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Abstract 

In the last decades, there has been a growing interest in crossmodal correspondences, including 

those involving temperature. However, only a few studies have explicitly examined the 

underlying mechanisms behind temperature-related correspondences. Here, we investigated the 

relative roles of an underlying affective mechanism and a semantic path (i.e., regarding the 

semantic knowledge related to a single common source identity or meaning) in crossmodal 

associations between visual textures and temperature concepts using an associative learning 

paradigm. Two online experiments using visual textures previously shown to be associated with 

low and high thermal effusivity (Experiment 1) and visual textures with no consensual 

associations with thermal effusivity (Experiment 2) were conducted. Participants completed a 

speeded categorisation task before and after an associative learning task, in which they learned 

mappings between the visual textures and specific affective or semantic stimuli related to low 

and high temperatures. Across the two experiments, both the affective and semantic mappings 

influenced the categorisation of visual textures with the hypothesized temperatures, but there was 

no influence on the reaction times. The effect of learning semantic mappings was larger than that 

of affective ones in both experiments, suggesting that a semantic path has more weight than an 

affective mechanism in the formation of the associations studied here. The associations studied 

here could be modified through associative learning establishing correlations between visual 

textures and either affective or semantic stimuli.  

Keywords: crossmodal correspondences, temperature, affect, semantic congruency. 

 h
ttp

s:
//d

oi
.o

rg
/1

0.
10

37
/x

hp
00

01
13

1



VISUAL TEXTURES AND TEMPERATURE MECHANISMS 3 

  

Public Significance Statement 

We show that associative learning can give rise to new crossmodal associations between visual 

textures and temperature concepts. Furthermore, our results demonstrate that an associative 

learning paradigm involving affective and semantic stimuli can reverse individuals’ previous 

associations.  
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Assessing Mechanisms Behind Crossmodal Associations  

between Visual Textures and Temperature Concepts 

Crossmodal correspondences are often surprising associations people have between 

attributes in different sensory modalities (Spence, 2011, 2020c). Throughout the years, the 

literature has uncovered multiple correspondences involving different senses and types of 

features, although most studies have tended to focus on the visual and auditory domains (Parise 

& Spence, 2012; Spence, 2020c). Even though many crossmodal correspondences have been 

uncovered, the mechanisms giving rise to them are not fully understood (Parise, 2016), and 

hence the origins of crossmodal correspondences are still a matter of debate (Turoman et al., 

2018). Nevertheless, the literature so far has put forward four non-mutually exclusive and 

potentially complementary explanations that can help explain the existence of crossmodal 

correspondences, namely the statistical, structural, lexical, and affective-mediation accounts 

(Spence, 2011). According to the statistical account, crossmodal correspondences originate from 

the internalisation of natural statistics in the environment (Ernst, 2007; Parise et al., 2014), and 

most crossmodal correspondences seem to stem from this account (Spence, 2011, 2018, 2020c). 

The structural account suggests that some correspondences come from common neural encoding 

of the dimensions of stimuli, as more intense sensory stimuli are represented by more intense 

neural firing (Stevens, 1957; Walsh, 2003). The lexical account poses that correspondences may 

come from the use of the same adjectives or terms to describe different types of sensory stimuli 

(Martino & Marks, 1999, 2000, 2001). Finally, the affective account suggests that people 

associate different stimuli because they evoke the same affective or emotional associations 

(Palmer et al., 2013). 
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In the last decades, researchers have increasingly been studying crossmodal 

correspondences involving temperature (see Spence, 2020b for a review). Recently, crossmodal 

correspondences between visual textures and temperature concepts were uncovered (Barbosa 

Escobar et al., 2022a). Visual textures relate to the two-dimensional representations of the 

patterns of elements that describe the surface characteristics of objects or materials (American 

Psychological Association, n.d.; Klatzky & Lederman, 2010). Associations between visual 

textures and temperature concepts seem to be based on the thermal effusivity of materials (i.e., 

their ability to exchange thermal energy with their environment; Cottrill et al., 2018), as the latter 

determines how cold or hot materials feel to the touch (Wongsriruksa et al., 2012). Furry visual 

textures are associated with higher temperatures (i.e., related to materials with lower thermal 

effusivity) and that crystalline visual textures are associated with lower temperatures (i.e., related 

to materials with higher thermal effusivity). As Spence (2020d) suggested, temperature-based 

correspondences likely come from the internalisation of environmental statistics. This seems to 

be the case for crossmodal correspondences between visual textures and temperature. As 

Barbosa Escobar et al. (2022a) suggested, these associations may come from the internalisation 

of statistical regularities between temperature and material properties, and consequently visual 

textures, as individuals tend to see objects and textures before touching them and perceiving their 

temperature. In this case, materials and material properties co-occur in the environment. Hence, 

people develop associations between specific (visual) textures and different temperatures due to 

the material properties of objects with these textures. Moreover, many people seem to think of a 

specific entity to develop these associations, which stem from regular exposure to these entities 

and their statistical regularities. An affective account may also play a role in forming these 

associations, as tactile and visual textures on the one hand and temperature on the other, may 
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evoke similar affective reactions (Barbosa Escobar et al., 2022a). However, all these accounts 

seem to be tightly interrelated and hard to separate from each other. 

In the present research, we aimed to investigate further the mechanisms behind the 

recently uncovered crossmodal associations between visual textures and temperature. Two online 

experiments using an associative learning paradigm together with speeded categorisation tasks 

were conducted to examine the relative influence of an affective mechanism and a semantic path 

in the formation of these crossmodal associations. In the first experiment, visual textures with 

consensual associations with temperature concepts were used, whereas in the second experiment, 

visual textures without such associations were used. While a few studies have used learning tasks 

to explicitly induce or change crossmodal associations (Ernst, 2007; Flanagan et al., 2008), here 

a learning paradigm involving mappings of stimuli related to two different underlying paths (i.e., 

affective, semantic), instead of directly learning the exact crossmodal associations per se (i.e., 

mappings between the specific stimuli/dimensions) were used. This work thus contributes to the 

academic literature on crossmodal correspondences by explicitly studying the underlying 

mechanisms of a novel set of crossmodal associations while helping reduce the gap in the 

knowledge related to i) how crossmodal correspondences originate and ii) the relative strength of 

these different underlying mechanisms. Moreover, the present research to the literature by 

investigating whether new crossmodal associations can be formed through associative learning 

involving visual textures on one side and affective and semantic stimuli on the other.  

Theoretical Background and Hypotheses Development 

Affective Mechanism 

Textures (tactile and visual) and temperature can evoke diverse emotional responses (Etzi 

et al., 2016; Iosifyan & Korolkova, 2019). An emotional mediation account may partially explain 
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associations between visual textures and temperature, as they can share similar affective 

influences. Temperature is tightly linked to emotions, as evidenced by the multiple bidirectional 

causal effects between them. On the one hand, different temperatures can influence emotional 

states (Noelke et al., 2016), and on the other hand, individuals’ skin temperature increases or 

decreases in response to changes in emotional states (Rimm-Kaufman & Kagan, 1996). 

Moreover, emotions can affect people’s ambient temperature perception and thermal comfort 

(Wang & Liu, 2020). Relevant to the present study, people from different countries tend to 

consistently associate specific temperature concepts with particular emotions (Barbosa Escobar 

et al., 2021). The latter authors found that people associate temperatures of 0° and 10 °C with 

negatively valenced, low arousal emotions; temperatures of 20 °C with positively valenced, low-

to-medium arousal emotions; and temperatures of 30 °C with positively valenced, high-arousal 

emotions, respectively. However, temperatures of 40 °C are associated with high-arousal and 

either positively or negatively valenced emotions. 

Visual textures contain critical information for identifying surfaces and materials 

(Motoyoshi et al., 2007), and they guide expectations about the properties of tactile stimuli 

(Spence, 2020c). In this way, visual textures evoke associations corresponding to the tactile 

textures they may represent. Previous research has found that individuals associate different 

tactile textures with different emotions (Essick et al., 2010; Etzi et al., 2014, 2016; Iosifyan, 

2020; Iosifyan & Korolkova, 2019). For instance, Iosifyan and Korolkova (2019) investigated 

associations between 21 different tactile textures (e.g., granite, leather, fur, marble, concrete) and  

six specific emotion categories, namely happiness, fear, disgust, anger, surprise, and sadness. 

The authors found that individuals associated different felt textures with different emotion 

categories. Furthermore, Etzi et al. (2016) found that different material (e.g., smoothness) and 
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affective (e.g., pleasantness, comfort) properties of tactile surfaces (e.g., cotton, satin, tinfoil, 

sandpaper, abrasive sponge) were associated with words describing emotional states (e.g., 

sadness, happiness, anger, among others). Moreover, visual textures themselves provide 

information that triggers emotional expectations and responses (Liu et al., 2018). 

Crossmodal associations between different visual textures and different temperature 

concepts may arise if they evoke similar emotional connections. For instance, a furry visual 

texture may evoke positive emotional associations, such as happiness, as it can be regarded as 

soft and cosy (Kergoat et al., 2012). Hence, since furry visual textures and high temperatures 

share associations with positive emotions, this can lead to mappings between visual textures and 

temperature. 

Semantic Path 

The associations between visual textures and temperature concepts studied here may lie 

somewhere in the broad spectrum of crossmodal associations (Barbosa Escobar et al., 2021). 

This spectrum encompasses semantic congruency at one end and crossmodal correspondences at 

the other (Chen & Spence, 2017; Parise, 2016). Semantic congruency refers to pairs of stimuli 

tied to the same source identity or meaning (Chen & Spence, 2010), such as the sight of a dog 

coupled with the sound of a dog (e.g., a bark; Chen & Spence, 2010; Hein et al., 2007). At the 

other end of the spectrum, crossmodal correspondences refers to links between low-level features 

of different sensory modalities (Parise & Spence, 2013; Spence, 2011). While temperature is a 

low-level feature, visual textures are relatively complex stimuli that can relate to specific 

materials. Thus, associations between visual textures and temperature are not strictly crossmodal 

correspondences. Moreover, as visual textures may bring to mind specific origin materials, the 

associations studied here may be closer to semantic congruency. That said, it is also uncertain 
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whether the distinction between crossmodal correspondences and semantic congruency is 

continuous or more discrete (Parise, 2016). 

Semantic congruency is often confounded with crossmodal correspondences that emerge 

from the use of the same lexicon or adjectives to talk about different dimensions of multisensory 

experiences, which stem from the semantic coding hypothesis originally developed by Martino 

and Marks (1999, 2000, 2001). These latter correspondences are sometimes confusingly referred 

to as semantic correspondences or semantically mediated correspondences. To avoid any 

confusion, following the suggestion of Walker (2016) and later Spence (2022), these latter 

correspondences originally derived from the semantic coding hypothesis (Martino & Marks, 

1999, 2000, 2001) are referred to as lexical correspondences. 

It is possible that the crossmodal associations studied here emerge from semantic 

knowledge related to a common source identity based on experience. Examples of associations 

based on a source object can be found in colour-odour associations, such as those between the 

colour yellow and the odour of bananas, where the source object is the banana fruit (Spence & 

Levitan, 2021; see Spence, 2020a for a review). Better accuracy in determining the source of an 

odour is related to more consistent matches with colours (de Valk et al., 2017; Goubet et al., 

2018). In our case, people may form associations based on their knowledge or experience of the 

perceived temperature of the material/object that the visual texture evokes. Here, individuals may 

be drawing from the semantic knowledge of a source (visual) texture and its material properties 

(e.g., thermal effusivity) that affect how it feels to the touch (Bergmann Tiest & Kappers, 2009; 

Blaine, 2018). 
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Associative Learning and Crossmodal Correspondences 

The origin of crossmodal correspondences and how they develop throughout people’s 

lives are still a matter of discussion. It is possible that some correspondences are innate or that at 

least they develop some days after birth (20 – 30 days; Lewkowicz & Turkewitz, 1980). Other 

correspondences are learned in time through the internalisation of the statistical regularities of 

the environment, and others can be semantically mediated. Indeed, research has shown that 

crossmodal correspondences can be generated experimentally through associative learning 

paradigms (see Parise, 2016; Spence, 2022). This shows that crossmodal correspondences have 

at least some degree of plasticity. As Parise (2016) suggested, experience can influence 

mappings of sensory cues (within and across modalities) and create new mappings in adults. 

Moreover, individuals can learn new mappings between sensory cues based on statistical co-

occurrence in a single training session (e.g., Brunel et al., 2015; Ernst, 2007; Huang et al., 2022; 

Kaliuzhna et al., 2015; Knoeferle et al., 2016).  

In the present work, we started from the extant literature showing that most (if not all) 

crossmodal correspondences, in particular those that are temperature-based, originate from a 

statistical account and our previous results in line with this (Barbosa Escobar et al., 2022a). 

Furthermore, we build on the work of Ernst (2007) and the literature on associative learning and 

crossmodal correspondences to investigate the relative influence of an affective mechanism and a 

semantic path (i.e., semantic knowledge related to a single common source identity) in 

crossmodal associations between visual textures and temperature concepts. It is worth 

highlighting that research on the interaction between semantic congruency and crossmodal 

correspondences is scarce. Here an associative learning paradigm to create mappings between 

specific visual textures and either affective or semantic stimuli related to temperature concepts 
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was used. In this way, mapping a visual texture with a stimulus congruent with a specific 

underlying mechanism (e.g., affective, semantic) would be expected to result in a stronger 

crossmodal association between the visual texture and a temperature concept. For example, if the 

underlying mechanism was an affective one, affective-based learning would be expected to result 

in a stronger temperature association. Here, visual textures previously found to be crossmodally 

associated with low (i.e., crystalline) and high (i.e., furry) temperature concepts were used. 

Visual textures with no consensual temperature associations (i.e., wrinkled, stained) were also 

used since this would provide an additional robust measure of the relative strength of the 

different mechanisms, as there are no pre-existing biases to overcome. To measure the 

crossmodal associations and their strength, a speeded categorisation task before and after the 

learning paradigm was used. In the speeded categorisation task, participants categorised, as 

rapidly as possible, visual textures as either hot or cold. 

Informed by literature on the affective and semantic content of both visual textures and 

temperature, as well as the proposed mechanisms behind crossmodal correspondences, we 

expected that the mappings between visual textures and affectively or semantically related 

stimuli with temperature concepts would lead individuals to associate the given visual textures 

with the corresponding temperature concept more often (higher probability) and more rapidly 

(lower reaction time). More formally, in the case of visual textures that have been previously 

found to be associated with different temperature concepts, we hypothesised that: 

H1A: Participants will classify the furry (vs. crystalline) visual texture as hot (vs. cold) 

more often after exposure to the affective congruent mappings than to the 

incongruent ones. 
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H1B: Participants will classify the furry (vs. crystalline) visual texture as hot (vs. cold) 

more often after exposure to the semantic congruent mappings than to the 

incongruent ones. 

H2A: Participants will classify the visual textures more rapidly after being exposed to the 

affective congruent mappings than to the incongruent ones. 

H2B: Participants will classify the visual textures more rapidly after being exposed to the 

semantic congruent mappings than to the incongruent ones. 

Furthermore, based on the results of our previous study suggesting that people think of a 

specific entity to arrive at the associations studied here (Barbosa Escobar et al., 2022a), we 

expected that the semantic path would have a higher weight in explaining these correspondences 

relative to the affective account. More formally, we hypothesised that: 

H3A: The effect of the semantic congruent mappings on the categorisation responses will 

be greater than the effect of the affective mappings. 

H3B: Learning congruent semantic mappings would result in lower reaction times 

compared to the congruent affective mappings. 

In the case of visual textures with no consensual temperature associations, we expected 

that the affective and semantic mappings would lead to more frequent crossmodal associations 

with the corresponding hypothesised temperature concepts. More formally, we hypothesised that:  

H4A: Participants will classify a visual texture as hot (vs. cold) more often when it is 

mapped to the affective stimuli related to high (vs. low) temperatures than when it 

is mapped to affective stimuli related to low (vs. high) temperatures. 
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H4B: Participants will classify a visual texture as hot (vs. cold) more often when it is 

mapped to the semantic stimuli related to high (vs. low) temperatures than when it 

is mapped to affective stimuli related to low (vs. high) temperatures. 

However, in the case of visual textures with no consensual crossmodal associations with 

temperature concepts, we did not expect to see any difference in reaction times, as these textures, 

as a group, do not have any consistent emotional or semantic associations. 

Experiment 1 

Experiment 1 was designed to test the influence of an affective mechanism and a 

semantic path in the formation of crossmodal associations between visual textures and 

temperature concepts. To do this, an associative learning paradigm and speeded categorisation 

tests to assess the degree of visual texture-temperature associations before and after learning 

were used. In this experiment, visual textures with consensual associations to temperature 

concepts were used to evaluate a base scenario in which the associations already existed and 

examine the extent to which they could be strengthened or weakened. As Spence (2022) 

suggested, there are multiple ways to measure the strength of crossmodal correspondences, and 

the most prevalent one lies in the general agreement in the population studied, which can range 

from about chance level (~ 50%) to near perfect agreement. Here, we quantified the strength of 

the associations by modelling the level of agreement about the correspondences, as measured by 

the probability that a given visual texture would be categorised as either hot or cold. 

Methods 

Transparency and Openness 

We report how the required sample sizes were determined, all data cleaning methods, all 

manipulations, and all measures in the studies, following JARS (Kazak, 2018). The two studies 
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reported here were preregistered. All data, analysis script, research materials, and 

preregistrations are available at the project’s Open Science Framework (OSF) page 

(https://osf.io/g2vmy/). Required sample sizes were calculated using G*Power (Faul et al., 

2007), and all the data were analysed using R, version 4.0.1 (R Core Team, 2021). 

Participants 

The required sample size was determined via a power analysis based on goodness-of-fit 

test using G*Power (Faul et al., 2007). We aimed to have at least 280 participants in total to 

obtain a power of .80, using a medium effect size of Cohen’s W = .3 with an alpha level of .05. 

A total of 300 native English speakers from the UK (143 females, 152 males, 5 unreported), aged 

18 – 41 years (Mage = 28.90 years, SDage = 6.11) took part in the experiment. Participants were 

recruited from Prolific (https://www.prolific.co/) and received GBP 1.20 for their participation. 

To increase the quality of the pool of participants, we pre-screened for participants who had an 

approval rate of at least 98% in Prolific. The experiments complied with the World Medical 

Association’s Declaration of Helsinki, and before starting the experiment, all participants 

provided their informed consent to take part in them. As simple online experiments that 

consisted of an associative learning exercise and categorisation of stimuli similar to those found 

in everyday life (i.e., artistic representations of naturalistic visual textures and emoji expressions) 

and did not pose any harm, the studies complied with the policies and requirements stated by the 

Aarhus University Research Ethics Committee and were therefore exempted from the need of 

formal ethical approval. 

Apparatus and Materials 

For the visual textures stimuli, we selected the two visual textures most strongly 

associated with low- and high-temperature concepts from (Barbosa Escobar et al., 2022a), which 
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were extracted from the Describable Textures Dataset (DTD; Cimpoi et al., 2014). The matted 

(associated with high temperatures) and the crystalline (associated with low temperatures) visual 

textures were selected. To reduce the visual textures’ resemblance to specific entities, we applied 

a pencil sketch filter to them. For the matted visual texture, we used the Artificial Intelligence-

based website IMAGETOSKETCH (https://imagetosketch.com/), and for the crystalline visual 

texture, we used the sketch function of the {sketcher} R package (Tsuda, 2020), as it provided a 

better quality image. Both visual textures were grayscale and were histogram equalised in Adobe 

Photoshop 22.1.1. The stimuli for the affective mappings consisted of the facial expressions (i.e., 

only eyebrows and smile) of two emojis taken from the EmojiGrid (Toet et al., 2018), as in 

Barbosa Escobar et al. (2022b). The emojis from the EmojiGrid have been specifically created to 

convey specific values of the valence and arousal dimensions of affect. They are not part of the 

official Unicode emoji and are not found in people’s everyday life in any of the digital 

communication platforms (e.g., iOS, Android, Facebook). Here, the low valence, low arousal 

(V1A1; henceforth called sad) and the high valence, low arousal (V5A1; henceforth called 

happy) emojis were selected, as Barbosa Escobar et al. (2022a) found that visual textures 

associated with high-temperature concepts tend to exhibit positive valence, whereas those 

associated with low temperatures tend to exhibit negative valence. As per the stimuli for the 

semantic mappings (i.e., based on the semantic knowledge related to a single common source 

identity as per semantic congruency), we aimed to use stimuli related to the indirect associations 

evoked that lead to temperature associations for the selected visual textures without explicitly 

creating temperature mappings. Hence, the words fur and metal, were used based on the findings 

of Barbosa Escobar et al. (2022a). We selected fur, as it evokes mappings to the warmth of living 

beings that are, or were, once alive. On the other hand, we selected metal, as it relates to a 
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category of materials with overall high thermal effusivity, so keeping physical temperature 

constant, they feel cold to the touch. 

Design and Procedure 

The experiment followed a 2 (Mechanism: affective, semantic) × 2 (Pairing: congruent, 

incongruent) × 2 (Time: before learning, after learning) mixed design, with mechanism and 

pairing as between-subjects factors and time as within-subject factor. In this way, each 

participant was randomly assigned to one of the four possible associative learning groups derived 

from the interaction between mechanism and pairing. Based on the findings of Barbosa Escobar 

et al. (2022a), in the congruent affective mappings, the matted visual texture (henceforth called 

furry) was paired with the happy emoji expression, and the crystalline visual texture was paired 

with the sad emoji expression. In the congruent semantic mappings, the furry visual texture was 

paired with the word fur, and the crystalline visual texture was paired with the word metal. In the 

incongruent mappings, these pairings were reversed. Figure 1 presents all the possible mappings 

in the associative learning task. Furthermore, to have a benchmark for each participant, they 

completed a speeded categorisation task before the associative learning task and another one 

after it. 
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Figure 1 

Possible Mappings in the Associative Learning Task in Experiment 1 

 

Note. The figure presents the four different mappings in Experiment 1 based on the interaction of 

mechanism and pairing. 

 

Both experiments presented here were programmed and conducted on Gorilla 

(https://gorilla.sc/). Participants completed the experiment online using either a desktop or a 

laptop. The experiment was composed of a self-paced associative learning task and two speeded 

categorisation tasks (one before and one after the associative learning task). The associative 

learning task was similar to the one used in Experiment 3 in Knoeferle et al. (2016). The 

associative learning task comprised a learning phase (five learning blocks) and a testing phase 

(five testing blocks), alternating between the other. In the learning blocks, each participant was 

exposed to two mappings, one involving the furry visual texture and the other involving the 
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crystalline one, presented in random order. More specifically, participants were exposed to a 

mapping paring each visual texture (furry and crystalline) with either an affective (sad or happy 

emoji expression) or a semantic (the word fur or metal) stimulus. Each learning block was 

comprised of eight trials (four trials per mapping). Each trial started with a fixation cross in the 

centre for 500 ms, followed by a 100 ms interstimulus pause. Then, a mapping appeared in 

random order in the centre of the screen for 3,000 ms. In the testing blocks, participants 

completed a matching test. Here, they were presented either with a visual texture or with an 

affective or semantic stimulus in the centre of the screen. Participants were tasked to select the 

corresponding stimulus based on the previously learned mappings from two possible choices at 

the bottom of the screen with their mouse. To ensure that participants learned the mappings from 

the associative learning paradigm regardless of the type of target stimuli presented in the centre 

of the screen (either a visual texture or an affective/semantic stimulus), in the testing blocks, we 

included the two possible types of stimuli. In each testing block, each stimulus was presented 

twice for a total of eight trials. Each trial in the testing blocks started with a fixation cross and an 

interstimulus pause identical to the learning trials. After a response was given in each testing 

trial, a response feedback stimulus appeared in the centre of the screen for 200 ms, which 

consisted of a green checkmark for correct responses or a red “X” for incorrect responses. The 

allocation of the stimuli (congruent or incongruent) to either the left or right position was 

counterbalanced. Figure 2 presents a diagram of the experimental design. 

Each speeded categorisation task consisted of a total of 20 trials (ten trials for each of the 

two visual textures). In each trial, participants had to classify, as fast as possible, a visual texture 

presented in the centre of the screen as either cold or hot by pressing the “F” or the “J” keys on 

their keyboard, corresponding to the left and right sides of the screen based a specific mapping 
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provided to participants before starting the task. The mapping of the temperature words to the 

keys remained visible at the bottom of the screen for the duration of each trial. The temperature 

word assigned to the keys in each speeded categorisation task (before and after the associative 

learning task) was counterbalanced per participant. 

 

Figure 2 

Experimental Procedure of Experiments 1 and 2 

 

Note. The figure presents a schematic representation of the procedure of Experiments 1 and 2. 

VT = visual texture. 

 

Before starting the experiment, participants were presented with an overall description of 

the experiment and then provided their informed written consent. Then, participants completed 
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the first speeded categorisation task. Afterwards, participants were assigned to one of the four 

possible groups derived from the interaction of mechanism and pairing, and they completed the 

associative learning task introduced as a memory test. Afterwards, they completed the second 

categorisation task. Finally, they completed a set of demographic questions (i.e., age, gender). 

Data Analysis 

Two response measures from the experiment were obtained, namely categorisation 

responses and reaction times (RT). All analyses were conducted in R (R Core Team, 2021). First, 

to obtain an overall perspective of participants’ categorisation of the two visual textures under 

the different conditions before and after the associative learning task, we conducted a log-

likelihood ratio goodness of fit test (G2) with Williams’ correction as per the GTest function of 

the {DescTools} R package (Signorell, 2021). We visualized the proportion of categorisation via 

mosaic plots. Subsequently, as we were interested in the visual textures previously found to be 

crossmodally associated with low- and high-temperatures being classified as such, we performed 

separate logistic Generalized Linear Mixed Models (GLMMs) for each visual texture to 

investigate the probability that they were classified as hot (for the furry visual texture) and as 

cold (for the crystalline visual texture). The independent variables for the GLMMs were selected 

based on the study design and included the three factors. More specifically, we specified the 

interaction of mechanism, pairing, and time as fixed effects and participant’s ID as random 

effect. These models would allow us to evaluate the effect of the two mechanisms on the change 

in probabilities before and after the associative learning task, as well as the difference between 

the congruent and incongruent mechanisms after the associative learning task. The GLMMs were 

performed via the glmer function of the {lme4} R package (Bates et al., 2015). Each GLMM was 

tested via Likelihood Ratio Tests (LRTs) against its corresponding null model consisting only of 
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participants’ IDs as random effect. In addition, the Akaike information criterion (AIC) for each 

model was computed. Subsequently, we analysed statistically significant differences of the 

estimated probabilities derived from the model by conducting Bonferroni-corrected pairwise 

comparisons via the emmeans function of the {emmeans} R package (Lenth, 2021). 

Furthermore, we evaluated the explanatory power of the models using the pseudo-R2 method 

suggested by Zhang (2017) using the rsq.glmm function of the {rsq} R package (Zhang, 2022).  

As per RTs, we identified and treated outliers by winsorizing values more than three 

median absolute deviations (MADs) plus or minus the median for each participant. More 

specifically, any value that was three MADs above or below the median was replaced with the 

median value plus or minus three times the MAD, respectively. We used the MAD, as it is a 

robust measure to identify the spread of the data (Leys et al., 2013, 2019). To analyse RTs, we 

first fit a GLMM with Gamma distribution and identity link function on RT with the interaction 

of time, mechanism, and pairing as fixed effect and with participant ID and visual texture as 

random effects. We specified a Gamma distribution with untransformed data, as it effectively 

models reaction time data and is intuitive to interpret (Lo & Andrews, 2015). Specifically, the 

Gamma distribution closely approximate reaction time data, which is positively skewed and 

bounded on the left by zero. In addition, the mixed effects are able to model the multilevel 

structure of the data and hence permit the analysis of trial-level data, instead of requiring 

averaging across participants, which increases statistical power (Lo & Andrews, 2015). 

Furthermore, through the random effects, the model considers idiosyncratic differences of 

participants. As suggested by Lo and Andrews (2015), effects greater than two standard 

deviations (i.e., |t| > 2) were considered to be significant at the .05 level. Furthermore, to probe 

the effects of each mechanism on each of the visual textures, we fit two separate GLMMs on RT 
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with Gamma distributions and identity link functions for each mechanism, with the interaction of 

visual texture, time, and pairing as fixed effect and with participant ID as random effect. Each 

GLMM was tested via LRTs against their respective null model including only the participant’s 

ID as random effect. Then Bonferroni-corrected pairwise comparisons were performed. 

Furthermore, as with the logistic GLMM, we computed pseudo-R2s for each model to evaluate 

the influence of each mechanism. 

Results 

To corroborate that participants indeed learned the mappings between the visual textures 

and either the affective or semantic stimuli, we verified their performance in the testing phase of 

the associative learning task. The results showed that participants obtained a high percentage of 

correct responses in the associative learning task (M = 97.6%, SD = 5.3%) showing that 

participants learned the mappings. Out of the 300 participants, 182 participants scored 100%. 

Only six participants scored less than 80% of correct responses. There were no significant 

differences in the percentage of correct responses between the affective and the semantic 

mappings, F(1, 298) = 1.52, p = .219, ηp
2 = .005;  Msemantic = 97.9%, SDsemantic = 4.1% vs. Maffective 

= 97.2%, SDaffective = 6.2%. However, participants responded slightly faster to the semantic 

mappings than the affective ones in the associative learning task, F(1, 298) = 10.50, p = .001, ηp
2 

= .034; Msemantic = 1,502 ms, SDsemantic = 469.74 vs. Maffective = 1676 ms, SDaffective = 461.15.  

Categorisation Responses 

The log-likelihood ratio goodness of fit tests revealed that there was a significant 

association between all the factors (i.e., mechanism, pairing, time) for the furry, G2(15) = 

1,108.70, p < .001, and for the crystalline, G2(15) = 3,617, p < .001 visual textures. Figure 3 

presents the mosaic plots of the categorisation responses for both visual textures. As expected, 
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regarding the furry visual texture, when participants were exposed to the congruent pairings of 

both the affective and semantic mechanisms, they classified the visual texture as hot more often 

after the associative learning task than before. Furthermore, after the congruent semantic and 

affective mappings, the furry visual texture was classified as hot more often than after the 

respective incongruent pairings for both conditions. Under the incongruent pairing of the 

affective mechanism, there was no difference in categorisation before and after the associative 

learning task, although in both instances participants classified the furry visual texture as hot 

more often. What is more, when exposed to the incongruent semantic pairings, participants 

classified the furry visual texture as hot less often after the associative learning task than before, 

so that the visual texture was classified as cold virtually as often as hot. 

 

Figure 3 

Mosaic Plots of Categorisation Responses in Experiment 1 
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Note. The mosaic plots show the proportion in which each visual texture (furry in the upper 

panel and crystalline in the lower panel) was classified as either cold or hot (indicated on the 

bottom side) before and after the associative learning paradigm (indicated on the left-hand side) 

comprising the different mechanisms (indicated on the top side) and pairings (indicated on the 

right-hand side). 

 

As per the crystalline visual texture, under the congruent affective pairing, participants 

classified the visual texture as cold marginally more often after the associative learning task than 

before, whereas there was no difference under the semantic congruent pairings after compared to 

before the associative learning task. Nevertheless, participants classified the visual texture as 

cold more often after the associative learning task with the congruent pairings than after the 

corresponding incongruent pairings. This was true for both the semantic learning task and the 

affective learning task. Furthermore, in both the semantic and affective incongruent pairings, the 

crystalline visual texture was classified as cold less often after the associative learning task than 
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before. This effect was more than three times larger for the semantic pairings than the affective 

ones. 

The logistic GLMM involving the furry visual texture revealed a significant main effect 

of time, a significant effect of the two-way interaction between pairing and time, and a 

significant three-way interaction of mechanism, pairing, and time. Table 1 presents the results of 

all the logistic GLMMs, and Table 2 presents the results of the models fit analysis, including 

their corresponding pseudo-R2s. Figure 4 presents the estimated marginal means deriving from 

all the logistic GLMM models. Overall, the probability of the furry visual texture being classified 

as hot was significantly higher after the associative learning task (.89, 95% CI = [.84, .93]) than 

before (.73, 95% CI = [.63, .81]; p < .001). As expected, under the congruent pairings, the visual 

texture had a higher probability of being classified as hot after the associative learning task (.97, 

95% CI = [.94, .98]) than before (.66, 95% CI = [.51, .78]; p < .001). However, this effect was 

reversed in the incongruent pairings, as the visual texture had a higher probability of being 

classified as hot before the associative learning task (.79, 95% CI = [.67, .87]) than after (.71, 

95% CI = [.57, .82]; p < .001). 
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Table 1 

Results of the Logistic GLMMs in Experiment 1 

 

Note. The table presents the results of all the logistic GLMMs in Experiment 1. The values for each variable correspond, from top to 

bottom to its odds ratio, 95% confidence interval, and p-value in parentheses. Models 1 – 3 relate to the furry visual texture, whereas 

models 4 – 6 relate to the crystalline visual texture. * p < .05, ** p < .01, *** p < .001. 

(A) Furry (B) Crystalline

Overall Affective Semantic Overall Affective Semantic

(1) (2) (3) (4) (5) (6)

Intercept 3.24** 1.12 2.92** 86.89*** 120.79*** 73.96***

1.52 – 6.92 0.46 – 2.71 1.55 – 5.51 36.39 – 207.47 45.01 – 324.21 32.84 – 166.57

(.002) (.807) (.001) (< .001) (< .001) (< .001)

MechanismAffective 0.35 1.03

0.12 – 1.01 0.30 – 3.57

(.053) (.966)

PairingIncongruent 1.2 3.42 1.25 1.5 0.67 1.54

0.41 – 3.49 0.95 – 12.25 0.51 – 3.07 0.45 – 4.97 0.17 – 2.61 0.50 – 4.73

(.74) (.059) (.623) (.511) (.563) (.454)

TimeAfter 10.74*** 22.13*** 10.23*** 1.08 1.9* 1.08

7.31 – 15.80 13.41 – 36.51 7.00 – 14.95 0.68 – 1.72 1.13 – 3.18 0.68 – 1.71

(< .001) (< .001) (< .001) (.732) (.016) (.733)

MechanismAffective × PairingIncongruent 2.64 0.49

0.57 – 12.18 0.09 – 2.73

(.213) (.413)

MechanismAffective × TimeAfter 1.82 1.73

0.98 – 3.36 0.87 – 3.45

(.057) (.119)

PairingIncongruent × TimeAfter 0.030*** 0.07*** 0.03*** 0.02*** 0.11*** 0.03***

0.02 – 0.05 0.04 – 0.12 0.02 – 0.05 0.01 – 0.05 0.06 – 0.22 0.01 – 0.05

(< .001) (< .001) (< .001) (< .001) (< .001) (< .001)

MechanismAffective × PairingIncongruent × TimeAfter 2.56* 4.79**

1.18 – 5.58 1.84 – 12.44

(.018) (.001)

Participants 300 149 151 300 149 151

Observations 6,000 2,980 3,020 6,000 2,980 3,020
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Table 2 

Model Fit Results of Logistic GLMMs in Experiment 1 

 

Note. The table presents the model fit results of all the logistic GLMMs in Experiment 1 against their corresponding null models. The 

null models only included participants’ IDs. AIC = Akaike information criterion; LRT = Likelihood ratio test. 

 

 

 

Model AIC LRT Pseudo-R
2
s

d X
2

p R
2

Model R
2

Fixed Effects R
2

Random effects

Furry - Overall Participant 4,744.5 .55

Mechanism × Pairing × Time 4,281.0 7 477.6 <.001 .63 .05 .57

Furry - Affective Participant 2,090.0 .62

Pairing × Time 1,865.0 3 231 <.001 .7 .03 .67

Furry - Semantic Participant 2,652.5 .47

Pairing × Time 2,408.4 3 250.1 <.001 .55 .08 .48

Crystalline - Overall Participant 3,277.5 .49

Mechanism × Pairing × Time 2,862.8 7 428.8 <.001 .62 .08 .54

Crystalline - Affective Participant 1,370.3 .58

Pairing × Time 1,312.0 3 54.29 <.001 .63 .03 .61

Crystalline - Semantic Participant 1,905.0 .42

Pairing × Time 1,551.2 3 359.9 <.001 .62 .13 .49
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Figure 4 

Estimated Marginal Means from the Logistic GLMM Models in Experiment 1 

 

Note. The figure presents the estimated marginal means deriving from all the logistic GLMM 

models in Experiment 1. The y-axis represents the probability that the visual texture was 

classified as hot (for the furry one) and as cold (for the crystalline one). The timing of the 

speeded categorisation task, before or after the associative learning paradigm, is indicated in the 

x-axis. Error bars represent the 95% CI resulting from the models. VT = visual texture. 

 

To probe the three-way interaction in the first model involving the furry visual texture, 

we ran two separate GLMMs splitting the data by mechanism. As per the affective mechanism, 

the results revealed a significant main effect of time and the two-way interaction between pairing 

and time (Table 1). The probability of the visual texture being classified as hot was significantly 
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higher after the associative learning task (.92, 95% CI = [.85, .96]) than before (.67, 95% CI = 

[.50, .81]; p < .001). Under the congruent pairings, the probability was higher after (.96, 95% CI 

= [.89, .99]) than before (.53, 95% CI = [.29, .76]; p < .001) the associative learning task. 

Surprisingly, under the incongruent pairings, the probability was slightly higher after the 

associative learning task (.85, 95% CI = [.66, .94]) than before (.79, 95% CI = [.57, .92]; p = 

.046). In terms of the semantic path, the results revealed a significant main effect of time and the 

two-way interaction between pairing and time (Table 1). The probability of the visual texture 

being classified as hot was significantly higher after the associative learning task (.86, 95% CI = 

[.78, .91]) than before (.77, 95% CI = [.66, .85]; p < .001). As expected, under the congruent 

pairings, the probability was higher after the associative learning task (.97, 95% CI = [.93, .99]) 

than before (.75, 95% CI = [.59, .86]; p < .001). Furthermore, as expected, under the incongruent 

pairings, the probability was higher before (.79, 95% CI = [.64, .88]) than after (.54, 95% CI = 

[.36, .71]; p < .001). Importantly, after the associative learning task with pairings related to the 

semantic path, the congruent pairings (.97, 95% CI = [.92, .99]) led to a higher probability of the 

furry visual texture being classified as hot compared to the incongruent pairings (.55, 95% CI = 

[.30, .77]; p < .001). However, after the associative learning task with the affective-based 

pairings there was no difference between the congruent (.96, 95% CI = [.88, .99]) and the 

incongruent (.84, 95% CI = [.63, .94]; p = .340) pairings. As the fixed effects pseudo-R2s of the 

models involving the furry visual texture revealed (Table 1), the influence of the associative 

learning task on the probability of the furry visual texture being classified as hot was greater for 

those based on the semantic path than those based on the affective one. That said, it is important 

to notice that the size of the fixed effects pseudo-R2s was small, and the random effects 

explained most of the variability of the data. These results indicate that there was a high degree 
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of variability at the individual level in the crossmodal associations between visual textures and 

temperature. 

The logistic GLMM involving the crystalline visual texture revealed significant two-way 

interaction effects between mechanism and pairing and between pairing and time, as well as a 

significant three-way interaction effect of mechanism, pairing, and time (Table 1). As expected, 

under the affective mechanism, the probability of the crystalline visual texture being classified as 

cold was greater with the congruent pairings (.99, 95% CI = [.98, 1.00]) than with the 

incongruent ones (.97, 95% CI = [.92, .99]; p = .021). Similarly, under the semantic path, the 

probability that the crystalline visual texture was classified as cold was higher with the congruent 

pairings (.97, 95% CI = [.99, 1.00]) than with the incongruent ones (.96, 95% CI = [.90, .98]; p = 

.011). Furthermore, with the congruent pairings, the probability of the crystalline visual texture 

to be classified as cold was higher after the associative learning task (.99, 95% CI = [.98, 1.00]) 

than before (.99, 95% CI = [.98, .99]; p = .044). With the incongruent pairings, the probability 

that the crystalline visual texture was classified as cold was higher before  the associative 

learning task (.99, 95% CI = [.98, .99]) compared to after (.87, 95% CI = [.79, .93]; p < .001). 

To probe the three-way interaction in the initial model with the crystalline visual texture, 

we split the data across mechanism and ran two separate GLMMs. In terms of the affective 

mechanism, the results revealed a significant main effect of time and a significant interaction 

effect of pairing and time (Table 1). The probability of the crystalline visual texture being 

classified as cold was slightly lower after the associative learning task (.98, 95% CI = [.97, .99]) 

than before (.99, 95% CI = [.98, 1.00]; p = .010). However, the results revealed that under the 

congruent pairings, the probability was higher after the associative learning task (1.00, 95% CI = 

[.99, .1.00]) than before (.99, 95% CI = [.98, 1.00]; p = .016). On the other hand, under the 
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incongruent pairing the probability was higher before the associative learning task (.99, 95% CI 

= [.97, 1.00]) than after (.86, 95% CI = [.94, .98]; p < .001). As per the semantic path, the results 

revealed a significant effect of the interaction between pairing and time (Table 1). Under the 

incongruent pairings, the probability of the crystalline visual texture being classified as cold was 

higher before the associative learning task (.99, 95% CI = [.98, 1.00]) than after (.59, 95% CI = 

[.76, .88]; p < .001). There was no significant difference in the probability before (.99, 95% CI = 

[.97, 1.00]) and after (.99, 95% CI = [.98, 1.00]; p < .001) the associative learning task with the 

congruent pairings. Similar to the furry visual texture models, the fixed factors pseudo-R2s 

involving the crystalline one revealed that the effect of the pairings in the associative learning 

task was greater with the semantic-based pairings than the affective-based (Table 2). In this case 

the semantic ones were more than four and a half times larger than the affective ones. Similar to 

the furry visual texture, the size of the fixed effects pseudo-R2s was small, and the random 

effects explained most of the variability in the data.  

Reaction Times 

Resulting from the identification and treatment of outliers in the reaction time data, 1,250 

of the 12,000 trials (10.42%) were winsorized. Overall, the associative learning task had virtually 

no effect on participants’ reaction times (Figure 5). 
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Figure 5 

Raincloud Plots of RTs in Experiment 1 

 

Note. The figure presents the single data points, boxplots. and distributions of the RTs per 

mechanism, visual texture, and pairing in Experiment 1. The timing of the speeded categorisation 

task, before or after the associative learning paradigm, is indicated in the x-axis. 

 

The Gamma GLMM on reaction time under the affective-based pairings revealed a 

significant main effect of time, a significant two-way interaction effect of visual texture and 

time, and a significant three-way interaction effect of visual texture, time, and pairing. Table 3 

presents the results of all the Gamma GLMMs, and Table 4 presents the results of the models fit 

analysis, including their corresponding pseudo-R2s. Figure 6 presents the estimated marginal 

means deriving from all the Gamma GLMM models. Overall, reaction times were significantly 

lower after the associative learning task (643 ms, 95% CI = [623, 664]) than before (748 ms, 

95% CI = [727, 770]; p < .001). Participants classified the furry visual texture responded more 
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rapidly after the associative learning task (617 ms, 95% CI = [640, 662]) than before (752 ms, 

95% CI = [728, 776]; p < .001). A similar pattern was present with the crystalline visual texture, 

as participants reacted more rapidly after the associative learning task (647 ms, 95% CI = [624, 

669]) than before (745 ms, 95% CI = [721, 769]; p < .001). To probe the significant three-way 

interaction effect, we split the data by visual texture and ran two separate GLMMs. As for the 

furry visual texture, the results revealed a significant main effect of time and a significant 

interaction between time and pairing. Reaction times were lower after the associative learning 

task (637 ms, 95% CI = [613, 662])  than before (751 ms, 95% CI = [725, 778]; p < .001). 

Furthermore, under the congruent pairings, reaction times were lower after  the associative 

learning task (631 ms, 95% CI = [597, 666]) compared to before (768 ms, 95% CI = [731, 804]; 

p < .001). Similarly, reaction times were lower after the associative learning task (643 ms, 95% 

CI = [608, 679]) compared to before (735 ms, 95% CI = [698, 772]; p < .001). 
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Table 3 

Results of the Gamma GLMM models in Experiment 1 

 

Note. The table presents the results of all the Gamma GLMMs in Experiment 1. The values for each variable correspond, from top to 

bottom to its β estimate, 95% confidence interval, and p-value in parentheses. Models 1 – 3 relate to the furry visual texture, whereas 

models 4 – 6 relate to the crystalline visual texture. * p < .05, ** p < .01, *** p < .001. 

Overall Furry Crystalline Overall Furry Crystalline

(1) (2) (3) (4) (5) (6)

Intercept 746.34*** 767.57*** 743.13*** 731.16*** 739.02*** 723.77***

716.94 – 775.75 735.28 – 799.87 712.12 – 774.14 700.10 – 762.21 704.15 – 773.89 691.82 – 755.72

(< .001) (< .001) (< .001) (< .001) (< .001) (< .001)

VTFurry 23.34 0.67

-4.32 – 51.00 -26.87 – 28.21

(.098) (.962)

TimeAfter -94.76*** -136.2*** -95.96*** -86.63*** -89.08*** -87.76***

-120.05 – -69.46 -162.32 – -110.08 -121.00 – -70.91 -112.37 – -60.89 -115.62 – -62.55 -113.05 – -62.47

(< .001) (< .001) (< .001) (< .001) (< .001) (< .001)

PairingIncongruent -3.54 -32.41 -6.3 28.36 39.3 27.01

-45.50 – 38.42 -78.14 – 13.32 -50.51 – 37.90 -15.18 – 71.90 -9.83 – 88.42 -17.84 – 71.86

(.869) (.165) (.78) (.202) (.117) (.238)

VTFurry × TimeAfter -44.33** -2.16

-80.20 – -8.47 -38.55 – 34.22

(.015) (.907)

VTFurry × PairingIncongruent -31.97 17.56

-70.91 – 6.96 -21.23 – 56.35

(.107) (.375)

TimeAfter × PairingIncongruent -6 44.45** -0.19 19.36 -10.42 20.88

-41.96 – 29.96 7.49 – 81.42 -35.76 – 35.39 -16.88 – 55.59 -47.88 – 27.04 -14.77 – 56.53

(.744) (.018) (.992) (.295) (.585) (.251)

VTFurry × TimeAfter × PairingIncongruent 60.1** -31.42

9.21 – 110.98 -82.70 – 19.86

(.021) (.23)

Participants 149 149 149 151 151 151

Observations 5,960 2,980 2,980 6,040 3,020 3,020

(A) Affective (B) Semantic
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Table 4 

Model Fit Results of Gamma GLMMs in Experiment 1 

 

Note. The table presents the model fit results of all the logistic GLMMs in Experiment 1 against their corresponding null models. The 

null models only included participants’ IDs. AIC = Akaike information criterion; LRT = Likelihood ratio test. 

 

 

 

Model AIC LRT Pseudo-R
2
s

d X
2

p R
2

Model R
2

Fixed Effects R
2

Random effects

Affective - Overall Participant 82,332.0 .19

VT × Time × Pairing 82,049.0 7 297.5 <.001 .21 .02 .18

Affective - Furry Participant 41,348.0 .18

Time × Pairing 41,186.0 3 168.0 <.001 .7 .03 .67

Affective - Crystalline Participant 41,080.0 .19

Time × Pairing 40,961.0 3 125.5 <.001 .21 .02 .19

Semantic - Overall Participant 83,610.0 .49

VT × Time × Pairing 83,408.0 7 196.6 <.001 .21 .01 .2

Semantic - Furry Participant 42,054.0 .21

Time × Pairing 41,949.0 3 111.5 <.001 .22 .01 .21

Semantic - Crystalline Participant 41,640.0 .19

Time × Pairing 41,560.0 3 85.87 <.001 .2 .01 .19
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Figure 6 

Estimated Marginal Means from the Gamma GLMM Models in Experiment 1 

 

Note. The figure presents the estimated marginal means deriving from all the Gamma GLMM 

models in Experiment 1. The timing of the speeded categorisation task, before or after the 

associative learning paradigm, is indicated in the x-axis. Error bars represent the 95% CI 

resulting from the models. 

 

Regarding the crystalline visual texture, the results revealed only a significant main effect 

of time. Participants responded to the categorisation task more rapidly after (644 ms, 95% CI = 

[620, 668]; p < .001) the associative learning task than before (740 ms, 95% CI = [715, 765]; p < 

.001). As per the Gamma GLMM involving the semantic-based pairings, the results revealed 

only a significant main effect of time (Table 3). Participants’ reaction times were lower after  the 
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associative learning task (664 ms, 95% CI = [642, 686]; p < .001) than before (750 ms, 95% CI = 

[728, 772]; p < .001). 

The fixed effects pseudo-R2 of all the Gamma models revealed that the effects of the 

associative learning task involving the pairings based on the semantic path were larger than those 

based on the affective mechanism (Table 4). Nevertheless, the random effects pseudo-R2s were 

larger than the corresponding fixed effects pseudo-R2s, suggesting that there are relatively large 

individual differences in the categorisation of the visual textures as cold or hot. 

In sum, the results of Experiment 1 revealed that the associative learning task increased 

the probability of the visual textures (i.e., furry and crystalline) being classified as either hot or 

cold depending on the specific affective and semantic stimuli used. Supporting H1A, the 

congruent mappings based on the affective account led to a higher probability that the two visual 

textures were classified with the temperature association found by previous studies (i.e., furry – 

hot, crystalline – cold). In addition, the incongruent pairings reduced this probability, providing 

further support to H1A. Furthermore, the congruent and incongruent mappings based on the 

semantic account had larger effects than the mappings based on the affective account, supporting 

H3A. Even though the pairings in the associative learning task influenced the probability that the 

visual textures were classified in the as either cold or hot, they did not influence participants 

reaction time in the categorisation task. All participants reacted more rapidly after the associative 

learning task, but there was no difference between congruent and incongruent pairings, therefore 

failing to support to H2A and H2B. Moreover, there was no difference in the reaction times 

between the congruent and incongruent mappings after the associative learning, which failed to 

support H2A and H2B. 
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Experiment 2 

In Experiment 2, we extend the findings of the first experiment to visual textures without 

consensual associations with temperature concepts. The goal of Experiment 2 was to investigate 

novel crossmodal associations between these visual textures and temperature concepts can be 

created by establishing the mappings between these visual textures and the same affective and 

semantic stimuli as in Experiment 1. Investigating the creation of new associations can provide 

more robust evidence as to the relative strength of the studied mechanisms. 

Methods 

Participants 

A total of 300 native English speakers from the UK (152 females, 145 males, 3 

unreported), aged 18 – 40 years (Mage = 31.25 years, SDage = 5.73) took part in the experiment.  

Apparatus and Materials 

For the visual textures stimuli, we selected two visual textures with no consensual 

associations with temperature concepts found (Barbosa Escobar et al., 2022a), which were 

extracted from the Describable Textures Dataset (DTD; Cimpoi et al., 2014). We selected the 

stained and the wrinkled visual textures. Similar to Experiment 1, we applied a pencil sketch 

filter to the visual textures using the IMAGETOSKETCH (https://imagetosketch.com/) website, 

and they were histogram equalised in Adobe Photoshop 22.1.1. The stimuli for both the affective 

and the semantic mappings were the same as in Experiment 1.  

Design and Procedure 

Experiment 2 also followed a 2 (Mechanism: affective, semantic) × 2 (Pairing: pairing 1, 

pairing 2) × 2 (Time: before learning, after learning) mixed design, with mechanism and pairing 

as between-subjects factors and time as within-subject factor. Hence, each participant was 
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randomly assigned to one of the four possible associative learning groups derived from the 

interaction between mechanism and pairing. Given that we selected visual textures with no 

consensual temperature associations, the pairings are denoted as pairing 1 and pairing 2. Figure 7 

presents all the possible mappings in the associative learning task in Experiment 2. That said, the 

pairings were analysed based on the temperature the stimuli paired to the visual texture was 

related to. Namely, as stated before, the cold-related stimuli were the sad emoji expression and 

the word metal, and the hot-related stimuli were the happy emoji expression and the word fur. 

The procedure was identical to that of Experiment 1. 

 

Figure 7 

Possible Mappings in the Associative Learning Task in Experiment 2 

 

Note. The figure presents the four different mappings in Experiment 2 based on the interaction of 

mechanism and pairing. 
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Data Analysis 

The data analysis was the same as in Experiment 1, except that the pairing factor was 

analysed as cold-related and hot-related, depending on whether the visual texture was paired with 

an affective or semantic stimulus related to low (sad emoji expression, the word metal) or high 

(happy emoji expression, the word fur) temperatures. Furthermore, to improve standardization, 

clarity, and ease of interpretation in the logistic GLMMs, for both visual textures, we analysed 

the probability that they were classified as hot. 

Results 

The results showed that participants obtained a high percentage of correct responses in 

the associative learning task (M = 98.43%, SD = 4.47%), showing that participants learned the 

mappings. Out of the 300 participants, 217 scored 100%. Only two participants scored less than 

80% of correct responses. There were no significant differences in the percentage of correct 

responses between the affective and the semantic mappings, F(1, 298) = 1.92, p = .167, ηp
2 = 

.006;  Msemantic = 98.8%, SDsemantic = 3.0% vs. Maffective = 98.1%, SDaffective = 5.9%. Participants 

responded faster to the semantic mappings than to the affective ones in the associative learning 

task, F(1, 298) = 10.50, p = .001, ηp
2 = .017; Msemantic = 1,401 ms, SDsemantic = 523.27 vs. Maffective 

= 1,522 ms, SDaffective = 388.89. 

Categorisation Responses 

The log-likelihood ratio goodness of fit tests revealed that there was a significant 

association between all the factors for the stained, G2(15) = 440.79, p < .001, and for the 

wrinkled, G2(15) = 2650.9, p < .001 visual textures. Figure 8 presents the mosaic plots for the 

categorisation responses for both visual textures. As expected, the stained visual texture was 

classified as hot as often as cold before the speeded association task. After being exposed to the 
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hot-related affective and semantic mappings, participants classified the stained visual texture as 

hot more often than cold. In terms of the cold-related mappings, after being exposed to the 

semantic mappings, participants classified the stained visual texture as cold slightly more often 

than cold. However, with the affective mappings, participants classified the visual texture as hot 

more often than cold. Regarding the wrinkled visual texture, unexpectedly, participants classified 

it as cold much more often than hot at the beginning, possibly due to the pencil sketch filter 

applied to the visual texture. After the associative learning task with the hot-related pairings, 

both affective and semantic, participants classified the wrinkled visual texture as hot slightly 

more often compared to before the associative learning task. Nevertheless, the visual texture was 

still classified as cold more often. As per the cold-related pairings, they had virtually no effect in 

the categorisation of the wrinkled visual texture. 

 

Figure 8 

Mosaic Plots of Categorisation Responses in Experiment 2 
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Note. The mosaic plots show the proportion in which each visual texture (stained in the upper 

panel and wrinkled in the lower panel) was classified as either cold or hot (indicated on the 

bottom side) before and after the associative learning paradigm (indicated on the left-hand side) 

comprising the different mechanisms (indicated on the top side) and pairings (indicated on the 

right-hand side). 

 

The logistic GLMM involving the stained visual texture revealed a significant main 

effect of time, significant two-way interaction effects between mechanism and time and between 

pairing and time, and a significant three-way interaction effect of mechanism, pairing, and time. 

Table 5 presents the results of all the logistic GLMMs, and Table 6 presents the results of the 

models fit analysis, including their corresponding pseudo-R2s. Figure 9 presents estimated 

marginal means deriving from all the logistic GLMM models. Overall, the probability of the 

stained visual texture being classified as hot was significantly higher after  the associative 

learning task (.78, 95% CI = [.66, .86]) than before (.34, 95% CI = [.23, .48]; p < .001). 
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Furthermore, with the affective mappings, the probability of the stained visual texture being 

classified as hot was higher after (.80, 95% CI = [.64, .90]) than before (.35, 95% CI = [.19, .55]; 

p < .001) the associative learning task. A similar effect was found with the semantic mappings, 

as the probability was higher after (.34, 95% CI = [.23, .48]) than before (.75, 95% CI = [.57, 

.88]; p < .001) the associative learning task. In addition, with the hot-related pairings, the 

probability that the stained visual texture was classified as hot was higher after the associative 

learning task (.93, 95% CI = [.85, .97]) than before (.31, 95% CI = [.16, .50]; p < .001). With the 

cold-related pairings, this probability was also higher after the associative learning task (.48, 

95% CI = [.29, .68]) than before (.38, 95% CI = [.21, .59]; p = .002). 
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Table 5 

Results of the Logistic GLMMs in Experiment 2 

 

Note. The table presents the results of all the logistic GLMMs in Experiment 2. The values for each variable correspond, from top to 

bottom to the odds ratio, 95% confidence interval, and p-value in parentheses. Models 1 – 3 relate to the stained visual texture, 

whereas models 4 – 6 relate to the wrinkled visual texture. * p < .05, ** p < .01, *** p < .001. 

Overall Affective Semantic Overall Affective Semantic

(1) (2) (3) (4) (5) (6)

Intercept 0.95 0.41 0.97 0*** 0*** 0***

0.35 – 2.60 0.13 – 1.25 0.38 – 2.43 0.00 – 0.01 0.00 – 0.01 0.00 – 0.01

(.92) (.117) (.941) (< .001) (< .001) (< .001)

MechanismAffective 0.43 2.15

0.10 – 1.81 0.27 – 17.04

(.25) (.468)

PairingHot-related 0.29 1.72 0.31 9.34* 2.28 8.24

0.07 – 1.22 0.35 – 8.34 0.08 – 1.17 1.35 – 64.74 0.31 – 16.93 1.34 – 50.63

(.091) (.501) (.085) (.024) (.42) (.023)

TimeAfter 0.45*** 5.26*** 0.45*** 0.37*** 0.69 0.37***

0.33 – 0.63 3.49 – 7.94 0.32 – 0.62 0.22 – 0.63 0.43 – 1.11 0.22 – 0.64

(< .001) (< .001) (< .001) (< .001) (.129) (< .001)

MechanismAffective × PairingHot-related 6 0.23

0.78 – 45.91 0.02 – 3.22

(.085) (.272)

MechanismAffective × TimeAfter 10.95*** 1.86

6.50 – 18.42 0.91 – 3.80

(< .001) (.088)

PairingHot-related × TimeAfter 169.31*** 2.23** 160.45*** 59.5*** 7.24*** 57.89***

91.74 – 312.49 1.22 – 4.05 87.74 – 293.41 29.95 – 118.23 3.69 – 14.19 29.21 – 114.74

(< .001) (.009) (< .001) (< .001) (< .001) (< .001)

MechanismAffective × PairingHot-related × TimeAfter 0.01*** 0.12***

0.01 – 0.03 0.05 – 0.31

(< .001) (< .001)

Participants 300 151 149 300 151 149

Observations 6,005 3,020 2,985 6,004 3,020 2,984

(A) Stained (B) Wrinkled
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Table 6 

Model Fit Results of Logistic GLMMs in Experiment 2 

 

Note. The table presents the model fit results of all the logistic GLMMs in Experiment 2 against their corresponding null models. The 

null models only included participants’ IDs. AIC = Akaike information criterion; LRT = Likelihood ratio test. 

 

 

 

Model AIC LRT Pseudo-R
2
s

d X
2

p R
2

Model R
2

Fixed Effects R
2

Random effects

Stained - Overall Participant 3,169.0 .62

Mechanism × Pairing × Time 2,814.4 7 368.5 <.001 .7 .08 .62

Stained - Affective Participant 1,416.3 .67

Pairing × Time 1,363.9 3 58.3 <.001 .7 .02 .68

Stained - Semantic Participant 1,755.4 .57

Pairing × Time 1,451.9 3 309.5 <.001 .71 .13 .58

Wrinkled - Overall Participant 4,661.4 .61

Mechanism × Pairing × Time 3,932.2 7 743.2 <.001 .72 .06 .65

Wrinkled - Affective Participant 2,096.2 .58

Pairing × Time 1,868.9 3 233.2 <.001 .74 .03 .7

Wrinkled - Semantic Participant 2,564.3 .42

Pairing × Time 2,062.8 3 507.4 <.001 .7 .09 .61
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Figure 9 

Estimated Marginal Means from the Logistic GLMM Models in Experiment 2 

 

Note. The figure presents the estimated marginal means deriving from all the logistic GLMM 

models in Experiment 2. The y-axis represents the probability that the visual textures were 

classified as hot. The timing of the speeded categorisation task, before or after the associative 

learning paradigm, is indicated in the x-axis. Error bars represent the 95% CI resulting from the 

models. VT = visual texture. 

 

To probe the three-way interaction in the first model involving the stained visual texture 

we ran two separate GLMMs splitting the data by mechanism. In terms of the affective 

mechanism, the results revealed a significant main effect of time and a significant two-way 

interaction of pairing and time (Table 5). The probability that the stained visual texture was 
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classified as hot was higher after the associative learning task (.81, 95% CI = [.63, .91]; p < .001) 

compared to before (.35, 95% CI = [.18, .57]; p < .001). Furthermore, with the hot-related 

pairings, the probability of the visual texture being classified as hot was higher after (.89, 95% 

CI = [.69, .97]) than before (.41, 95% CI = [.16, .71]; p < .001) the associative learning task. 

Surprisingly, the cold-related pairings had a similar effect, as the probability that the stained 

visual texture was classified as hot was higher after  the associative learning task (.68, 95% CI = 

[.37, .89]) than before (.29, 95% CI = [.10, .60]; p < .001). As per the semantic mechanism, the 

results revealed a significant main effect of time and a significant interaction effect of pairing 

and time (Table 5). The probability that the stained visual texture was classified as hot was 

higher after the associative learning task (.75, 95% CI = [.59, .87]) than before (.35, 95% CI = 

[.20, .54]; p < .001). Moreover, with the hot-related pairings, this probability was higher after 

(.96, 95% CI = [.88, .99]) than before (.23, 95% CI = [.09, .47]; p < .001) the associative learning 

task. On the contrary, with cold-related pairings, the probability that the stained visual texture 

would be classified as hot was lower after the associative learning task (.30, 95% CI = [.13, .55]) 

than before (.49, 95% CI = [.25, .74]; p < .001). 

The logistic GLMM involving the wrinkled visual texture revealed main effects of 

pairing and time, as well as a significant two-way interaction effect of pairing and time, and a 

significant three-way interaction effect of mechanism, pairing, and time (Table 5). The 

probability of the wrinkled visual texture being classified as hot was higher with the hot-related 

pairings (.033, 95% CI = [.014, .081]) in the associative learning task than with the cold-related 

ones (.002, 95% CI = [.001, .006]; p < .001). In addition, the probability that the visual texture 

was classified as hot was higher after the associative learning task (.012, 95% CI = [.005, .025]) 

than before (.005, 95% CI = [.002, .011]; p < .001). Furthermore, with the hot-related pairings, 
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the probability that the wrinkled visual texture was classified as hot was higher after the 

associative learning task (.101, 95% CI = [.042, .222]) than before (.011, 95% CI = [.004, .027]; 

p < .001). 

As with the stained visual texture, to probe the three-way interaction in the first model 

involving the wrinkled visual texture we ran two separate GLMMs splitting the data by 

mechanism. In terms of the affective mechanism, the results revealed a significant two-way 

interaction effect of pairing and time (Table 5). With the hot-related pairings, the probability that 

the wrinkled visual texture was classified as hot was higher after (.026, 95% CI = [.006, .104]) 

than before (.005, 95% CI = [.001, .023]; p < .001) the associative learning task. However, with 

the cold-related pairings, there was no significant difference in the probability of the wrinkled 

visual texture being classified as hot after (.001, 95% CI = [< .001, .009]) compared to before 

(.002, 95% CI = [< .001, .123]; p = .129) the associative learning task. As per the semantic path, 

the results revealed significant main effects of pairing and time and a significant two-way 

interaction effect of pairing and time. The probability that the wrinkled visual texture was 

classified as hot was higher with the hot-related pairings (.075, 95% CI = [.024, .212]; p < .001) 

than with the cold-related ones (.001, 95% CI = [< .001, .007]; p < .001). Moreover, the 

probability that the visual texture was classified as hot was higher after the associative learning 

task (.017, 95% CI = [.006, .047]) than before (.006, 95% CI = [.002, .017]; p < .001). 

Furthermore, under the hot-related pairings, the probability that the wrinkled visual texture was 

classified as hot was higher after the associative learning task (.273, 95% CI = [.100, .599]) than 

before (.017, 95% CI = [.005, .057]; p < .001). However, this probability was lower after the 

associative learning task (< .001, 95% CI = [< .001, .004]) than before (.002, 95% CI = [< .001, 

.011]; p < .001) with the cold-related pairings. 
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Reaction Times 

Resulting from the identification and treatment of outliers in the reaction time data, 1,163 

of the 12,000 trials (9.69%) were winsorized. Overall, similar to Experiment 1, the associative 

learning task had virtually no effect on participants’ reaction times (Figure 10). The Gamma 

GLMM on reaction times with the affective-based pairings revealed only a significant main 

effect of time. Table 7 presents the results of all the logistic GLMMs, and Table 8 presents the 

results of the models fit analysis, including their corresponding pseudo-R2s. Figure 11 presents 

the estimated marginal means deriving from all the logistic GLMM models Reaction times were 

significantly lower after the associative learning task (606 ms, 95% CI = [584, 628]) than before 

(752 ms, 95% CI = [729, 776]; p < .001). Similarly, the GLMM on the reaction times with the 

semantic-based pairings revealed that reaction times were significantly lower after the 

associative learning task (659 ms, 95% CI = [636, 682]) than before (772 ms, 95% CI = [748, 

795]; p < .001).  
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Figure 10 

Raincloud Plots of RTs in Experiment 2 

 

Note. The figure presents the single data points, boxplots. and distributions of the reaction times 

in per mechanism, visual texture, and pairing in Experiment 2. The timing of the speeded 

categorisation task, before or after the associative learning paradigm, is indicated in the x-axis. 
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Table 7 

Results of the Gamma GLMMs in Experiment 2 

  

Note. The table presents the results of all the Gamma GLMMs in Experiment 2. The values for each variable correspond, from top to 

bottom to its β estimate, 95% confidence interval, and p-value in parentheses. Models 1 – 3 relate to the stained visual texture, 

whereas models 4 – 6 relate to the wrinkled visual texture. * p < .05, ** p < .01, *** p < .001. 

Overall Stained Wrinkled Overall Stained Wrinkled

(1) (2) (3) (4) (5) (6)

Intercept 740.66*** 744.57*** 765*** 780.7*** 779.18*** 748.3***

708.41 – 772.90 710.79 – 778.35 731.01 – 798.99 748.20 – 813.21 744.07 – 814.29 713.64 – 782.95

(< .001) (< .001) (< .001) (< .001) (< .001) (< .001)

VTWrinkled 19.92 -28.51

-25.49 – 65.33 -74.70 – 17.68

(.39) (.226)

TimeAfter -132.5*** -138.09*** -161.96*** -108.28*** -107.77*** -113.75***

-159.13 – -105.87 -164.78 – -111.40 -187.26 – -136.65 -135.42 – -81.14 -135.38 – -80.17 -141.31 – -86.18

(< .001) (< .001) (< .001) (< .001) (< .001) (< .001)

PairingHot-related 24.39 15.09 -22.27 -27.29 -23.94 47.23

-21.08 – 69.87 -32.54 – 62.71 -70.51 – 25.96 -73.49 – 18.91 -73.86 – 25.98 -1.81 – 96.27

(.293) (.535) (.365) (.247) (.347) (.059)

VTWrinkled × TimeAfter -18.62 -2.02

-55.64 – 18.41 -40.37 – 36.34

(.324) (.918)

VTWrinkled × PairingHot-related -41.59 75.37

-122.50 – 39.31 -7.21 – 157.95

(.314) (.074)

TimeAfter × PairingHot-related -33.79 -32.01 25.99 8.49 7.7 -19.33

-70.75 – 3.17 -69.08 – 5.06 -10.69 – 62.67 -30.05 – 47.04 -31.48 – 46.87 -58.63 – 19.96

(.073) (.091) (.165) (.666) (.7) (.335)

VTWrinkled × TimeAfter × PairingHot-related 49.87 -30.82

-2.53 – 102.28 -85.42 – 23.78

(.062) (.268)

Participants 151 151 151 149 149 149

Observations 6,040 3,020 3,020 5,969 2,985 2,984

(A) Affective (B) Semantic
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Table 8 

Model Fit Results of Gamma GLMMs in Experiment 2 

 

Note. The table presents the model fit results of all the Gamma GLMMs in Experiment 2 against their corresponding null models. The 

null models only included participants’ IDs. AIC = Akaike information criterion; LRT = Likelihood ratio test. 

 

 

 

Model AIC LRT Pseudo-R
2
s

d X
2

p R
2

Model R
2

Fixed Effects R
2

Random effects

Affective - Overall Participant 84,096.0 .18

VT × Time × Pairing 83,601.0 7 509.4 <.001 .2 .02 .18

Affective - Stained Participant 42,154.0 .19

Time × Pairing 41,881.0 3 278.8 <.001 .21 .03 .19

Affective - Wrinkled Participant 42,053.0 .17

Time × Pairing 41,792.0 3 267.3 <.001 .19 .01 .17

Semantic - Overall Participant 83,460.0 .18

VT × Time × Pairing 83,186.0 7 288.2 <.001 .19 .02 .18

Semantic - Stained Participant 41,828.0 .18

Time × Pairing 41,713.0 3 120.1 <.001 .18 .01 .17

Semantic - Wrinkled Participant 41,801.0 .16

Time × Pairing 41,638.0 3 168.9 <.001 .18 .02 .16
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Figure 11 

Estimated Marginal Means from the Gamma GLMM Models in Experiment 2 

 

Note. The figure presents the estimated marginal means deriving from all the Gamma GLMM 

models in Experiment 2. The timing of the speeded categorisation task, before or after the 

associative learning paradigm, is indicated in the x-axis. Error bars represent the 95% CI 

resulting from the models. 

 

In sum, the results of Experiment 2 revealed that an associative learning task with either 

affective and semantic mappings related to low- and high-temperature concepts increased the 

probability that  the visual texture without clear consensual associations to temperature concepts 

(i.e., stained) was classified as hot or cold as hypothesised. Similar effects were found with the 

wrinkled visual texture, although this visual texture had consensual associations with low 

temperature. The possibility that either of the visual textures was classified as hot significantly 
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increased when they were paired with affective and semantic content related to high 

temperatures, whereas the possibility that either visual texture was classified as cold significantly 

increased when they were paired with affective or semantic content related to low temperatures. 

Thus, these results provide support to H4A and H4B. However, there was no difference in 

participants’ reaction times to the categorisation task whether the visual textures were paired to 

the affective or semantic content either related to low temperatures or high temperatures. 

General Discussion 

In the present study, two online experiments were conducted using an associative 

learning paradigm to investigate whether crossmodal associations between visual textures and 

temperature concepts could be created from scratch by learning mappings related to an affective 

mechanism or a semantic path (i.e., related to a single common source identity). In addition, the 

experiments investigated the relative influence of an affective mechanism and a semantic path on 

the existence of these associations. In Experiment 1, these effects were examined using visual 

textures with consensual temperature concepts associations (crystalline – low temperatures; furry 

– high temperatures), and in Experiment 2, visual textures with no such consensual associations 

(stained; wrinkled) were used. Our results demonstrated that both the affective mechanism and 

the semantic path can induce crossmodal associations between visual textures and temperature 

concepts, so these accounts are not mutually exclusive, as suggested by Spence (2011, 2020c), 

although the semantic path had a relatively higher strength. These results hold true based on the 

operationalization of the variables used here. Nevertheless, future studies may conceptually 

replicate and extend our results measuring the strength of the associations differently. 

Furthermore, the results presented here open further questions for future research. For instance, 

what determines the relative weight among different mechanisms in given a crossmodal 
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associations, and are there other explanations behind the formation of crossmodal 

correspondences? 

The results of Experiment 1 revealed that the congruent learning task increased the 

probability that the visual textures were classified with the corresponding hypothesised 

temperature concept (crystalline – cold; furry – hot) as found in a previous study on crossmodal 

associations between visual textures and temperature (Barbosa Escobar et al., 2022a). On the 

other hand, the learning task with incongruent combinations reduced such probabilities. These 

results highlight the plasticity associated with the formation of crossmodal associations and 

indicate that the incongruent pairings undid previous beliefs. Notably, overall, the semantic 

combinations exerted a larger influence on the categorisation results than the affective ones. The 

results of Experiment 2 revealed that the affective and semantic strategies significantly 

influenced the explicit temperature categorisation of the stained visual texture as hot (after the 

mappings related to high temperatures) and cold (after the mappings related to low 

temperatures). Moreover, the effect of the semantically based pairings on the categorisation 

responses was larger. In addition, considering the stained visual texture, which initially did not 

present consensual associations with temperature, it was easier to induce associations with hot 

than with cold. It is important to note that contrary to our expectations, participants strongly 

associated the wrinkled visual texture with cold at the outset, which became a boundary 

condition for the mappings related to low temperatures. However, the associations could be 

undone after the associative learning task with mappings related to high temperatures. In this 

case, participants’ previously held associations were more easily reversed after undergoing an 

associative learning task with semantic mappings than with affective ones. It is worth noting that 

in the present study, we used low-arousal stimuli, whereas in everyday life, more intense stimuli 
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tend to form stronger associations. Considering this difference in arousal, affective stimuli that 

are both positively valenced and high in arousal could potentially lead to stronger effects than 

those found here. However, this would not be the case with negative stimuli and low 

temperatures, as, negative-valenced, high arousal stimuli are associated with high temperatures. 

Even though the associative learning task influenced the explicit categorisation responses 

in Experiment 1, the congruent combinations, compared to the incongruent ones, did not 

influence participants’ reaction time. One potential explanation is that individuals may need 

some level of strategizing to categorise the visual textures under both types of mappings, which 

may have eliminated any effect on categorisation speed. Similar to Experiment 1, the associative 

learning tasks in Experiment 2 did not affect participants’ reaction time in the cold- vs. hot-

related mappings. While reaction times in the speeded categorisation tasks were lower after the 

associative learning than before, this was the case for all conditions in both experiments. This 

could have been caused by a practice effect. Altogether, our findings indicate that relative to the 

affective account, the semantic path has more weight in forming these associations. 

Results regarding the influence of the affective learning on texture-temperature 

associations were consistent with the findings of Barbosa Escobar et al. (2022a). The latter 

authors showed that visual textures associated with high-temperature concepts tend to be 

positively valenced. On the other hand, visual textures associated with low-temperature concepts 

tend to be negatively valenced. It is possible that furry visual textures and high (but not extreme) 

temperature concepts trigger similar affective reactions, as they can both generate positive 

feelings and sensations. The positive affect from furry visual textures may stem from their 

perceived softness. As previous research has found, softness is a critical factor in the affective 

responses to materials, especially in clothing, where higher levels of softness are associated with 
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more positive affect (Etzi et al., 2014; Kergoat et al., 2012; Spence, 2020b; Teli, 2015). 

Furthermore, as Kergoat et al. (2012) found, softness is related to comfort and care, which are 

concepts with which warm temperatures are also associated. These latter connections may derive 

from the warmth and comfort provided by mothers and caregivers to their offspring after birth 

(Zhang & Risen, 2014) or by the warmth perceived when being physically close to loved ones 

(Ijzerman et al., 2015). 

Furthermore, related to the semantic path, it is possible that the associations originate 

from semantic knowledge about a source object (or source object-based mappings). One of the 

best examples of these types of mappings can be observed in associations between colours and 

odours. Previous literature suggests that colour-odour associations occur because individuals 

picture the source object of the odour and then match the odour with the colour of the source (see 

Spence 2020a, for a review). As Kaeppler (2018) found, there is a positive relationship between 

consistency of colour-odour and individuals’ ability to determine the odour’s source. Here, the 

visual textures may have brought specific objects or materials to mind. Hence, the associations 

may have been formed based on individuals’ knowledge of said materials. For instance, the furry 

visual texture may have evoked a furry animal, which itself is warm, or a furry coat, which is 

used to keep one’s body warm. As Di Cicco et al. (2021) found in a study of perceptual material 

signatures in paintings from the 17th century, velvet was perceived to be furrier, softer, and 

warmer than satin when participants evaluated the whole painting. In addition, the crystalline 

visual texture could have evoked ice crystals, stones, or slivers/fragments of metal, which are 

cold to the touch. 

One of the key aims of the present study was to investigate the influence of affective 

versus semantic learning mechanisms in the formation of crossmodal associations between visual 
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textures and temperature. As evidenced by the difference in the GLMMs’ odds ratios and 

pseudo-R2s between the two mechanisms, the results seem to indicate a greater influence of the 

semantic path relative to an affective account. Here, it is important to note that, overall, the effect 

of the fixed effects pseudo-R2s was small. Nevertheless, the GLMMs are modelling, in a fine-

grained fashion, the probability that a given visual texture is classified with a specific 

temperature concept, which may, to some extent, decrease the overall size of the fixed effects 

pseudo-R2s. In addition, it is possible that with complex, and sometimes, ambiguous stimuli, 

such as visual textures, individual differences in crossmodal associations are relatively large. 

Higher complexity and ambiguity may render people’s interpretation of stimuli and the meaning 

extracted from them more susceptible to their individual idiosyncrasies, such as personality and 

past experiences. For example, as Partos et al. (2016) found, people with higher tendency to 

experience perceptual aberrations, magical thinking, and hallucinations are more prone to find 

complex meaning in images consisting of random visual noise than people with lower tendencies 

in these aspects. In the present study, the extent to which it is associated with a temperature 

concept could have been influenced by each individual’s interpretation of the visual texture.  

The individual differences in the crossmodal associations studied in the present study 

were captured by the random effects pseudo-R2s in the different GLMMs. Given the scarcity of 

research explicitly studying the origin of crossmodal associations and even more so using a 

similar experimental and analytical approach, it is difficult to benchmark how big or small the 

influence of the fixed and random effects should be. Having this in mind, the present results 

seem to suggest that, compared to the affective account, the semantic path makes it easier to pick 

up associations with temperature concepts. For instance, in Experiment 1, the incongruent 

semantic mappings more easily undid individuals’ previous associations than the incongruent 
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affective mappings. The semantic path may be picking up on statistical regularities and 

correlations in the environment tied to specific entities or meaning (Parise & Spence, 2013; 

Spence, 2011). These associations may originate from people internalising that different (visual 

and tactile) textures generally have specific material properties that make them be perceived at 

certain temperatures when touched (Barenholtz et al., 2014; Shams & Seitz, 2008). In particular, 

the statistical regularities being picked up may be based on the thermal effusivity of materials, 

which refers to a material’s ability to exchange thermal energy with its surrounding (Blaine, 

2018) and is strongly correlated with the physical, thermal perception of materials 

(Wongsriruksa et al., 2012). Materials with low thermal effusivity feel warm to the touch, which 

also end up shaping the language used to describe objects and experiences (Cuskley & Kirby, 

2013; Parise & Spence, 2013; Spence, 2011). Therefore, given that the semantic path may be 

related to the statistical regularities experienced throughout life, its influence on the formation of 

associations is stronger than the affective account. On the other hand, the affective account 

relates to more abstract concepts, which may present large differences across individuals in terms 

of their affective associations with specific materials. 

The most relevant point in Experiment 2 is that the crossmodal associations between the 

visual texture with no consensual temperature associations were not created by explicitly training 

participants to learn temperature associations. Instead, they were created by mapping the visual 

texture to content related to the hypothesised affective and semantic paths behind the crossmodal 

associations studied here. In other words, correlations between visual textures and either 

affective or semantic stimuli were presented, which induced participants to establish novel 

crossmodal associations between visual textures and temperature concepts. These results add 

robustness to our hypothesis that the affective and semantic accounts are, in a non-mutually 
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exclusive way, driving crossmodal associations between visual textures and temperature 

concepts. Furthermore, these results support previous research showing that crossmodal 

associations are plastic and do not become crystallised with age (Parise, 2016). This stands in 

contrast to synaesthetic mappings (i.e., inducer–concurrent mappings), which seem to be stable 

across individuals’ adult lifetime (Deroy & Spence, 2013), although previous studies have found 

that some synesthetic mappings may come from statistical regularities experienced early in life, 

such as with the letter colours in refrigerator magnets (Beeli et al., 2007; Deroy & Spence, 2013; 

Smilek et al., 2007; Witthoft & Winawer, 2006). Moreover, the results of Experiment 2 provided 

further evidence that both the affective mechanism and the semantic path are non-mutually 

exclusive explanations behind crossmodal associations between visual textures and temperature 

concepts.  

In addition, the results of both experiments revealed that there is a relatively high degree 

of variability across individuals in the crossmodal associations studied here. As evidenced by the 

higher pseudo-R2s of the random effects compared to the pseudo-R2s of the fixed effects across 

mechanisms and visual textures, the variance in the categorisation responses and reaction times 

was mainly explained by individual variability. 

Limitations and Future Directions 

It is worth noting several limitations of the present studies. First, only one image per 

visual texture category was used. In addition, one stimulus for each affective and semantic 

content category related to low and high temperatures was used. The associations could vary 

depending on the specific image from the given visual texture categories. Other affective and 

semantic stimuli related to low and high temperatures could have different levels of effect. 

Furthermore, specific features of the visual textures or the affective and semantic stimuli may 
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have influenced the results. For example, the angularity of the visual textures may have 

influenced the associations, as high levels of angularity, such as the straight lines and sharp 

edges found in the crystalline visual texture, may potentially be associated with low temperatures 

given their shared negative valence. However, given that we used complex stimuli, this effect is 

hard to disentangle. Future research investigating associations between angularity and 

temperature using simple stimuli (e.g., a single line) could reveal interesting results. 

An important limitation in our study relates to the use of emojis as affective stimuli. 

Previous research has shown that emojis may have both semantic and affective associations, and 

the meaning of emojis varies depending on the context and media platform (e.g., iOS, Android, 

Twitter, Facebook) in which they are used (Bai et al., 2019; Jaeger et al., 2019). It is worth 

noting that this research has almost exclusively used emojis found in everyday life via different 

platforms. As per the relationship between the emotional and semantic meaning of emojis, in a 

cross cultural study with US and Chinese participants, Jaeger et al. (2021) found that the 

semantic meaning of emojis is attributed by different levels of intensity of associations to 

different emotions. Emojis are an effective tool to convey emotional meaning (Novak et al., 

2015), and those that are explicitly design to convey specific emotions, do it better than other 

means (e.g., human facial expressions; Cherbonnier & Michinov, 2021). Here, we used the facial 

expressions (i.e., only eyebrows and smiles) of two emojis from the EmojiGrid (Toet et al., 

2018), which were explicitly developed to convey specific values of the valence and arousal 

dimensions of affect. Furthermore, they are not part of the official Unicode emoji and are not 

found people’s everyday life in any of the digital communication platforms (e.g., iOS, Android, 

Facebook). Thus, the emoji facial expressions used here are less likely to have the semantic 
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associations attributed to the emojis people use every day (e.g.,     ,  ). However, it should be 

noted that the emoji facial expressions here may still carry semantic associations. 

Furthermore, another limitation is that the semantic stimuli were the words fur and metal, 

while one of the visual textures was fur. In the congruent condition, the fur visual texture was 

mapped to the word fur, whereas the crystalline visual texture was mapped with metal. The high 

degree of congruency in the former case could have affected the learning process for the two 

visual textures differently. Nevertheless, the pseudo-R2s effects of the overall model and the 

fixed effects of the semantic mappings were higher for the crystalline than for the furry visual 

texture. An aspect to consider is that the learning rate of semantic compared to affective 

information may be different, as semantic categorization tends to occur before affective 

categorization and both depend on visual awareness (Lähteenmäki & Nummenmaa, 2015). The 

mappings involving the semantic stimuli, which may presumably be easier to learn, could have 

led to a larger effect of the semantic mappings than the affective ones on the categorisation 

responses. 

Moreover, our sample was limited to English native speakers based in the UK. It is not 

possible to generalise these findings to individuals in other countries or whose native language is 

not English, as there may be non-negligible differences in the environmental statistics they have 

been exposed to, as well as their semantic networks and language their encoded into. On a 

similar note, participants were between 18 and 40 years old. Therefore, there may be differences 

in these associations that are driven by age that we did not detect. Regarding our experimental 

paradigm in the associative learning task, we created two pairs of mappings, one for each of the 

two visual textures. It cannot be discarded that the speeded categorisation task responses were 

biased by only having two mappings. 
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Future research can build on the present study to further the understanding of the 

underlying mechanisms of these crossmodal associations. For instance, future studies may use a 

larger number of visual textures, as well as larger number of affective and semantic stimuli in the 

learning process. In addition, given the prominent role of softness in the affective responses to 

materials (Etzi et al., 2014; Kergoat et al., 2012; Spence, 2020b; Teli, 2015), it would be 

interesting to examine whether higher perceived softness leads to a stronger association with 

high temperatures. A similar method could be applied to examine varying levels of valence. 

Furthermore, given the potential role of experience and language in statistical and semantic 

associations, examining different group levels, including children, would yield interesting 

results. 

Conclusion 

Taken together, our findings show that crossmodal associations can be strengthened, 

weakened, and created via associative learning mappings related to an affective mechanism and a 

semantic path, and not only by explicitly mapping the specific dimensions/stimuli involved in the 

crossmodal associations as previous literature has shown. Furthermore, our results seem to 

suggest that relative to an affective account, a semantic path leads to the formation of stronger 

crossmodal associations between visual textures and temperature concepts. This semantic 

account may be building on the identity of a specific object and consequently on a statistical 

account through the internalisation of environmental statistics. Thus, these mechanisms are 

interrelated and may overlap. In addition, the semantic path may also establish affective 

associations given the repeated affective reactions triggered by objects, textures, and material 

properties. As Spence (2020d) suggested, different accounts (i.e., statistical, structural, lexical, 

affective) of crossmodal correspondences are not mutually exclusive, but instead they may all 

 h
ttp

s:
//d

oi
.o

rg
/1

0.
10

37
/x

hp
00

01
13

1



VISUAL TEXTURES AND TEMPERATURE MECHANISMS 64 

  

have some explanatory power for the existence of these associations (Spence, 2011, 2020c). 

Furthermore, the results presented here suggest that crossmodal associations between visual 

textures and temperature present a relatively high variability across individuals. Notably, we 

demonstrated that the associations between ambiguous visual textures and temperature concepts 

could be modulated by learning. Our work adds to the literature on crossmodal correspondences, 

and most importantly, it empirically investigates, using a new paradigm, the relative role of two 

potential mechanisms underlying a novel set of crossmodal associations, which only a limited 

number of studies to date have done. Although it is difficult to disentangle the mechanisms 

behind crossmodal associations, the present study deepens the understanding of how individuals 

establish crossmodal associations between visual textures and temperature. Moreover, this 

research serves as a platform for future more exhaustive studies on how different types of 

crossmodal associations are formed. 
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