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Abstract
Introduction  While pharmaceutical companies aim to leverage real-world data (RWD) to bridge the gap between clinical 
drug development and real-world patient outcomes, extant research has mainly focused on the use of social media in a post-
approval safety-surveillance setting. Recent regulatory and technological developments indicate that social media may serve 
as a rich source to expand the evidence base to pre-approval and drug development activities. However, use cases related to 
drug development have been largely omitted, thereby missing some of the benefits of RWD. In addition, an applied end-to-
end understanding of RWD rooted in both industry and regulations is lacking.
Objective  We aimed to investigate how social media can be used as a source of RWD to support regulatory decision making 
and drug development in the pharmaceutical industry. We aimed to specifically explore the data pipeline and examine how 
social-media derived RWD can align with regulatory guidance from the US Food and Drug Administration and industry 
needs.
Methods  A machine learning pipeline was developed to extract patient insights related to anticoagulants from X (Twitter) 
data. These findings were then analysed from an industry perspective, and complemented by interviews with professionals 
from a pharmaceutical company.
Results  The analysis reveals several use cases where RWD derived from social media can be beneficial, particularly in 
generating hypotheses around patient and therapeutic area needs. We also note certain limitations of social media data, 
particularly around inferring causality.
Conclusions  Social media display considerable potential as a source of RWD for guiding efforts in pharmaceutical drug 
development and pre-approval settings. Although further regulatory guidance on the use of social media for RWD is needed 
to encourage its use, regulatory and technological developments are suggested to warrant at least exploratory uses for drug 
development.

1  Introduction

1.1 � Real‑World Data (RWD) and Social Media

The evidence base for pharmaceutical products, typically 
randomised clinical trials, aims to ensure patient safety 
and drug efficacy. However, in recent years, it has come 
under increasing scrutiny. On the one hand, conventional 
randomised clinical trials have been shown to not always 
reflect the demographics of real-world patient populations 
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Key Points 

Social media displays utility for better understanding 
real-world patient outcomes and experiences.

There is a gap in understanding of how social media can 
be used for drug development, both pre-approval (e.g. to 
guide clinical trial development and to observe similar 
competitor products) and post-approval (e.g. accounting 
for off-label use or developing patient education mate-
rial). Extant research has primarily focused on using 
social media data for safety surveillance after it has been 
released to the market.

Regulations accounting for this are incomplete and 
require updating to incentivise industry and academia.

http://crossmark.crossref.org/dialog/?doi=10.1007/s40264-024-01409-5&domain=pdf
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[1]. On the other hand, observing drug usage in the real 
world, outside randomised clinical trials, is emerging as a 
potential means for more targeted ways of informing drug 
efficacy and safety profiles [2, 3]. Observing real-time usage 
is also important for drugs that are used off-label, where the 
evidence of the appropriateness of the drug or the dose for 
treating a condition is scarce [4]. As the appreciation of the 
gap between clinical drug development and real-world treat-
ment outcomes becomes apparent, adopting novel means of 
understanding patient outcomes and perspectives becomes 
increasingly important for both pharmaceutical and technol-
ogy companies, which are investing tens of billions of dol-
lars in health-related data analysis capabilities [5].

Recent years have seen a wave of efforts to bridge this 
gap. In 2016, the USA passed the 21st Century Cures Act 
designed to accelerate drug development and, among other 
goals, modernise the collection and analysis of drug efficacy 
and safety data [6]. This coincided with a patient-centric 
paradigm shift in both drug development and safety moni-
toring, often centred around real-world data (RWD), i.e. the 
various patient data collected outside of traditional clinical 
development. Examples include using electronic healthcare 
records and insurance claims to understand patient responses 
to aspirin doses [3], and the use of RWD to supplement 
regulatory approvals of therapies for diffuse large B-cell 
lymphoma based on clinical trials [7]. The need for addi-
tional data sources has also been linked to under-reporting 
of adverse drug reactions (ADRs), with a staggering 90–94% 
of such reactions being unreported [8].

Unstructured and spontaneously recorded, often digitally, 
patient health information is distinct from RWD collected 
from electronic healthcare records or other forms of struc-
tured health data, and has been suggested as a possible sup-
plementary source to traditional data captured in clinical 
trials [9]. One such source garnering increasing attention is 
social media [10]. Sparked by the availability of data and the 
development of advanced analytical tools, many researchers 
have turned to social media to collect patient health informa-
tion [11–13]. Today, machine learning and natural language 
processing (NLP) algorithms can effectively find relevant 
information in user-generated content on social networks 
or in patient health forums. Prior work has, for instance, 
targeted social media to extract patient health information 
on adverse events (AEs) [14] or drug–drug interactions [15]. 
Subsequently, using social media for RWD emerges as a 
potential addition to the drug developer’s toolbox for under-
standing patient needs and supporting product claims.

Several studies have demonstrated the feasibility of col-
lecting RWD from social media [16–19]. However, in the 
scope of RWD and RWE, most research so far has focused 
almost exclusively on applications for safety monitoring. 
Hence, social media has primarily been situated in the 
context of detecting safety events after a drug has been 

developed and marketed. This means that the potential util-
ity of social media for RWD in the drug development set-
ting needs more research. “Development” here refers both 
to pre-approval activities and to any changes performed 
post-approval to increase the scope of drug applicability 
or enhance patient understanding of the drug. The need to 
focus on development is also highlighted by the fact that the 
US Food and Drug Administration (FDA) only relatively 
recently recognised the use of social media to support ear-
lier pre-approval stages of drug development [9]. As regula-
tory guidance is relatively new, its applications in practice 
are yet unclear. In addition, extant research has typically 
focused separately on developing the technology for min-
ing social media, conceptualising the medium’s limitations 
and opportunities, or discussing the regulatory landscape 
for RWD. These themes are yet to be synthesised in a single 
piece of work.

This paper addresses these gaps by investigating how 
social media can be used as a source of RWD in drug devel-
opment to support regulatory decision making. It develops 
a machine learning pipeline to identify AEs and potential 
patient conditions related to anticoagulants from X (previ-
ously called Twitter) data. These findings are analysed from 
the industry perspective of regulatory decision making, com-
plemented by interviews with professionals from a pharma-
ceutical company, against the backdrop of recent regulatory 
guidance from the FDA. Use cases for social media RWD 
are proposed. It concludes on the utility of social media 
for regulatory decision making, implications for industry 
and regulators, and addresses remaining gaps from both an 
industry and regulatory point of view.

The contribution of this paper is two-fold. First, it pro-
poses actionable use cases and next steps to be further 
explored by industry, regulators and researchers. This is 
achieved by investigating how insights derived from social 
media data can be used to observe drug effects possibly 
outside clinical trials in an industry setting, given recent 
developments in technology, industry practice and regula-
tory maturity. Second, it highlights key elements in the end-
to-end data pipeline and, in doing so, removes some of the 
previously argued barriers for utilising social media, such 
as a low likelihood of detection of early safety signals. Of 
course, we do not argue for a replacement of clinical tri-
als with data collected from social media, or for generating 
evidence from social media posts. Instead, social media is 
seen as a low-burden real-time complement to other forms 
of collecting RWD.

1.2 � Social Media and Health Information

Social media has so far been mainly conceptualised in the 
scope of pharmacovigilance. Recent years have seen increas-
ing efforts to expand the traditional evidence base for drug 
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safety monitoring, and social media has likewise emerged 
as a potential source for identifying safety signals [10, 13, 
20]. Although this paper pursues a different goal than just 
safety monitoring—focusing on the regulatory activities 
related to the actual development of the drug rather than 
safety measures once it is marketed—scrutinising past work 
in this area sheds light on the opportunities and challenges 
of social media.

The promise of social media as a source of health infor-
mation is first owing to the size of data available and real-
time velocity of the data. Social media offers unprecedented 
volumes of information that can be captured [10], of course 
with appropriate ethical considerations and regulatory 
requirements (such as General Data Protection Regulation). 
For instance, the majority of US Internet users have been 
observed to use the Internet for discussing health informa-
tion and posting about specific symptoms, drug effects or 
general healthcare experiences [21].

In addition, social media open doors for real-time moni-
toring and signal detection [22]. Past research reported 
results of health monitoring on various social media plat-
forms, including Facebook [19], Instagram [16], Reddit 
[23] and X [17]. Of those, X has been a popular platform 
for collecting health data. One review of 128 articles on 
social media-based surveillance systems that use machine 
learning for real-time disease prediction found that 64% 
of those articles used it as their data source [24]. X’s large 
user base, real-time nature and the increasing openness 
of the public towards posting about adverse drug effects 
contribute to its potential for immediate scalable access to 
monitoring drug symptoms for pharmaceutical companies 
and regulators [17, 20].

Social media can also aid in understanding the uses 
of a drug post-approval, after it has been launched. Take 
off-label drug use, for example. Physicians frequently pre-
scribe drugs for uses other than what these drugs were 
approved for by the regulators. Moreover, this practice is 
legal from at least the FDA perspective [25]. Examples of 
drugs that have been widely used off-label include treat-
ment for diabetes mellitus used for cosmetic weight loss 
[26], drugs for malaria and parasites used to treat coro-
navirus disease 2019 [27], and aspirin to prevent heart 
attacks [25]. Data collected from social media can be used 
to identify patterns in off-label drug use on social plat-
forms such as Tinder [28] and Reddit [29].

Increased data availability is complemented by 
advances in NLP and information extraction. These have 
become increasingly important to the field of biomedicine, 
emerging as tools for researchers and clinicians to sup-
port patient safety [30]. The development of pre-trained 
language models such as BERT [31] that can be adapted 
to the domain and task of interest have made it possible to 
achieve state-of-the-art performance on medical datasets 

[32]. More recent large language models may also prove 
beneficial for this analysis [33]. Commercially available 
NLP systems including I2e or MetaMap are also capable 
of identifying AEs in patients’ language and translating 
these into medical ontologies such as MedDRA terminol-
ogy [34]. It is thus now possible to effectively deal with 
the large amounts of social media data and make sense 
of its otherwise unstructured and colloquial content [35].

By now, the tools and processes for leveraging social 
media for pharmacovigilance or other post-approval 
activities have been well researched [11]. Previous stud-
ies have for instance identified mentions of ADRs from 
Twitter posts [36], used patient-health forums to detect 
drug–drug interactions [37] or identified patients switch-
ing from one treatment to another using a combination 
of online social data [38]. As for the available volume of 
social media data, previously utilised volumes range from 
a few hundred examples [39] to tens of thousands [12] or 
several hundred thousand or more [40]. Bian et al. [11] 
processed a total of 2 billion tweets, although not collected 
specifically for their study.

1.3 � Drawbacks of Social Media for Health Research

At the same time, the utility of social media for patient 
health research remains debated [10]. For instance, although 
social media can offer unique insights into the patient per-
spective and patients are able to display their medical condi-
tions with varying degrees of sophistication [12], the pos-
sibility to use social media for detecting new or early safety 
signals has been questioned [41]. On the one hand, prior 
studies have concluded that social media cannot identify new 
safety signals nor detect them earlier relative to other sources 
[42, 43]. On the other hand, there have been suggestions that 
uncommon or unknown AEs caused by drug–drug interac-
tions could be discovered in Twitter posts [40]. In addition, 
in specific cases, certain safety signals may be detectable 
in advance. A 2022 study concluded that early signals of 
undesirable effects from Levothyrox use in France could be 
detected by mining patient comments from an online health 
forum [44]1.

Furthermore, online users may not be representative of 
the full patient population [22], which is complicated by the 
difficulty in deriving online user demographics [45]. Active 
users also tend to be younger, are more likely to be women 
and are less acutely ill [46], whereas functionally impaired 
and less educated people are less likely to engage in Internet 
use [47]. Still, social media usage is increasing among older 
populations [48], and younger carers or relatives may engage 
in online discussions on behalf of older patients [49]. In 
addition, while undoubtedly problematic from a data privacy 

1  We thank an anonymous reviewer for suggesting this case.



498	 D. Wessel, N. Pogrebnyakov 

perspective, several studies have successfully derived user 
demographics using various online features such as search 
query history, user language or reposting behaviour [50–53], 
although this approach has been underutilised in the scope 
of mining social media for health information [45].

Social media have also been criticised for a lack of veri-
fiable cause–effect relationships between drugs and AEs 
mentioned in posted content [54]. Compared with conven-
tional drug safety reports, following up with patients to ask 
questions about their treatments and establish root causes 
behind events may be difficult if not impossible [55]. At the 
same time, technological advancements in NLP tools, with a 
demonstrated capability to distinguish between for example 
drug indications and AEs mentioned in social media [56] 
or the use of modern model architectures to detect posts 
with mentioned cause–effect relationships [57], unlock the 
possibility to detect suspected cause–effect relationships in 
social media, although definite conclusions on causality can-
not be ascertained.

Last, regulatory acceptance of social media may not be 
on par with that of traditional sources [41], complicating its 
use. Health authorities enforce strict regulations as to how 
marketing authorisation holders, or companies authorised 
to market pharmaceutical products, should handle safety 
events. However, such regulations do not necessarily rec-
ognise the specifics of social media. Per FDA’s regulations, 
each safety event concerning a pharmaceutical company’s 
marketed drugs found in social media would have to be 
reported, resulting in the need for vast human resources [22].

Understanding this in light of the current evidence base 
for drug safety profiles as well as extant safety reporting 
methods is however necessary. For instance, scrutiny of con-
ventional randomised clinical trials have revealed several 
of their shortcomings, such as isolated trial designs risking 
an under-representation of minorities [1]. Meanwhile, esti-
mations suggest that up to 95% of treatment-related AEs 
outside of clinical trials remain undocumented by healthcare 
professionals [8, 58]. Furthermore, by definition, clinical 
trials do not capture AEs for off-label uses of drugs.

Systems such as the FDA’s Adverse Event Reporting 
System (FAERS) offer databases on suspected AEs and 
medication errors submitted to the health authority. FAERS 
has been a popular tool for deep learning-based studies in 
pharmacovigilance [59]. However, it has been noted to con-
tain unspecified causal links, incomplete data or duplicated 
reporting, and under-reporting or over-reporting of known 
ADRs [35]. Thus, while the database contains reports on 
AEs and a particular product, this does not mean that the 
product caused the event [60]. In addition, evidence suggests 
sometimes considerable delays between safety events surfac-
ing to pharmaceutical companies and the FDA receiving the 
information [61].

1.4 � Regulatory Framework

1.4.1 � RWD and Real‑World Evidence (RWE)

The FDA defines real-world evidence (RWE) as “the clinical 
evidence about the usage and potential benefits or risks of a 
medical product derived from analysis of RWD”, and real-
world data as “data relating to patient health status and/or 
the delivery of health care routinely collected from a variety 
of sources”, including electronic healthcare records, retro-
spective database studies, healthcare claims, social media, 
survey data and spontaneously reported AE data [3, 62]. In 
other words, RWD refers to data on patient health and RWE 
is the validated evidence derived from that data. Real world 
data can therefore be used to develop RWE; however, real-
world data are not by default considered RWE.

Usage of RWD and RWE in a pre-approval setting 
remains relatively unexplored despite offering numerous 
opportunities for drug development. These include leverag-
ing prescription data for identifying off-label drug use [63], 
using RWE for synthetic control arms (substituting a clinical 
trial’s control group using existing patient data sources) [9] 
or generating insights into the needs of a therapeutic area 
[62] , to name a few. Instead, the majority of applications so 
far have revolved around post-approval activities or support 
of orphan or life-threatening diseases [64, 65].

While RWD has been under-utilised in drug development, 
acknowledgment from regulatory bodies has also been lim-
ited. This is notable because regulatory guidance on how 
RWD can be used to support product approvals has been 
suggested as one of the most important factors for realis-
ing its full potential [2, 64]. A scrutiny of the regulatory 
frameworks as a proxy for understanding future use cases 
of RWD/RWE is therefore needed.

1.4.2 � Regulatory Recognition

Pursuant to the 21st Century Cures Act, in 2018, the FDA 
released the Real-World Evidence Program to promote the 
use of RWE in regulatory decision-making processes [6]. 
The FDA’s Real-World Evidence Framework outlines how 
the FDA is expected to evaluate the use of RWE to sup-
port the approval of label expansions (i.e. broadening the 
number of medical conditions a drug can be prescribed for 
based on evidence from real-world usage), or phase IV study 
requirements (a post-approval clinical trial intended to study 
the drug’s effectiveness once already in public health use) 
[3]. The framework further covers definitions of RWD and 
RWE, use cases of RWD and examples of clinical trials 
using RWD/RWE, and plans for data standards [3, 6]. As 
regulatory maturity increases, a similar increase in usage 
of premarket applications of RWD/RWD may likewise be 
expected, propelled by their increasingly recognised utility.
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For social media in particular, the FDA has released a 
series of guidance documents addressing how stakehold-
ers can collect and submit patient experience data for drug 
development and regulatory decision making. In the first 
of its guidance documents, the agency highlighted social 
media, acknowledging its potential application in a develop-
ment or regulatory setting: “targeted social media searches 
may be useful during the preliminary stages of a study to 
complement literature review findings, inform the develop-
ment of research tools […], or as a supplement to traditional 
research approaches” [9]. The agency further outlines the 
strengths and limitations of using social media for gather-
ing patient input, some of which have been noted in prior 
literature. Strengths include easy access to social media 
data, low burden for patients to provide the data and the 
potential for gathering information on health conditions. 
Limitations include the fact that participants are unknown, 
patient populations are not verifiably representative and the 
underlying selection process is difficult if not impossible to 
quantify. Furthermore, for an industry practitioner submit-
ting information for a regulatory review, there is a need to 
include how the chosen data collection methods mitigate 
these limitations [9].

While not addressed specifically to social media data, a 
recent wave of regulatory guidance documents does high-
light a rapid development of practical guidelines that indus-
try practitioners can incorporate real-world findings in drug 
development and regulatory decision making [66]. This 
includes guidance documents [67] as well as the Agency’s 
Advancing Real-World Evidence Program [68], seeking 
to improve the quality and acceptability of RWE-based 
approaches to support labelling claims, including post-
approval label expansions or to satisfy post-approval study 
requirements.

2 � Methodology

We collected RWD from X by identifying drug names of 
interest, and then retrieving posts containing these drug 
names. A subset of the collected posts was annotated based 
on whether they contained a drug–effect relationship, and 
the annotated posts were used to train a machine learn-
ing model to automatically identify posts that contain a 
drug–effect relationship. The model was then used on the 
entire corpus of collected posts, and the presence of AEs 
was identified in those posts that contain that relationship. 
The quantitative data collection, processing and analysis was 
further informed by qualitative data collection, by means of 
interviews with industry professionals combined with par-
ticipant observation conducted by one of the authors. The 
sections below provide a more detailed description of the 
methodology.

2.1 � Search Query

We began by defining a list of generic anticoagulants (the 
chemical name of the product) and corresponding brand 
names (the given name by the producing company) to col-
lect posts relating to the targeted drug class, anticoagula-
tion. Anticoagulants were targeted based on the expectation 
that the volume of online discussions would be vast, given 
the size of annual spending dedicated to this therapeutic 
area [69]. Anticoagulants were also suggested during inter-
views with the collaborating company because they have 
been frequently discussed for their complexity in terms of 
for example dosages, foods interfering with the treatment 
and interactions with other drugs. Relevant generic names 
were identified through reviewing scientific literature on 
anticoagulation drugs [70, 71] and online providers of drug 
information such as Drugs.com. This resulted in a list of 14 
generic names. The list of generic names was corroborated 
by a regulatory professional from the collaborating pharma-
ceutical company and five professionals from this company 
who work in the areas of regulatory affairs, pharmacovigi-
lance and text mining.

Further, we identified 27 brand names from English-
speaking countries and English-language posts (one prod-
uct can have several names depending on the country or 
region). To identify brand names, we used the Physician’s 
Desk Reference, Drugs.com, the Merck Index and searched 
mentions of brand names across all MEDLINE articles from 
2010 to 2020. The final list contained 34 keywords, includ-
ing 14 generic and 20 brand names, outlined in Table 1. The 
“ATC class” column shows the subclass of anticoagulants 
per WHO’s Anatomical Therapeutic Chemical (ATC) codes. 
Accounting for possible misspellings of drugs was beyond 
the scope of this study, although we can add a heuristics-
based approach [72] or entity normalisation [73] to address 
this issue in the future if our pipeline is moved into a pro-
duction system.

2.2 � Data Preparation

Data were collected using the social media analytics tool 
Sprinklr, offered by the collaborating company, which allows 
unlimited retrospective collection of X posts [74]. Posts were 
collected from 1 July to 31 December, 2019. Posts mention-
ing any of the 34 keywords were captured, while reposts and 
non-English posts were excluded. There were 14,993 posts 
collected (see Table 2).

We removed posts from users with over 5000 followers 
to exclude news outlets and celebrities [40, 54]. Usernames 
were replaced with numerical IDs and mentions of user-
names in posts were removed using regular expressions to 
anonymise the dataset. The final dataset contained 10,264 
posts.



500	 D. Wessel, N. Pogrebnyakov 

2.2.1 � Annotation

The annotation strategy is shown in Fig. 1. We followed a 
process similar to [13] and adapted it to our goal of label-
ling drug–effect relationships. Posts without a valid prod-
uct mention were removed. Posts containing mentions of 
AEs but not a cause–effect relationship between a drug 
and an AE were labelled as negative, while posts contain-
ing both an AE and an indication that this was caused by a 
drug were labelled as positive. The aim of this multi-step 
approach to labelling was to specifically identify posts with 
a cause–effect relationship between a drug and AE, and not 
merely a co-occurrence of a drug name and AE.

Each post was annotated independently by each of the 
authors. Disagreements were resolved in a consensus meet-
ing. Cohen’s Kappa for inter-rater agreement was 0.67.

In Table 3, the first three posts contain a specified effect 
suspected to be caused by a taken drug, while the latter three 
(a) mention a drug’s intended effect (such as for preventing 
blood clots), hence not being an AE, (b) represent an opinion 
or statement related to the drug, but not related to an AE, or 
(c) mention a drug and an event without specifying a rela-
tionship between the two.

We manually annotated 666 posts for the presence or 
absence of drug-caused AEs, with 466 negative instances 
and 200 positive instances (i.e. containing a relationship 
between a drug and an AE). The 70/30 distribution was 
chosen to reflect the natural distribution of the dataset [35]. 
This was further divided into two datasets: a training set of 
500 instances (150 positive), and a test set of 166 instances 
(50 positive).

2.3 � Machine Learning Modelling, Tuning 
and Prediction

For benchmark models, we used SVM, XGB and RF, with 
TF-IDF text vectorization. These were selected because of 
their light computational demand, proven performance in 
classification tasks [75] and popularity among researchers 
for classifying social media data [36, 54, 76]. Hyperparam-
eter tuning was performed for the benchmark models using 
grid search (see Table 4).

These benchmark models were also combined into a sin-
gle ensemble model with hard voting. That ensemble was 
used as a baseline model, to be compared with more power-
ful models, following common practice in machine learning.

We also experimented with more contemporary, trans-
former-based models. We chose ALBERT [77], which has 
lower computational requirements compared with most other 
transformer-based models. ALBERT’s base configuration 
has 12 layers of the transformer encoder [78], similar to 
BERT’s architecture [31]. Unlike BERT, however, ALBERT 
uses weight sharing between layers, leading to a significant 
reduction in the number of parameters in the model.

A pretrained ALBERT model was fine-tuned on the same 
training set of 500 instances as our benchmark models. For 

Table 1   Complete list of 
anticoagulant generic and brand 
drug names used as keywords 
to collect social media posts for 
this research

ATC​ Anatomical Therapeutic Chemical

ATC class Generic name Brand name(s)

Brand name 1 Brand name 2 Brand name 3

Direct factor Xa inhibitors Apixaban Eliquis
Betrixaban Bevyxxa
Edoxaban Savaysa Lixiana
Rivaroxaban Xarelto

Direct thrombin inhibitors Argatroban Exembol
Bivalirudin Angiomax
Dabigatran Pradaxa Pradax
Desirudin Iprivask

Heparin Dalteparin Fragmin
Danaparoid Orgaran
Enoxaparin Lovenox Clexane Inhixa
Tinzaparin Innohep

Other antithrombotic agents Fondaparinux Arixtra
Vitamin K antagonists Warfarin Coumadin Jantoven Marevan

Table 2   Number of social 
media posts with drug mentions 
by type and the number of 
unique users

Total Unique

Total posts 14,993 14,398
Original posts 7101 6578
Reply 6239 6232
Mention 1653 1588
Unique users  – 8573
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all models, performance was averaged across three runs with 
different train/test splits.

We focused on optimising model precision (also called 
PPV), which emphasises correct identification of drug-
caused events among events marked by the model as 

containing an event. By contrast, optimising for recall (also 
called sensitivity) would emphasise capturing as many posts 
mentioning an AE as possible, potentially also capturing 
posts without AEs. A typical machine learning project will 
face a trade-off between increasing precision (thus decreas-
ing the number of false positives) and increasing recall 
(decreasing the number of false negatives) [75]. As the focus 
in this study is on confidence in the accuracy of information 
found in posts, rather than finding more potentially relevant 
posts, we optimised for the precision metric. There were 
1313 posts predicted as positive by the baseline model and 
were carried on in the data pipeline for further processing.

2.4 � Text Mining: Medical Entity Extraction

I2e is a text-mining platform that uses a semi-supervised 
approach whereby users can interactively define pattern 
extraction rules for indexed text data [34]. We used I2e to 
identify and extract terms that describe AEs, diseases or dis-
orders, foods or pharmacological substances, and translate 
these into medical terminology. Table 5 shows an example 
of the I2e output.

I2e returned 2020 assertions from the 1313 posts indexed 
into it. After deduplication, 1683 assertions across 685 
unique posts were returned.

2.5 � Industry Interviews and Participant 
Observations

The execution of the data processing pipeline and analysis 
was augmented by collecting qualitative input from industry 
professionals at a multinational pharmaceutical company via 
unstructured interviews. Outlined in Table 6, the unstruc-
tured interviews were carried out over 11 separate sessions 
with four professionals working across regulatory affairs, 
safety surveillance and information science.

In addition, one of the authors undertook a 6-month pro-
fessional engagement with the pharmaceutical company dur-
ing which continuous participant observations took place. 

Fig. 1   Annotation strategy for labelling posts as containing (positive 
label) or not containing (negative label) drug-caused adverse events 
(AEs)

Table 3   Examples of posts that contain (Y) and do not contain (N) a drug–effect relationship

MS multiple sclerosis

Post Drug–effect 
relationship?

Currently on edoxaban, rarely troubled by symptoms but here and there I get tired and headache for no obvious reason. Y
Taking coumadin and I always get bruises so easily … looks worse than it actually is though. Y
Do you guys also get a stuffy nose, headache or coughing when taking Xarelto? Y
Blood thinner Pradaxa which prevents blood clots (which could kill me) costs me $252.00 per month. N
To whoever’s listening: “USE AS DIRECTED” is NOT enough prescription information for warfarin! N
My grandpa almost died a few years ago, got diagnosed with MS 2 years back and is on blood thinner coumadin (warfarin) for life 

…
N
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Combined with the unstructured interviews, these brought 
further depth to the authors’ understanding of the pharma-
ceutical industry in general and key drug development pro-
cesses in specific, and furthermore providing insights on 
developing the text mining pipeline using I2e as well as key 
factors influencing drug makers from a safety surveillance 
point of view when collecting social media data. The out-
come of the interviews and observations is presented in the 
results.

3 � Results

3.1 � Machine Learning and Text Mining Results

The ALBERT model demonstrated higher recall (0.78) than 
the baseline model (0.66) and slightly higher precision (0.81 
vs 0.79), with lower variability between models trained on 

different splits of training and test data, as demonstrated by 
the lower standard deviation (see Table 6).

The 1313 predicted posts indexed into I2e and mined for 
drug events produced 1683 total hits and 1182 unique hits 
across 685 posts, posted by 597 unique users (see Table 7). 
It follows that some posts comprised multiple findings and 
that while some hits were duplicated, I2e identified several 
entities within the same hits (Table 8).

The most frequently mentioned drugs were warfarin and 
drugs within the direct factor Xa inhibitors class: betrixaban, 
edoxaban, apixaban and rivaroxaban (Fig. 2). Three drugs 
had zero matches in the I2e query (argatroban, desirudin, 
danaparoid). Among drugs mentioned in addition to the 
anticoagulants, different types of pain relievers/anti-inflam-
matory drugs had the greatest occurrence (Fig. 3). Various 
forms of haemorrhage, fatal drug outcomes, stroke, and dif-
ferent types of pains or bruises were the most frequently 
mentioned drug events across all posts, with the former three 
comprising more serious ADRs (Fig. 4). Stroke, notably, can 
both be prevented by anticoagulation therapy (in the case of 
ischaemic stroke) or be a complication of it (in the case of 
intracranial haemorrhage) [79].

Per Fig. 3, the combined terminologies in I2e proved 
to produce some overlap as the pain relievers aspirin and 
ketorolac are included in the drug class NSAIDs (non-ste-
roidal anti-inflammatory drugs) [80]. Therefore, aspirin, 
ketorolac and NSAIDs were grouped together under the label 
“NSAIDs” for subsequent visualisations. The most common 
ADRs and AEs in Fig. 3 concur with current knowledge 
and include haemorrhage, death or stroke. Adverse effects 
involving various forms of pains or bruises are established 
events within anticoagulation and/or common reports in 
FAERS [70, 71]. Notably, the number of unique users men-
tioning each event also remained high in all cases, despite 

Table 4   Values of hyperparameters of benchmark models established 
through a grid search

SVM XGB RF

Parameter Value Parameter Value Parameter Value

C 1 min_child_
weight

1 max_features auto

gamma auto gamma 0.5 n_estimators 50
kernel linear subsample 1 max_depth 50

max_depth 3 min_samples_
leaf

2

min_samples_
split

2

bootstrap true

Table 5   Example representation 
of I2e output, showing specific 
adverse events mentioned in 
social media posts that resulted 
from a combination of drugs

Asser�on
ID

Post 
ID

Keyword
Other 
Drug

Adverse 
Event

Hit

1 1 warfarin ibuprofen haemorrhage be�er than ibuprofen which will increase risk of 
heavy bleeding if taken with warfarin

2 2 dalteparin insulin haemorrhage
thanks to dalteparin and insulin injec�ons my 
en�re body is looking bruised… and now the 
bleeding from the shots

3 2 dalteparin insulin bruise
thanks to dalteparin and insulin injec�ons my 
en�re body is looking bruised… and now the 
bleeding from the shots

Note that assertions 2 and 3 contain the same drug combination within the same post, but they are associ-
ated with related yet different adverse events
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being lower than the total count of events. This suggests that 
these events are widely dispersed among users, even though 
some users mention an event several times.

Warfarin was over-represented in mentions of the most 
common drug events (Fig. 5). This distribution remained 
similar when comparing the frequency across drug classes 
instead of drugs except for mentions of haemorrhage, which 
was more equally represented within the classes vitamin K 
antagonists (i.e. warfarin) and direct factor Xa inhibitors.

3.2 � Industry Observations

Interviews with industry professionals provided several 
insights on the role of RWD and social media in conven-
tional drug development. First, clinical development should 
not be considered solely as the precedent for developing the 
drug label (i.e. the drug’s prescribing information). Rather, 
the two components (clinical development and producing 
the prescribing information) should iteratively inform each 
other. For instance, research during labelling activities also 
provides guidance on clinical trial design to optimise the 
safety and efficacy profile of the drug, based on input from 
multiple sources of regulatory intelligence such as competi-
tors’ labels or the clinical trials that support them. Captur-
ing the right data and intelligence, outside of traditional 
randomised clinical trials, is therefore a key component of 
regulatory decision making and drug development.

Second, for social media in particular, currently there is 
little industry precedent for its use: social media has so far not 
been widely used in regulatory decision making, for deriv-
ing RWD, or for supporting regulatory or safety functions. 
For future usage, two potential use cases can be highlighted: 
(1) when a drug developer has no drug on the market within 
the area of interest, competitors’ drugs could be targeted for 
understanding what online health discussions were consider-
ing important for drugs in the given area and (2) conversely, 
when there is a drug marketed, social media can be used to 
collect and analyse health discussions for understanding either 
how that drug compared with other similar drugs, or for get-
ting a greater general understanding of the patient perspective.

Third, multiple challenges around social media-derived 
RWD were emphasised. Regulatory recognition of RWD, 
albeit maturing, was still seen to present considerable com-
plexities in terms of collection, analysis and integration of real-
world findings with clinical development, including in defining 
the role of RWD as a supplement to the existing evidence base. 

Table 6   Topics of unstructured interviews conducted at the participating company to refine the data processing pipeline developed in this study

NLP natural language processing, RWD real-world data

Interview Interviewee(s) Interview area Interview topic

1 A Regulatory affairs Opportunities and challenges in regulatory strategy; regulatory landscape for RWD
2 A Regulatory affairs Understanding key regulatory and drug development processes; drug labelling
3 A Regulatory affairs Choosing therapeutic area/drug class; regulatory strategy; RWD
4 A Regulatory affairs Recognition of social media by industry and regulators; social media and RWD
5 A Regulatory affairs Utility of social media in regulatory decision making and drug labelling
6 B, C Information science Contingencies in text mining and NLP for social media data
7 B, C Information science Data collection; machine learning and NLP pipelines; I2e use cases
8 B, C Information Science Choosing medical ontologies; I2e queries
9 B Information science Designing text mining queries in I2e
10 E Safety surveillance Understanding safety reporting requirements
11 E Safety surveillance Implications of social media on pharmacovigilance

Table 7   Machine learning model performance when extracting anti-
coagulant-associated adverse events information from posts, calcu-
lated on the holdout test set

Best-performing model is highlighted in bold
SD standard deviation

Precision Recall F1

XGBoost 0.79 0.57 0.66
SD (0.05) (0.04) (0.02)
SVM 0.75 0.52 0.61
SD (0.04) (0.03) (0.02)
RF 0.74 0.58 0.65
SD (0.07) (0.03) (0.04)
Ensemble 0.76 0.57 0.65
SD (0.05) (0.03) (0.03)
ALBERT 0.81 0.74 0.78
SD (0.04) (0.02) (0.01)

Table 8   Number of users, 
posts and hits containing 
anticoagulant drugs in posts 
processed using the pipeline 
developed in this study

Dimension Count

Unique users 597
Unique posts 685
Unique hits 1182
Total hits 1683
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In addition, the availability of RWD remained a challenge, 
with currently undefined processes for how to obtain and man-
age sources of RWD.

Finally, the lack of opportunities to infer causality or 
validate findings from social media was considered less 

of a challenge than currently conceptualised in the lit-
erature. Instead, social media, and experimental sources 
of RWD in general, were perceived positively in terms 
of their possibility to generate hypotheses on areas to be 
investigated further.

Fig. 2   Number of times anticoagulant drugs and drug classes were 
mentioned in social media posts processed using the pipeline. Drug 
classes are shown on the left panel. DfXI direct factor Xa inhibitors, 

DTI direct thrombin inhibitors, other AA other antithrombotic agents, 
VKA vitamin K antagonists

Fig. 3   Number of social media posts (bars) and their mentions by unique users (dots) with the most common drug names mentioned in posts. 
NSAIDs non-steroidal anti-inflammatory drugs

Fig. 4   Number of social media posts (bars) and their mentions by unique users (dots) of the most frequently mentioned adverse drug reactions or 
adverse events
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4 � Analysis and Discussion

4.1 � Positioning Social Media Data in the Drug 
Development Toolbox

Extant research and our results position social media as 
offering direct access to the patient experience. However, 
establishing causality or validating any findings suggest-
ing causality remains difficult. Meanwhile, industry prac-
titioners suggest that it is not only evidence of treatment 
outcomes that is valuable in the context of drug develop-
ment. Capturing external intelligence, outside of clinical 
development, that better informs the development process 
is also considered important. For social media to serve this 
purpose, it needs to generate novel and actionable insights, 
and in addition meet these criteria to the extent where they 
can actually support the drug development process. To 
evaluate social media against these criteria, we explore 
specific use cases.

4.2 � Use Cases for Social Media‑Derived RWD

Our data suggest that social media may paint a more holis-
tic picture of patients’ health conditions, i.e. what a typical 
patient experiences in a given therapeutic area looks like. 
Building on this, Fig. 6 shows the most frequent findings 
mentioned in addition to haemorrhage or stroke respec-
tively. It shows, for all patients mentioning haemorrhage 
(left side) or stroke (right side) in a post, the most common 
other findings mentioned by those same users.

Figure 6 shows that haemorrhage appears to be one of 
the main concerns for patients discussing experiences relat-
ing to stroke. In discussions of haemorrhage, death or fatal 
outcomes, atrial fibrillation (irregular heartbeat) and stroke 

all appear as the most frequent mentions. In addition, for 
the haemorrhage group, blood clots, pains or neoplasms 
(tumours) seem to be adverse effects present for many 
patients, albeit less frequent. Meanwhile, renal failure (vari-
ous kidney issues) appears to be more common among dis-
cussions on haemorrhage than those on stroke.

While these results provide some insight into the patient 
experience, the findings still need to be both new and action-
able in order to support the drug development process. We 
argue that social media may do this by supporting the gen-
eration of hypotheses.

First, in the data, we observe that patients who mention 
stroke or haemorrhage as AEs appear to have concomi-
tant diseases (multiple co-existing diseases). Specifically, 
renal failures and atrial fibrillations are mentioned in both 
groups, and more frequently in the haemorrhage group. Sec-
ond, many patients mentioning haemorrhage also mention 
neoplasms; however, neoplasms are not mentioned across 
patients mentioning stroke. Potential hypotheses could be as 
follows: (1) renal failure or atrial fibrillation are more preva-
lent conditions in patients receiving anticoagulation therapy 
experiencing haemorrhage events, than in those experienc-
ing a stroke and (2) there is a connection between patients 
experiencing haemorrhage events and an increase in the risk 
of neoplasm or potential tumours, or vice versa.

Second, if these hypotheses are rejected through follow-
up tests or past data on adverse effects, this may in itself be 
valuable information. Discussions of non-existing adverse 
effects highlight potential knowledge gaps in the patient 
population, making it possible to formulate hypotheses about 
beliefs. The corresponding hypotheses to the two outlined 
above, focusing on beliefs instead of outcomes, could be 
as follows: (1) patients prescribed anticoagulants are erro-
neously concerned with a greater risk of neoplasm as an 
effect of taking blood thinners and (2) current prescription 

Fig. 5   Prevalence of mentions of drugs associated with different adverse events in social media posts. Circle sizes are proportionate to the num-
ber of mentions
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information available to patients prescribed anticoagulants 
for atrial fibrillation does not communicate the associated 
risks of haemorrhage well enough. This is actionable infor-
mation that drug makers or regulators can use to improve 
labelling or otherwise better inform the patient population.

Last, although the question remains whether these are 
new findings—as these hypotheses may only relate to known 
information—such findings can still confirm an already 
expected reality. If no new events occur in online health 
discussions, that could serve to further indicate that all 
potential events are already accounted for. That is, even a 
non-finding should be considered a finding, and given the 
low use of social media in gauging patient experiences to 
date, the medium arguable offers novel insights.

Still, presuming that social media can (a) provide novel 
insights into the patient experience and (b) that these insights 
can be operationalised by means of generating hypotheses, 
it also needs to be proven both feasible and valuable enough 
to support the drug development process. We suggest three 
possible scenarios to support this process.

Scenario A: suspected new safety events are detected in 
social media. Drug makers can use these indications to guide 
the generation of measurable hypotheses and include them 
as endpoints in clinical trials, or guide one-on-one patient 
interviews.

Scenario B: suspected misbeliefs about possible 
drug–event relationships are noticed. Drug makers can 
address such misbeliefs in the medication guidance to 
patients, or inform regulators that knowledge gaps exist 
among patients within a given therapeutic area. A dia-
logue on how to address these gaps can ensue, for example, 
via supporting healthcare providers with better education 
materials.

Scenario C: no new events are detected in social media. 
Drug makers would conclude with a higher likelihood that 
extant knowledge of the drug covers all possible AEs and 
safety events. This finding could be included in submissions 
to regulators as an additional measure that has been taken 
to ensure proper prescribing information. This also includes 
situations when events discussed on social media form a 
subset of events observed in prior trials. In addition, the 
prevalence of mentions of already known (mis)beliefs in 
social media can also indicate which factors are considered 
more, or less, critical to patients. For example, in the case 
of off-label use where (albeit already known or suspected 
that patients may be erroneously using a drug outside of its 
approved indication) social media can serve as an additional 
source to better understand the magnitude of the issues at 
hand, guiding experts towards the most important topics.

To conclude Sect. 4.2, we argue that social media can effi-
ciently enhance the drug development process. The medium 

Fig. 6   Example of mentions of concurrent diseases or events in connection with haemorrhage (left) and stroke (right). Numbers represent unique 
users mentioning each adverse event
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can offer novel insights even when those insights only serve 
to corroborate an already suspected reality, allowing further 
guidance to experts who would be able to translate these 
insights into action. For example, coronavirus disease 2019 
vaccines, which were developed and assessed within a year 
and then distributed to vast populations globally, were sur-
rounded by misinformation and public misconceptions about 
efficacy and adverse effects [81]. In such a scenario, social 
media may be more likely to capture events, perspectives or 
relationships from real-world experiences that are not yet 
identified in extant clinical trials. While not targeted in this 
specific study, analysis of social media data may also reveal 
common conditions for which specific drugs are used off-
label [28, 29], as well as shed light on patient outcomes and 
awareness of risks and benefits of off-label use. This will 
enrich the assessment of risks with off-label drug use by the 
regulators with the patient perspective.

4.3 � Social Media Usage and the Regulatory 
Landscape

Considering the FDA’s 2020 guidance on social media usage 
in patient-focused drug development [9], there is increas-
ing regulatory recognition of the above proposed use cases. 
Social media provides an opportunity to surface poten-
tial concomitant diseases, patient beliefs about potential 
drug–event relationships or other health issues experienced 
by patients. These insights could supplement drug develop-
ers’ or regulators’ understanding of the patient population 
and typical health conditions or guide one-on-one interviews 
with patients conducted as part of a clinical trial. These 
findings could be argued to align with FDA’s envisioned 
usage of social media (see Sect. 1.4.2), making it plausible 
to situate social media-derived RWD in the current regula-
tory landscape.

Such usages are likely to come with regulatory require-
ments that need to be met. For instance, the FDA guidance 
also notes that when submitting information for a regulatory 
review, the sponsor should demonstrate how data collection 
addressed the limitations in social media, such as the lack 
of opportunities to verify patient identities [9]. It may not be 
clear what falls under the scope of this requirement. If social 
media are only used to generate hypotheses that are then 
investigated and verified in traditional clinical development, 
do social media constitute part of the evidence base and thus 
need to be included for a regulatory review? In addition, one 
of the findings of this study is that multiple drug events or 
disorders posted by a single user can be connected to that 
user, even when their data are anonymised. While benefi-
cial for understanding drug interactions and comprehensive 
health conditions, gathering such information raises poten-
tial privacy issues [24], as even anonymised data can be 
susceptible to privacy attacks [82]. With little precedent, it 

is currently difficult to conclude on the precise implications 
of these requirements.

4.4 � Implications for Industry

This paper incorporates several key themes for leveraging 
social media for RWD in a regulatory, drug development 
setting: social media for health information, the regula-
tory landscape for RWD and machine learning and NLP. 
This allows us to provide developers with a more exhaus-
tive overview of how social media can be used in practice, 
while also offering new perspectives on some of its previ-
ously mentioned shortcomings. The use case suggests how 
social media can supplement the traditional drug developer’s 
toolbox, as a potential tool for generating hypotheses to be 
further investigated via extant methods in clinical develop-
ment. By situating social media in the drug development 
stage rather than only post-approval, the often-scrutinised 
lack of validated evidence in social media data appears less 
important to support clinical development. In addition, while 
current works aim to develop more advanced approaches for 
distinguishing between the types of medical entities encoun-
tered in social media, such as ADRs and indications [56], by 
targeting a single drug class, this study instead highlighted 
the possibility to draw on existing knowledge of that class 
and therefore make the distinction between the different 
types of entities.

Industry actors still need to be wary of social media 
usage. On the one hand, imposed safety requirements com-
plicate usage from an operational point of view. On the other 
hand, from a regulatory point of view, the regulations are 
not yet clearly defined and little precedence for incorporat-
ing social media in clinical development exists. Notably, the 
FDA released their second guidance document on patient-
focused drug development in February 2022, more than 1.5 
years after the first guidance, titled “Methods to Identify 
What Is Important to Patients” [83]. While some new gen-
eral guidance on social media usage is included, defined 
use cases and regulatory frameworks for social media data 
mining pipelines remain unspecified. Furthermore, because 
social media users may have a different demographic than 
the general population, social media monitoring should be 
complemented with other approaches from the practitioner’s 
toolbox.

The use cases suggested in the industry observations 
are considered to remain valid in light of our results and 
analysis. In the drug development phase, a pharmaceutical 
company can use social media for gathering RWD on com-
petitors’ already launched treatments to better understand the 
patient experience and, thereby, consider whether to account 
for such insights in clinical trials. Or, in the event where a 
company has a drug launched, social media can be used 
to inform subsequent post-approval clinical trials, or the 
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development of additional educational material to patients 
or healthcare providers. In addition, social media can be 
used to provide insight into the outcomes of drugs that are 
used off-label [28, 29].

4.5 � Implications for Regulators

This paper sheds further light on the width of the gap between 
technology and regulations. While data from social media 
and the technology for its analysis appear mature enough to 
warrant, at a minimum, exploratory usage in industry, regu-
latory maturity appears to be lagging behind. In practice, 
further guidance is needed on the role of social media in 
the pre-approval stage of drug development. Such guidance 
should account for the operational challenges currently faced 
by drug developers in incorporating social media as a source 
of RWD. Considering the current lack of precedent, regula-
tors should also translate potential use cases into actionable 
regulatory frameworks or consider how novel concepts, such 
as regulatory sandboxes, can encourage exploratory use.

4.6 � NLP and Health Information Mining

The results of NLP modelling demonstrate an improvement 
compared with prior work [40, 54]. In particular, ALBERT 
outperformed the ensemble baseline model, while requiring 
substantially less hyperparameter tuning and data preproc-
essing. This made the ALBERT model significantly easier to 
use compared with the baseline model, which did include all 
of these steps. Because we fine-tuned a model that had been 
previously pretrained, we were able to achieve these better 
results while using a modest-sized dataset. This means that 
practitioners are recommended to use this transfer learn-
ing approach, when language models previously pre-trained 
on large datasets are fine-tuned on smaller datasets for the 
task at hand (e.g. text classification), as it may yield a better 
result with a lower amount of time spent on modelling. The 
potential downside of this approach, however, is the need 
for performant hardware, including a graphical processing 
unit. At the same time, cloud-based hardware can be used, 
with appropriate privacy measures in place where neces-
sary when dealing with sensitive or personally identifiable 
information.

The posts finally outputted reveal potential to access 
patient health insights on, for example, adverse drug events 
or therapeutic area pain points by mining social media. Most 
notably, relative user diversity as measured by the percent-
age of posts from unique users out of all posts increased as 
data moved through the data pipeline. The 14,993 posts ini-
tially collected were posted by 8573 unique users. Through 
data preprocessing, supervised classification and the text 
mining query, the number of unique users relative to the 

total number of posts increased, as seen in Table 9. Thus, 
while the number of posts decreased significantly, user 
diversity increased, thus offering a broader understanding 
of the patient perspective.

Further, our pipeline resulted in a model that should 
capture cause–effect relationships between drugs and AEs. 
This is because our annotation scheme aimed to capture 
only posts describing a relationship between a drug and an 
AE, and posts with simple co-occurrences of drug names 
and adverse effects (but no cause–effect relationship) were 
assigned a negative label. This allowed us to incorporate 
recent work on detecting cause–effect relationships in posts 
[57] as part of the overall pipeline of using social media for 
RWD.

5 � Conclusions

This paper develops a data pipeline for extracting health 
information from Twitter posts on anticoagulants, investi-
gates the applicable regulatory landscape for social media 
and RWD, and situates these findings in industry practice. 
We conclude that RWD derived from social media shows 
potential for supporting regulatory decision making for phar-
maceutical companies, by generating hypotheses on patient 
conditions, experiences and beliefs. Ultimately, this can aid 
conventional clinical development.

Some recognition is found amongst regulators. How-
ever, the immaturity of social-media specific regulations 
and, therefore, the lack of precedent for how findings would 
be perceived under a regulatory review, mean that the role 
of social media as a supplementary source of information 
remains to be precisely defined.

While technological challenges persist, specifically those 
relating to deriving cause–effect relationships, we suggest 
this is less of an issue than previously argued. To the best of 
our knowledge, this paper is the first to conclude that how 
you use the medium may overcome some of its argued short-
comings, i.e. utilising social media to generate hypotheses, 
not evidence.

This study is limited by its use of posts written only in 
English, which narrows the scope of information captured. 

Table 9   Number of posts, users and share of users per post retained 
as a result of each step in the processing pipeline

Stage Posts Unique users Share of 
unique users 
(%)

Data collection 14,993 8573 57
Preprocessing 10,264 6510 63
Classification 1313 1104 84
Text mining 685 597 87
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Similarly, using only X data means omitting potential 
insights shared by patients in other online forums. Fur-
thermore, language cannot determine region specificity, 
complicating scenarios where approved indications and 
off-label prescription habits of healthcare providers may 
differ between countries. Last, the paper uses the baseline 
model to make predictions which in turn inform subsequent 
data analysis steps. While this does not allow us to bench-
mark results, the purpose of this paper is exploratory and to 
develop a pipeline, which it accomplishes.

Future studies may expand on this paper by combining 
several online sources written in different languages, and 
by changing components of this data pipeline and bench-
marking the results against ours. Use of social media in pre-
approval drug development, such as informing clinical trials, 
is a particularly under-researched area, where the hypoth-
eses generation approach described in this paper may yield 
fruitful results. This study can also inform future research 
on reconciling technological developments with health and 
safety regulations.
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