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A longitudinal causal graph analysis 
investigating modifiable risk 
factors and obesity in a European 
cohort of children and adolescents
Ronja Foraita  1*, Janine Witte 1,2, Claudia Börnhorst 1, Wencke Gwozdz 3,4, Valeria Pala 5, 
Lauren Lissner 6, Fabio Lauria 7, Lucia A. Reisch 1,8, Dénes Molnár 9, Stefaan De Henauw 10, 
Luis Moreno 11, Toomas Veidebaum 12, Michael Tornaritis 13, Iris Pigeot 1,2 & Vanessa Didelez 1,2

Childhood obesity is a complex disorder that appears to be influenced by an interacting system 
of many factors. Taking this complexity into account, we aim to investigate the causal structure 
underlying childhood obesity. Our focus is on identifying potential early, direct or indirect, causes of 
obesity which may be promising targets for prevention strategies. Using a causal discovery algorithm, 
we estimate a cohort causal graph (CCG) over the life course from childhood to adolescence. We adapt 
a popular method, the so-called PC-algorithm, to deal with missing values by multiple imputation, 
with mixed discrete and continuous variables, and that takes background knowledge such as the 
time-structure of cohort data into account. The algorithm is then applied to learn the causal structure 
among 51 variables including obesity, early life factors, diet, lifestyle, insulin resistance, puberty 
stage and cultural background of 5112 children from the European IDEFICS/I.Family cohort across 
three waves (2007–2014). The robustness of the learned causal structure is addressed in a series of 
alternative and sensitivity analyses; in particular, we use bootstrap resamples to assess the stability 
of aspects of the learned CCG. Our results suggest some but only indirect possible causal paths from 
early modifiable risk factors, such as audio-visual media consumption and physical activity, to obesity 
(measured by age- and sex-adjusted BMI z-scores) 6 years later.

Keywords  Audio-visual media consumption, Causal structure learning, DAG, Healthy diet, IDEFICS/I.
Family cohort, Multiple imputation, PC-algorithm, Physical activity, Sleep, Well-being

Childhood obesity is a serious public health problem in many countries1 leading to severe co-morbidities in 
later life such as type 2 diabetes, cardiovascular diseases, certain types of cancer, depression and other psycho-
social problems2–4. Prevention of obesity in children and adolescents seems to be the “only feasible solution” 
to tackle the obesity epidemic5. But prevention strategies need promising targets to achieve any public health 
effect. However, childhood obesity is a complex disorder that appears to be influenced by an interacting system 
of individual behaviour, group and societal settings such as family, school or the country-specific infrastructure 
(e.g. public health system, built environment)6.
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While most investigations focus on single exposure-outcome associations, our approach is to assess the 
complex interplay of obesity-related factors over the transition from childhood to adolescence by estimating a 
“cohort causal graph” (CCG), i.e. a causal graph that allows for the longitudinal structure of cohort data, including 
early life, individual, familial and social aspects using data from the European IDEFICS/I.Family cohort7. Causal 
discovery is still rarely used in medicine8, epidemiology9,10, with the most of them in the field of genetics11,12. 
This might be because the available methodologies and available software were previously limited to handling 
simple data structures. For the first time, our analysis infers a causal graph from observational data in which we 
simultaneously account for the temporal order of the covariates13,14, mixed variable scales and missing values11. 
The main aim is to identify plausible causal paths from early modifiable risk factors, such as diet, physical activity 
(PA), media consumption, subjective well-being and sleep, to body mass index (BMI) 6 years later. These may 
suggest or rule out potential targets for future obesity prevention strategies.

Methods
Study population
The IDEFICS/I.Family cohort7,15 is a European cohort study initiated with the overall aims to identify and prevent 
dietary and lifestyle induced health effects in infants, children and adolescents. The baseline survey (B) was con-
ducted in 2007/08 in eight European countries (Belgium, Cyprus, Estonia, Germany, Hungary, Italy, Spain and 
Sweden) with 16,229 participating children (2 to 9.9 years old). The first follow-up examinations (FU1, conducted 
in 2009/10) included 13,596 children and applied the same standardised assessments. The second follow-up 
examinations (FU2, conducted in 2013/14) enrolled 7105 children who already participated at B or FU1.

Ethical approval was obtained from the responsible ethics committees in each country and all research was 
performed in accordance with the Declaration of Helsinki principles (Belgium: Ethics Committee of the Uni-
versity Hospital Ghent (EC UZG 2007/243, B670201316342); Cyprus: National Bioethics Committee (EEBK/
EM/2007/16, EEBK/ETI/2012/33); Estonia: Tallinn Medical Research Ethics Committee of the National Insti-
tutes for Health Development (1093, 128); Germany: Ethics Committee of the University Bremen (16/01/2007, 
11/12/2012); Hungary: Scientific and Research Ethics Committee of the Medical Research Council Budapest (22-
156/2007-1018EKU, 4536/2013/EKU); Italy: Ethics Committee of the Health Office Avellino (2/CE, 12/12); Spain: 
Ethics Committee for Clinical Research of Aragon (PI07/13, PI13/0012); Sweden: Regional Ethical Review Board 
of Gothenburg (264-07, 927-12). All children and their parents provided oral and written informed consent, 
respectively, before examinations and/or the collection of samples, subsequent analysis and storage of personal 
data and collected samples. Teens older than 12 years were asked to provide their written consent using a simpli-
fied version of the consent form. Study subjects and their parents could opt out of each single study component.

Covariates
We included variables reflecting eating behaviour, lifestyle, social, cultural and environmental factors that are 
assumed to be related to overweight and obesity across the early life course. A detailed description of all measure-
ments and their units used in our analysis is provided in Table 1 and in the supplement. Some of these variables 
are time-invariant and would not be targeted by any intervention programme in later childhood, such as region 
of residence or migration background. Other time-invariant variables might impact a child’s development dur-
ing pregnancy and as an infant, such as mother’s age at birth or breastfeeding duration; we will refer to these 
as early life factors. All other variables are time-varying and were measured repeatedly. Age- and sex-specific 
BMI z-scores (BMI) for children and adolescents were calculated according to the extended IOTF criteria16; 
for simplicity we refer to these as BMI. Mother’s BMI was assessed at each survey in kg/m2. The homeostatic 
model assessment (HOMA-IR, short HOMA) index17 served as a marker for insulin resistance. The diet of the 
child was measured by a validated FFQ18 and was classified by an adapted version of the Youth Healthy Eating 
Index (YHEI)19. The YHEI assesses the consumption frequencies of both healthy and unhealthy food as well as 
eating behaviours, where a higher score indicates a healthier diet20. PA was measured by questionnaire, and an 
audio-visual media consumption score (AVM) was used as proxy for sedentary behaviour. Total sleep duration 
including nocturnal sleep was estimated based on 24-h dietary recall data at baseline21 and quantified by self-
reports at the two follow-ups. Multiple dimensions of psychosocial well-being were assessed by questionnaire 
which was developed for parents’ response on behalf of children and adolescents22. Children above the age of 
12 completed the questionnaires for themselves. Further details on the study population and used covariates 
are given in the supplement.

Statistical analysis
For our analyses, only children who participated in all three surveys were considered. Multiple imputation (MI) 
was applied to avoid loss of study subjects and to reduce potential bias due to missing values23; specifically we 
used tenfold imputation with random forests as implemented in the R-package mice24. MI assumes that values 
were missing at random (MAR). To strengthen the plausibility of the MAR assumption, the imputation models 
were fitted on a larger dataset containing additional variables that contribute to the various scores such as AVM 
or well-being23.

To estimate the cohort causal graph (CCG), we applied a method of causal discovery known as PC-algo-
rithm25,26. The algorithm outputs empirically plausible causal directed acyclic graphs (causal DAGs) suggesting 
direct and indirect causal relations, as shown by directed edges or directed paths. We chose this particular algo-
rithm because other, especially likelihood-based approaches typically make more implicit or explicit distribu-
tional assumptions which would seem highly implausible for the given cohort data. While the PC-algorithm also 
makes assumptions, there is some more robustness of our approach, e.g. in the context of multiple imputation27. 
As a DAG represents certain conditional (in)dependencies between variables28, the PC-algorithm proceeds by 
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investigating conditional independencies in the data using statistical tests, and then determines all DAGs that 
agree with these independencies. The result is not unique since different DAGs can represent the same condi-
tional independencies, i.e. certain causal structures are indistinguishable. Instead, the algorithm outputs the 
equivalence class of all DAGs that represent the detected conditional independencies. This class is represented 
by a so-called completed partially directed acyclic graph (CPDAG)29 containing directed and undirected edges, 
where an undirected edge means that both causal directions occur in the equivalence class. The validity of the PC-
algorithm relies on the assumptions of causal sufficiency, i.e. absence of latent confounding, and of faithfulness, 
under which the PC-algorithm consistently selects the true CPDAG25. Of note, while the causal interpretation 
of directed edges or paths in the output of causal discovery algorithms relies on causal sufficiency, which may 
often be implausible, the absence of such edges and paths can still be interpreted as absence of causal relations 
even without causal sufficiency.

The PC-algorithm had to be modified for application to multiply imputed cohort data11,27,30. Further, to 
account for the cohort structure we used the tiered PC-algorithm tPC31. This was then combined with functions 
from micd32 to deal with multiply imputed data containing a mix of categorical and continuous variables. The R 
packages micd and tPC are both extensions of pcalg33. The tPC-algorithm outputs a maximally oriented partially 

Table 1.   Variables used in the analysis with units and further explanations. Background knowledge was 
used to order them into different tiers. Units of continuous variables are given in italics. B baseline, FU1 first 
follow-up, FU2 second follow-up.

Tiers Variable/node Unit Comments

Context Sex Female, male Sex of child

Context Region North, Central, South Place of residence in one of the following European countries: North (Estonia, Sweden), Central 
(Belgium, Germany, Hungary), South (Cyprus, Spain)

Context Migrant No, yes Children were assumed to have a migrant background if they usually speak with their parents in a 
language other than the national language of the corresponding country

Early life Mother’s age at birth Years

Early life Total breastfeeding Months Months of breastfeeding, also in combination with other food, prior child’s diet was fully inte-
grated into usual household diet

Early life Birthweight Gram

Early life Weeks of pregnancy Weeks

Early life Formula milk No, yes Type of feeding prior child’s diet was fully integrated into the usual household diet

Early life HH diet Months Month when the child was introduced into the household’s diet

Early life Smoking during pregnancy No, yes Mother consumed tobacco during pregnancy

B, FU1, FU2 Age Months

B, FU1 School Kindergarten, school, neither one Child attended kindergarten/pre-school, school or neither one

B, FU1, FU2 AVM h/day
Audio-visual media consumption score: average hours per day spent with TV, videos, or DVDs, 
accounting for weekdays and weekends. Hours using the internet per week were only assessed at 
FU2

B, FU1, FU2 zBMI z-score

Z-scores of the body mass index (kg/m2). Body weight was measured in fasting state in light 
underwear on a calibrated scale accurate to 0.1 kg (adapted Tanita BC 420 MA for chil-
dren ≤ 6 years, Tanita BC 418 MA for children > 6 years, Tanita Europe GmbH, Sindelfingen, 
Germany); height was measured to the nearest 0.1 cm by a SECA 225 Stadiometer (Seca GmbH & 
Co. KG., Hamburg, Germany)

B, FU1, FU2 Mother’s BMI kg/m2 Body mass index of the mother, derived from self-reported weight and height

B, FU1, FU2 Daily family meals No, yes The family has a meal together at least once a day

B, FU1, FU2 Income Low, middle, high Country-specific household income categories, harmonised between countries60

B, FU1, FU2 ISCED Low, middle, high International Standard Classification of Education: The partners’ highest attained level of 
education61

B, FU1, FU2 PA h/day
Physical activity measured by questionnaire based on the reported average time spent playing 
outdoors (hours/week) and the time being in recreation areas or doing sports in a sport club 
(hours/week)

B, FU1, FU2 Sleep h/day

Nocturnal sleep in hours was assessed by self-reports in FU1 and FU2. The average nocturnal 
sleep (hours/night) was calculated as the weighted average of reported usual weekday and 
weekend sleeping times. At baseline, nocturnal sleep was derived based on 24-h dietary recall 
data where the parents were asked ‘What time did your child go to bed?’ and ‘What time did your 
child get up?’

B, FU1, FU2 Well-being %
Composite sum score; it sums up the answers of 16 items reporting emotional well-being, self-
esteem, family relations and peer contacts during the last week, where each item ranges from 0 to 
3 points22,62

B, FU1, FU2 YHEI % Youth healthy eating score20

B, FU1, FU2 HOMA z-score Z-score of the HOmeostatic Model Assessment index to quantify insulin resistance; the HOMA-
IR index [pg/ml*mg/dl] was calculated from insulin and glucose obtained from blood samples

FU2 Alcohol No, yes Ever alcohol drinking in teen’s life-time

FU2 Puberty Pre- or early pubertal, pubertal Pubertal status based on development of voice (boys) and menarche (girls)63. Different pubertal 
stages were displayed in the questionnaire to assist the self-assessment

FU2 Smoking No, yes Ever smoking tobacco in teen’s life-time



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6822  | https://doi.org/10.1038/s41598-024-56721-y

www.nature.com/scientificreports/

directed acyclic graph (MPDAG), which is similar to a CPDAG but can contain more directed edges due to back-
ground knowledge13,34. tPC determines an MPDAG under the restriction that edges are prohibited from pointing 
backwards in time which also reduces the number of required statistical tests for conditional independencies. In 
our analysis we pre-specified the following ordering: region, sex and migration → ISCED and income at baseline 
→ all early life factors → baseline variables → ISCED and income at FU1 → remaining FU1 variables → ISCED 
and income at FU2 → remaining FU2 variables. Additionally, specific orientations between certain pairs of vari-
ables were prohibited, for example from breastfeeding to birth weight. We carried out a number of alternative 
and sensitivity analyses to check the robustness of the estimated MPDAG against specific analytical choices: (a) 
while the main analysis used a nominal level of 0.05 for the conditional independence tests, we compared this 
with a nominal level of 0.1 (MI-0.1); (b) using test-wise deletion (TWD) instead of MI and (c) applying a differ-
ent, likelihood-based, causal discovery algorithm which uses the EM algorithm for missing values35. Moreover, 
to assess the general stability of the output we drew 100 bootstrap samples from the analysis data, applied to each 
a single random forest imputation using the same imputation model as in the main analysis, and then estimated 
100 bootstrap graphs (BGs). Thus, we can take the frequencies of interesting causal structures in the bootstrap 
samples as indication of their stability, e.g. specific edges (direct causal links) or indirect links via (partially) 
directed paths between exposures and outcome. In a directed path, all edges between two nodes are directed, 
while in a partially directed path, at least one edge between two nodes is undirected. More background on causal 
graphs and other graph characteristics are described in the supplement.

Results
Study sample
The study sample included 5,112 children who participated in all three surveys. Table 2 shows that children were 
on average aged 5.9 years at baseline and 11.7 years at FU2. At baseline, 12.6% of the children have overweight 
and 6.7% suffer from obesity. BMI z-scores increased on average by approx. 0.2 standard deviations (SD) over 
the years (0.32 to 0.55). The overall number of missing values was 15% with some variables exhibiting very large 
numbers of missings such as PA at FU2 (50.1%) (see Figure S1 and Table S1 characteristics after imputation). 
Diagnostic plots of the multiply imputed data were satisfactory (see Figure S2).

Cohort causal graph
The CCG resulting from our main analysis is shown in Fig. 1 (see also https://​bips-​hb.​github.​io/​ccg-​child​hood-​
obesi​ty for an interactive graph). Overall the graph had 104 edges linking 51 variables, of which 12 could not be 
oriented. Focusing on BMI as outcome, there were direct links from region, familial educational level, birthweight 
and mother’s BMI (B) to BMI (B); in contrast, there were no paths from any of the modifiable risk factors to BMI 
(B). However, all of these modifiable baseline factors (sleep, AVM, YHEI, PA, well-being) were possible ances-
tors and hence possible causes of BMI in both follow-ups (cf. Table 3), i.e. they had partially directed paths to 
BMI. These included paths from all five modifiable baseline risk factors to BMI six years later. For instance, there 
were five partially directed paths from YHEI (B) to BMI (FU2) (Fig. 2). Almost all paths between exposures and 
BMI (FU2) went through AVM (FU1) and HOMA (FU1, FU2), many also through well-being (FU1) and some 
through YHEI (B). In the CCG we also see that the exposures themselves were moderately interconnected within 
the same tier and across time, with many orientations of edges among the exposures at FU1 being undecidable. 
Note also that most repeated measurements were linked by edges with the exception of BMI.

Bootstrap analysis
We assessed the stability of selected features of the main CCG based on 100 BGs. Of the 104 edges in the main 
CCG, 36 were found in more than 80% of BGs, with a further six edges in more than 70% of BGs (see Table S2). 
Of these edges, 16 were between repeated measures of the same variable, e.g. HOMA.FU1-HOMA.FU2, and 13 
emanated from modifiable risk factors. In contrast, 50 edges occurred in 50% or fewer of the BGs. The presence 
of any paths from exposures to BMI was rather stable. Specifically, we considered directed or partially directed 
paths from baseline modifiable exposures to later BMI (FU2) (see Table 4). The most frequent were paths from 
YHEI to BMI (84% of BGs), while paths from sleep duration to BMI were in 75% of the BGs; paths from the 
other three baseline exposures (well-being, AVM, PA) to BMI occurred in 80% of the BGs. There were mostly 
multiple causal paths found between an exposure and the outcome. For instance, the median number of different 
(partially) directed paths from AVM (B) to BMI (FU2) found in each BG was 20. No BGs ever contained a direct 
edge from a baseline modifiable exposure to BMI at FU2. Table 5 shows patterns between repeated measurements 
in the main CCG and the BGs. It can be seen for BMI that in 95 BGs the paths B → FU1 → FU2 or B → FU1 → 
FU2 ← B were found despite not being contained in the main CCG.

The BGs contained on average 22 edges more than the CCG in the main analysis. For comparison with this 
main CCG, we constructed a graph containing the same number of edges based on the most frequent edges; 
this resulted in the inclusion of all edges that occurred in more than 44 of BGs (see Fig. S6). The (structural) 
Hamming distance between main CCG and BG44 was 56 (73), indicating that about half of the edges between 
the two graphs are the same.

Sensitivity analyses
Using a larger nominal significance level of 10% (CCG MI-0.1) essentially confirmed the core results from the 
main graph with only few more edges (Table 6, Fig. S3). The CCGs estimated with two alternative methods for 
missing values (TWD and EM) were with 40 to 50% more edges less sparse than the main graph (cf. Figs. S4, 
S5), where only 20% of the edges in the main analysis were also found in the TWD graph. This was also reflected 
by the Hamming distances, which was large with 205 for TWD compared to the main CCG. The structural 

https://bips-hb.github.io/ccg-childhood-obesity
https://bips-hb.github.io/ccg-childhood-obesity
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Time-invariant variables N = 5112a

Region

 Central (Belgium, Germany, Hungary) 1378 (27%)

 North (Estonia, Sweden) 1475 (29%)

 South (Cyprus, Italy, Spain) 2259 (44%)

Female 2505 (49%)

Migration background 319 (6.7%)

 Missing 385

Completed weeks of pregnancy 39.08 (1.88)

Missing 2995

Tobacco smoking during pregnancy

 Never 4285 (88.7%)

 Rarely 171 (3.5%)

 Several occasions a week 150 (3.1%)

 Daily 226 (4.7%)

 Missing 280

Mother’s age at birth (yrs) 29.8 (5.0)

 Missing 494

Birthweight (g) 3345 (574)

 Missing 180

Total breastfeeding (months) 6.8 (6.3)

 Missing 247

Was fed with formula milk 2640 (51.6%)

Missing 0

Fully integrated into household’s diet (month) 14.5 (6.5)

 Missing 722

Time-varying variables Baseline, N = 5112a FU1, N = 5112a FU2, N = 5112a

Age [yrs] 5.89 (1.78) 7.87 (1.79) 11.69 (1.81)

School

 Kindergarten 2452 (51.7%) 1100 (23.4%) –

 School 2250 (47.4%) 3584 (76.4%) –

 Neither 41 (0.9%) 8 (0.2%) –

 Missing 369 420 –

BMI z-score 0.32 (1.17) 0.43 (1.17) 0.55 (1.11)

BMI

 Underweight 570 (11.2%) 506 (9.9%) 394 (7.7%)

 Normal weight 3559 (69.6%) 3397 (66.5%) 3352 (65.6%)

 Overweight 643 (12.6%) 819 (16.0%) 986 (19.3%)

 Obesity 340 (6.7%) 390 (7.6%) 380 (7.4%)

Well-being (%) 84 (10) 82 (10) 82 (11)

 Missing 636 552 625

Audio-visual media consumption (h/day) 1.57 (0.89) 1.89 (0.94) 2.94 (1.83)

Missing 306 394 654

Physical activity (h/week) 18 (11) 18 (10) 17 (9)

Missing 252 357 2561

Nocturnal sleep (h/day) 10.19 (0.96) 10.01 (0.90) 9.29 (1.03)

Missing 2130 781 449

Youth healthy eating index (%) 63 (11) 63 (11) 57 (11)

Missing 343 446 350

Daily family meals 3488 (73.5%) 3548 (76.5%) 2662 (67.1%)

Missing 367 476 1147

Homa index z-score 0.02 (1.10) 0.40 (0.97) 0.13 (1.15)

Missing 2902 2466 1911

Pubertal – – 1931 (41.2%)

Missing – – 423

Ever alcohol drinking – – 738 (32.7%)

Missing – – 2852

Continued
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Hamming distance, which additionally counts directional changes, indicated for the MI-0.1 graph that the 
increase of the nominal level resulted in some undirected edges being directed (e.g., well-being (FU2) → YHEI 
(FU2)), or vice versa, and others to be re-directed (e.g., the edge between PA (B) and YHEI (B)).

Discussion
The estimated CCG suggested rather sparse causal relationships between various variables around childhood 
obesity, with dependencies of repeated measures across time being the strongest and most stable as one might 
expect. All the individually modifiable risk factors diet, PA, sleep duration, subjective well-being and audio-visual 
media consumption at baseline were stably found to be possible indirect, but not direct, causes of BMI 6 years 
later, mostly via the HOMA index which was closely linked to BMI. Associations between media exposure36–39, 
sleep40–42, PA40, diet40, well-being41 and insulin resistance measured by HOMA were previously found by others 
and in the IDEFICS/I.Family cohort, partly in smaller subsets and using different variables such as objective 
accelerometer-based measurements of PA43–45. Insulin resistance is strongly associated with obesity, which is 
reflected by an undirected edge in the CCG. Excess adipose tissue is a known risk factor for insulin resistance; 
however, normal-weight children may also be affected46. From the early life factors, birthweight was a (possible) 
ancestor of BMI (B, FU1, FU2) and formula milk feeding for BMI (FU1, FU2). High birth weight is known to 
be associated with childhood obesity47; and a recent systematic review describes that there is moderate evidence 
that breast milk consumption reduces the risk of overweight and obesity at age 2 years and older48.

Overall, our results suggested that early life interventions targeting health behaviours of the child will have 
some, but only indirect effects on BMI49. Hence, cultural, perinatal and familial variables are potentially more 
immediate causal influences on obesity. Based on the selected CCG, we might therefore hypothesise that early life 
interventions alone may be insufficient to prevent childhood obesity. Indeed, Börnhorst et al.49 found that even 
sustained (over 13 years) and joint hypothetical interventions on multiple modifiable behaviours only reduced 
the risk of obesity in children from 31 to 25%. Thus, our finding is compatible with the view that the causal 
structure governing childhood health behaviours and outcomes should be considered from a complex adaptive 
system’s perspective50–52. Lee et al.50 emphasize that obesity is shaped by multiple factors which act at different 
scales such as individual behaviour and physiology, but also genetics, social dynamics, the built environment, 
and societal forces. As a way forward, Maitland et al.53, for example, describe the practical implementation of a 
“whole of systems” approach.

Using sensitivity analyses we investigated the robustness of the CCG regarding the handling of missing 
values and used bootstrap samples to assess the stability of learned graph structures. The method for handling 
missing values is not negligible as more complex and quite different graphs were estimated using TWD or the 
EM-algorithm instead of MI. Moreover, it was noticeable that the TWD graph, unlike the CCG, was not able 
to detect edges between repeated measurements. Witte et al.27 showed that TWD can fail in recovering certain 
causal structures regardless of the underlying missingness mechanism (MCAR, MAR or MNAR). Further, MI 
was usually more efficient than TWD, although datasets including variables with mixed measurement scales 
were more problematic.

We used bootstrap resamples to account for the uncertainty in the selection of the CCG​54–56. In interpreting 
the results, it has to be kept in mind that the BGs tended to have more edges than the main CCG, due to spuri-
ous dependences induced by sampling with replacement from the given data56,57. We therefore considered the 
BGs purely as a measure of the stability rather than, say, for estimating edge probabilities. Thus, edge and path 

Time-varying variables Baseline, N = 5112a FU1, N = 5112a FU2, N = 5112a

Ever tobacco smoking – – 213 (9.3%)

Missing – – 2812

Mother’s BMI (kg/m2) 23.8 (4.2) 24.0 (4.3) 25.5 (5.1)

Missing 271 384 2732

Household’s income

 Low 1612 (36.0%) 1,410 (31.4%) 1,197 (28.5%)

 Middle 1179 (26.3%) 1,130 (25.2%) 1,451 (34.5%)

 High 1693 (37.8%) 1,949 (43.4%) 1,559 (37.1%)

 Missing 628 623 905

ISCED

 Low 254 (5.1%) 232 (4.8%) 248 (4.9%)

 Middle 2,085 (42.2%) 2,004 (41.5%) 2,147 (42.3%)

 High 2,600 (52.6%) 2,590 (53.7%) 2,681 (52.8%)

 Missing 173 286 36

Table 2.   Characteristics of children in the IDEFICS/I.Family cohort participating in all three surveys from 
2007 to 2014. a n (%); mean (standard deviation). FU1 first follow-up, FU2 second follow-up, BMI body mass 
index, ISCED highest parental education (International Standard Classification of Education).
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frequencies indicate the stability of presence and absence of certain graph structures. While about a third of the 
learned edges in the main analysis were quite stable, we also found that half of the edges were rather unstable. 
Similarly, we found that the existence of some paths from early modifiable risk factors to later BMI was quite 
stable, but the actual paths themselves were very variable, i.e. a particular path may not be selected in more than 
20% of BGs. In contrast, the absence of direct links from early modifiable risk factors to later BMI was very 
stable as these occurred in no BGs. This can be interpreted as the absence of direct causal influences even when 
the assumption of causal sufficiency is violated.

The main analysis was able to find the expected paths for repeated measurements of HOMA and all modifiable 
risk factors, but not for BMI, and only partly for daily family meals and mother’s BMI. The BGs runs revealed 
that missing edges between the repeated measurements of BMI are very rare. The CCG is therefore difficult to 
explain in this respect. In contrast, the learned CCG suggests the plausible relationship that BMI is conditionally 
independent of modifiable risk factors given the child’s insulin resistance status (HOMA).

Figure 1.   Causal graph of childhood obesity based on N = 5112 European children and adolescents born 
between 1997 and 2006 estimated by the tiered PC-algorithm for multiple imputed datasets. The nodes colours 
correspond to the different stages of the life course. Edges without arrowheads could not be orientated by the 
algorithm. An overlap of nodes and edges was unavoidable. We advise to look at the interactive graphs here: 
https://​bips-​hb.​github.​io/​ccg-​child​hood-​obesi​ty/. AVM audio-visual media consumption, B baseline, FU1 first 
follow-up, FU2 second follow-up, HH diet: month when the child was introduced into the household’s diet, 
HOMA homeostatic model assessment-insulin resistance, ISCED highest parental education (International 
Standard Classification of Education), PA physical activity, YHEI youth healthy eating index, zBMI body mass 
index z-score.

https://bips-hb.github.io/ccg-childhood-obesity/
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The instabilities that we found through the bootstrap analysis might partly be explained by the rather low 
sample size for the perhaps rather weak associations, the extra uncertainty due to the high proportion of missing 
values, and the large intervals between follow-ups. Especially the confidence in specific paths might be rather low 
which is critical. A greater stability would, for instance, be desirable for subsequent analyses that use a learned 
causal graph to determine adjustment sets to estimate causal effects8. Some graphical rules for identifying adjust-
ment sets just take the adjacent nodes of the exposure into account and others require also the mediators between 
exposure and outcome, for which reliable knowledge on causal paths is required58,59.

Recently, Peterson, Osler & Ekstrom14 also proposed an extension of the PC-algorithm to include temporal 
information for inferring a graph from observational data. However, our extensions of the PC-algorithm allows 
the first application of causal discovery to real-world cohort data accounting jointly for missing values, mixed 
discrete and continuous variables, and background knowledge such as time-ordering. The required theory and 
software have only recently been developed11,27.

The IDEFICS/I.Family cohort provides a rich source of phenotypes capturing different dimensions of dietary 
and lifestyle related health aspects repeatedly measured over the early life course. However, a challenge was the 
choice of variables included in the analysis; these needed to be sufficiently different (i.e. not measuring the same 
underlying construct) to find meaningful dependencies between the different dimensions of obesity. The further 
sensitivity analyses (see web page) showed that different choices yielded slightly different selected CCGs, but the 
overall message remained the same: adolescents’ BMI was not directly affected by earlier behavioural variables, 
but had indirect, potentially causal, links through AVM (FU1) and HOMA (FU1, FU2).

Further general sources of bias with observational data could also affect our results, such as reporting or 
selection bias. However, all participating countries adhered to a harmonised protocol and to quality control 
procedures ensuring high data quality.

Table 3.   Possible ancestors of BMI at baseline, first and second follow up. f.p.: Path between a pair of vertices 
was forbidden a priori (e.g. due to time constraints). AVM audio-visual media consumption, BMI body mass 
index, B baseline, C context variables, ELF early life factors, FU1 first follow-up, FU2 second follow-up, HOMA 
homeostatic model assessment-insulin resistance, ISCED highest parental education (International Standard 
Classification of Education), PA physical activity, sleep nocturnal sleep, YHEI youth healthy eating index.

Tier Ancestors of BMI (B) Ancestors of BMI (FU1) Ancestors of BMI (FU2)

C Sex Sex Sex

C Region Region Region

C Migrant Migrant Migrant

ELF Mother’s age at birth Mother’s age at birth Mother’s age at birth

ELF Birthweight Birthweight Birthweight

ELF Weeks of pregnancy Weeks of pregnancy Weeks of pregnancy

ELF Formula milk Formula milk

B Income Income Income

B ISCED ISCED ISCED

B Mother’s BMI Mother’s BMI Mother’s BMI

B Age Age Age

B School School

B AVM AVM

B BMI BMI

B PA PA

B Sleep Sleep

B Well-being Well-being

B YHEI YHEI

B HOMA HOMA

FU1  f.p. AVM (FU1) AVM (FU1)

FU1  f.p. BMI (FU1)

FU1  f.p. PA (FU1) PA (FU1)

FU1  f.p. Well-being (FU1) Well-being (FU1)

FU1  f.p. HOMA (FU1) HOMA (FU1)

FU2  f.p.  f.p. Mother’s BMI (FU2)

FU2  f.p.  f.p. HOMA (FU2)
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Conclusion
Causal graphs represent causal relationships between variables. An extended version of the PC algorithm now 
allows learning causal graphs from tiered data including missing values. Such a causal graph discovery analysis 
was performed on the IDEFICS/I.Family cohort investigating (causal) dependencies underlying childhood and 
adolescent obesity in 2 to 16-year-old Europeans.

The resulting CCG suggested that cultural, perinatal and familial factors and insulin resistance (HOMA-IR) 
potentially played a more immediate causal role than individually modifiable risk factors which had stable but 
only indirect relations with adolescents’ BMI.

Figure 2.   All five possible causal paths between the Youth Healthy Eating Index (YHEI) at baseline and zBMI 
at the second follow-up (AVM audio-visual media consumption, PA physical activity). AVM audio-visual 
media consumption, B baseline, FU1 first follow-up, FU2 second follow-up, HH diet month when the child was 
introduced into the household’s diet, HOMA homeostatic model assessment-insulin resistance, ISCED highest 
parental education (International Standard Classification of Education), PA physical activity, YHEI youth 
healthy eating index, zBMI body mass index z-score.
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Audio-visual media consumption

Partially directed paths from AVM (B) to BMI (FU2) N Directed paths from AVM (B) to BMI (FU2) N

CCG​ Shortest path:
 AVM (B) → AVM (FU1) − HOMA (FU1) → HOMA (FU2) − BMI (FU2)

 Number of paths 6 0

BG  Number of BGs with any partially directed path 80 26

Most frequent path:
 AVM (B) → AVM (FU1) − Well-being (FU1) − HOMA (FU1) → HOMA 
(FU2) − BMI (FU2)

11 AVM (B) → Sleep (B) → BMI (B) → BMI (FU1) → BMI (FU2) 4

3 most frequently visited nodes (based on all paths):

 YHEI (B) 63% BMI (FU1) 55%

 AVM (FU1) 62% HOMA (FU1) 39%

 Sleep (FU1) 55% YHEI(B) 30%

Physical activity

Partially directed paths from PA (B) to BMI (FU2) N Directed paths from PA (B) to BMI (FU2) N

CCG​
Shortest path:
 PA (B) → YHEI (B) → AVM (FU1) − HOMA (FU1) → HOMA (FU2) − BMI 
(FU2)

 Number of paths 13 0

BG  Number of BGs with any partially directed path 80 19

Most frequent path:
 PA (B) → PA (FU1) − Well-being (FU1) − HOMA (FU1) → HOMA 
(FU2) − BMI (FU2)

12 PA (B) → PA (FU1) → Daily family meals (FU2) → Mother’s BMI (FU2) → 
BMI (FU2) 4

3 most frequently visited nodes (based on all paths):

 YHEI (B) 82% YHEI (B) 61%

 AVM (FU1) 62% BMI (FU1) 42%

 Well-being (FU1) 59% Well-being (B) 36%

Sleep duration

Partially directed paths from sleep (B) to BMI (FU2) N Directed paths from sleep (B) to BMI (FU2) N

CCG​ Shortest path:
 Sleep (B) → HOMA (FU1) → HOMA (FU2) − BMI (FU2)

 Number of paths 2 0

BG  Number of BGs with any partially directed path 75 32

Most frequent path(s):
 Sleep (B) → Sleep (FU1) → Sleep (FU2) − Puberty stage (FU2) − zBMI (FU2) 19 Sleep (B) → HOMA (FU1) → BMI (FU2),

Sleep (B) → HOMA (FU1) → HOMA (FU2) → BMI (FU2) 8

3 most frequently visited nodes (based on all paths):

 AVM (B) 63% BMI (FU1) 33%

 AVM (FU1) 60% HOMA (FU1) 32%

 Puberty stage (FU2) 58% AVM (B) 28%

Well-being

Partially directed paths from well-being (B) to BMI (FU2) N Directed paths from well-being (B) to BMI (FU2) N

CCG​
Shortest path:
 Well-being (B) → YHEI (B) → AVM (FU1) − HOMA (FU1) → HOMA 
(FU2) − BMI (FU2)

 Number of paths 6 0

BG  Number of BGs with any partially directed path 81 26

Most frequent path:
 Well-being (B) → Well-being (FU1) − HOMA (FU1) → HOMA (FU2) − BMI 
(FU2)

20 Well-being (B) → HOMA (FU1) → BMI (FU2) 4

3 most frequently visited nodes (based on all paths):

 YHEI (B) 78% HOMA (FU1) 53%

 AVM (FU1) 66% YHEI (B) 45%

 Sleep (FU1) 61% BMI(FU1) 45%

Youth healthy eating index

Partially directed paths from YHEI (B) to BMI (FU2) N Directed paths from YHEI (B) to BMI (FU2) N

CCG​ Shortest path:
 YHEI (B) → AVM (FU1) − HOMA (FU1) → HOMA (FU2) − BMI (FU2)

 Number of paths 5 0

BG  Number of BGs with any partially directed path 84 26

Continued



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6822  | https://doi.org/10.1038/s41598-024-56721-y

www.nature.com/scientificreports/

Table 4.   Directed and partially directed paths between modifiable risk factors at baseline and BMI 6 years 
later in the original CCG and in 100 Bootstrap graphs (BGs). AVM audio-visual media consumption, B 
baseline, BMI body mass index, FU1 first follow-up, FU2 second follow-up, HOMA homeostatic model 
assessment-insulin resistance, ISCED highest parental education (International Standard Classification of 
Education), PA physical activity, Sleep nocturnal sleep, YHEI youth healthy eating index.

Youth healthy eating index

Partially directed paths from YHEI (B) to BMI (FU2) N Directed paths from YHEI (B) to BMI (FU2) N

Most frequent paths:
 YHEI (B) − Daily family meals (B) − Mother’s BMI (B) − BMI (B) → BMI 
(FU1) → BMI (FU2)

19

YHEI (B) → AVM (B) → AVM (FU1) → Daily family meals (FU2) → 
Mother’s BMI (FU2) → BMI (FU2)
YHEI (B) → Daily family meals (B) → Mother’s BMI (B) → BMI (B) → BMI 
(FU1) → BMI (FU2)
YHEI (B) → AVM (FU1) → Daily family meals (FU2) → Mother’s BMI 
(FU2) → BMI (FU2)

2

3 most frequently visited nodes (based on all paths):

 AVM (FU1) 62% HOMA (FU1) 32%

 Well-being (FU1) 55% BMI (FU1) 30%

 Sleep duration (FU1) 54% AVM (B) 28%

Table 5.   Path patterns between repeated measurements in CCG and Bootstrap graphs. AVM audio-visual 
media consumption, B baseline, BMI body mass index, FU1 first follow-up, FU2 second follow-up, HOMA 
homeostatic model assessment-insulin resistance, ISCED highest parental education (International Standard 
Classification of Education), PA physical activity, sleep nocturnal sleep, YHEI youth healthy eating index. Bold 
numbers: path included in main CCG.

Pattern BMI AVM PA Sleep Well-being YHEI HOMA Daily family meals Mother’s BMI Income ISCED

None 2 – – 2 – 2 0 1 25 0 0

B → FU1 2 2 10 2 – – 2 63 0 0 1

B → FU2 – 1 2 – 1 1 0 2 45 0 0

B → FU1, B → FU2 – 1 11 1 2 1 1 34 0 0 0

FU1 → FU2 1 9 1 13 5 1 0 0 28 35 36

B → FU2, FU1 → FU2 – 1 1 1 1 – 0 0 2 5 6

B → FU1 → FU2 82 20 25 37 38 2 59 0 0 57 57

B → FU1 → FU2 ← B 13 66 50 44 53 93 38 0 0 3 0

Table 6.   Characteristics of the discovered graph without singletons. Avg.BG occurs on average in each BootG, 
BGx summarized bootstrap graph with edges that occurred at least × times in 100 bootstrap replications, EM 
structural EM algorithm, main multiple imputation with nominal level of 0.05, MI-0.1 multiple imputation 
with nominal level of 0.1, MEU mean edge uncertainty54, TWD test-wise deletion. a Region, AVM (FU1), well-
being (B). b AVM (FU1), well-being (B). c Migrant. d Region. e School (B). g Age (FU1) > School (FU1) > Daily 
family meals (FU1) > YHEI (FU1) > Well-being (FU1) > AVM (FU1) > HOMA (FU1) > HOMA (FU2) > BMI 
(FU2). h Age (FU1) > School (FU1) > Daily family meals (FU1) > YHEI (FU1) > AVM (FU1) > HOMA 
(FU1) > HOMA (FU2) > BMI (FU2). i Weeks of pregnancy (EL) > Daily family meals (B) > Sleep (B) > AVM 
(B) > Well-being (B) > HOMA (B) > BMI (FU2). j Smoking during pregnancy (EL) > Weeks of pregnancy 
(EL) > Birthweight (EL) > Mother`s BMI (B) > AVM (B) > Well-being (B) > Well-being (FU1). k Age (B) > School 
(B) > Well-being (B) > YHEI (B) > PA (B) > PA (FU1). l Age (B) > School (B) > Well-being (B) > Well-being 
(FU1) > Well-being (FU2).

Characteristics Main MI-0.1 TWD EM Avg.BG BG44 BG75

Number of selected edges 104 113 139 157 126 104 46

Number of undirected edges 12 13 14 0 12 3 0

Avg. node degree 4.8 4.9 6.0 6.2 5.4 4.2 1.8

Max. node degree 10a 11b 13c 24d 12 9e 6e

Avg. shortest path length 2.8 2.7 2.4 2.4 2.7 2.2 1.4

Longest shortest path 9g 8h 7i 7j 8 6k 5l

Hamming distance64 – 19 205 117 88 56 70

Structural Hamming distance65 – 34 214 131 104 73 86

Mean edge uncertainty54 – – – – 10.5 4.4 0.8
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Data availability
All CCGs are available as interactive graphs at https://​bips-​hb.​github.​io/​ccg-​child​hood-​obesi​ty/. The R analysis 
code is available at https://​github.​com/​bips-​hb/​ccg-​child​hood-​obesi​ty. All data analyzed within the paper were 
obtained from the IDEFICS/I.Family cohort and is available from the I.Family consortium (http://​www.​ifami​
lystu​dy.​eu) on reasonable request.
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