . . , uj−1, uj, uj+1, . . . , un) + f (u1, . . . , uj−1,−uj, uj+1, . . . , un),

and for all j ≥ 1

�α (β1, . . . , β j; X T0 , T0, T1, . . . , Tj ) = �(β1, . . . , β j−1, β j + α; X T0 , T0, T1, . . . , Tj )

�(α; X T0 , T0, Tj )
.

For j = 1, the conditional moment-generating function is defined in (10), and
for all j > 1 we define recursively

�(β1, . . . , β j;X T0 , T0, T1, . . . , Tj )

= �(β1, . . . , β j−2, β j−1 + cβ j (Tj−1, Tj ); X T0 , T0, T1, . . . , Tj−1)e
bβ j

(Tj−1,Tj )
.

PROOF: See the Appendix. �

Note that for n = 1 our theorem recovers the transform inversion formula of
Duffie, Pan, and Singleton (2000, proposition 2).

COROLLARY 1: Using Theorem 1 in the definition (9) for the case n = 1 and
with Xt = Xt, we obtain

Gα
β1

(y1; XT0 , T0, T1) = �(α; XT0 , T0, T1)
2

− 1
π

∫ ∞

0
Im

[
e−i u1y1�(α + iu1β1; XT0 , T0, T1)

u1

]
du1.

All indexes and index options are valued with Theorem 1 applied to the
three-dimensional affine process Xt = xi

t , using as subvector either Xt = xt or
Xt = xi

t (Section IV of the Internet Appendix shows how all expectations in
the pricing formulas in Section III can be expressed in terms of the general-
ized transform (8)). For this purpose, in the next theorem we present closed-
form solutions to the two moment-generating functions (10) and (11). While
the exponential affine solution in (12) is standard, an exponential affine solu-
tion to (10) does not automatically follow, and indeed obtains here only because
when considering the affine process xi

t = [ xt
ξ i

t
], the subvector process xt is inde-

pendent of ξ i
t .
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THEOREM 2: For the affine process Xt := xi
t, we obtain, for conditioning subvec-

tors, respectively, given by (i) Xt = xi
t and (ii) Xt = xt,

(i) �(β; xi
t, t, T ) := E

[
eβ·xi

T | xi
t

]
= ebβ (t,T )+cβ (t,T )·xi

t ,

(ii) �(β; xt, t, T ) := E
[
eβ·xi

T | xt

]
= eζ (β3 )T+B(T−t;β1,β2 )+β1at+C(T−t;β1,β2 )ωt ,

where β = [β1, β2, β3]� is a vector of parameters and

bβ (t, T ) = ζ (β3)(T − t) + B(T − t;β1, β2),

cβ (t, T ) =

⎡
⎢⎣ β1

C(T − t;β1, β2)
β3

⎤
⎥⎦,

where the functions ζ (β3), B(T − t;β1, β2), and C(T − t;β1, β2) have closed-form
solutions given in equations (A.4), (A.5), and (A.6).

PROOF: See the Appendix. �

V. The Relative Pricing of Index Options

A. Calibration Procedure

The main empirical analysis consists of fitting the model to the CDX term
structure, the SPX level, and the SPX option surface, and then price the CDX
option surface out-of-sample. As a robustness check, we also conduct the re-
verse exercise, fitting to the CDX option surface and pricing the SPX option
surface out-of-sample. In particular, we force a perfect fit to the 1Y and 5Y
CDX and the SPX level (as well as the SPX dividend yield and the short-term
and long-term index leverage ratios), and minimize the sum of squared pricing
errors for index options.28 It is especially important to price the 5Y CDX and
the SPX level accurately as otherwise it is difficult to interpret option pric-
ing errors.

As in Collin-Dufresne, Goldstein, and Yang (2012), the parameters governing
the dynamics of the common factors are held fixed for each six-month period
over which a CDX series is on-the-run. The common factors and the remaining
parameters change from each observation date to the next. As in Section II, we
use weekly data. Additional details on the estimation are given in Section VII
of the Internet Appendix.

Some parameters are fixed ex ante (we have verified that our results are
robust to reasonable variations in these parameters). First, we set mi = −5
and vi = 0, implying that an idiosyncratic jump leads to almost certain default

28 See Section VIII of the Internet Appendix for details on the computation of the index leverage
ratios using Compustat data. The SPX dividend yield is obtained from the put-call parity relation
for SPX options.
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How Integrated are Credit and Equity Markets? 25

Table IV
Parameter Estimates

The table reports the sample mean and sample standard deviation of the calibrated parameters
(for ease of interpretation, the table reports statistics for D1/At and D2/At instead of D1 and D2).
A number of model parameters are fixed in advance: mi = −5, vi = 0, α = 0.8, σω = 0.20, and ρω =
−0.70. The sample period is February 29, 2012 to April 29, 2020 (427 weekly observations).

ωt κ ω̄ λ0 λω m
√

v At σi λi D1/At D2/At δ

Panel A: Calibration to SPX Options

Mean 0.0101 1.074 0.0310 0.000 8.33 −0.171 0.160 2905.8 0.284 0.001 0.034 0.227 0.015
St. dev. 0.0065 0.831 0.0126 0.000 5.32 0.052 0.030 689.5 0.039 0.001 0.003 0.014 0.003

Panel B: Calibration to CDX Options

Mean 0.0185 1.751 0.0247 0.021 63.96 −0.045 0.167 2905.8 0.212 0.001 0.034 0.227 0.015
St. dev. 0.0179 0.914 0.0089 0.129 39.33 0.038 0.027 689.6 0.073 0.001 0.003 0.014 0.003

for a company, and calibrate only the idiosyncratic jump intensity.29 Second,
bankruptcy costs are set to 20%, corresponding to α = 0.80, which is roughly
in line with empirical estimates (see, e.g., Andrade and Kaplan (1998) and
Davydenko, Strebulaev, and Zhao (2012)). Third, the risk-free interest rate is
set to the two-month rate from the bootstrapped LIBOR/swap curve. Fourth,
in the common factor dynamics, the parameters σ

ω
and ρ

ω
are invariant un-

der a change of measure. In the context of calibrating stochastic-volatility
jump-diffusion models to equity index options, Broadie, Chernov, and Johannes
(2007) stress the importance of time-series consistency, i.e., restricting those pa-
rameters that are invariant under a change of measure to their values under
the physical measure. In Section VII of the Internet Appendix, we show that
setting σ

ω
= 0.20 and ρ

ω
= −0.70 makes the corresponding vol-of-vol and cor-

relation parameters for SPX returns largely consistent with recent time-series
studies. We verify ex post that similar values for σ

ω
and ρ

ω
are obtained from

the time series of the calibrated factors.

B. Results

Table IV reports the sample mean and sample standard deviation of the cal-
ibrated parameters, with Panels A and B showing results when calibrating to
SPX and CDX options, respectively.30 In both cases, there is strong evidence
for stochastic volatility and variance-dependent jump intensities (while λ0 is

29 The total expected loss due to idiosyncratic jumps is essentially pinned down by the 1Y CDX,
which is effectively a deep OTM put option on firm assets. However, we found it difficult to sepa-
rately identify idiosyncratic jump intensity and jump size parameters.

30 Tables IA.I and IA.II in the Internet Appendix report parameter estimates for each time
period over which a CDX series is on-the-run.
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estimated to be close to zero).31 It is instructive to compare the two sets of
estimates in terms of the implications for the unconditional systematic and

total asset volatility (
√

ω̄ + λ(m2 + v) and
√

ω̄ + σ 2
i + λ(m2 + v) + λi(m2

i + vi),
respectively, where λ = λ0 + λωω̄), and the resulting unconditional correlation
between firm asset values. The underlying indexes depend on total asset risk,
and given that we always calibrate to the index levels, it is unsurprising that
total asset volatility is very similar across the two calibrations (0.39 vs. 0.38).
Index options, in contrast, depend largely on systematic asset risk, which can
differ across the two calibrations. Indeed, systematic asset volatility is lower
when calibrating to SPX options than when calibrating to CDX options (0.21
vs. 0.27). Consequently, the asset correlation implied from SPX options is lower
than implied from CDX options (0.30 vs. 0.51).32 This provides the first indica-
tion that the model will not match both sets of index options simultaneously;
we can expect that calibrating to SPX options will tend to underprice CDX
options while calibrating to CDX options will tend to overprice SPX options.

To assess the fit to options, on each observation date we compute the mean
pricing error (ME) and root mean squared pricing error (RMSE) across each
option surface, where pricing errors are given as the relative difference be-
tween fitted and actual implied volatilities, σ̂ IV −σ IV

σ IV . Table V reports the sample
means of the resulting ME and RMSE time series. Consider first the results
when calibrating to SPX options. The in-sample fit is very good, with an av-
erage ME of essentially zero and not statistically significant. In contrast, the
out-of-sample fit to CDX options produces an average ME of −0.283, which
is highly statistically significant (that the out-of-sample CDX RMSE is larger
than the in-sample SPX RMSE is to be expected). That is, as alluded to above,
fitted CDX option prices are, on average, lower than market prices.

Consider next the results when calibrating to CDX options. These are the
mirror image of the previous results. The in-sample fit to CDX options is very
good, with an insignificant average ME, while the out-of-sample fit to SPX op-
tions has an average ME of 0.49, which again is highly statistically significant.

Figure 4 shows the time series of the out-of-sample ME for CDX options
when calibrating to SPX options (blue line) and the out-of-sample ME for
SPX options when calibrating to CDX options (red line). The two lines almost

31 We verify that values of σω and ρω obtained from the time series of the calibrated factors are
consistent with their ex ante predetermined values. We estimate σω as the standard deviation of
ωt+1−ωt√

ωt
times

√
52 and ρω as the correlation between log At+1−log At√

ωt
and ωt+1−ωt√

ωt
. For the ex-COVID-

19 sample, we get σω = 0.21 and ρω = −0.77 when calibrating to SPX options, and σω = 0.25 and
ρω = −0.55 when calibrating to CDX options, which are roughly in line with the predetermined
values. Including the COVID-19 period leads to slightly higher estimates of σω .

32 To put these correlations into perspective, we directly compute pairwise correlations of daily
asset returns among index constituents per calendar quarter, and then average across quarters
(see Section XII of the Internet Appendix for details on the computation of asset returns). We
require each return time series to comprise at least 50 daily returns in the respective quarter. The
average pairwise asset correlations are remarkably similar for the two indexes, 0.29 for SPX and
0.28 for CDX. The extent to which risk-neutral correlations inferred from index options exceed
physical correlations depends, particularly in the presence of jumps, on risk premia and is beyond
the scope of this paper.
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How Integrated are Credit and Equity Markets? 27

Table V
Pricing Errors

On each observation date, we compute the mean pricing error (ME) and root mean squared pric-
ing error (RMSE) for SPX options and CDX options, where pricing errors are given as the relative
difference between fitted and actual implied volatilities. The table reports sample means of the re-
sulting ME and RMSE time series. In parentheses are t-statistics corrected for heteroskedasticity
and serial correlation up to 52 lags using the approach of Newey and West (1987). The full sample
period is February 29, 2012 to April 29, 2020 (427 weekly observations). The ex-COVID-19 sample
period is February 29, 2012 to December 31, 2019 (410 weekly observations).

SPX Options CDX Options

Calibrated to ME RMSE ME RMSE

Panel A: Full Sample

SPX Options −0.003 0.085 −0.283 0.296
(−0.66) (−12.47)

CDX Options 0.493 0.590 −0.003 0.033
(16.74) (−1.56)

Panel B: Ex-COVID-19 Sample

SPX Options −0.002 0.085 −0.289 0.301
(−0.48) (−13.01)

CDX Options 0.500 0.596 −0.003 0.031
(17.04) (−1.69)

always have opposite sign and they are highly negatively correlated (correla-
tion coefficient of −0.81), so that if the mispricing worsens according to one
calibration, it usually also does so according to the other, confirming the ro-
bustness of the results. We note that there is a tendency for the mispricing to
decrease over time.

To further investigate model performance, we focus on the version calibrated
to SPX options. First, we investigate which dimensions of the CDX option sur-
face the model has difficulty matching. To do so, we run the regression (2) on
the fitted implied volatilities and measure the model fit in terms of how close
the β-estimates obtained from the fitted data are to the original β-estimates.
In Figure 3, the red lines show the β-estimates from the fitted data. The
figure confirms the model’s accurate (in-sample) fit to SPX options in terms
of both volatility (middle-right panel) and skewness (lower-right panel). The
figure also shows that the model has a relatively accurate (out-of-sample) fit
to CDX skewness (lower-left panel). However, the figure shows that the model
has a poor (out-of-sample) fit to CDX volatility. While the model appears to
capture the variation in volatility relatively well, the level of model-implied
volatility is consistently lower than the market. Indeed, the sample means of
βCDX

0 in the data and the fitted data are 0.47 and 0.33, respectively.
Next, we investigate the extent to which the model captures the index-

volatility-skewness correlation structure discussed in Section II. The correla-
tions computed from the fitted data are reported in the right part of Table III.
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28 The Journal of Finance®

Figure 4. Out-of-sample fit to CDX and SPX options. On each observation date, we compute
the mean out-of-sample pricing error (ME), i.e., for the model calibrated to SPX options, we com-
pute the pricing error for CDX options (blue line), and for the model calibrated to CDX options,
we compute the pricing error for SPX options (red line). Pricing errors are given as the relative
difference between fitted and actual implied volatilities. Vertical dotted lines mark CDX roll dates.
The sample period is February 29, 2012 to April 29, 2020 (427 weekly observations). The shaded
area marks the COVID-19 period starting on January 1, 2020.

Within the SPX market, there is a close (in-sample) match to the data. More
importantly, within the CDX market, there is a relatively good (out-of-sample)
match to the correlation between spread and volatility (0.49 vs. 0.62 in the
data), but somewhat too low correlations between volatility and skewness (0.11
vs. 0.20 in the data) and between spread and skewness (0.22 vs. 0.39 in the
data). Regarding the cross-market interactions, the model largely captures
the correlations between SPX and CDX volatility (0.83 vs. 0.69 in the data)
and between SPX and CDX skewness (−0.25 vs. −0.33 in the data) as well
as the remaining “off-diagonal” correlations.33 These findings hold true in the
ex-COVID-19 sample.

33 Note that by design of the estimation procedure, the correlation between SPX returns and
CDX spread changes is matched exactly.
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How Integrated are Credit and Equity Markets? 29

To summarize, the model captures many aspects of the joint dynamics of
the credit and equity index options data. However, it is not able to capture
the relative levels of CDX and SPX option prices. In particular, calibrating the
model to the SPX implied volatility surface produces a CDX implied volatility
surface that, while having largely the correct shape, is consistently below the
market.

C. Understanding the Sources of Volatilities and Smiles

In the model, index volatility is driven by several sources, namely, the finan-
cial leverage effect as well as stochastic volatility and jumps in the systematic
asset factor. Let It denote the index (either the SPX level or the CDX spread),
in which case the instantaneous variance of index returns is given as(

∂It

∂At

At

It

)2

ωt︸ ︷︷ ︸
Financial leverage

+
(

∂It

∂ωt

1
It

σ
ω

)2

ωt︸ ︷︷ ︸
Stochastic asset vol

+ 2
∂It

∂At

∂It

∂ωt

At

I2
t

σ
ω
ρ

ω
ωt︸ ︷︷ ︸

Covariance

+ λtE

[(
I(At−eγ , ωt )
I(At−, ωt )

− 1
)2

]
︸ ︷︷ ︸

Jumps

.

(13)
To provide intuition about the model, in this section we show how these dif-
ferent elements affect both the relative levels of index volatility as well as the
shapes of the index implied volatility smiles. For the sake of illustration, we
focus on two-month options.

We start from the parameter estimates from Panel A in Table IV. The
instantaneous volatility of simple returns on the systematic asset factor,√

ωt + λtE[(eγ − 1)2], is 0.116. We consider four versions of the model that all
have this systematic asset volatility but differ in terms of its sources. For each
version of the model, we recalibrate At , σi, λi, D1, D2, and δ to the sample means
of the 1Y and 5Y CDX upfronts, the SPX level, the SPX dividend yield, and the
index leverage ratios, so that these quantities are held constant across ver-
sions.

First, as a natural benchmark, we consider a version with deterministic dif-
fusive volatility (ωt = 0.0135, σ

ω
= ρ

ω
= λ0 = λω = 0), in which case only the fi-

nancial leverage effect is present. The instantaneous volatilities of CDX and
SPX returns are 0.151 and 0.245, respectively, giving an index volatility ratio
of 1.62. Figure 5 (blue lines) shows the implied volatility smiles. Both curves
are quite flat, and in striking contrast to the data, the CDX implied volatility
smile exhibits a negative slope.34

Second, we turn on stochastic asset volatility, but with zero correlation
between asset returns and volatility (ωt = 0.0135, σ

ω
= 0.2, ρ

ω
= λ0 = λω = 0).

This adds the second term in (13), which originates from the fact that the in-
dex value depends directly on ωt . However, this term is greater for CDX than
SPX (we can think of the CDX and SPX as, respectively, a deep OTM and in-
the-money option on the asset value, so that in relative terms CDX is more

34 In Section IX of the Internet Appendix, we prove analytically that in the classic Merton (1974)
model the leverage effect generates a negative implied volatility skew for both credit and equity op-
tions.
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30 The Journal of Finance®

Figure 5. Sources of implied volatility smiles. The figure shows how the financial leverage
effect and stochastic volatility (SV) and jumps in the systematic asset factor affect the implied
volatility smiles for CDX and SPX options with a two-month maturity. The first model version (blue
lines) has deterministic systematic asset volatility (ωt = 0.0135, σω = ρω = λ0 = λω = 0) and the
smiles are due only to the financial leverage effect. The second version (red lines) adds SV, but with
zero correlation between asset returns and volatility (ωt = 0.0135, σω = 0.2, ρω = λ0 = λω = 0).
The third version (yellow lines) adds negative correlation between asset returns and volatil-
ity (ωt = 0.0135, σω = 0.2, ρω = −0.70, λ0 = λω = 0). The fourth version (purple lines) adds jumps
(ωt = 0.0101, σω = 0.2, ρω = −0.70, λ0 = 0.000, λω = 8.33, m = −0.171,

√
v = 0.160). All versions of

the model have the same instantaneous volatility of the systematic asset factor. For each model
version, At , σi, λi, D1, D2, and δ are calibrated to match the sample means of 1Y and 5Y CDX
upfronts, the SPX level, the SPX dividend yield, and the index leverage ratios. The remaining
parameters are given in Panel A of Table IV.

sensitive to ωt), causing CDX volatility to increase relative to SPX volatility,
with the index volatility ratio increasing to 1.67. For the implied volatility
smile, a stochastic ωt has two effects. The first is to make the return distribu-
tion more leptokurtic, which increases the curvature of the smile. The second
effect is to generate positive correlation between the index value and vari-
ance (both of which depend positively on ωt), which, other things equal, skews
the smile toward higher strikes. Figure 5 (red lines) shows that both implied
volatility smiles exhibit more curvature. In addition, for CDX the second effect
is sufficiently strong to overturn the leverage effect, resulting in a positively
skewed smile.

Third, we add negative correlation between asset returns and volatility
(ωt = 0.0135, σ

ω
= 0.2, ρ

ω
= −0.70, λ0 = λω = 0), which adds the third term in

(13). This term is positive for CDX (because ∂It
∂At

< 0 and ∂It
∂ωt

> 0) but negative
for SPX (because ∂It

∂At
> 0 and ∂It

∂ωt
> 0), so it further increases CDX volatility

relative to SPX volatility, with the index volatility ratio increasing to 1.94. For
the implied volatility smile, a negative ρ

ω
makes the asset return distribu-

tion negatively skewed, decreasing SPX return skewness and increasing CDX
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How Integrated are Credit and Equity Markets? 31

return skewness (because of opposite signs of ∂It
∂At

), and in turn amplifying the
skewed smiles as shown in Figure 5 (yellow lines).

Fourth, we consider the full model with jumps (where the systematic param-
eters are as in Panel A in Table IV). This shifts systematic risk from diffusive
risk toward jump risk. The fourth term in (13) is greater for CDX than SPX,
causing the index volatility ratio to increase further to 2.17. For the implied
volatility smile, asset value jumps with a negative mean jump size make the
asset return distribution both more leptokurtic and negatively skewed, and
Figure 5 (purple lines) shows that jumps attenuate the already skewed smiles.

The upshot is that both stochastic volatility and jumps have a significant
effect on the relative valuation of CDX and SPX options in terms of both the
level and shape of the index implied volatility smiles.

VI. Robustness and Additional Empirical Results

We conduct several robustness checks regarding the LHP approximation, the
similarities in the compositions of the CDX and SPX indexes, and the overlap
in the asset value states spanned by CDX and SPX options. We also corroborate
our model-dependent results on the relative valuation of CDX and SPX options
by investigating the investment performance of trading strategies that sell
volatility in the two option markets.

A. The LHP Approximation

The LHP approximation of Vasicek (1987) requires that all firms within the
index are ex ante identical, so that conditioning on the common systematic
state variables, one can apply the law of large numbers. In reality, firms in
the CDX and SPX exhibit significant heterogeneity (see below). In Section X
of the Internet Appendix, we solve an extension of the model that allows for
heterogeneity in leverage across firms. Specifically, we allow for two different
groups of firms that are each homogeneous, and we derive analytical solutions
to index option prices by using the LHP approximation within each group. We
show that, relative to the benchmark model, matching the mean, dispersion,
and skewness of the leverage distribution of index constituents leads to lower
CDX option prices relative to SPX option prices, hence exacerbating the valu-
ation differential.

Second, the LHP approximation assumes that there are an infinite number
of index constituents. In Section XI of the Internet Appendix, we use simu-
lations to price index options for a finite number of index constituents and
quantify the bias in the analytical option pricing formulas. We show that the
(downward) bias is small, but greater for CDX options than for SPX options
because the CDX index has fewer constituents. Therefore, accounting for the
actual number of index constituents would raise CDX option prices relative to
SPX option prices. However, the effect is small relative to the magnitude of the
valuation differential.
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B. Comparison of Index Compositions

Our analysis does not require the two indexes to be identical in terms
of names, but rather in terms of risk characteristics. To compare the in-
dexes, we focus on four risk characteristics of the underlying constituents
that are central to the structural model: rating (as a proxy for the
physical-measure default probability), leverage, and total and systematic asset
return volatility.35

Figure 6 compares the indexes in terms of leverage and ratings. Panels A and
B show the distribution of firm-quarter leverage observations for the CDX and
SPX constituents, respectively.36 Clearly, the distribution for SPX constituents
has higher dispersion with relatively more low-leverage (even unlevered) and
high-leverage firms. However, on average, leverage is similar across the two
indexes, with a mean (median) of 0.277 (0.244) for CDX versus 0.238 (0.200)
for SPX.

Panels C and D show the distribution of firm-quarter rating observations
for the two sets of index constituents.37 Again, the distribution for SPX con-
stituents has higher dispersion, but for both indexes the mean and median
rating is BBB+.38

Figure 7 compares the indexes in terms of asset return volatility. Panels A
and B show the distribution of firm-quarter observations of total asset return
volatility for the CDX and SPX index constituents, respectively. While the dis-
tribution for SPX constituents displays slightly higher dispersion (standard
deviation of 0.068 for CDX vs. 0.080 for SPX), the average asset volatility is
similar, with a mean (median) of 0.167 (0.154) for CDX versus 0.173 (0.158)
for SPX.

Since the nondiversifiable component of volatility is the crucial driver of
index option value, we plot the distribution of firm-quarter observations of
systematic asset return volatility in Panels C and D. These distributions are
strikingly similar, with a mean (median) [standard deviation] of 0.092 (0.085)
[0.045] for CDX versus 0.098 (0.089) [0.052] for SPX.

Given these results, it seems unlikely that differences in the risk charac-
teristics that drive valuation in our structural model (such as leverage, to-
tal volatility, and systematic volatility) can explain our findings. In particular,
a potential explanation for the observed price discrepancy between CDX and

35 Section XII of the Internet Appendix details the computation of asset return volatility. In a
nutshell, asset returns are leverage-weighted averages of stock and synthetic bond returns, where
stock returns are from the Center for Research in Securities Prices and synthetic bond returns are
computed using single-name CDS data from Markit. The systematic component of asset return
volatility is obtained from a one-factor model.

36 In the figure, we focus on total leverage. In the Internet Appendix, we split total leverage
into short-term and long-term leverage and find similar results (see Figure IA12). The fraction of
CDX (SPX) constituents for which we are able to compute leverage varies between 0.832 and 0.888
(0.892 and 0.984).

37 Note that ratings data in Compustat are available only up to the third quarter of 2017. During
this period, the fraction of CDX (SPX) constituents with ratings information varies between 0.888
and 0.912 (0.864 and 0.892).

38 When the CDX index is refreshed every six months, it consists only of investment-grade firms
(i.e., those rated BBB- and above). The few BB-rated firm-quarter observations in the figure come
from firms that were downgraded after index launch.
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How Integrated are Credit and Equity Markets? 33

Panel A: CDX leverage

Panel C: CDX ratings Panel D: SPX ratings

Panel B: SPX leverage

Figure 6. Distributions of leverage and ratings across index constituents. Panels A and B
show the distribution of firm-quarter leverage observations for CDX and SPX constituents, respec-
tively, between the first quarter of 2012 and the first quarter of 2020. Leverage is defined as book
value of debt over the sum of book value of debt and market value of equity. Panels C and D show
the distribution of firm-quarter rating observations for CDX and SPX constituents, respectively,
between the first quarter of 2012 and the third quarter of 2017.

SPX options could be relatively higher systematic asset return volatility among
CDX constituents, but this is clearly not what we observe in the data.

C. Comparison of Asset Values Spanned by Index Options

The relative pricing argument that we rely on is more palatable if the two
option markets span similar economic states.39 Because CDX and SPX options

39 Intuitively, if the two markets span different states, then the comparison would rely on “ex-
trapolation” into the tails of the distribution, which might be less robust. For example, Collin-
Dufresne, Goldstein, and Yang (2012) show that the effective strike of super-senior CDX tranches
is much deeper out of the money than the deepest OTM quoted strike for SPX options, so that
relative price comparisons are strongly model dependent.
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Panel A: CDX asset volatility

Panel C: CDX systematic asset volatility Panel D: SPX systematic asset volatility

Panel B: SPX asset volatility

Figure 7. Distributions of asset volatility across index constituents. Panels A and B (C
and D) show the distribution of firm-quarter total (systematic) asset return volatility for CDX and
SPX constituents, respectively. Asset returns are computed using daily data from January 3, 2012
to December 31, 2019.

are quoted using different models, their strike ranges are not readily compa-
rable. Instead, we translate them into strike ranges in terms of the common
asset factor, AT0 . In doing so, we use the model calibrated to SPX options and
condition on ω = E0[ωT0 ].

For CDX options, Amin is the value of the common factor below which the
highest-strike call option expires in the money, and Amax is the value above
which the lowest-strike put option expires in the money.40 Similarly, for SPX
options, Amin is the value of the common factor below which the lowest-strike
put option expires in the money, and Amax is the value above which the highest-
strike call option expires in the money.41

40 Because UT0 (log A, ω) is decreasing in A, Amin solves UT0 (log Amin, ω) = Kmax and Amax solves
UT0 (log Amax, ω) = Kmin.

41 Because ST0 (log A, ω) is increasing in A, Amin solves ST0 (log Amin, ω) = Kmin and Amax solves
ST0 (log Amax, ω) = Kmax.
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How Integrated are Credit and Equity Markets? 35

Figure 8. Range of asset values spanned by options. The figure shows Amin−Afwd

Afwd and
Amax−Afwd

Afwd for CDX and SPX options. Afwd is the forward value of the common factor. For CDX

options, Amin solves UT0 (log Amin, ω) = Kmax and Amax solves UT0 (log Amax, ω) = Kmin. For SPX op-
tions, Amin solves ST0 (log Amin, ω) = Kmin and Amax solves ST0 (log Amax, ω) = Kmax. We use the
model calibrated to SPX options and always condition on ω = E0[ωT0 ]. The sample period is Febru-
ary 29, 2012 to April 29, 2020 (427 weekly observations). The shaded area marks the COVID-19
period starting on January 1, 2020.

Figure 8 plots the time series of the strike range of CDX and SPX options
in terms of the common asset factor. Specifically, on each observation date and
for each option maturity, we express Amin and Amax relative to the forward
asset value, Afwd; that is, as Amin−Afwd

Afwd and Amax−Afwd

Afwd . Clearly, CDX and SPX
options span roughly the same asset values. If anything, the range is greater
for SPX options. For instance, for the two-month option maturity, the average
strike range is −21.0% to 12.0% for CDX options and −27.4% to 11.4% for
SPX options.

D. Trading CDX versus SPX Options

Our model suggests that market prices of CDX options are too expensive
relative to SPX options. To corroborate this result, we compare the profitability
of selling volatility in the two markets. We consider a strategy of selling ATM
straddles within each maturity category on a daily basis and with a holding
period of one day (a short holding period ensures that the delta remains close
to zero). In addition to holding the option premium in a margin account, we
assume that an initial amount of capital is required when selling options.
We further assume that the required capital is proportional to the option
premium and adjust the proportionality factor to achieve a 10% unconditional
annualized volatility of realized excess returns within each option maturity
category.42

42 A similar approach is taken in Duarte, Longstaff, and Yu (2007) in their analysis of fixed-
income arbitrage strategies. The choice of 10% is inconsequential for our conclusions. Section XIII
of the Internet Appendix provides more details on the trading strategy. It also shows that the
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How Integrated are Credit and Equity Markets? 37

Figure 9. Cumulative performance of trading strategies. The figure shows the evolution of
one dollar invested in each of the EW strategies at the beginning of the sample (see Table VI for
details on the trading strategies). The left panel shows the performance of selling CDX and SPX
straddles outright. The right panel shows the performance of the short-long strategy that allocates
50% of funds to selling CDX straddles and 50% to buying SPX straddles. On those trading days
when option returns are not available, we invest at the risk-free rate. The sample period is from
February 24, 2012 to April 30, 2020 (2,042 daily observations). The shaded area marks the COVID-
19 period starting on January 1, 2020.

Table VI shows summary statistics of returns for each option maturity as
well as for an equally weighted (EW) portfolio of the three option maturities.43

Across all maturities and both including and excluding the COVID-19 crisis,
selling CDX volatility generates higher and more statistically significant av-
erage excess returns and higher Sharpe ratios than selling SPX volatility. For
instance, for the full sample (Panel A), the EW portfolio generates an annual-
ized Sharpe ratio of 1.744 in the CDX market versus 0.659 in the SPX mar-
ket. Because of the large increase in volatility during the COVID-19 crisis,
the strategy in both markets performs better during the ex-COVID-19 sample
(Panel B).44

We also consider a short-long strategy of selling CDX straddles versus buy-
ing SPX straddles.45 This strategy generates Sharpe ratios that are typically
higher than those of selling SPX volatility outright, but lower than selling CDX

results are robust to assuming that the required capital is constant over time (rather than varying
with the option premium).

43 When computing performance, we only consider returns on those days when returns are avail-
able for all option maturities and for both markets.

44 A contemporaneous paper by Ammann and Moerke (2023) constructs synthetic variance swap
contracts from CDX options and finds that selling CDX variance swaps generates higher Sharpe
ratios than selling SPX variance swaps in a pre-COVID-19 sample. See also Chen, Doshi, and Seo
(2023).

45 We assume that the same amount of capital is required when buying SPX straddles as when
selling them, so that we maintain a 10% unconditional annualized volatility of realized excess
returns. The short-long strategy then allocates 50% of funds to selling CDX straddles and 50% to
buying SPX straddles.
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volatility outright. For instance, for the full sample, trading the EW portfolios
against each other generates an annualized Sharpe ratio of 0.877. Further-
more, the higher-order moments of the long-short strategy are more attractive,
with the return distributions roughly symmetric (instead of highly negatively
skewed) and much less leptokurtic. Figure 9 shows the evolution of one dollar
invested in each of the EW strategies at the beginning of the sample. Clearly,
the short-long strategy avoids the occasional large drawdowns from selling
volatility outright.

VII. Conclusion

In recent years, a liquid market for credit index (CDX) options has developed.
We study the extent to which these options are priced consistent with S&P 500
(SPX) equity index options. We consider a rich structural credit-risk model in
which both idiosyncratic and systematic asset risk have a diffusive component
and a jump component, and the common factor exhibits stochastic volatility
and a variance-dependent jump intensity. Using the large homogeneous port-
folio approximation and new results on multivariate transform analysis for
affine processes, we obtain analytical solutions to indexes and index options,
which are compound options in our structural modeling framework. Estimat-
ing the model, we find that it captures many aspects of the joint dynamics
of CDX and SPX options. However, according to the model, market prices of
CDX options are too expensive relative to SPX options, suggesting that credit
and equity markets are not fully integrated—at least not in the strong sense
suggested by classic Merton (1974)-style structural models, where both credit
and equity options are priced by the same set of risk factors that drive the as-
set value process. This result is further corroborated by a model-independent
analysis of option trading strategies, which shows that selling CDX volatil-
ity yields significantly higher average excess returns and Sharpe ratios than
selling SPX volatility.

Our findings suggest at least two lines of future research. First, although our
model incorporates salient features of asset value dynamics, it can surely be
extended further, for instance, by adding multifactor systematic and idiosyn-
cratic stochastic volatility, or by allowing for a more complex default bound-
ary.46 Of particular interest would be to incorporate credit-specific risk fac-
tors. A natural candidate for such a factor would be systematic variation in
bankruptcy costs; in Section XIV of the Internet Appendix we show how to add
this feature while keeping analytical expressions for all derivatives prices.47

Whether these and other model extensions can account for the observed dis-
crepancy between CDX and SPX option prices is an open question.

46 For example, in a paper subsequent to ours, Doshi et al. (2021) explore whether a first-
passage-time structural model with priced asset variance risk can reconcile pricing across CDX
and SPX option markets.

47 Another plausible candidate would be a credit-specific liquidity factor, as suggested by Bao
and Pan (2013) and Friewald and Nagler (2019).
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How Integrated are Credit and Equity Markets? 39

Another line of research would be searching for institutional features that
can cause market segmentation and a persistent price discrepancy. For in-
stance, Basel III regulation has created significant demand for CDX call op-
tions from banks that seek to hedge their credit valuation adjustment (CVA)
exposures in order to reduce their regulatory capital.48 Using regulatory filings
on risk-weighted assets for CVA from eight global systemically important U.S.
banks, we show in Section XV of the Internet Appendix that the size of this
hedging demand could potentially account for a large fraction of the trading
activity in CDX options. Thus, demand pressure, along the lines of Gârleanu,
Pedersen, and Poteshman (2009), could distort the relative prices of CDX and
SPX options.

Initial submission: February 17, 2021; Accepted: October 29, 2022
Editors: Stefan Nagel, Philip Bond, Amit Seru, and Wei Xiong

Appendix: Proofs

A. Dynamics of the State Variables

We can rewrite the individual firm asset value as

Ai
T = ATe− 1

2 σi
2T+σiWi

T e−λiνiT+∑Ni
T

j=1 γi, j , (A.1)

where the common factor at = log At has dynamics

dat =
(

r − δ − λtν − 1
2

ωt

)
dt + √

ωtdWt + γ dNt . (A.2)

Note that the state vector

xt = [at, ωt]�

follows an affine jump-diffusion process.
It is helpful to define ai

T = log Ai
T = aT + ξ i

T with

dξ i
t = −

(
1
2

σi
2 + λiνi

)
dt + σidWi

t + γidNi
t , (A.3)

so that Ai
t = eat+ξ i

t , and Mi
t = eξ i

t is a strictly positive martingale. Then the state
when considering a specific firm can be defined as

xi
t = [

at, ωt, ξ
i
t

]�
.

48 In the aftermath of the financial crisis, the Basel III regulation introduced a new capital
charge—the CVA risk charge—to cover the risk of deterioration in the creditworthiness of coun-
terparties. Both CDX and CDX options are eligible hedge instruments, but due to a discrepancy
between the regulatory and accounting treatment of counterparty risk, many banks prefer to use
CDX options (see, e.g., Becker (2014)).
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We note that the ξ i
t are independent of xt , and the Ai

T have i.i.d. distributions
conditional on xT , which will be helpful when deriving CDX and SPX values.

B. Proof of Theorem 1

The theorem follows directly from applying theorems 5 and 6 of Shephard
(1991) to recover the cumulative joint distribution of the n random variables
xj := β j · XTj∀ j = 1, . . . , n under the Pα measure, i.e., Gα

β(y1, . . . , yn) = Pα (x1 ≤
y1, . . . , xn ≤ yn), from its characteristic function defined as

ϕ(u1, . . . , un) = Eα
[
ei (u1x1+···+unxn )

]
= �α (iu1β1, . . . , iunβn; X T0 , T0, T1, . . . , Tn),

where the moment-generating function can be computed as follows ∀ j ≥ 1:

�α (β1, . . . , β j; X T0 , T0, T1, . . . , Tj ) := Eα
[
eβ1·XT1 +···+β j ·XTj | X T0

]
= 1

�(α; X T0 , T0, Tj )
E
[
eβ1·XT1 +···+(β j+α)·XTj | X T0

]

= �(β1, . . . , β j−1, β j + α; X T0 , T0, T1, . . . , Tj )

�(α; X T0 , T0, Tj )
.

For any set of N-dimensional vectors β j, j = 1, . . . , n, we have

�(β1, . . . , β j; X T0 , T0, T1, . . . , Tj ) := E
[
e
β1·XT1

+···+β j ·XTj | X T0

]
=E

[
e
β1·XT1

+···+β j−1·XTj−1 E
[
e
β j ·XTj | XTj−1

]
| X T0

]
=E

[
e
β1·XT1

+···+β j−1·XTj−1 �(β j; XTj−1 , Tj−1, Tj ) | X T0

]
=E

[
e
β1·XT1

+···+β j−1·XTj−1 e
bβ j

(Tj−1,Tj )+cβ j
(Tj−1,Tj )·XTj−1 | X T0

]
=�(β1, . . . , β j−2, β j−1 + cβ j (Tj−1, Tj ); X T0 , T0, T1, . . . , Tj−1)

× e
bβ j

(Tj−1,Tj )
.

We thus obtain an explicit recursive solution for the relevant multivariate
characteristic function in terms of the two deterministic functions bβ (t, T ) and
cβ (t, T ) in (12).

C. Proof of Theorem 2

To prove the first result, we have

�(β; xi
t, t, T ) := E

[
eβ·xi

T | xi
t

]

 15406261, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13300 by C

openhagen B
usiness School, W

iley O
nline L

ibrary on [13/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



How Integrated are Credit and Equity Markets? 41

= E
[
eβ1aT +β2ωT +β3ξ i

T | xi
t

]
= E

[
eβ3ξ i

T | ξ i
t

]
E
[
eβ1aT +β2ωT | xt

]
= eβ3ξ i

t +ζ (β3 )(T−t)+β1at+B(T−t;β1,β2 )+C(T−t;β1,β2 )ωt ,

where we use the fact that ξ i
t is independent of at and ωt , and the final expres-

sion obtains from Lemmas A.1 and A.2.
To prove the second result, we proceed similarly:

�(β; xt, t, T ) := E
[
eβ·xi

T | xt

]
= E

[
eβ1aT +β2ωT +β3ξ i

T | xt

]
= E

[
eβ3ξ i

T

]
E
[
eβ1aT +β2ωT | xt

]
= eζ (β3 )T+β1at+B(T−t;β1,β2 )+C(T−t;β1,β2 )ωt .

LEMMA A.1:

E
[
eβ3ξ i

T | ξ i
t

]
= eβ3ξ i

t +ζ (β3 )(T−t),

where

ζ (β3) = −1
2

σi
2β3(1 − β3) − λi(β3νi − νi(β3)) (A.4)

and (for some scalar β)

νi(β ) = E
[
eγiβ − 1

] = emiβ+ 1
2 viβ

2 − 1.

PROOF: Follows from the definition of ξ i
t in equation (A.3). �

LEMMA A.2:

E
[
eβ1aT +β2ωT | xt

] = eβ1at+B(T−t;β1,β2 )+C(T−t;β1,β2 )ωt ,

where B(T − t;β1, β2) and C(T − t;β1, β2) are deterministic functions given be-
low.

PROOF: Using the law of iterated expectation, we seek a candidate solution
Mt = eβ1at+B(T−t)+C(T−t)ωt that is a martingale. That is, Et[ dMt

Mt−
] = 0 or equiva-

lently

0 = − Ḃ − Ċ ωt + β1

(
r − δ − 1

2
ωt

)
− β1(λ0 + λωωt )ν + Cκ (ω̄ − ωt )

+ 1
2

β2
1ωt + 1

2
C2σ 2

ωωt + β1Cρ
ω
σ

ω
ωt + (λ0 + λωωt )ν(β1),
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where (for some scalar β)

ν(β ) = E
[
eγ β − 1

] = emβ+ 1
2 vβ2 − 1.

This implies the following system of ordinary differential equations:

Ḃ = β1(r − δ) + λ0(ν(β1) − β1ν) + κω̄C

Ċ = P − QC + 1
2

σ 2
ωC2,

where

P = 1
2

β1(β1 − 1) + λω(ν(β1) − β1ν)

Q = κ − β1ρω
σ

ω
,

which must be solved subject to the boundary conditions B(0) = 0 and C(0) =
β2. The solution is given by

B(τ ) = β1(r − δ)τ + λ0(ν(β1) − β1ν)τ + κω̄

σ 2
ω

(
(Q − d)τ − 2 log

(
1 − ce−dτ

1 − c

))
,

(A.5)

C(τ ) = (Q − d) − (Q + d)ce−dτ

σ 2
ω (1 − ce−dτ )

, (A.6)

where

d =
√

Q2 − 2Pσ 2
ω,

c = Q − d − β2σ
2
ω

Q + d − β2σ 2
ω

.

�
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