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Abstract

This thesis consists of six chapters including the introduction and the conclusions. The chapters are

dedicated to enhancing the transparency of key models in Machine Learning. In this dissertation,

I propose novel Mathematical Optimization models to trade off accuracy and transparency in

Cluster Analysis, Supervised Classification, and Treatment Allocation.

In Chapter II, co-authored with Emilio Carrizosa, Alfredo Maŕın, and Dolores Romero Morales,

we tackle the problem of enhancing the interpretability/explainability of the results of Cluster

Analysis, which is one of the transparency criteria pursued in this dissertation. Our goal is to find

an explanation for each cluster, such that clusters are characterized as precisely and distinctively

as possible, i.e., the explanation is fulfilled by as many as possible individuals of the corresponding

cluster, true positive cases, and by as few as possible individuals in the remaining clusters, false

positive cases. We assume that a dissimilarity between the individuals is given, and propose

distance-based explanations, namely those defined by individuals that are close to its so-called

prototype. To find the set of prototypes, we address the bi-objective optimization problem that

maximizes the total number of true positive cases across all clusters and minimizes the total number

of false positive cases, while controlling the true positive rate as well as the false positive rate in

each cluster. We develop two Mixed Integer Linear Programming (MILP) models, inspired by

classic Location Analysis problems, that differ in the way individuals are allocated to prototypes.

We illustrate the explanations provided by these models and their accuracy in both real-world data

as well as simulated data.

In Chapter III, co-authored with Emilio Carrizosa, Alfredo Maŕın, and Dolores Romero Morales,

we make Cluster Analysis more interpretable with a new approach that simultaneously allocates

individuals to clusters and gives rule-based explanations to each cluster. The traditional homo-

geneity metric in clustering, namely the sum of the dissimilarities between individuals in the same

cluster, is enriched by considering also, for each cluster and its associated explanation, two ex-

plainability criteria, namely, the accuracy of the explanation, i.e., how many individuals within the

cluster satisfy its explanation, and the distinctiveness of the explanation, i.e., how many individu-
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als outside the cluster satisfy its explanation. Finding the clusters and the explanations optimizing

a joint measure of homogeneity, accuracy, and distinctiveness is formulated as a multi-objective

MILP problem, from which non-dominated solutions are generated. We illustrate the clusters and

the accuracy of the corresponding explanations in real-world data.

In Chapter IV, co-authored with Emilio Carrizosa and Dolores Romero Morales, we investigate

how to make tree ensembles in Supervised Classification more transparent, incorporating by design

explainability and fairness criteria. While explainability helps the user understand the key features

that play a role in the classification task, with fairness we ensure that the ensemble does not

discriminate against a group of observations that share a sensitive attribute. We propose an MILP

formulation to train an ensemble of trees that apart from minimizing the misclassification error,

controls for sparsity as well as the accuracy in the sensitive group. Our formulation is scalable

in the number of observations since its number of binary decision variables is independent of the

number of observations. In our numerical results, we show that for standard datasets used in the

fairness literature, we can dramatically enhance the fairness of the benchmark, namely the popular

Random Forest, while using only a few features, all without damaging the misclassification error.

In Chapter V, I investigate the Treatment Allocation problem, where one has to decide which

individuals will receive treatment and which not. If not carefully trained, the algorithm may

provide unfair results, unequally allocating treatment to individuals in the sensitive (e.g., females)

and non-sensitive (e.g., males) groups. To deal with it I propose to measure unfairness as the

difference between the average treatment effects in the sensitive group and the non-sensitive group.

I introduce a Mathematical Optimization model to have accurate heterogeneous treatment effect

predictions and a good level of fairness, which will be the basis for the treatment allocation

in forthcoming individuals. I present results on simulated datasets, illustrating that my model

provides fairer predictions of the treatment effect than the benchmark.
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Danish abstract

Denne afhandling best̊ar af seks kapitler inklusiv introduktionen og konklusionen. Kapitlerne er

dedikeret til at gøre en række modeller inden for Machine Learning mere transparente. I afhan-

dlingen foresl̊ar jeg nye matematiske optimeringsmodeller til at afveje præcision og transparens i

klyngeanalyse, supervised klassifikation, og allokering af behandlinger.

I Kapitel II, som er skrevet i samarbejde med Emilio Carrizosa, Alfredo Maŕın og Dolores

Romero Morales, h̊andterer vi problemet om at øge fortolkeligheden af resultater fra klyngeanalyse,

som er en af de transparenskriterier der forfølges i afhandlingen. Vores m̊al er at finde en forklaring

for hver klynge, s̊aledes at klynger er karakteriseret s̊a præcist og distinkt som muligt. Med

andre ord at forklaringen er opfyldt for flest mulige individer i den tilsvarende klynge, de sandt

positive tilfælde, og af færrest mulige individer i de resterende klynger, de falsk positive tilfælde.

Vi antager at der er givet et forskellighedsm̊al mellem individerne, og foresl̊ar afstandsbaserede

forklaringer, som er dem der er defineret af individer tæt p̊a den s̊akaldte prototype. For at finde

den mængde af prototyper adresserer vi det bi-objektive optimeringsproblem der maksimerer det

totale antal sandt positive tilfælde p̊a tværs af alle klynger og minimerer det totale antal falsk

positive tilfælde, samtidig med at vi kontrollerer sandt positiv raten og falsk positiv raten i hver

klynge. Vi konstruerer to lineære blandede heltalsprogrammeringsmodeller, som er inspireret af

klassiske lokationsanalyse problemer, der adskiller sig i m̊aden individer bliver allokeret prototyper.

Vi illusterer forklaringerne givet af disse modeller og deres præcision p̊a b̊ade virkelig data og

simuleret data.

I Kapitel III som er skrevet i samarbejde med Emilio Carrizosa, Alfredo Maŕın og Dolores

Romero Morales, gør vi klyngeanalyse mere fortolkelig med en ny fremgangsm̊ade der samtidig

allokerer individer til klynger og giver regel baseret forklaringer til hver klynge. Det traditionelle

homogenitetsm̊al i klyngeanalyse, som er summen af forskelle mellem individer i samme klynge,

udvides ved ogs̊a at tage højde for to forklaringenskriterier for hver klynge og dets tilhørende

forklaring, nemlig præcisionen af forklaringerne, med andre ord hvor mange individer i klyngen

opfylder forklaringen, og hvor distinkt forklaringen er, med andre ord hvor mange individer uden for
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klyngen opfylder dens forklaring. At finde klyngerne og forklaringener der optimerer homogenitet,

præcision, og distinktionen er formuleret som et multi-objektiv lineært blandet heltalsprogram,

hvorfra ikke domineret løsninger genereres. Vi illustrerer klyngerne og præcisionen af de tilhørende

forklaringer p̊a virkelig data.

I Kapitel IV, som er skrevet i samarbejde med Emilio Carrizosa og Dolores Romero Morales,

undersøger vi hvordan man kan lave ”tree ensembles“ i supervised klassifikation mere transparente

ved at inkorporere forklarligheds og ”fairness“ kriterier. Mens forkarlighed hjælper brugeren med

at forst̊a vigtige karakteristika der spiller en rolle i klassifikationen, sikrer vi os med ”fairness“ at

vores ”ensemble“ ikke diskriminerer mod bestemte grupper af individer der kan karakteriseres af

følsom information. Vi foresl̊ar et lineært blandet heltalsprogram til at træne en ”ensemble“ af

træer der udover at minimere fejlklassificering, ogs̊a kontrollerer for ”sparsity“ og præcision i den

beskyttede gruppe. Vores program er skalerbart i forhold til antallet af observationer, da antallet af

binære variable er uafhængig af antallet af observationer. I vores numeriske resultater viser vi at p̊a

standard datasæt brugt i ”fairness“ literaturen kan vi drastisk øge ”fairness“ p̊a vores benchmark,

nemlig ”random forest“, imens vi kun bruger f̊a kovariater og uden at øge fejlklassificering.

I Kapitel V undersøger jeg ”Treatment Allocation“ problemet, hvor man skal beslutte hvilke

individer der f̊ar behandling. Hvis algoritmen ikke trænes forsigtigt kan den give unfair resultater

som en ulige fordeling af behandlinger mellem den beskyttede (f.eks. kvinder) og ikke beskyttede

(f.eks. mænd) gruppe. For at h̊andtere dette, foresl̊ar jeg at m̊ale ”unfairness“ som forskellen i

behandlingseffekten mellem den beskyttede og ikke beskyttede gruppe. Jeg introducerer en matem-

atisk optimeringsmodel til at have præcise prædiktioner af heterogene behandslingseffekter og et

godt niveau af ”fairness“, som er basis for allokeringen af behandlinger til kommende individer. Jeg

viser resultaterne p̊a simulerede datasæt, der illusterer at min model giver mere fair prædiktioner

af behandlingseffekter end benchmarken.
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The use of Artificial Intelligence (AI) and Machine Learning (ML) to aid Data Driven Decision

Making is increasing dramatically. The wide availability of AI/ML algorithms brings important

advantages, such as the improved accuracy of decisions and the reduction in the resources required

to make them [Athey, 2017, Bertsimas et al., 2022, Jordan and Mitchell, 2015]. Despite excel-

lent accuracy, state-of-the-art ML tools such as Deep Learning [Goodfellow et al., 2016], Random

Forests [Breiman, 2001], and Support Vector Machines [Cortes and Vapnik, 1995], are effectively

black boxes that complicate model trustworthiness and may provide unfair outcomes. The use of

these methodologies requires caution when deploying them in high-stakes decision making due to

social, ethical, and legal concerns [Gunning et al., 2019, Shin, 2021]. The need for transparent Ma-

chine Learning models is huge in many areas, e.g., credit scoring, medical diagnosis and regulatory

benchmarking [Baesens et al., 2003, Beńıtez-Peña et al., 2020, Carrizosa and Romero Morales,

2013, Di Teodoro et al., 2024, Freitas, 2014, Kleinberg et al., 2018, Lepri et al., 2017]. Public

authorities are also demanding transparency in algorithmic decision making [Goodman and Flax-

man, 2017]. This Ph.D. dissertation contributes to modeling the trade-off between accuracy and

transparency for important tasks in Unsupervised Learning (namely, Cluster Analysis), Supervised

Learning (namely, classification and regression), and treatment allocation.

Transparency in AI can take various forms such as accountability, explainability or fairness

[Hutchinson et al., 2021, Panigutti et al., 2023], and in this dissertation, I focus on the last two.

Explainability is the concept that an ML model and its output can be easily explained to

a human being. There is a growing literature on Interpretable ML, such as transparent neural

networks [Samek et al., 2021, Wu et al., 2021], interpretable random forests [Bénard et al., 2021,

Vidal and Schiffer, 2020], or sparse support vector machines [Beńıtez-Peña et al., 2019, Carrizosa

et al., 2016, Jiménez-Cordero et al., 2021]. In this dissertation, several forms of explainability are

used and described in what follows. The ML models can be explainable by construction. One of

the main exponents are decision trees [Carrizosa et al., 2021b, Gordon et al., 1984]. This type

of model builds a tree where the obtained path from the root node to a given leaf node can be

considered as an if-then rule explanation for any observation falling in that leaf. Another type of

explanation is prototype-based [Carrizosa et al., 2007, Cover and Hart, 1967]. This explanation

consists of a prototype or representative individual that speaks for a group of individuals. They

are used in, e.g., Cluster Analysis when one needs to understand the “average” individual of the

group. Another approach to improve the explainability of a model is to enhance its sparsity, i.e.,

to use fewer explanatory variables, where one of the main exponents is LASSO [Hastie et al., 2019,

Tibshirani, 1996]. Alternatively, one can explain the decisions made by the ML model after it
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has been trained. This is a rapidly growing research direction referred as Explainable Artificial

Intelligence (XAI) [Barredo Arrieta et al., 2020, Heaton and Fung, 2023, Lakkaraju et al., 2017].

The most popular XAI techniques are LIME [Ribeiro et al., 2016] and SHAP [Lundberg and Lee,

2017].

Explainability is not the only concern in ML models. Indeed, nowadays there are many ex-

amples of algorithmic bias against sensitive groups, that are, for example, exposed to structural

discrimination, sexism, racism, or the like [Corbett-Davies and Goel, 2018, Miron et al., 2020,

Romei and Ruggieri, 2014]. If not carefully trained, the ML model can provide unfair results

[Mehrabi et al., 2022]. To minimize this effect many fairness measures have been introduced in the

literature [Hort et al., 2022, Zafar et al., 2017]. Fairness measures control the training process so

that algorithmic bias can be mitigated, as will be done in this thesis for classification and regression

as well as treatment allocation tasks.

In this dissertation, I make more transparent key methodologies in Cluster Analysis, classi-

fication and regression, and treatment allocation. The main goal of Cluster Analysis is to split

similar objects into groups or clusters. It can be useful in applications such as recommendation

systems where a recommendation is given based on similar individuals (clusters), market and cus-

tomer segmentation, biological data segmentation, etc. Another type of problem I consider is

classification and regression via Tree Ensembles such as Random Forests [Biau and Scornet, 2016,

Breiman, 2001] and XGBoost [Chen and Guestrin, 2016]. In Tree Ensembles, a collection of trees

is built and the final prediction is made by combining the predictions obtained from each of the

trees. The last type of problem I consider is treatment allocation. This is a task where a decision

maker needs to decide whom to allocate to treatment (surgery, loan, etc). In order to satisfy the

budget constraints the decision maker can only allocate treatment to those who get the highest

benefit from the intervention. Thus, to define those most beneficial individuals the prediction of

the treatment effect is needed.

Mathematical Optimization is the core methodology to address these key tasks [Carrizosa

and Romero Morales, 2013, Carrizosa et al., 2021b]. In Chapters II–V, I propose Mathematical

Optimization problems to build ML models that balance accuracy, explainability and fairness.

By imposing objectives and constraints, these Mathematical Optimization problems allow us to

achieve high accuracy while enhancing explainability and fairness. In particular, Chapters II and

III relate to Cluster Analysis, Chapter IV to classification and regression via Tree Ensembles, while

Chapter V to treatment allocation via Tree Ensembles.

In Chapter II, based on the work in Carrizosa et al. [2022b], we associate to each cluster a
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prototype. As the measure of quality of such an allocation, we consider the number of individuals

of a cluster that are closer to their cluster prototype than to the other prototypes. We develop

two Mixed Integer Linear Programming (MILP) models that select the prototypes requiring only

a dissimilarity between the individuals. We illustrate on real-world as well as simulated datasets

that we manage to find accurate explanations for the clusters.

In Chapter III, based on the work in Carrizosa et al. [2023a], we associate with each cluster a

small set of clauses joined by the AND operator. As the measure of quality of such an allocation,

we consider the number of individuals in a cluster that satisfy all the clauses from their cluster but

not all the clauses from the other clusters. We develop two MILP models that select the clauses

for each cluster. We illustrate on several real-world datasets that accurate explanations for the

clusters can be found.

In Chapter IV, based on the work in Carrizosa et al. [2023b], we consider the problem of making

Classification and Regression Tree Ensembles tasks more explainable and fairer to sensitive groups.

We propose a tree weighting approach via an MILP problem that allocates higher weight to “better”

trees and lower weight or even zero weight to “bad” trees. With this, we are able to control for

sparsity (a proxy of explainability) and the accuracy of the Tree Ensemble in the sensitive group

(our measure of fairness). We illustrate on several real-world datasets that we manage to increase

the sparsity and fairness of the original Tree Ensemble without harming its accuracy.

In Chapter V, based on the work in Kurishchenko [2023], I extend the idea of Chapter IV

to consider the treatment allocation problem. I use Tree Ensembles to predict treatment effects,

which will be the basis for the treatment allocation in forthcoming individuals. I introduce a

fairness measure to ensure that the predicted treatment effects in the sensitive and non-sensitive

groups on average do not differ much. I reweight the trees in the ensemble via a Convex Quadratic

Programming problem to have accurate outcome predictions and a good level of fairness of the

treatment effect predictions. I illustrate on simulated datasets that my model provides fairer

predictions of the treatment effect than the benchmark.

Finally, some general conclusions and possible lines of future research are provided in Chapter

VI.
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Chapter II

Interpreting clusters via prototype

optimization
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II.1 Introduction

This chapter is devoted to the interpretability of one of the most popular Unsupervised Learning

tasks, namely, Cluster Analysis [Aloise et al., 2012, Gan et al., 2007, Kaufmann and Rousseeuw,

1990]. The need for interpretability in Cluster Analysis arises in many applications, such as security

[Corral et al., 2009], internet traffic [Morichetta et al., 2019], finance [Gibert and Conti, 2016], sales

profiling [Thomassey and Fiordaliso, 2006], and astronomy [Ma et al., 2018].

There are two ways of enhancing interpretability in Cluster Analysis: intrinsic models and

post-hoc models. Intrinsic models build simultaneously clusters and their explanations [Bertsimas

et al., 2021, Chen et al., 2016], while post-hoc approaches are needed to interpret existing clusters,

that have been built in the past, and for which we only have a label for each individual. There are

some works in the literature on post-hoc approaches. In Davidson et al. [2018], the authors assume

that the individuals have been evaluated on a set of features and propose rule-based explanations.

There are also ad-hoc approaches as those in, e.g., Balabaeva and Kovalchuk [2020], De Koninck

et al. [2017], Kauffmann et al. [2022], for specific types of data. In this chapter, we propose a

post-hoc approach for interpreting clusters via means of prototypes.

Throughout this section, we will use a running example with clusters given, namely the real-

world dataset containing twelve countries about the opinions of political science students, see Table

II.1. In Rousseeuw [1987], three clusters are given for this dataset, cluster 1 composed by Belgium,

Egypt, France, Israel, and USA; cluster 2 with Brasil, India, and Zaire; and cluster 3 with China,

Cuba, USSR, and Yugoslavia.

Table II.1: Dissimilarities on opinions of political science students between the twelve countries in

our running example, Rousseeuw [1987].

Country Dissimilarities to other countries

Belgium Brasil China Cuba Egypt France India Israel USA USSR Yugoslavia

Brasil 5.58

China 7.00 6.50

Cuba 7.08 7.00 3.83

Egypt 4.83 5.08 8.17 5.83

France 2.17 5.75 6.67 6.92 4.92

India 6.42 5.00 5.58 6.00 4.67 6.42

Israel 3.42 5.50 6.42 6.42 5.00 3.92 6.17

USA 2.50 4.92 6.25 7.33 4.50 2.25 6.33 2.75

USSR 6.08 6.67 4.25 2.67 6.00 6.17 6.17 6.92 6.17

Yugoslavia 5.25 6.83 4.50 3.75 5.75 5.42 6.08 5.83 6.67 3.67

Zaire 4.75 3.00 6.08 6.67 5.00 5.58 4.83 6.17 5.67 6.50 6.92
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Our starting point is the predefined clusters in C, which have been obtained applying a clus-

tering procedure to the set of individuals N [Aloise et al., 2012, 2009, Grötschel and Wakabayashi,

1989, Jain, 2010, Maldonado et al., 2015, Rao, 1971, Seref et al., 2014]. We propose a methodology

to improve the interpretability of the results of Cluster Analysis, by giving an explanation to each

cluster c ∈ C that characterizes as precisely and distinctively as possible c. In other words, the

explanation is to be fulfilled by as many as possible individuals of c (and these will be referred to

as true positive cases) and by as few as possible individuals in the remaining clusters (which will

be referred to as false positive cases).

Our explanations are distance-based, as in clustering procedures attempting to partition the set

of individuals such that individuals that are close to each other are allocated to the same cluster,

whereas individuals that are far from each other are expected to be in different clusters. It is then

natural to explain cluster c following a distance-based explanation such as

c is the set of individuals of N that are close to a given individual i.

To define distance-based explanations, we assume we are given a dissimilarity δ to measure the

closeness between individuals [Kaufmann and Rousseeuw, 1990]. The dissimilarity between the

twelve countries in our running example is given in Table II.1. Note that, in general, δ does not

need to be the dissimilarity used to construct the clusters in C. Actually, that dissimilarity may

not be available to us.

How well this explains cluster c depends on the choice of individual i to which we will refer

as the prototype of cluster c [Carrizosa et al., 2007, Cover and Hart, 1967], in other words, the

“face” chosen for the cluster. Our aim is to select the set of prototypes that maximizes the total

number of true positive cases across all clusters and minimizes the total number of false positive

cases while controlling in each cluster the true positive rate, i.e., the number of true positive cases

divided by the size of the cluster as well as the false positive rate, i.e., the number of false positive

cases divided by the size of the cluster. With the methodology proposed in this chapter, the chosen

prototypes for our example are: France for cluster 1, Brasil for cluster 2, and Yugoslavia for cluster

3. For cluster 1, all 5 countries are true positive cases, while none of the 7 countries in the other

two clusters are false positive cases, yielding to the ideal quality of the explanation, namely 100%

true positive rate and 0% false positive rate. The same holds for the other two clusters.

In general, one cannot expect to find perfect explanations. In Figure II.1, we can see that by

trying to improve the number of true positive cases of an explanation we may harm the number of

false positive cases. There we have two clusters, cluster 1 with 5 individuals represented by a red

star and cluster 2 with 4 individuals represented by a blue star. If we look at the explanation in
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Figure II.1a for cluster 1, the circle in red containing 4 of the individuals from cluster 1 and none

from cluster 2, we see that there are 4 true positive cases (or, equivalently, an 80% true positive

rate) and 0 false positive cases (or, equivalently, a 0% false positive rate), while for the alternative

explanation for cluster 1 in Figure II.1b, the number of true positive cases has increased to 5

(achieving a 100% true positive rate) but the number of false positive cases has gone up to 1 (25%

false positive rate).

(a) An explanation for cluster 1 (b) An alternative explanation for cluster 1

Figure II.1: Illustration of the trade-off between true positive and false positive cases when inter-

preting clusters via means of prototypes.

To find the set of prototypes, we propose two mathematical optimization models, the covering

and the partitioning ones, inspired by classic Location Analysis problems, namely the covering

[Garćıa and Maŕın, 2019] and the p-median problems [Garćıa et al., 2011, Maŕın and Pelegŕın,

2019]. In the covering model, a cluster is explained as the individuals whose distance to its

prototype is below a threshold value, i.e., the explanation of cluster c can be visualized as the

ball in the distance δ centered at its prototype and radius equal to the corresponding threshold

value. Instead, in the set-partitioning model, cluster c is explained as the individuals that are

the closest to the prototype of c than to the prototypes of the other clusters. In this case, the

explanations can be visualized as Voronoi diagrams. For both models, we provide a Mixed Integer

Linear Programming (MILP) formulation, where in the covering one, in addition to the prototypes,

we need to decide the size of the radii.

The remainder of the chapter is organized as follows. Section II.2 presents the covering model,

while Section II.3 the partitioning model. Section II.4 provides numerical results for real-world

data as well as simulated data. Section II.5 summarizes the chapter and proposes future lines of
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research.

II.2 The covering model

In this model, given a cluster c, a prototype i, an individual will be considered covered by cluster

c if it is close enough to i. By close enough we mean that their dissimilarity is below a threshold

value rc, which is the coverage radius. Our aim is thus to find the prototypes and the cluster radii.

Observe that, with this approach, an individual could be covered by more than one cluster if some

of the radii are large, while some individuals may not be covered by any cluster when the radii are

small. We obtain an MILP formulation for this problem, which is separable on the clusters. We

show how the radii can only take on a discrete amount of values, and give an alternative Integer

Programming (IP) formulation for a fixed radius. We focus on the most interpretable case in

which only one prototype per cluster is to be selected. The extension to more than one prototype

is straightforward.

Let us introduce the problem more formally. We are given a clustering C obtained from splitting

the individuals in N , N =
⋃
c∈C Nc. The prototype of cluster c is chosen from set Ic ⊆ Nc, with

I =
⋃
c∈C Ic. We are also given the dissimilarity between prototype i and individual n, δin, for

every i ∈ I and n ∈ N . This dissimilarity does not need to be the one that was used to construct

the clusters. As pointed out in the introduction, we may have been given only clusters, and neither

the method nor the dissimilarity used to build them.

Let rc be the radius of the explanation chosen for cluster c. For i ∈ Ic, let πin be the binary

decision variable which takes on the value 1 if n ∈ N lies in the ball of radius rc centered at

prototype i ∈ I, and 0 otherwise. Moreover, let zi be the binary decision variable which takes

on the value 1 if i is chosen as prototype and 0 otherwise. Throughout this chapter, we use bold

typesetting to denote the vectors, e.g., r = (rc)c∈C .

With these variables, the number of true positive cases in cluster c is equal to
∑

i∈Ic
∑

n∈Nc
πinzi

and the corresponding True Positive Rate (TPRc) is

TPRc =

∑
i∈Ic

∑
n∈Nc

πinzi

|Nc|
, (II.2.1)

while the number of false positive cases in cluster c is equal to
∑

i∈Ic
∑

n∈N\Nc
πinzi and the

corresponding False Positive Rate (FPRc) is

FPRc =

∑
i∈Ic

∑
n∈N\Nc

πinzi

|N \ Nc|
. (II.2.2)
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The covering model reads as follows:

max
z,π,r

∑
c∈C

∑
i∈Ic

∑
n∈Nc

πinzi − θ
∑
c∈C

∑
i∈Ic

∑
n∈N\Nc

πinzi (II.2.3)

s.t.
∑
i∈Ic

zi = 1, ∀c ∈ C (II.2.4)

rc ≥ δinπin, ∀(i, n) ∈ Ic ×Nc,∀c ∈ C (II.2.5)

rc ≤ δin + (rmax
c − δin)πin, ∀(i, n) ∈ Ic ×N \ Nc,∀c ∈ C (II.2.6)∑

i∈Ic

∑
n∈Nc

πinzi ≥ dλc|Nc|e, ∀c ∈ C (II.2.7)

∑
i∈Ic

∑
n∈N\Nc

πinzi ≤ bµc|N \ Nc|c, ∀c ∈ C (II.2.8)

rmin
c ≤ rc ≤ rmax

c , ∀c ∈ C (II.2.9)

zi ∈ {0, 1}, ∀i ∈ Ic, ∀c ∈ C (II.2.10)

πin ∈ {0, 1}, ∀(i, n) ∈ Ic ×N ,∀c ∈ C. (II.2.11)

The objective function is equal to the total number of true positive cases across all clusters minus

the total number of false positive cases weighted by the trade-off parameter θ ≥ 0. Constraints

(II.2.4) ensure that one single prototype is chosen for each cluster. Constraints (II.2.5) and (II.2.6)

ensure that the decision variables πin are well defined. Note that because of the shape of the

objective function, for n ∈ Nc, we only need to ensure that if rc < δin then πin = 0, which is done

by constraint (II.2.5). For n ∈ N \Nc, we only need to ensure that if rc > δin then πin = 1, which

is done by constraints (II.2.6). Note that if rc = δin then πin = 1 for individuals inside the cluster

c and πin = 0 for individuals outside the cluster c. It is easy to see that constraints (II.2.7) control

the true positive rate in cluster c, TPRc, via the parameter λc ∈ [0, 1]. Similarly, constraints

(II.2.8) control the false positive rate in cluster c, FPRc, via the parameter µc ∈ [0, 1]. Finally,

constraints (II.2.9)–(II.2.11) define the nature of the decision variables. The radius of cluster c is

bounded from below and above by rmin
c and rmax

c , respectively. Straightforward values for these

parameters are rmin
c = min(i,n)∈Ic×Nc,i 6=n δin and rmax

c = max(i,n)∈Ic×Nc
δin.

Note that the objective function contains the total number of true and false positive cases

across all clusters, while constraints (II.2.7)–(II.2.8) allow us to control these two criteria in each

cluster. These constraints can be useful when we want to prioritize how well we explain certain

clusters, or when the clusters are of very different size and we want to ensure a good performance

independently of their size, as we do in the numerical section for the real-world dataset.

In formulation (II.2.3)–(II.2.11), we have the product of two decision variables, i.e., πin and zi,
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which makes the problem bilinear. We can obtain an equivalent MILP formulation, by applying the

Fortet transformation [Fortet, 1960]. Let us introduce the new decision variable yin = πinzi and the

corresponding constraints to ensure yin is well-defined. The covering model can be reformulated

as the following MILP

max
z,π,r,y

∑
c∈C

∑
i∈Ic

∑
n∈Nc

yin − θ
∑
c∈C

∑
i∈Ic

∑
n∈N\Nc

yin (II.2.12)

(II.2.4)− (II.2.11)

yin ≤ πin, ∀(i, n) ∈ Ic ×N ,∀c ∈ C (II.2.13)

yin ≤ zi, ∀(i, n) ∈ Ic ×N ,∀c ∈ C (II.2.14)

yin ≥ πin + zi − 1, ∀(i, n) ∈ Ic ×N ,∀c ∈ C (II.2.15)

yin ≥ 0, ∀(i, n) ∈ Ic ×N , ∀c ∈ C, (II.2.16)

with |I| × |N |+ |I| binary and |C|+ |I| × |N | continuous decision variables, and 4|I| × |N |+ 5|C|

linear constraints.

The following result allows us to decompose the covering model into smaller subproblems.

Proposition II.2.1. The covering model formulation is separable on the clusters.

Proof. The objective function of the covering model consists of a summation across the clusters

of the number of true positive cases minus the number of false positive cases weighted by θ. In

addition, the constraints relevant to c only involve decision variables relating to c. With this, the

desired result easily follows.

We have modeled the radius of cluster c, rc, as a continuous variable. However, it is easy to show

that we only need to consider a discrete amount of values, namely, rc ∈ {δin : (i, n) ∈ Ic × Nc}.

Suppose that we solve the covering model for one of these values. Since the radius is fixed, the

values of πin are known and can be calculated in a preprocessing step, as well as the true positive

cases and false positive cases associated with i if i is chosen as a prototype.

Let us denote by πrin the value of πin when the radius of cluster c, rc, is fixed to r. Let us define

φric =
∑
n∈Nc

πrin,

ψric =
∑

n∈N\Nc

πrin.

With this, the covering model for cluster c and radius rc = r can be formulated as follows:

max
z

∑
i∈Ic

φriczi − θ
∑
i∈Ic

ψriczi (II.2.17)
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s.t.
∑
i∈Ic

zi = 1 (II.2.18)

∑
i∈Ic

φriczi ≥ dλc|Nc|e, (II.2.19)

∑
i∈Ic

ψriczi ≤ bµc|N \ Nc|c, (II.2.20)

zi ∈ {0, 1}, ∀i ∈ Ic. (II.2.21)

Note that the set of candidates to prototype for cluster c, Ic, can be reduced to I ′c ⊂ Ic. Some

candidates can be removed because φric < dλc|Nc|e and others because ψric > bµc|N \ Nc|c. After

reducing the set of candidates from Ic to I ′c, we can eliminate constraints (II.2.19) and (II.2.20),

and the problem is equivalent to choosing the prototype from I ′c with the largest φric − θψric.

To tackle large instances of the problem, i.e., with many individuals, we propose a heuristic

approach based on combining our covering model with a sampling procedure from the set of

individuals and/or the set of candidates to prototype. Indeed, we can sample from the set of

candidates to prototype for cluster c, yielding Ĩc ⊂ Ic, for all c, and/or sample from the set of

individuals from cluster c, yielding Ñc ⊂ Nc, and solve the reduced covering model. Let zR
i and

rR
c , i ∈ Ĩc and c ∈ C, be the chosen prototypes and the chosen radii of the reduced problem if

this is feasible. We can use this partial solution to find a feasible solution to the original problem,

(zO,πO, rO) with zO
i = zR

i , for all i ∈ Ĩc and c ∈ C, and rO = rR, satisfying constraints (II.2.7),

imposing a lower bound on TPRc, and constraints (II.2.8), imposing an upper bound on FPRc.

Needless to say that this approach may not yield a feasible solution to the original problem, and

we may need to sample more or make the values of λc and µc less restrictive.

II.3 The partitioning model

An alternative way of explaining clusters by means of prototypes is the partitioning model. In this

case, each individual is assigned to exactly one prototype, namely the closest one. To do this, in

addition to the zi variables defined as before, we also need the binary variables ρin that allocate

individuals to prototypes. Let ρin take on the value 1 if prototype i is the closest one to individual

n from the chosen ones, and 0 otherwise. With these variables, the number of true positive cases

in cluster c is equal to
∑

i∈Ic
∑

n∈Nc
ρin and the corresponding true positive rate

TPRc =

∑
i∈Ic

∑
n∈Nc

ρin

|Nc|
, (II.3.1)
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while the number of false positive cases in cluster c is equal to
∑

i∈Ic
∑

n∈N\Nc
ρin and the corre-

sponding false positive rate

FPRc =

∑
i∈Ic

∑
n∈N\Nc

ρin

|N \ Nc|
. (II.3.2)

The partitioning model reads as follows:

max
z,ρ

∑
c∈C

∑
i∈Ic

∑
n∈Nc

ρin − θ
∑
c∈C

∑
i∈Ic

∑
n∈N\Nc

ρin (II.3.3)

s.t.
∑
i∈Ic

zi = 1, ∀c ∈ C (II.3.4)

∑
j∈Ic: δjn≤δin

zj +
∑

j∈I: δjn>δin

ρjn ≤ 1 ∀(i, n) ∈ Ic ×N ,∀c ∈ C (II.3.5)

ρin ≤ zi, ∀(i, n) ∈ I ×N (II.3.6)∑
i∈I

ρin = 1, ∀n ∈ N (II.3.7)

∑
i∈Ic

∑
n∈Nc

ρin ≥ dλc|Nc|e, ∀c ∈ C (II.3.8)

∑
i∈Ic

∑
n∈N\Nc

ρin ≤ bµc|N \ Nc|c, ∀c ∈ C (II.3.9)

zi ∈ {0, 1}, ∀i ∈ I (II.3.10)

ρin ∈ {0, 1}, ∀(i, n) ∈ I ×N . (II.3.11)

The objective function (II.3.3) is as in the covering model, as well as constraints (II.3.4) ensuring

that we choose exactly one prototype for cluster c and constraints (II.3.8)-(II.3.9) controlling TPRc

and FPRc for all c ∈ C. Constraints (II.3.5) are the closest assignment constraints and reinforce

Wagner and Falkson [1975] using the fact that, for each cluster, only one prototype is chosen. These

constraints make sure that if individual n is assigned to a prototype, then there cannot be another

prototype closer to n. Constraints (II.3.6) ensure that individuals are assigned to prototypes that

have been selected. Constraints (II.3.7) impose that the model assigns each individual to a single

prototype. Constraints (II.3.10)–(II.3.11) define the nature of the decision variables.

Two observations are noted on the partitioning formulation (II.3.3)-(II.3.11). First, there is a

clear difference between the partitioning model and the covering model introduced in the previous

section. To define the explanations in the partitioning model, we need to know the prototypes for

all clusters, while with the covering model, due to its separability on the clusters, see Proposition

II.2.1, we can obtain explanations for one single cluster without knowing the prototypes from

other clusters. Second, in the partitioning formulation above we have chosen one prototype per
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cluster. If we were to choose more than one, we will obviously need to change the right-hand

side of constraints (II.3.4), as well as replace (II.3.5) by the original Wagner and Falkson [1975]

constraints

zi +
∑

j∈I:δin<δjn

ρjn ≤ 1, ∀(i, n) ∈ Ic ×N , ∀c ∈ C.

The following result on the objective function (II.3.3) easily follows.

Lemma II.3.1. The objective function of the partitioning problem is equivalent to

max
z,ρ

∑
c∈C

∑
i∈Ic

∑
n∈Nc

ρin. (II.3.12)

Proof. The result follows thanks to constraints (II.3.7). Indeed, the objective function in (II.3.3)

can be rewritten as

∑
c∈C

∑
i∈Ic

∑
n∈Nc

ρin − θ
∑
c∈C

∑
i∈Ic

∑
n∈N\Nc

ρin =

=
∑
c∈C

∑
i∈Ic

∑
n∈Nc

ρin − θ
∑
c∈C

∑
i∈Ic

(
∑

n∈N\Nc

ρin +
∑
n∈Nc

ρin −
∑
n∈Nc

ρin)

= (1 + θ)
∑
c∈C

∑
i∈Ic

∑
n∈Nc

ρin − θ
∑
c∈C

∑
i∈Ic

∑
n∈N

ρin

= (1 + θ)
∑
c∈C

∑
i∈Ic

∑
n∈Nc

ρin − θ
∑
n∈N

∑
i∈I

ρin

= (1 + θ)
∑
c∈C

∑
i∈Ic

∑
n∈Nc

ρin − θ|N |,

where constraints (II.3.7) have been used in the last step. Now the desired result follows removing

the constant term θ|N | and noting that 1 + θ > 0.

The following result on the integrality of variables ρin easily follows.

Proposition II.3.1. Suppose that δin 6= δjn for all i, j ∈ I, i 6= j, and n ∈ N . Without loss of

optimality, the integrality constraint (II.3.11) on variables ρin can be relaxed to

ρin ≥ 0, ∀(i, n) ∈ I ×N . (II.3.13)

Proof. Let zF be a partial solution for the partitioning model satisfying (II.3.4) and (II.3.10). For

each n ∈ N , define i(n) := arg min{δin : zFi = 1} and ρFjn = 1 if j = i(n) and 0 otherwise. It is

easy to see that ρF is the only feasible solution to the following constraints

∑
j∈I: δjn>δin

ρjn ≤ 1−
∑

j∈Ic: δjn≤δin

zFj , ∀(i, n) ∈ Ic ×N , ∀c ∈ C (II.3.14)
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ρin ≤ zFi , ∀(i, n) ∈ I ×N (II.3.15)∑
i∈I

ρin = 1, ∀n ∈ N (II.3.16)

ρin ≥ 0, ∀(i, n) ∈ I ×N , (II.3.17)

For a given n, consider constraints (II.3.14) for i = i(n). It is easy to see that the rhs is equal

to 0, since j = i(n) is one of the indices in the summation and by definition zFi(n) = 1. This

means that the lhs of (II.3.14) for i = i(n) should be zero, and thus ρFjn = 0 for all j such that

δjn > δii(n), which is equivalent to j 6= i(n) since there are no ties in the dissimilarities. Now from

(II.3.16), we have that ρFi(n)n = 1. Note that this solution clearly satisfies (II.3.15) and (II.3.17),

and that by construction ρFin ∈ {0, 1}. Consider now (zF ,ρF ). If this solution satisfies constraints

(II.3.8)–(II.3.9), then (zF ,ρF ) is feasible for the partitioning model. Otherwise, there is no feasible

solution for the partitioning model with z = zF .

With Lemma II.3.1 and Proposition II.3.1, the partitioning problem has been written as the

MILP (II.3.12), (II.3.4)-(II.3.10) and (II.3.13) model, with |I| binary and |I| × |N | continuous

decision variables and 2|I| × |N |+ 3|C|+ |N | linear constraints.

To tackle large instances of the partitioning problem with many individuals, we can use a similar

heuristic approach as in Section II.2. Recall that this consists on solving a reduced partitioning

model by sampling in the set of individuals and/or the set of candidates to prototype. For each c,

recall that Ĩc ⊂ Ic is the subsample of candidates to prototype for cluster c in the reduced problem

and Ñc ⊂ Nc the subsample of individuals. Let zR
i , i ∈ Ĩc and c ∈ C, be the chosen prototypes if

the reduced problem is feasible. We can use this partial solution to find a feasible solution to the

original problem, (zO,ρO) with zO
i = zR

i for all i ∈ Ĩc and c ∈ C, satisfying constraints (II.3.8),

imposing a lower bound on TPRc, and constraints (II.3.9), imposing an upper bound on FPRc.

As pointed out in the previous section, this heuristic approach may not yield a feasible solution

to the original problem, and we may need to sample more or make the values of λc and µc less

restrictive.

II.4 Numerical results

In this section, we illustrate the quality of the cluster explanations provided by the covering and

the partitioning models using both real-world data and simulated data. We measure the goodness

of cluster explanations by the true positive ratio TPRc and the false positive ratio FPRc in each

of the clusters, defined in (II.2.1) and (II.2.2) for the covering problem and in (II.3.1) and (II.3.2)
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for the partitioning problem. The explanations are obtained assuming that λ = λ1 = . . . = λ|C|

and µ = µ1 = . . . = µ|C|. This means that throughout this section, and with loss of generality, we

impose the same requirements on TPRc to all clusters, as well as on FPRc.

We have set the parameter in the objective function of the covering model, θ, which weighs

between the total number of true positive cases and false positive ones, equal to 1. This parameter

does not play a role in the partitioning model as shown in Lemma II.3.1, where we have proved

that this model maximizes the total number of true positive cases subject to the performance

constraints on TPRc and FPRc. To illustrate the trade-off between TPRc and FPRc, we vary the

parameters λ and µ on a grid in [0, 1]× [0, 1].

As real-world data, we use functional data relating to Canadian weather data, see Figure

II.2 and Section II.4.1, publicly available in the R package fda [Febrero-Bande and Oviedo de la

Fuente, 2012]. With this data we illustrate that our approach can generate good explanations,

Figure II.2: The Canadian weather data to test the covering model and the partitioning one. The

data is grouped into four clusters by climate’s type: Atlantic - blue, Continental - pink, Pacific -

red, Arctic - green. Days are along the horizontal axis, temperatures are along the vertical axis.

i.e., with high TPRc and with low FPRc, and that for some of the clusters we even obtain perfect

explanations, i.e., with TPRc = 1 and FPRc = 0. Our grid results illustrate how by increasing

the requirements on TPRc through the parameter λ, we have to compromise the FPRc of some

clusters. In terms of simulated data, we use synthetic clusters in R2, see Figure II.3 and Section

II.4.2, and illustrate how our approach achieves good explanations in terms of TPRc and FPRc,

even for large number of individuals |N |.

To solve the mathematical optimization models arising we use Gurobi [Gurobi Optimization,

2020] with Python [Python Core Team, 2015] on a PC Intel R©Core TM i7-8665U, 16GB of RAM.
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Figure II.3: Simulated data in R2 with three clusters to test the covering model and the partitioning

one.

We have imposed a time limit of 300 seconds to each optimization model. Within this time limit,

in our numerical results below, we have been able to prove optimality or to show that the problem

is infeasible.

II.4.1 Results for real-world data

The Canadian weather data contains 365 days of temperature observations for |N | = 35 cities

grouped into |C| = 4 types of climates: Atlantic (|NAtlantic| = 15), Continental (|NContinental| = 12),

Pacific (|NPacific| = 5), and Arctic (|NArtic| = 3). The data are depicted in Figure II.2, where the

clusters are identified by a color, namely, blue for Atlantic, pink for Continental, red for Pacific,

and green for Arctic. To build the dissimilarity measure, we use a vectorial representation of each

observation with the 365 daily temperatures. We measure the dissimilarity between n and i as the

Euclidean distance between the corresponding vectors of temperatures. In both the covering and

the partitioning models, we consider I = N , i.e., all individuals are candidates to prototype.

To illustrate the trade-off between TPRc and FPRc for each cluster, we vary λ and µ on a grid

in [0, 1]× [0, 1], namely, λ, µ ∈ {0.0, 0.1, 0.2, . . . , 1.0}. Recall that we impose the same requirements

on TPRc as well as on FPRc to all clusters independently of their size, avoiding thus that our

approach is significantly biased towards those clusters with most individuals. The results for the

covering model can be found in Figure II.4, where we report the TPRc and the FPRc for each

cluster, separately. We use a white background to denote a combination of (λ, µ) for which the

corresponding model is infeasible, i.e., no explanation can be found ensuring a TPRc of at least

λ and a FPRc of at most µ, for each of the clusters. In general, the covering model finds good
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explanations, i.e., explanations that have an attractive trade-off between TPRc and FPRc for all the

clusters. This is the case for (λ, µ) = (0.80, 0.20), for which TPRAtlantic = 0.80, TPRContinental =

0.92, TPRPacific = 0.80 and FPRArtic = 1.00, while FPRAtlantic = 0.00, FPRContinental = 0.13,

FPRPacific = 0.03 and FPRArtic = 0.00.

The explanations of the covering model for (λ, µ) = (0.80, 0.20) are depicted in Figure II.5. In

Figure II.5a we highlight in boldface the selected prototypes for each of the clusters. Figures II.5b-

II.5e zoom in on each of the prototypes and the individuals explained by them (true positive and

false positive), as well as the ones that should have been explained but were not (false negative).

To visualize this, we use lines of the same color as the prototype to denote true positive cases;

the lines with a color different from the one of the prototype denote false positive cases; while the

dashed lines of the same color as the prototype denote false negative cases. For instance, in Figure

II.5c, we can see that the prototype of the Continental climate cluster is Uranium City (in boldface

pink), Dawson is a true positive (pink line), Inuvik is a false positive (green line), while Calgary

is a false negative (dashed line in pink). We can see that the covering model can find more than

one explanation for an individual, e.g., Inuvik is explained by the prototypes from the Continental

and the Arctic clusters, or not explained at all, e.g., Calgary.

To end with the covering model we briefly discuss the range of values of TPRc and FPRc

in Figure II.4. By definition, the higher the value of λ, i.e., the stricter we are on the minimum

requirement on TPRc for all clusters, the worse the FPRc. For instance, for µ = 0.10, FPRContinental

worsens from 0.04 to 0.09 when increasing λ. Similarly, the lower the value of µ, i.e., the stricter

we are on the maximum requirement on FPRc for all clusters, the worse the TPRc. For instance,

for λ = 0.70, TPRContinental worsens from 0.92 to 0.75 when decreasing µ.

We now briefly discuss the results of the partitioning model for the Canadian weather data in

Figure II.6. Note that in this case, the partitioning model gives for each cluster the same TPRc

and the same FPRc for all combinations of (λ, µ) in the chosen grid for which there is a feasible

solution, i.e., for λ ≤ 0.80 and µ ≥ 0.10. More detailed information on this solution can be found in

Figure II.7. There we can see that, as expected, the partitioning model gives a unique explanation

for each individual.

II.4.2 Results for simulated data

In this section we consider simulated data in R2. The simulated data consist of three clusters, see

Figure II.3 where cluster 1 is depicted in blue, cluster 2 in green, and cluster 3 in red. The coordi-

nates of the individuals in cluster c are randomly drawn from a multivariate normal distribution,
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N (βc,Σc), with

β1 = (1.45, 1.5) β2 = (1.8, 1.6) β3 = (1.4, 2.0)

Σ1 =

0.01 0.00

0.00 0.02

 Σ2 =

0.02 0.00

0.00 0.02

 Σ3 =

0.03 0.00

0.00 0.04

 .

We split the individuals in N roughly equally across the three clusters.

The goal of this experiment is to show that our methodology is scalable, i.e., it can handle

datasets with large number of individuals and it can obtain good explanations in terms of TPRc

and FPRc for all the clusters with both the covering and the partitioning models. For this we

consider instances with |N | ∈ {104, 105, 106}, and we vary λ and µ on a grid in [0, 1] × [0, 1],

namely, λ ∈ {0.85, 0.86, 0.87, 0.88, 0.89, 0.90} and µ ∈ {0.05, 0.06, 0.07, 0.08, 0.09, 0.10}.

To obtain the explanations, we apply the reduction technique described in Sections II.2 and

II.3 for the covering and the partitioning models, respectively. This consists of three steps, namely,

(i) defining the data for the reduced model, (ii) finding the explanations with this new model, and

(iii) evaluating the quality of the explanations in the original data. When performing (i), we select

Ñc ⊂ Nc using hierarchical clustering with the Euclidean distance as the dissimilarity between

the individuals in Nc. We then choose the threshold that yields |Ñc| groups of individuals. From

each of these groups, we choose a representative randomly, which becomes an individual of Ñc.

The selected individuals, with weights w̃n equal to the size of their group, across the three clusters

compose Ñ . We apply a similar approach to select the individuals in Ĩc ⊂ Ic, for each c, by using

as starting point Ĩc and then partition it into |Ĩc| groups, and select a representative randomly

that becomes a member of Ĩc. In (ii), we solve the covering and the partitioning models with

individuals in Ñc weighted by w̃n and candidates to prototype in Ĩc. Third, for the obtained

explanations, we calculate TPRc and FPRc on the original dataset N , with |N | ∈ {104, 105, 106}.

In the numerical results below, we take |Ñc| = 125 and |Ĩc| = 25, c = 1, 2, 3.

We now discuss the results for the covering model, see Figures II.8 and II.9. We can see

that the explanations obtained with the reduced problem show a good performance on the original

dataset even when the number of individuals is very large, namely |N | = 106. To illustrate this,

let us start with (λ, µ) = (0.90, 0.10). In terms of true positive cases, for |N | ∈ {104, 105, 106}, we

have TPRc equal to 0.91, 0.90, 0.90, for c = 1, 2, 3. In terms of false positive cases, for |N | = 104,

we have FPRc equal to 0.08, 0.05, 0.05, for c = 1, 2, 3, while for |N | = 105 and 106, FPR1 worsens

to 0.09. This means that with the optimal solution of the reduced problem, we have been able

to find explanations to the clusters that satisfy constraints (II.2.7) for λ = 0.90 and (II.2.8) for

µ = 0.10. For other combinations of λ and µ, the quality of the explanations provided by the
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reduced problem is also good, with possible minor violations of constraints (II.2.7) or (II.2.8).

For the partitioning model, we use a similar procedure and the results can be found in Figures

II.10 and II.11. We can see from those figures that the conclusions are similar.

II.5 Conclusions

In this chapter, we have proposed a methodology to derive explanations for the clusters obtained

from a Cluster Analysis procedure. The explanations are distance-based and defined as the set of

individuals that are close to the so-called prototypes. To find explanations that are as accurate as

possible, we select the prototypes that maximize the total number of true positive cases across all

clusters and minimize the total number of false positive cases, while controlling the true positive

rate as well as the false positive rate in each cluster. We have introduced two prototype optimiza-

tion models, namely, the covering and the partitioning models. Both models can be formulated as

MILPs. We have illustrated the good performance of the explanations provided by these models

in terms of true positive and false positive rates using both real-world data and simulated data.

There are two interesting lines of future research. The first one is to strengthen the mathemat-

ical optimization formulations provided in this chapter. The second one is to study the problem

of building the clusters and find distance-based explanations simultaneously.
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(a) TPRAtlantic (b) FPRAtlantic

(c) TPRContinental (d) FPRContinental

(e) TPRPacific (f) FPRPacific

(g) TPRArctic (h) FPRArctic

Figure II.4: For each cluster of the Canadian weather data, the true positive ratio and false positive

ratio given by the covering model when λ and µ vary on a grid in [0, 1]× [0, 1].
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(a) The prototypes of the covering model for λ = 0.80 and µ = 0.20

(b) TPRAtlantic = 0.80, FPRAtlantic = 0.00 (c) TPRContinental = 0.92, FPRContinental = 0.13

(d) TPRPacific = 0.80, FPRPacific = 0.03 (e) TPRArtic = 1.00, FPRArtic = 0.00

Figure II.5: The chosen prototypes for the Canadian weather dataset highlighted in boldface, with

λ = 0.80 and µ = 0.20, for the covering model. The lines of the same color as the cluster denote

true positive cases; the lines of color different from the one of the cluster denote false positive

cases; the dashed lines of the same color as the cluster denote false negative cases.
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(a) TPRAtlantic (b) FPRAtlantic

(c) TPRContinental (d) FPRContinental

(e) TPRPacific (f) FPRPacific

(g) TPRArctic (h) FPRArctic

Figure II.6: For each cluster of the Canadian weather data, the true positive ratio and false positive

ratio given by the partitioning model when λ and µ vary on a grid in [0, 1]× [0, 1].
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(a) The prototypes of the partitioning model for λ = 0.80 and µ = 0.10

(b) TPRAtlantic = 0.87, FPRAtlantic = 0.00 (c) TPRContinental = 0.92, FPRContinental = 0.09

(d) TPRPacific = 0.80, FPRPacific = 0.03 (e) TPRArtic = 1.00, FPRArtic = 0.03

Figure II.7: The chosen prototypes for the Canadian weather dataset highlighted in boldface, with

λ = 0.80 and µ = 0.10, for the partitioning model. The lines of the same color as the cluster denote

true positive cases; the lines of color different from the one of the cluster denote false positive cases;

the dashed lines of the same color as the cluster denote false negative cases.
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(a) |Ñ | = 375, TPRc, c = 1, 2, 3.

(b) |N | = 104, TPRc, c = 1, 2, 3.

(c) |N | = 105, TPRc, c = 1, 2, 3.

(d) |N | = 106, TPRc, c = 1, 2, 3.

Figure II.8: For each cluster of the simulated data, the true positive ratio given by the covering

model when λ and µ vary on a grid in [0.85, 0.90]× [0.05, 0.10], for the reduced problem as well as

the original problem with |N | ∈ {104, 105, 106}.



42

(a) |Ñ | = 375, FPRc, c = 1, 2, 3.

(b) |N | = 104, FPRc, c = 1, 2, 3.

(c) |N | = 105, FPRc, c = 1, 2, 3.

(d) |N | = 106, FPRc, c = 1, 2, 3.

Figure II.9: For each cluster of the simulated data, the false positive ratio given by the covering

model when λ and µ vary on a grid in [0.85, 0.90]× [0.05, 0.10], for the reduced problem as well as

the original problem with |N | ∈ {104, 105, 106}.
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(a) |Ñ | = 375, TPRc, c = 1, 2, 3.

(b) |N | = 104, TPRc, c = 1, 2, 3.

(c) |N | = 105, TPRc, c = 1, 2, 3.

(d) |N | = 106, TPRc, c = 1, 2, 3.

Figure II.10: For each cluster of the simulated data, the true positive ratio given by the partitioning

model when λ and µ vary on a grid in [0.85, 0.90]× [0.05, 0.10], for the reduced problem as well as

the original problem with |N | ∈ {104, 105, 106}.
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(a) |Ñ | = 375, FPRc, c = 1, 2, 3.

(b) |N | = 104, FPRc, c = 1, 2, 3.

(c) |N | = 105, FPRc, c = 1, 2, 3.

(d) |N | = 106, FPRc, c = 1, 2, 3.

Figure II.11: For each cluster of the simulated data, the false positive ratio given by the partitioning

model when λ and µ vary on a grid in [0.85, 0.90]× [0.05, 0.10], for the reduced problem as well as

the original problem with |N | ∈ {104, 105, 106}.



Chapter III

On clustering and interpreting with

rules by means of mathematical

optimization
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III.1 Introduction

In this chapter, our goal is to enhance the interpretability of Cluster Analysis by providing accurate

and distinctive explanations for the clusters. Two different scenarios are considered. In the first

one, clusters are externally given, as is the case in Chapter II [Carrizosa et al., 2022b] and in

Balabaeva and Kovalchuk [2020], Davidson et al. [2018], De Koninck et al. [2017], Kauffmann

et al. [2022], Lawless et al. [2022]. Our goal is to find a rule-based explanation for each cluster,

such that the explanation is as accurate and distinctive as possible. In the second scenario, both

clusters and rule-based explanations are to be found, seeking for each cluster intra-homogeneity

as well as an explanation that is as accurate and distinctive as possible.

Throughout this chapter, we assume we are given a set of auxiliary features to construct the

explanations of the clusters, as is done in other Data Analysis tools [Carrizosa et al., 2020, Taeb and

Chandrasekaran, 2018]. We explain clusters by a combination of rules defined by these features.

To ensure these explanations are easily understood, we join them with the AND operator and

limit to a small number ` (in our numerical results ` = 2) the number of rules to be concatenated

by the AND operator.

As a running example, we will use the housing dataset, one the datasets used in our numerical

section, where the observations correspond to houses characterized by the thirteen features found

in Table III.3. Records in the housing dataset are labelled, and their label identifies the cluster. In

this case we are thus assuming that (two) clusters are already defined, and that we are interested

in associating to them an explanation. With our methodology, a possible explanation for cluster

1 will be (RM > 5.9505) AND (LSTAT ≤ 13.33), while a possible one for cluster 2 would be (RM

≤ 6.75) AND (LSTAT > 7.765), see Table III.15.

The first contribution of this chapter is to design a procedure to explain existing clusters in a

post-hoc fashion with our rule-based explanations. Since clusters are already given, we can see the

problem as a supervised classification problem in which we want to link via rules the features with

the clusters labels. To address this problem, any rule-based supervised classification methodology,

such as Classification and Regression Trees (CART), could be used to obtain the rules explaining

the clusters. This is illustrated in Figure III.1 for the housing dataset. CART, in general, provides

explanations which are long with several rules joined with AND and OR operators. Linking rules

by the OR operator is more difficult to understand since no conjunctive explanation is found out

to explain the whole cluster. Instead, the goal of our approach will be to derive easy to understand

explanations using only a few rules joined by the AND operator that are not necessarily arranged in

a tree hierarchical structure. The second contribution of this chapter is a novel clustering approach
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to simultaneously find clusters and a rule-based explanation for each of them.

Figure III.1: The post-hoc rule-based explanations provided by CART for the housing dataset for

clusters (classes) 1 and 2.

There is a stream of literature on approaches, where interpretability is sought by constructing

unsupervised decision trees, see Basak and Krishnapuram [2005], Bertsimas et al. [2021], Fraiman

et al. [2013] and references therein. A set of features is used to measure the intra-homogeneity of

the clusters, as well as to define explanations for the clusters. The leaf nodes of the tree define

the clusters, while the splitting rules at the branch nodes are used to explain the clusters. In

the simplest case, in which each cluster is assigned to a single leaf node, the explanation will
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correspond to the conjunction of the rules found in the path from the root node to the leaf node.

If a cluster is split across different leaf nodes, the explanation will combine the path rules using the

OR operator. The goal is to construct an unsupervised decision tree, as well as the C clusters and

their explanations, such that a measure of their intra-homogeneity of the clusters is minimized.

Alternatively, in Dasgupta et al. [2020], the authors construct an unsupervised decision tree with

the goal of making as few changes as possible to the clusters obtained by K-means, measuring the

intra-homogeneity of new clusters using the original K-means centers. Finally, see, e.g., Chen et al.

[2016], Kim et al. [2014], Saisubramanian et al. [2020] for rule-based explanations not necessarily

arranged in a tree hierarchical structure.

The quality of the explanations is measured through their accuracy (number of true positive

cases) and their distinctiveness (number of false positive cases). Indeed, we would like to ensure

that the explanation of cluster c, ec, is accurate, and thus true for most of the individuals in the

cluster, but also that the explanation is distinctive to the individuals in cluster c versus the rest,

and thus ec is not true for too many of the individuals outside the cluster. We therefore first

count the number of individuals in cluster c that satisfy its explanation, i.e., the true positive

cases of explanation ec. Second, we count the number of individuals outside cluster c that satisfy

explanation ec, i.e., the false positive cases of ec. Let us illustrate these two criteria in the housing

dataset, when the clusters are given by the class labels mentioned above. Let us focus on cluster

1 and assume that this is explained by the rule e1 of length two (RM > 5.9505) AND (LSTAT

≤ 13.33). There are 214 out of the 274 individuals in cluster 1 that satisfy e1, while 42 of the

individuals outside cluster 1, i.e., in cluster 2, satisfy this explanation. Thus, in relative terms,

the quality of the explanation assigned to cluster 1 is the true positive rate (TPR), 214
274 = 0.78 (1

being the ideal value), and the false positive rate (FPR), 42
232 = 0.18 (0 being the ideal value).

In this chapter, we propose a mathematical optimization formulation for each of the problems

described above. In the first formulation, we simultaneously split the individuals into C clusters

using a dissimilarity δ to measure the intra-homogeneity of the clusters, and choose the rule-based

explanations of length at most `. We consider three objectives, namely, the maximization of the

intra-homogeneity of the clusters, by minimizing the sum of the dissimilarities between individuals

in the same cluster, the maximization of the accuracy of explanations, by maximizing the total

number of true positive cases across all clusters, and the maximization of the distinctiveness of

explanations, by minimizing the total number of false positive cases across all clusters. We address

this multi-objective optimization problem using a weighted approach and formulate it as a Mixed

Integer Linear Programming (MILP) problem. In the second formulation, in which the clusters
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are given, the accuracy and the distinctiveness of the explanations are optimized.

The chapter is organized as follows. In Section III.2, we introduce the mathematical opti-

mization model that clusters individuals and assigns rule-based explanations to them. In Section

III.3, this model is tailored to the post-hoc setting in which the clusters are given and we just

seek an explanation for each of them. In Section III.4, we illustrate the performance of these two

models on real-world datasets. By solving the MILP formulations with different weights, different

non-dominated solutions of clusters and explanations are obtained. In Section III.5 we provide

some conclusions and discuss future lines of research.

III.2 Building simultaneously clusters and explanations

In this section, we introduce a mathematical optimization model that finds clusters and expla-

nations for them simultaneously. We assume that we have at hand a dissimilarity between the

individuals, δij , and that, in addition, the individuals have associated a set of auxiliary features.

The dissimilarity can be a distance-based one, such as the squared Euclidean distance, but also a

dissimilarity violating e.g. the triangle inequality [Kaufmann and Rousseeuw, 1990]. Moreover, δ

does not need to be based on the features used to build rules and explanations.

With the features, we can build N , a collection of N if-then rules. We assume that N is split

into S groups, N = ∪S
s=1Ns and Ns∩Ns′ if s 6= s′, and define the possible explanations for a cluster

as the combination of at most ` rules joined with the AND operator, where we select at most one

rule from each set Ns. To ensure that the explanations are easy to understand, ` should be small,

ideally ` ≤ 2. The group Ns is composed of the rules relating to one feature, but they could be

associated with a group of features, such as socio-economic features or demographic ones. In our

numerical section, we have 13 groups for the housing dataset, one per each feature in Table III.3.

Below we introduce the notation used in this section relating to the individuals, the dissimi-

larity between them, the rules based on features characterizing the individuals, and whether the

individuals satisfy the rules or not. In addition, we also present the notation for the decision

variables in our mathematical optimization formulation of the problem, namely, decisions on the

cluster membership for each individual, the choice of the rules composing the explanation of max-

imum length ` for each cluster, and decision variables about the true positive cases and the false

positive cases of the explanation assigned to each cluster.

Indices and sets

c ∈ {1, . . . ,C} for clusters,
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i, j ∈ {1, . . . , I} = I for individuals,

s ∈ {1, . . . ,S} for groups of rules,

n ∈ {1, . . . ,N} = N = ∪S
s=1Ns : Ns ∩Ns′ = ∅ for rules,

Data

δ matrix of dissimilarities δij between each pair of individuals i and j,

bisn =


1, if individual i is explained by rule n ∈ Ns

0, otherwise

,

Decision variables

xci =


1, if individual i belongs to cluster c

0, otherwise

,

zcsn =


1, if rule n ∈ Ns is chosen for cluster c

0, otherwise

,

αi =


1, if individual i is a true positive case to the explanation assigned to its cluster

0, otherwise

,

βci =


1,

if individual i is outside cluster c and is a false positive case to the explanation
assigned to cluster c

0, otherwise

,

Parameters

θ1 ≥ 0 weight for true positive cases across the C clusters,

θ2 ≥ 0 weight for false positive cases across the C clusters,

` maximum length of the clusters’ explanations.

In the following, we provide a mathematical optimization formulation to cluster the individuals

in I using the dissimilarity δ while selecting for each cluster a rule-based explanation of maximum

length ` combining the rules of Ns, s = 1, . . . , S:

min
x,z,α,β

C∑
c=1

I−1∑
i=1

I∑
j=i+1

δijxcixcj − θ1

I∑
i=1

αi + θ2

C∑
c=1

I∑
i=1

βci (III.2.1)

s.t.
C∑
c=1

xci = 1, i = 1 . . . I (III.2.2)

∑
n∈Ns

zcsn ≤ 1, c = 1 . . .C, s = 1 . . . S (III.2.3)

1 ≤
S∑
s=1

∑
n∈Ns

zcsn ≤ `, c = 1 . . .C (III.2.4)
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αi + xci +
∑
n∈Ns

(1− bisn)zcsn ≤ 2, i = 1 . . . I, c = 1 . . .C, s = 1 . . . S (III.2.5)

βci + xci +
S∑
s=1

∑
n∈Ns

(1− bisn)zcsn ≥ 1, i = 1 . . . I, c = 1 . . .C (III.2.6)

xci ∈ {0, 1}, i = 1 . . . I, c = 1 . . .C (III.2.7)

zcsn ∈ {0, 1}, s = 1 . . . S, n ∈ Ns, c = 1 . . .C (III.2.8)

αi ∈ {0, 1}, i = 1 . . . I (III.2.9)

βci ∈ {0, 1}, i = 1 . . . I, c = 1 . . .C. (III.2.10)

The objective function (III.2.1) consists of three terms: the minimization of intra-homogeneity of

clusters, the maximization of the total true positive cases weighted by the parameter θ1, and min-

imization of the total false positive cases by weighted by the parameter θ2. The intra-homogeneity

can take different forms [Basak and Krishnapuram, 2005, Rao, 1971], and we have considered here

the sum of the dissimilarities within each cluster. We now discuss the constraints, and note that

the correctness of the formulation is driven by the direction of the optimization, as we will see

below. Constraints (III.2.2) ensure that each individual is assigned to exactly one cluster. For each

cluster, constraints (III.2.3) ensure that at most one rule of group s is chosen, while constraints

(III.2.4) impose that at least one rule is chosen for each cluster but no more than `. Constraints

(III.2.5) and (III.2.6) ensure that αi and βci are well-defined. Because of the direction of the ob-

jective function, we only need to ensure that αi = 0 and βci = 1 are well-defined. Let us start with

αi = 0 and note that
∑

n∈Ns
(1− bisn)zcsn ≤ 1. Thanks to this inequality, constraints (III.2.5) are

redundant if individual i does not belong to cluster c, xci = 0. If individual i belongs to cluster c,

xci = 1, and it is not explained by the explanation assigned to this cluster, then for each s, n ∈ Ns

such that zcsn = 1, we have that bisn = 0. This means that
∑

n∈Ns
(1 − bisn)zcsn = 0, yielding

αi ≤ 0. This, together with the fact that αi cannot be negative, ensures that αi = 0. We now

analyze the case of βic = 1. If individual i does not belong to cluster c, xci = 0, but satisfies the

chosen explanation for that cluster, then ∀s, n ∈ Ns such that zcsn = 1 we have bisn = 1. With

this
∑S

s=1

∑
n∈Ns

(1− bisn)zcsn = 0, and thus βci ≥ 1, which together with the upper bound on βi,

ensures that βi = 1. Constraints (III.2.7)–(III.2.10) define the nature of the decision variables.

The following result on the integrality of variables αi and βci easily follows.

Proposition III.2.1. Without loss of optimality, the integrality constraints (III.2.9)-(III.2.10) on

variables αi and βci can be relaxed to

αi ∈ [0, 1], i = 1 . . . I (III.2.11)
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βci ∈ [0, 1], i = 1 . . . I, c = 1 . . .C. (III.2.12)

Proof. This result easily follows from the discussion on constraints (III.2.5)-(III.2.6) and the di-

rection of the optimization. Let (x∗, z∗,α∗,β∗) be an optimal solution to (III.2.1)-(III.2.8) and

(III.2.11)-(III.2.12). Suppose that there exists ı̂ such that α∗ı̂ ∈ (0, 1). It is easy to show that we

can improve the objective function, which is in contradiction with the fact that (x∗, z∗,α∗,β∗) is

an optimal solution. Since x∗ and z∗ are vectors of binary decision variables, bisn ∈ {0, 1} for all

i, s, n, and α∗ı̂ is fractional, we have that constraint (III.2.5) for i = ı̂ is not binding and thus we

can increase αı̂ to α∗ı̂ + ε, which is an improvement on the objective function. Similar, if there exist

ĉ and ı̂ such that β∗
ĉ̂i
∈ (0, 1), using a similar argument, we can decrease βĉ̂ı to β∗ĉ̂ı − ε, and thus

improve again the objective function.

The intra-homogeneity term contains the product of binary decision variables xci and xcj , for

all i, j, c. Note that these bilinear terms are different to the ones in Chapter II, as they relate to

the clustering decisions, which are not present there. We linearize them by applying the Fortet

transformation [Fortet, 1960]. Let ycij = xcixcj . With this the clustering and interpreting problem

can be written as the following MILP formulation:

min
x,z,α,β,y

C∑
c=1

I−1∑
i=1

I∑
j=i+1

δijycij − θ1

I∑
i=1

αi + θ2

C∑
c=1

I∑
i=1

βci,

s.t. (III.2.2)− (III.2.8); (III.2.11)− (III.2.12)

ycij ≤ xci, i = 1 . . . I− 1, j = i+ 1 . . . I, c = 1 . . .C

ycij ≤ xcj , i = 1 . . . I− 1, j = i+ 1 . . . I, c = 1 . . .C

ycij ≥ xci + xcj − 1, i = 1 . . . I− 1, j = i+ 1 . . . I, c = 1 . . .C

ycij ≥ 0, i = 1 . . . I− 1, j = i+ 1 . . . I, c = 1 . . .C,

with I + C(2 + S + SI + I + 3 I(I−1)
2 ) linear constraints, (I + N)C binary decision variables, and

I(1+C+ C(I−1)
2 ) continuous decision variables. We will refer to this MILP formulation as (CinterP).

The formulation (CinterP) can be enriched with desirable properties on the explanations asso-

ciated with the clusters. In the pursue of distinctiveness, we discuss below two possibilities. For

instance, one could impose that a feature (or one group of them) is used to explain at most one

cluster. Alternatively, one could wish that a rule is associated with a cluster and that its comple-

ment is associated with another cluster. For instance, we could have (TAX > 398) associated with

one cluster and (TAX ≤ 398) with another one. These constraints can be easily incorporated into

(CinterP), while still being an MILP formulation.
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III.3 Constructing explanations when clusters are given

Our proposed methodology can be used in a post-hoc step, where the goal is to explain the clusters

that have been built previously with a Cluster Analysis approach, or that are simply available to

the user in the form of cluster membership labels of the individuals. This means that we are given

the set of individuals already split into C clusters, i.e., I = ∪C
c=1Ic with Ic ∩ Ic′ with c 6= c′.

In the following, we present the mathematical optimization formulation that selects rule-based

explanations for the clusters, that are accurate and distinctive, of maximum length ` combining

the rules of Ns, s = 1, . . . ,S.

The decision variables zcsn are defined as above, but we use slightly different decision variables

to measure the quality of the explanations, i.e., the total number of true positive cases across all

the clusters, as well as the false positive ones. Let γci be a binary decision variable. Let us assume

that i is in cluster c. The decision variable γci is equal to 1 if individual i satisfies the explanation

assigned to cluster c, and otherwise zero. For c′ 6= c, γc′i is equal to 1 if i satisfies the explanation

chosen for cluster c′ and 0 otherwise. The model for interpreting clusters Ic, for c = 1, . . . ,C, reads

as follows:

min
z,γ

−
C∑
c=1

∑
i∈Ic

γci + θ
C∑
c=1

C∑
c′=1
c 6=c′

∑
i∈Ic′

γci (III.3.1)

s.t.
∑
n∈Ns

zcsn ≤ 1, c = 1 . . .C, s = 1 . . . S (III.3.2)

1 ≤
S∑
s=1

∑
n∈Ns

zcsn ≤ `, c = 1 . . .C (III.3.3)

γci +
∑
n∈Ns

(1− bisn)zcsn ≤ 1, i ∈ Ic, c = 1 . . .C, s = 1 . . . S (III.3.4)

γci +
S∑
s=1

∑
n∈Ns

(1− bisn)zcsn ≥ 1, i ∈ Ic′ , c, c′ = 1 . . .C, c 6= c′ (III.3.5)

zcsn ∈ {0, 1}, s = 1 . . . S, n ∈ Ns, c = 1 . . .C (III.3.6)

γci ∈ {0, 1}, i = 1 . . . I, c = 1 . . .C. (III.3.7)

The objective function (III.3.1) maximizes total true positive cases and minimizes total false posi-

tive cases weighted by the parameter θ ≥ 0. Constraints (III.3.2)–(III.3.3) are exactly the same as

constraints (III.2.3)–(III.2.4). Constraints (III.3.4)-(III.3.5) resemble constraints (III.2.5)-(III.2.6),

but they are slightly different since the cluster membership is known, and ensure that γci is well-

defined. The nature of decision variables is specified in constraints (III.3.6)–(III.3.7).

In the same vein as Proposition III.2.1, the following result on the integrality of variables γci
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easily follows.

Proposition III.3.1. Without loss of optimality, the integrality constraints (III.3.7) on variables

γci can be relaxed to

γci ∈ [0, 1], i = 1 . . . I, c = 1 . . .C (III.3.8)

Proof. The proof is similar to the one for Proposition III.2.1.

With this, the problem to interpret clusters has been formulated as (III.3.1)–(III.3.6) and

(III.3.8), which is an MILP model with C (S + 2) + I (S + 1) constraints, C N integer decision

variables and C I continuous decision variables. Hereafter, we will refer to this MILP as (InterP).

In addition, the following result allows us to decompose (InterP) into smaller subproblems.

Proposition III.3.2. (InterP) is separable on the clusters.

Proof. The objective function of (InterP) is separable on the clusters, while the constraints relevant

to c only involve decision variables relating to c. With this, the desired result easily follows.

As mentioned in the previous section, we can incorporate two desirable properties on the

explanations to enhance their distinctiveness, namely, a feature can be used by at most one cluster

or the complementarity of the explanations of two clusters. However, in this case, Proposition

III.3.2 does not hold.

The sizes of (CinterP) and (InterP) depend on the number of rules available to construct

the explanations of the clusters, i.e., N. For continuous features, the number of rules can be

controlled by choosing the level of granularity of the thresholds defining these rules. First, in the

most granular case, one can use all possible thresholds corresponding to all distinct values of the

features in the dataset. This may lead to a redundancy since many values may be very close to

each other, and thus yielding the same accuracy and distinctiveness of the explanation. Second,

in a less granular case, we could use as thresholds some percentiles of the features, say, the deciles.

This dramatically reduces the number of rules we start with, but it also enhances the interpretation

of the rule, by saying that this is the value of the feature that leaves 10% of the observations in

the dataset above (respectively, below), if the ninth decile is chosen. These different sources of

if-then rules will be tested in the numerical section. For (InterP), where the clusters are given,

there is another alternative to generate the rules. They can be extracted from an additive tree

model based on stumps, such as an XGBoost of depth 1, which uses the cluster labels as the class

labels. In this way, we expect more granularity in some features than in others because they are

more relevant to explain the clusters.
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III.4 Numerical results

In this section, we illustrate our methodology on well-known real-world datasets from the UCI

Repository [Dua and Graff, 2017]. In Section III.4.1, we present the benchmark datasets and

the rules used to build the explanations. In Section III.4.2, we focus on our novel clustering

and interpreting model in which we perform these two tasks simultaneously, namely (CinterP).

We discuss the intra-homogeneity of the clusters, the accuracy and the distinctiveness of our

explanations. In Section III.4.3, we focus on our post-hoc model in which the clusters are given

and we aim to explain them, namely (InterP). We discuss the accuracy and the distinctiveness of

our explanations and compare them to those obtained with CART. In Section III.4.4, the impact

of the source of the rules used to construct the explanations on (CinterP) and (InterP) is analyzed.

For interpretability purposes, we limit the maximum length of explanations to ` = 2 for both

(CinterP) and (InterP). In (CinterP), we take as dissimilarity δij the squared Euclidean distance

between the (normalized) feature vectors of individuals i and j. To solve the optimization models

we use Gurobi [Gurobi Optimization, 2020] with Python [Python Core Team, 2015] on a PC

Intel R©Core TM i7-8665U, 16GB of RAM. For each instance of (CinterP), we impose a time limit

of 600 seconds, which allows us to get solutions in which the clusters and explanations show a good

trade-off in the three criteria optimized, namely intra-homogeneity, accuracy and distinctiveness

of the explanations. For (InterP), all the instances were solved in less than 10 seconds, which is

explained in part by the absence of clustering decisions in this model.

III.4.1 The datasets and the set of rules

The benchmark datasets are from Supervised Classification, with C = 2, 3 and 6 classes. We

use these C classes as the clusters to be explained in the post-hoc approach (InterP), while our

clustering and interpreting model (CinterP) ignores this information and constructs the C clusters

and their corresponding explanations. The description of the datasets can be found in Tables III.2–

III.8. Table III.2 contains information on the name of the dataset, the number of individuals, the

number of classes and the number of features used to construct the rules, while Tables III.3–III.8

contain a brief description of each of these features and the classes.

We make two observations on these datasets. First, all features are continuous except for the

housing dataset that has one binary feature and abalone that has one categorical variable with

three categories, for which we have constructed a binary feature for each category. Second, the

dataset abalone has been obtained by drawing a random sample from the original dataset, which

has more than 4,000 observations.
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Table III.2: Description of the datasets used to illustrate the quality of the rule-based explanations

provided by (CinterP) and (InterP).

name of dataset #individuals (I) #classes (C) #features (d)

housing 506 2 13
breast cancer 683 2 10

PIMA 768 2 8
abalone 835 2 8
wine 178 3 13
glass 214 6 9

Table III.3: Description of the features in the housing dataset and the C = 2 classes.

Feature Description

CRIM per capita crime rate by town
ZN proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS proportion of non-retail business acres per town
CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
NOX nitric oxides concentration (parts per 10 million)
RM average number of rooms per dwelling
AGE proportion of owner-occupied units built prior to 1940
DIS weighted distances to five Boston employment centres
RAD index of accessibility to radial highways
TAX full-value property-tax rate per $10,000
PTRATIO pupil-teacher ratio by town
B 1000(Bk− 0.63)2 where Bk is the proportion of blacks by town
LSTAT % lower status of the population

Class higher (class 1) or lower (class 2) than the median value of
owner-occupied homes in $1000’s

Table III.4: Description of the features in the breast cancer dataset and the C = 2 classes.

Feature Description

Thickness Clump Thickness
Size Uniformity of Cell Size
Shape Uniformity of Cell Shape
Adhesion Marginal Adhesion
Epithelial Size Single Epithelial Cell Size
Nuclei Bare Nuclei
Nuclei Bland Chromatin
Normal Nucleoli Normal Nucleoli
Mitoses Mitoses

Class Benign (class 1) or malignant (class 2)

The rules we consider in Sections III.4.2 and III.4.3 are of the following form. We have a

group of rules for each feature, i.e., S = d. If feature s is continuous, we consider the rules:

features ≤ threshold , features > threshold , where threshold takes on the deciles of features. For

binary features, the two rules are defined as features = 1, features = 0. This choice of rules is

further analyzed in Section III.4.4.
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Table III.5: Description of the features in the PIMA dataset and the C = 2 classes.

Feature Description

Pregnancies Number of times pregnant
Glucose Plasma glucose concentration a 2 hours in an oral glucose tolerance test
BloodPressure Diastolic blood pressure (mm Hg)
SkinThickness Triceps skin fold thickness (mm)
Insulin 2-Hour serum insulin (mu U/ml)
BMI Body mass index (weight in kg/(height in m)2)
DiabetesPedigree Diabetes pedigree function
Age Age (years)

Class Diabetes (class 2) or not (class 1)

Table III.6: Description of the features in the abalone dataset and the C = 2 classes.

Feature Description

Sex Sex
Length Length
Diameter Diameter
Height Height
Whole weight Whole weight
Shucked weight Shucked weight
Viscera weight Viscera weight
Shell weight Shell weight

Class
Higher (class 2) or lower (class 1)

than the median value of the number of the rings

Table III.7: Description of the features in the wine dataset and the C = 3 classes.

Feature Description

Alcohol Alcohol
Malic acid Malic acid
Ash Ash
Alcalinity of ash Alcalinity of ash
Magnesium Magnesium
Total phenols Total phenols
Flavanoids Flavanoids
Nonflavanoid phenols Nonflavanoid phenols
Proanthocyanins Proanthocyanins
Color intensity Color intensity
Hue Hue
OD280andOD31ofdilutedwines OD280/OD315 of diluted wines
Proline Proline

Class Type of wine (C = 3)

III.4.2 Illustrating the clustering and interpreting model (CinterP)

The results of (CinterP) can be found in Tables III.9–III.14, where a table is devoted to each

benchmark dataset. For each dataset, the corresponding table shows the value of the three ob-

jectives in (CinterP) and the explanations obtained for each cluster. For the first objective, we

report the total intra-homogeneity, while for the other two objectives, namely the accuracy and

the distinctiveness, we report those in relative terms, i.e., the true and false positive rates for each
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Table III.8: Description of the features in the glass dataset and the C = 6 classes.

Feature Description

RI refractive index
Na Sodium
Mg Magnesium
Al Aluminum
Si Silicon
K Potassium
Ca Calcium
Ba Barium
Fe Iron

Class Type of glass (C = 6)

cluster.

Model (CinterP) has two parameters, θ1 and θ2, which are weights of accuracy and the

distinctiveness of the explanations, respectively. To have both objectives in roughly the same

scale, we divide the intra-homogeneity by the constant I2 maxij δ
2
ij , while the other two objec-

tives are divided by I. Once this is done, we consider a grid of parameters, namely, (θ1, θ2) ∈

{2p}p=−1,0,1 × {2p}p=−1,0,1. We first solve (CinterP) for the smallest value of θ1 and each value of

θ2, the latter taken in increasing order. We continue in a similar fashion with the values of θ1 taken

in increasing order. For each problem, we start with an initial solution: clusters and explanations.

We consider two options and give to the solver the one with the best objective function. Initial

clusters can be constructed using C-means clustering or can be simply the ones obtained when

solving (CinterP) with the previous combination of θ1 and θ2 in our grid. We use these clusters in

(InterP) to obtain the corresponding initial explanations, with θ = θ2/θ1.

Let us start discussing the results for the housing dataset found in Table III.9. The intra-

homogeneity stays the same for all the combinations of the parameters in the grid, namely, 0.6·105.

After inspecting the clusters, we note that those are the ones from the initial solution, namely the

K-means solution. As we will see below, when we enlarge the number of rules, problem (CinterP)

will yield different partitions. The explanations obtained for these clusters are very good in terms

of the accuracy and distinctiveness of the explanations. Indeed, the true positive rate of the first

cluster ranges from 90% to 100% and the false positive rate from 0% to 4%, while for the second

cluster, the true positive rate ranges from 97% to 100% and the false positive rate from 0% to 9%.

As we will see below, (CinterP) will slightly improve these metrics when we enlarge the number of

rules.

Similar conclusions can be drawn for the other datasets. For breast cancer, for the best value

of the intra-homogeneity, the explanations have a true positive rate of 97% and 90%, respectively,

and a false positive rate of 2% in both clusters. For PIMA, for the second best value of the intra-
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homogeneity, the explanations have a true positive rate of 80% and 100%, respectively, and the

false positive rate is perfect, i.e., 0% in both clusters. For abalone, for the second best value of the

intra-homogeneity, the explanations have a true positive rate of 82% and 100%, respectively, and

a false positive rate of 16% and 0%, respectively. For wine, we obtain perfect explanations for all

three clusters. To end, for glass, for the best value of the intra-homogeneity, the explanations have

a true positive rate of 80%, 100%, 95%, 100%, 100% and 50%, respectively, and a false positive

rate of 3%, 0%, 9%, 1%, 2% and 0%, respectively.

To end, we note that we have not been able to obtain a proof of optimality for the solutions

above within the time limit of 600 seconds. Indeed, for housing, the MIPGAP ranges from 3.05%

to 11.77%, for breast cancer from 1.60% to 9.76%, for PIMA from 3.65% to 25.76%, for abalone

from 8.93% to 62.30%, for wine from 1.89% to 10.06%, for glass from 8.84% to 41.42%. This is

not surprising since it is known that clustering is already a difficult problem, and (CinterP) here

needs to cluster approximately hundreds of individuals, and, in addition, explain the clusters, all

within the same mathematical optimization model.

Table III.9: The clusters and the rule-based explanations provided by (CinterP), θ1 ∈ {2p}p=−1,0,1

and θ2 ∈ {2p}p=−1,0,1, for the housing dataset, with C = 2 clusters, explanations of a maximum

length of ` = 2 constructed with N = 187 rules using the deciles of the continuous features and all

attributes of the categorical features.

θ1 θ2 intra-homogeneity cluster TPR FPR explanations

2−1 2−1 0.6 · 105
1 1.00 0.04 TAX > 398 AND INDUS > 12.83
2 0.97 0.00 NOX ≤ 0.605 AND RAD ≤ 8

2−1 20 0.6 · 105
1 0.90 0.00 INDUS > 12.83 AND PTRATIO > 19.7
2 0.97 0.00 NOX ≤ 0.605 AND RAD ≤ 8

2−1 21 0.6 · 105
1 0.90 0.00 INDUS > 12.83 AND PTRATIO > 19.7
2 0.97 0.00 NOX ≤ 0.605 AND RAD ≤ 8

20 2−1 0.6 · 105
1 1.00 0.04 TAX > 398 AND INDUS > 12.83
2 1.00 0.09 TAX ≤ 437 AND NOX ≤ 0.668

20 20 0.6 · 105
1 1.00 0.04 TAX > 398 AND INDUS > 12.83
2 0.97 0.00 NOX ≤ 0.605 AND RAD ≤ 8

20 21 0.6 · 105
1 0.90 0.00 INDUS > 12.83 AND PTRATIO > 19.7
2 0.97 0.00 NOX ≤ 0.605 AND RAD ≤ 8

21 2−1 0.6 · 105
1 1.00 0.04 TAX > 398 AND INDUS > 12.83
2 1.00 0.09 TAX ≤ 437 AND NOX ≤ 0.668

21 20 0.6 · 105
1 1.00 0.04 TAX > 398 AND INDUS > 12.83
2 1.00 0.09 TAX ≤ 437 AND NOX ≤ 0.668

21 21 0.6 · 105
1 1.00 0.04 TAX > 398 AND INDUS > 12.83
2 0.97 0.00 NOX ≤ 0.605 AND RAD ≤ 8
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Table III.10: The clusters and the rule-based explanations provided by (CinterP), θ1 ∈ {2p}p=−1,0,1

and θ2 ∈ {2p}p=−1,0,1, for the breast cancer dataset, with C = 2 clusters, explanations of a

maximum length of ` = 2 constructed with N = 83 rules using the deciles of the continuous

features and all attributes of the categorical features.

θ1 θ2 intra-homogeneity cluster TPR FPR explanations

2−1 2−1 1.73 · 105
1 1.00 0.00 Thickness ≤ 3
2 1.00 0.00 Thickness > 3

2−1 20 0.67 · 105
1 0.97 0.02 Size ≤ 4 AND Nuclei ≤ 4
2 0.90 0.02 Size > 2 AND Nuclei > 2

2−1 21 1.1 · 105
1 0.97 0.00 Nuclei ≤ 4
2 1.00 0.00 Size > 2 AND Nuclei > 4

20 2−1 1.24 · 105
1 1.00 0.00 Shape ≤ 1
2 1.00 0.00 Shape > 1

20 20 1.24 · 105
1 1.00 0.00 Shape ≤ 1
2 1.00 0.00 Shape > 1

20 21 1.24 · 105
1 1.00 0.00 Shape ≤ 1
2 1.00 0.00 Shape > 1

21 2−1 1.24 · 105
1 1.00 0.00 Shape ≤ 1
2 1.00 0.00 Shape > 1

21 20 1.24 · 105
1 1.00 0.00 Shape ≤ 1
2 1.00 0.00 Shape > 1

21 21 1.24 · 105
1 1.00 0.00 Shape ≤ 1
2 1.00 0.00 Shape > 1

III.4.3 Illustrating the interpreting model (InterP)

To illustrate (InterP) and its natural benchmark, namely CART, we assume that the clusters are

given by classes reported in Tables III.3–III.8. To make the comparison fair, we train a CART of

depth 2 for these benchmark datasets with C = 2 classes, while for wine and glass, the chosen

depth is 2 and 4, which is the minimum one to ensure that all classes are represented in the leaf

nodes.

The explanations provided by (InterP) and CART for these clusters, as well as the accuracy

and distinctiveness can be found in Tables III.15–III.21. These two criteria are depicted in Figures

III.2–III.7 for both methodologies. The CART trees can be found in Figures III.8–III.13.

For the only parameter in (InterP), namely θ, we consider the grid of values θ ∈ {2p}p=−5,...,5.

We solve the problem instances of (InterP) in increasing order of θ. For each value of the parameter,

we give to the solver as the initial solution the one obtained with the previous value of θ.

We focus on the housing dataset, as the results for the rest datasets are similar. From Table

III.15 and Figure III.2, we can see that the true positive rate of the first cluster ranges from 45%

to 100% and the false positive rate from 0% to 100%. For the second cluster, the true positive

rate ranges from 14% to 100% and the false positive rate 0% to 63%. The low (respectively the
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Table III.11: The clusters and the rule-based explanations provided by (CinterP), θ1 ∈ {2p}p=−1,0,1

and θ2 ∈ {2p}p=−1,0,1, for the PIMA dataset, with C = 2 clusters, explanations of a maximum

length of ` = 2 constructed with N = 135 rules using the deciles of the continuous features and all

attributes of the categorical features.

θ1 θ2 intra-homogeneity cluster TPR FPR explanations

2−1 2−1 0.48 · 105
1 0.75 0.03 Pregnancies > 3 AND Age > 33
2 1.00 0.05 Pregnancies ≤ 5 AND Age ≤ 42.6

2−1 20 0.48 · 105
1 0.72 0.01 Pregnancies > 4 AND Age > 33
2 1.00 0.04 Pregnancies ≤ 5 AND Age ≤ 42.6

2−1 21 0.57 · 105
1 0.80 0.00 BMI > 33.7
2 1.00 0.00 BMI ≤ 32

20 2−1 1.22 · 105
1 1.00 0.00 all in
2 – – –

20 20 1.22 · 105
1 1.00 0.00 all in
2 – – –

20 21 1.22 · 105
1 1.00 0.00 all in
2 – – –

21 2−1 1.22 · 105
1 1.00 0.00 all in
2 – – –

21 20 1.22 · 105
1 1.00 0.00 all in
2 – – –

21 21 1.22 · 105
1 1.00 0.00 all in
2 – – –

high) values of the grid are not very interesting, since they correspond to extreme solutions with

a very low true positive rate (respectively very high false positive rate). Indeed, they provide

explanations that are hardly satisfied by any member of the cluster (respectively explanations that

are satisfied by all clusters marked as “all in”). Therefore, we focus on the central values of the

chosen grid. There, we find a good trade-off between the accuracy and the distinctiveness for both

clusters. Indeed, we see that for cluster 1 the explanation (RM > 6.086) AND (LSTAT ≤ 11.36)

has a true positive rate of 70% and a false positive rate of 6%, while for cluster 2 (AGE > 26.95)

AND (LSTAT > 11.36) has a true positive rate of 81% and a false positive rate of 23%. This

is a similar performance to that of CART, with more complex explanations, namely ((LSTAT ≤

9.95) AND (RM > 6.12)) OR ((LSTAT > 9.95) AND (TAX ≤ 302)) for cluster 1, with a true

positive rate of 75% and false positive rate of 12%, and ((LSTAT ≤ 9.95) AND (RM ≤ 6.12)) OR

((LSTAT > 9.95) AND (TAX > 302)) for cluster 2, with a true positive rate of 88% and false

positive rate of 25%. These explanations, linking rules by an OR operator, seem to imply that the

given clusters are not the natural clusters, since no conjunctive explanation is found for the whole

cluster. This unpleasant fact observed in CARTs is, by construction, impossible in our approach.

In addition, our explanations above use as thresholds the deciles, as opposed to CART that may
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Table III.12: The clusters and the rule-based explanations provided by (CinterP), θ1 ∈ {2p}p=−1,0,1

and θ2 ∈ {2p}p=−1,0,1, for the abalone dataset, with C = 2 clusters, explanations of a maximum

length of ` = 2 constructed with N = 130 rules using the deciles of the continuous features and all

attributes of the categorical features.

θ1 θ2 intra-homogeneity cluster TPR FPR explanations

2−1 2−1 2.17 · 105
1 0.82 0.16 Length > 0.415 AND Viscera weight > 0.1435
2 1.00 0.00 Sex = I

2−1 20 2.17 · 105
1 0.82 0.16 Length > 0.415 AND Viscera weight > 0.1435
2 1.00 0.00 Sex = I

2−1 21 2.16 · 105
1 0.56 0.00 Sex = M
2 0.93 0.00 Sex = I

20 2−1 2.52 · 105
1 0.95 0.40 Whole weight > 0.3625 AND Shell weight > 0.103
2 1.00 0.00 Sex = I AND Length ≤ 0.54

20 20 2.52 · 105
1 0.90 0.22 Length > 0.415 AND Viscera weight > 0.10775
2 1.00 0.00 Sex = I AND Length ≤ 0.54

20 21 2.52 · 105
1 0.82 0.07 Length > 0.415 AND Viscera weight > 0.1435
2 1.00 0.00 Sex = I AND Length ≤ 0.54

21 2−1 2.52 · 105
1 0.98 0.65 Whole weight > 0.1955 AND Viscera weight > 0.04
2 1.00 0.00 Sex = I AND Length ≤ 0.54

21 20 2.52 · 105
1 0.95 0.40 Whole weight > 0.3625 AND Shell weight > 0.103
2 1.00 0.00 Sex = I AND Length ≤ 0.54

21 21 2.52 · 105
1 0.90 0.22 Length > 0.415 AND Viscera weight > 0.10775
2 1.00 0.00 Sex = I AND Length ≤ 0.54

use any possible value of the features in the dataset. This lower granularity we have chosen may

affect the two metrics measuring the quality of the explanations, i.e., it may lower the accuracy

and/or the distinctiveness, but it will enhance the interpretability of these thresholds.

III.4.4 Source of rules

In this section we present the results of (CinterP) and (InterP) with alternative sources of ex-

planations for the housing dataset. We would like to understand the impact of increasing the

granularity of the rules used to construct the explanations. We test (CinterP) and (InterP) when

all distinct values of the features in the dataset are considered as thresholds. This increases the

total number of rules from N = 187 to N = 5646.

With the increase of granularity, (CinterP) now improves the true positive rate of the first

cluster, yielding explanations that are almost perfect for a 4% false positive rate of the second

cluster, see Table III.22. For (InterP), small improvements are also reported for the most granular

option, see Table III.23.
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Table III.13: The clusters and the rule-based explanations provided by (CinterP), θ1 ∈ {2p}p=−1,0,1

and θ2 ∈ {2p}p=−1,0,1, for the wine dataset, with C = 3 clusters, explanations of a maximum

length of ` = 2 constructed with N = 235 rules using the deciles of the continuous features and all

attributes of the categorical features.

θ1 θ2 intra-homogeneity cluster TPR FPR explanations

2−1 2−1 4.99 · 103
1 1.00 0.00 Ash > 2.3 AND Totalphenols > 1.881
2 1.00 0.00 Ash ≤ 2.3 AND Totalphenols > 1.881
3 1.00 0.00 Totalphenols ≤ 1.881

2−1 20 5.22 · 103
1 1.00 0.00 Ash ≤ 2.61 AND Totalphenols > 2.05
2 1.00 0.00 Ash ≤ 2.61 AND Totalphenols ≤ 2.05
3 1.00 0.00 Ash > 2.61

2−1 21 6.15 · 103
1 1.00 0.00 Malicacid > 1.247 AND Proline ≤ 742
2 1.00 0.00 Malicacid ≤ 1.247
3 1.00 0.00 Malicacid > 1.247 AND Proline > 742

20 2−1 4.99 · 103
1 1.00 0.00 Ash > 2.3 AND Totalphenols > 1.881
2 1.00 0.00 Ash ≤ 2.3 AND Totalphenols > 1.881
3 1.00 0.00 Totalphenols ≤ 1.881

20 20 4.99 · 103
1 1.00 0.00 Ash > 2.3 AND Totalphenols > 1.881
2 1.00 0.00 Ash ≤ 2.3 AND Totalphenols > 1.881
3 1.00 0.00 Totalphenols ≤ 1.881

20 21 4.99 · 103
1 1.00 0.00 Ash > 2.3 AND Totalphenols > 1.881
2 1.00 0.00 Ash ≤ 2.3 AND Totalphenols > 1.881
3 1.00 0.00 Totalphenols ≤ 1.881

21 2−1 4.99 · 103
1 1.00 0.00 Ash > 2.3 AND Totalphenols > 1.881
2 1.00 0.00 Ash ≤ 2.3 AND Totalphenols > 1.881
3 1.00 0.00 Totalphenols ≤ 1.881

21 20 4.99 · 103
1 1.00 0.00 Ash > 2.3 AND Totalphenols > 1.881
2 1.00 0.00 Ash ≤ 2.3 AND Totalphenols > 1.881
3 1.00 0.00 Totalphenols ≤ 1.881

21 21 4.99 · 103
1 1.00 0.00 Ash > 2.3 AND Totalphenols > 1.881
2 1.00 0.00 Ash ≤ 2.3 AND Totalphenols > 1.881
3 1.00 0.00 Totalphenols ≤ 1.881
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Table III.14: The clusters and the rule-based explanations provided by (CinterP), θ1 ∈ {2p}p=−1,0,1

and θ2 ∈ {2p}p=−1,0,1, for the glass dataset, with C = 6 clusters, explanations of a maximum

length of ` = 2 constructed with N = 139 rules using the deciles of the continuous features and all

attributes of the categorical features.

θ1 θ2 intra-homogeneity cluster TPR FPR explanations

2−1 2−1 7.79 · 102

1 0.77 0.03 Al ≤ 1.36 AND Si ≤ 72.132
2 1.00 0.00 Mg ≤ 2.805 AND Ca > 10.443
3 0.95 0.08 K > 0.492 AND Fe ≤ 0.128
4 1.00 0.01 Ca ≤ 10.443 AND Fe > 0.128
5 0.96 0.01 Mg ≤ 0.6 AND Ba > 0
6 0.44 0.00 Si ≤ 71.773 AND Ca ≤ 8.6

2−1 20 9.17 · 102

1 0.53 0.02 Al ≤ 1.146 AND Si ≤ 72.132
2 1.00 0.00 Mg ≤ 2.805 AND Ca > 10.443
3 1.00 0.04 K > 0.492 AND Fe ≤ 0.128
4 1.00 0.01 Ca ≤ 10.443 AND Fe > 0.128
5 0.91 0.00 K ≤ 0.08 AND Ba > 0
6 0.44 0.00 RI ≤ 1.51869 AND Si ≤ 71.773

2−1 21 8.59 · 102

1 0.24 0.00 Mg > 3.757 AND K ≤ 0.19
2 1.00 0.00 Mg ≤ 2.805 AND Ca > 10.443
3 1.00 0.04 K > 0.492 AND Fe ≤ 0.07
4 0.90 0.00 Ca ≤ 10.443 AND Fe > 0.128
5 0.91 0.00 K ≤ 0.08 AND Ba > 0
6 0.40 0.00 Si ≤ 71.773 AND Ca ≤ 8.6

20 2−1 7.79 · 102

1 0.80 0.03 Al ≤ 1.36 AND Si ≤ 72.132
2 1.00 0.00 Mg ≤ 2.805 AND Ca > 10.443
3 1.00 0.15 K > 0.19 AND Fe ≤ 0.128
4 1.00 0.01 Ca ≤ 10.443 AND Fe > 0.128
5 0.92 0.01 Mg ≤ 0.6 AND Ba > 0
6 0.67 0.00 Si ≤ 72.132 AND Ca ≤ 7.97

20 20 9.07 · 102

1 0.75 0.03 Al ≤ 1.36 AND Si ≤ 72.132
2 1.00 0.00 Mg ≤ 2.805 AND Ca > 10.443
3 0.97 0.07 K > 0.492 AND Fe ≤ 0.128
4 1.00 0.01 Ca ≤ 10.443 AND Fe > 0.128
5 0.91 0.00 K ≤ 0.08 AND Ba > 0
6 0.60 0.00 Si ≤ 72.132 AND Ca ≤ 7.97

20 21 9.07 · 102

1 0.75 0.03 Al ≤ 1.36 AND Si ≤ 72.132
2 1.00 0.00 Mg ≤ 2.805 AND Ca > 10.443
3 0.97 0.07 K > 0.492 AND Fe ≤ 0.128
4 1.00 0.01 Ca ≤ 10.443 AND Fe > 0.128
5 0.91 0.00 K ≤ 0.08 AND Ba > 0
6 0.60 0.00 Si ≤ 72.132 AND Ca ≤ 7.97

21 2−1 7.75 · 102

1 0.80 0.03 Al ≤ 1.36 AND Si ≤ 72.132
2 1.00 0.00 Mg ≤ 2.805 AND Ca > 10.443
3 1.00 0.16 K > 0.19 AND Fe ≤ 0.128
4 1.00 0.01 Ca ≤ 10.443 AND Fe > 0.128
5 0.96 0.02 Al > 1.748 AND Ba > 0
6 0.63 0.00 RI ≤ 1.51735 AND Si ≤ 72.132

21 20 7.73 · 102

1 0.83 0.03 Al ≤ 1.36 AND Si ≤ 72.132
2 1.00 0.00 Mg ≤ 2.805 AND Ca > 10.443
3 1.00 0.16 K > 0.19 AND Fe ≤ 0.128
4 1.00 0.01 Ca ≤ 10.443 AND Fe > 0.128
5 1.00 0.02 Al > 1.748 AND Ba > 0
6 0.50 0.00 RI ≤ 1.51735 AND Si ≤ 72.132

21 21 7.71 · 102

1 0.80 0.03 Al ≤ 1.36 AND Si ≤ 72.132
2 1.00 0.00 Mg ≤ 2.805 AND Ca > 10.443
3 0.95 0.09 K > 0.492 AND Fe ≤ 0.128
4 1.00 0.01 Ca ≤ 10.443 AND Fe > 0.128
5 1.00 0.02 Al > 1.748 AND Ba > 0
6 0.50 0.00 RI ≤ 1.51735 AND Si ≤ 72.132
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Table III.15: The clusters and the rule-based explanations provided by (InterP), θ ∈ {2p}p=−5,...,5,

for the housing dataset, with C = 2 clusters, explanations of a maximum length of ` = 2 con-

structed with N = 187 rules using the deciles of the continuous features and all attributes of the

categorical features.

θ cluster TPR FPR explanations

25
1 0.45 0.00 RM > 6.376 AND LSTAT ≤ 7.765
2 0.14 0.00 PTRATIO > 20.9 AND LSTAT > 11.36

24
1 0.59 0.01 RM > 6.2085 AND LSTAT ≤ 9.53
2 0.14 0.00 PTRATIO > 20.9 AND LSTAT > 11.36

23
1 0.59 0.01 RM > 6.2085 AND LSTAT ≤ 9.53
2 0.14 0.00 PTRATIO > 20.9 AND LSTAT > 11.36

22
1 0.59 0.01 RM > 6.2085 AND LSTAT ≤ 9.53
2 0.41 0.05 CRIM ≤ 10.753 AND LSTAT > 15.62

21
1 0.70 0.06 RM > 6.086 AND LSTAT ≤ 11.36
2 0.70 0.15 CRIM ≤ 10.753 AND LSTAT > 11.36

20
1 0.70 0.06 RM > 6.086 AND LSTAT ≤ 11.36
2 0.81 0.23 AGE > 26.95 AND LSTAT > 11.36

2−1 1 0.78 0.18 RM > 5.9505 AND LSTAT ≤ 13.33
2 0.97 0.40 RM ≤ 6.75 AND LSTAT > 7.765

2−2 1 0.98 0.83 PTRATIO ≤ 20.9
2 0.99 0.46 LSTAT > 7.765

2−3 1 0.98 0.83 PTRATIO ≤ 20.9
2 0.99 0.46 LSTAT > 7.765

2−4 1 1.00 1.00 all in
2 0.99 0.46 LSTAT > 7.765

2−5 1 1.00 1.00 all in
2 1.00 0.63 LSTAT > 6.29

CART
1 0.75 0.12 LSTAT ≤ 9.95 AND RM > 6.12 OR LSTAT > 9.95 AND TAX ≤ 302
2 0.88 0.25 LSTAT ≤ 9.95 AND RM ≤ 6.12 OR LSTAT > 9.95 AND TAX > 302

(a) True Positive Rate (b) False Positive Rate

Figure III.2: The housing data: the interpretability results obtained with rule-based explanations

given by (InterP).
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Table III.16: The clusters and the rule-based explanations provided by (InterP), θ ∈ {2p}p=−5,...,5,

for the breast cancer dataset, with C = 2 clusters, explanations of a maximum length of ` = 2

constructed with N = 83 rules using the deciles of the continuous features and all attributes of the

categorical features.

θ cluster TPR FPR explanations

25 1 0.85 0.00 Epithelial Size ≤ 3 AND Nuclei ≤ 1
2 0.68 0.00 Size > 4 AND Adhesion > 1

24 1 0.85 0.00 Epithelial Size ≤ 3 AND Nuclei ≤ 1
2 0.68 0.00 Size > 4 AND Adhesion > 1

23 1 0.90 0.01 Epithelial Size ≤ 3 AND Nuclei ≤ 2
2 0.68 0.00 Size > 4 AND Adhesion > 1

22 1 0.90 0.01 Epithelial Size ≤ 3 AND Nuclei ≤ 2
2 0.72 0.01 Size > 4

21 1 0.93 0.03 Shape ≤ 3 AND Chromatin ≤ 3
2 0.88 0.04 Size > 1 AND Nuclei > 2

20 1 0.96 0.07 Size ≤ 4 AND Nuclei ≤ 4
2 0.95 0.07 Size > 2 AND Shape > 1

2−1 1 0.99 0.14 Size ≤ 4 AND Nuclei ≤ 9
2 0.95 0.07 Size > 2 AND Shape > 1

2−2 1 0.99 0.14 Size ≤ 4 AND Nuclei ≤ 9
2 0.98 0.12 Size > 1 AND Shape > 1

2−3 1 0.99 0.19 Thickness ≤ 9.8 AND Size ≤ 4
2 0.98 0.12 Size > 1 AND Shape > 1

2−4 1 0.99 0.19 Thickness ≤ 9.8 AND Size ≤ 4
2 0.98 0.12 Size > 1 AND Shape > 1

2−5 1 1.00 0.52 Thickness ≤ 9.8 AND Normal Nucleoli ≤ 9
2 0.99 0.23 Shape > 1

CART
1 0.95 0.09 Size > 2.5 AND Shape ≤ 2.5 OR Size ≤ 2.5 AND Nuclei ≤ 5.5
2 0.96 0.02 Size > 2.5 AND Shape > 2.5 OR Size ≤ 2.5 AND Nuclei > 5.5
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Table III.17: The clusters and the rule-based explanations provided by (InterP), θ ∈ {2p}p=−5,...,5,

for the PIMA dataset, with C = 2 clusters, explanations of a maximum length of ` = 2 constructed

with N = 135 rules using the deciles of the continuous features and all attributes of the categorical

features.

θ cluster TPR FPR explanations

25 1 0.14 0.00 Glucose ≤ 102 AND BMI ≤ 25.9
2 0.04 0.00 Glucose > 167 AND SkinThickness > 40

24 1 0.19 0.00 Glucose ≤ 102 AND BMI ≤ 28.2
2 0.04 0.00 Glucose > 167 AND SkinThickness > 40

23 1 0.30 0.02 BMI ≤ 30.1 AND Age ≤ 27
2 0.10 0.00 Glucose > 167 AND SkinThickness > 31

22 1 0.45 0.07 Glucose ≤ 117 AND Age ≤ 29
2 0.23 0.02 Glucose > 167 AND BMI > 28.2

21 1 0.68 0.25 Pregnancies ≤ 7 AND Glucose ≤ 125
2 0.23 0.02 Glucose > 167 AND BMI > 28.2

20 1 0.88 0.49 Glucose ≤ 147 AND BMI ≤ 41.5
2 0.55 0.13 Glucose > 125 AND BMI > 30.1

2−1 1 0.98 0.76 Glucose ≤ 167
2 0.68 0.23 Glucose > 117 AND BMI > 28.2

2−2 1 0.98 0.76 Glucose ≤ 167
2 0.90 0.51 Glucose > 95 AND BMI > 25.9

2−3 1 1.00 1.00 all in
2 0.96 0.73 Glucose > 85 AND BMI > 23.6

2−4 1 1.00 1.00 all in
2 1.00 1.00 all in

2−5 1 1.00 1.00 all in
2 1.00 1.00 all in

CART
1 0.88 0.21 Glucose ≤ 127.5 OR Glucose > 127.5 AND BMI ≤ 29.95
2 0.56 0.23 Glucose ≤ 127.5 AND BMI > 29.95
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Table III.18: The clusters and the rule-based explanations provided by (InterP), θ ∈ {2p}p=−5,...,5,

for the abalone dataset, with C = 2 clusters, explanations of a maximum length of ` = 2 con-

structed with N = 130 rules using the deciles of the continuous features and all attributes of the

categorical features.

θ cluster TPR FPR explanations

25 1 0.19 0.00 Sex = I AND Height ≤ 0.085
2 0.09 0.00 Sex = M AND Shell weight > 0.41125

24 1 0.19 0.00 Sex = I AND Height ≤ 0.085
2 0.20 0.00 Shell weight > 0.41125

23 1 0.34 0.01 Sex = I AND Height ≤ 0.105
2 0.20 0.00 Shell weight > 0.41125

22 1 0.50 0.04 Sex = I AND Height ≤ 0.135
2 0.42 0.05 Height > 0.16 AND Shell weight > 0.3065

21 1 0.50 0.04 Sex = I AND Height ≤ 0.135
2 0.65 0.14 Diameter > 0.4 AND Shell weight > 0.268

20 1 0.71 0.18 Height ≤ 0.14 AND Shell weight ≤ 0.23475
2 0.76 0.23 Diameter > 0.365 AND Shell weight > 0.23475

2−1 1 0.88 0.41 Height ≤ 0.16 AND Shell weight ≤ 0.3065
2 0.86 0.34 Whole weight > 0.521 AND Shell weight > 0.19

2−2 1 1.00 0.74 Height ≤ 0.185 AND Shell weight ≤ 0.41125
2 0.97 0.63 Whole weight > 0.1955 AND Shell weight > 0.103

2−3 1 1.00 0.74 Height ≤ 0.185 AND Shell weight ≤ 0.41125
2 1.00 0.78 Whole weight > 0.1955 AND Viscera weight > 0.04

2−4 1 1.00 0.74 Height ≤ 0.185 AND Shell weight ≤ 0.41125
2 1.00 0.80 Whole weight > 0.1955 AND all in

2−5 1 1.00 0.74 Height ≤ 0.185 AND Shell weight ≤ 0.41125
2 1.00 0.80 Whole weight > 0.1955

CART
1 0.73 0.27 Shell weight ≤ 0.217
2 0.8 0.2 Shell weight > 0.217
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Table III.19: The clusters and the rule-based explanations provided by (InterP), θ ∈ {2p}p=−5,...,5,

for the wine dataset, with C = 3 clusters, explanations of a maximum length of ` = 2 constructed

with N = 235 rules using the deciles of the continuous features and all attributes of the categorical

features.

θ cluster TPR FPR explanations

25
1 0.78 0.00 Alcohol > 13.05 AND Proline > 879
2 0.77 0.00 Colorintensity ≤ 3.4
3 0.90 0.00 Flavanoids ≤ 1.324 AND Colorintensity > 4.08

24
1 0.78 0.00 Alcohol > 13.05 AND Proline > 879
2 0.77 0.00 Colorintensity ≤ 3.4
3 0.90 0.00 Flavanoids ≤ 1.324 AND Colorintensity > 4.08

23
1 0.78 0.00 Alcohol > 13.05 AND Proline > 879
2 0.77 0.00 Colorintensity ≤ 3.4
3 0.90 0.00 Flavanoids ≤ 1.324 AND Colorintensity > 4.08

22
1 0.86 0.01 Flavanoids > 2.46 AND Proline > 742
2 0.77 0.00 Colorintensity ≤ 3.4
3 0.90 0.00 Flavanoids ≤ 1.324 AND Colorintensity > 4.08

21
1 1.00 0.03 Flavanoids > 2.135 AND Alcohol > 12.76
2 0.83 0.01 Alcohol ≤ 12.76 AND Colorintensity ≤ 4.69
3 0.90 0.00 Flavanoids ≤ 1.324 AND Colorintensity > 4.08

20
1 1.00 0.03 Flavanoids > 2.135 AND Alcohol > 12.76
2 0.83 0.01 Alcohol ≤ 12.76 AND Colorintensity ≤ 4.69
3 0.98 0.02 Flavanoids ≤ 1.738 AND Hue ≤ 0.91

2−1
1 1.00 0.03 Flavanoids > 2.135 AND Alcohol > 12.76
2 0.89 0.07 Alcohol ≤ 13.05 AND Colorintensity ≤ 4.69
3 1.00 0.03 Flavanoids ≤ 1.738 AND Colorintensity > 3.4

2−2
1 1.00 0.03 Flavanoids > 2.135 AND Alcohol > 12.76
2 0.94 0.17 Proline ≤ 1048 AND Colorintensity ≤ 4.69
3 1.00 0.03 Flavanoids ≤ 1.738 AND Colorintensity > 3.4

2−3
1 1.00 0.03 Flavanoids > 2.135 AND Alcohol > 12.76
2 1.00 0.39 Proline ≤ 1048 AND Colorintensity ≤ 6.99
3 1.00 0.03 Flavanoids ≤ 1.738 AND Colorintensity > 3.4

2−4
1 1.00 0.03 Flavanoids > 2.135 AND Alcohol > 12.76
2 1.00 0.39 Proline ≤ 1048 AND Colorintensity ≤ 6.99
3 1.00 0.03 Flavanoids ≤ 1.738 AND Colorintensity > 3.4

2−5
1 1.00 0.03 Flavanoids > 2.135 AND Alcohol > 12.76
2 1.00 0.39 Proline ≤ 1048 AND Colorintensity ≤ 6.99
3 1.00 0.03 Flavanoids ≤ 1.738 AND Colorintensity > 3.4

CART
1 0.97 0.02 Proline > 755.0 AND Flavanoids > 2.165
2 0.86 0.09 Proline ≤ 755.0 AND OD280andOD31ofdilutedwines > 2.115

3 0.96 0.02
Proline > 755.0 AND Flavanoids ≤ 2.165

OR Proline ≤ 755.0 AND OD280andOD31ofdilutedwines ≤ 2.115
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Table III.20: The clusters and the rule-based explanations provided by (InterP), θ ∈ {2p}p=−5,...,5,

for the glass dataset, with C = 6 clusters, explanations of a maximum length of ` = 2 constructed

with N = 139 rules using the deciles of the continuous features and all attributes of the categorical

features.

θ cluster TPR FPR explanations

25

1 0.06 0.00 RI ≤ 1.5163 AND Fe > 0.22
2 0.14 0.00 Mg > 3.757 AND Ca ≤ 8.6
3 0.06 0.00 Na > 14.018 AND Fe > 0.22
4 0.23 0.00 RI ≤ 1.51591 AND Si ≤ 71.773
5 0.22 0.00 K ≤ 0 AND Ca ≤ 7.97
6 0.79 0.00 Na > 14.018 AND Ba > 0

24

1 0.06 0.00 RI ≤ 1.5163 AND Fe > 0.22
2 0.14 0.00 Mg > 3.757 AND Ca ≤ 8.6
3 0.06 0.00 Na > 14.018 AND Fe > 0.22
4 0.23 0.00 RI ≤ 1.51591 AND Si ≤ 71.773
5 0.22 0.00 K ≤ 0 AND Ca ≤ 7.97
6 0.79 0.00 Na > 14.018 AND Ba > 0

23

1 0.06 0.00 RI ≤ 1.5163 AND Fe > 0.22
2 0.14 0.00 Mg > 3.757 AND Ca ≤ 8.6
3 0.06 0.00 Na > 14.018 AND Fe > 0.22
4 0.23 0.00 RI ≤ 1.51591 AND Si ≤ 71.773
5 0.22 0.00 K ≤ 0 AND Ca ≤ 7.97
6 0.79 0.00 Na > 14.018 AND Ba > 0

22

1 0.14 0.01 Mg > 3.39 AND Ca > 9.57
2 0.14 0.00 Mg > 3.757 AND Ca ≤ 8.6
3 0.06 0.00 Na > 14.018 AND Fe > 0.22
4 0.23 0.00 RI ≤ 1.51591 AND Si ≤ 71.773
5 0.22 0.00 K ≤ 0 AND Ca ≤ 7.97
6 0.79 0.00 Na > 14.018 AND Ba > 0

21

1 0.43 0.07 Mg > 3.39 AND Ca > 8.6
2 0.33 0.04 Mg > 3.48 AND Ca ≤ 8.12
3 0.06 0.00 Na > 14.018 AND Fe > 0.22
4 0.23 0.00 RI ≤ 1.51591 AND Si ≤ 71.773
5 0.22 0.00 K ≤ 0 AND Ca ≤ 7.97
6 0.79 0.00 Na > 14.018 AND Ba > 0

20

1 0.76 0.17 RI > 1.51735 AND Mg > 3.39
2 0.54 0.12 Mg > 2.805 AND Ca ≤ 8.339
3 0.06 0.00 Na > 14.018 AND Fe > 0.22
4 0.23 0.00 RI ≤ 1.51591 AND Si ≤ 71.773
5 0.67 0.01 Si ≤ 72.79 AND K ≤ 0
6 0.79 0.00 Na > 14.018 AND Ba > 0
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Table III.21: The clusters and the rule-based explanations provided by (InterP), θ ∈ {2p}p=−5,...,5,

for the glass dataset, with C = 6 clusters, explanations of a maximum length of ` = 2 constructed

with N = 139 rules using the deciles of the continuous features and all attributes of the categorical

features.(cont.)

θ cluster TPR FPR explanations

2−1

1 0.86 0.23 RI > 1.51735 AND Mg > 2.805
2 0.62 0.20 Mg > 2.805 AND Ca ≤ 8.482
3 0.12 0.01 Na > 13.3 AND Fe > 0.22
4 0.92 0.05 Na ≤ 13.44 AND Mg ≤ 2.805
5 1.00 0.02 K ≤ 0 AND Ba ≤ 0
6 0.90 0.02 Na > 13.3 AND Al > 1.748

2−2

1 0.93 0.35 Al ≤ 1.488 AND Ca ≤ 10.443
2 0.95 0.67 Na ≤ 14.018 AND Ba ≤ 0.64
3 0.35 0.05 RI ≤ 1.51735 AND Al ≤ 1.36
4 0.92 0.05 Na ≤ 13.44 AND Mg ≤ 2.805
5 1.00 0.02 K ≤ 0 AND Ba ≤ 0
6 0.90 0.02 Na > 13.3 AND Al > 1.748

2−3

1 0.99 0.50 Mg > 2.805 AND Al ≤ 1.748
2 0.96 0.71 Na ≤ 14.018
3 0.71 0.25 Na > 13.3 AND Mg > 2.805
4 1.00 0.08 Mg ≤ 2.805 AND K > 0.08
5 1.00 0.02 K ≤ 0 AND Ba ≤ 0
6 0.90 0.02 Na > 13.3 AND Al > 1.748

2−4

1 1.00 0.58 Al ≤ 1.748 AND Ca ≤ 10.443
2 0.99 0.86 Ba ≤ 0.64
3 1.00 0.48 Mg > 2.805 AND Ca > 8.12
4 1.00 0.08 Mg ≤ 2.805 AND K > 0.08
5 1.00 0.02 K ≤ 0 AND Ba ≤ 0
6 1.00 0.19 Mg ≤ 3.39 AND Ca ≤ 10.443

2−5

1 1.00 0.58 Al ≤ 1.748 AND Ca ≤ 10.443
2 1.00 1.00 all in
3 1.00 0.48 Mg > 2.805 AND Ca > 8.12
4 1.00 0.08 Mg ≤ 2.805 AND K > 0.08
5 1.00 0.02 K ≤ 0 AND Ba ≤ 0
6 1.00 0.19 Mg ≤ 3.39 AND Ca ≤ 10.443

CART

1 0.87 0.06
Ba ≤ 0.335 AND Al ≤ 1.42 AND Ca ≤ 10.48 AND Rl > 1.517

OR Ba > 0.335 AND Si > 70.16 AND Mg > 3.42

2 0.68 0.17

Ba ≤ 0.335 AND Al ≤ 1.42 AND Ca > 10.48 AND Na ≤14.495
OR Ba ≤ 0.335 AND Al > 1.42 AND Mg > 2.26

OR Ba > 0.335 AND Si ≤ 70.16 AND Ca > 9.585
3 0.41 0.05 Ba ≤ 0.335 AND Al ≤ 1.42 AND Ca ≤ 10.48 AND Rl ≤ 1.517

4 0.92 0.00
Ba ≤ 0.335 AND Al > 1.42 AND Mg ≤ 2.26 AND Na ≤ 13.495

OR Ba > 0.335 AND Si ≤ 70.16 AND Ca ≤ 9.585

5 0.67 0.01
Ba ≤ 0.335 AND Al ≤ 1.42 AND Ca > 10.48 AND Na > 14.495

OR Ba ≤ 0.335 AND Al > 1.42 AND Mg ≤ 2.26 AND Na > 13.495
6 0.90 0.02 Ba > 0.335 AND Si > 70.16 AND Mg ≤ 3.42
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(a) True Positive Rate (b) False Positive Rate

Figure III.3: The breast cancer data: the post-hoc interpretability results obtained with rule-

based explanations given by (InterP) and CART.

(a) True Positive Rate (b) False Positive Rate

Figure III.4: The PIMA data: the post-hoc interpretability results obtained with rule-based expla-

nations given by (InterP) and CART.
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(a) True Positive Rate (b) False Positive Rate

Figure III.5: The abalone data: the post-hoc interpretability results obtained with rule-based

explanations given by (InterP) and CART.

(a) True Positive Rate (b) False Positive Rate

Figure III.6: The wine data: the post-hoc interpretability results obtained with rule-based expla-

nations given by (InterP) and CART.
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(a) True Positive Rate (b) False Positive Rate

Figure III.7: The glass data: the post-hoc interpretability results obtained with rule-based ex-

planations given by (InterP) and CART.

Figure III.8: The post-hoc rule-based explanations provided by a CART of depth 2 for the housing

dataset for clusters (classes) 1 and 2.
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Figure III.9: The post-hoc rule-based explanations provided by a CART of depth 2 for the breast

cancer dataset for clusters (classes) 1 and 2.

Figure III.10: The post-hoc rule-based explanations provided by a CART of depth 2 for the PIMA

dataset for clusters (classes) 1 and 2.
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Figure III.11: The post-hoc rule-based explanations provided by a CART of depth 1 for the

abalone dataset for clusters (classes) 1 and 2.

Figure III.12: The post-hoc rule-based explanations provided by a CART of depth 2 for the wine

dataset for clusters (classes) 1, 2 and 3.
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Figure III.13: The post-hoc rule-based explanations provided by a CART of depth 4 for the glass

dataset for clusters (classes) 1, 2, 3, 4, 5 and 6.
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Table III.22: The clusters and the rule-based explanations provided by (CinterP), θ1 ∈ {2p}p=−1,0,1

and θ2 ∈ {2p}p=−1,0,1, for the housing dataset, with C = 2 clusters, explanations of a maximum

length of ` = 2 constructed with N = 5646 rules using the unique values of the continuous features

and all attributes of the categorical features.

θ1 θ2 intra-homogeneity cluster TPR FPR explanations

2−1 2−1 6.03 · 104
1 1.00 0.04 INDUS > 15.04 AND RAD > 3
2 1.00 0.00 TAX ≤ 432 AND NOX ≤ 0.647

2−1 20 6.04 · 104
1 0.91 0.00 TAX > 432
2 1.00 0.00 TAX ≤ 432 AND NOX ≤ 0.647

2−1 21 6.04 · 104
1 0.91 0.00 TAX > 432
2 1.00 0.00 TAX ≤ 432 AND NOX ≤ 0.647

20 2−1 6.03 · 104
1 1.00 0.04 TAX > 402 AND INDUS > 15.04
2 1.00 0.00 TAX ≤ 432 AND NOX ≤ 0.647

20 20 6.03 · 104
1 1.00 0.04 TAX > 402 AND INDUS > 15.04
2 1.00 0.00 TAX ≤ 432 AND NOX ≤ 0.647

20 21 6.04 · 104
1 0.91 0.00 TAX > 432
2 1.00 0.00 TAX ≤ 432 AND NOX ≤ 0.647

21 2−1 6.03 · 104
1 1.00 0.04 INDUS > 15.04 AND RAD > 3
2 1.00 0.00 TAX ≤ 432 AND NOX ≤ 0.647

21 20 6.03 · 104
1 1.00 0.04 TAX > 402 AND INDUS > 15.04
2 1.00 0.00 TAX ≤ 432 AND NOX ≤ 0.647

21 21 6.03 · 104
1 1.00 0.04 INDUS > 15.04 AND RAD > 3
2 1.00 0.00 TAX ≤ 432 AND NOX ≤ 0.647
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Table III.23: The clusters and the rule-based explanations provided by (InterP), θ ∈ {2p}p=−5,...,5,

for the housing dataset, with C = 2 clusters, explanations of a maximum length of ` = 2 con-

structed with N = 5646 rules using the unique values of the continuous features and all attributes

of the categorical features.

θ cluster TPR FPR explanations

25
1 0.51 0.00 RM > 6.31 AND LSTAT ≤ 8.61
2 0.14 0.00 LSTAT > 11.25 AND PTRATIO > 20.9

24
1 0.58 0.00 Al ≤ 1.146 AND Si ≤ 72.132
2 0.14 0.00 Mg ≤ 2.805 AND Ca > 10.443

23
1 0.64 0.01 RM > 6.144 AND LSTAT ≤ 9.93
2 0.14 0.00 LSTAT > 11.25 AND PTRATIO > 20.9

22
1 0.64 0.01 RM > 6.144 AND LSTAT ≤ 9.93
2 0.45 0.05 LSTAT > 14.81 AND CRIM ≤ 10.6718

21
1 0.70 0.04 RM > 6.12 AND LSTAT ≤ 11.66
2 0.70 0.14 LSTAT > 11.66 AND CRIM ≤ 11.1604

20
1 0.73 0.06 RM > 6.059 AND LSTAT ≤ 11.66
2 0.80 0.20 LSTAT > 11.66 AND CRIM ≤ 37.6619

2−1 1 0.78 0.19 LSTAT ≤ 11.66 AND B > 172.91
2 0.99 0.44 LSTAT > 7.67 AND PTRATIO > 14.4

2−2 1 0.98 0.80 PTRATIO ≤ 20.9 AND B > 6.68
2 0.99 0.44 LSTAT > 7.67 AND PTRATIO > 14.4

2−3 1 1.00 0.90 PTRATIO ≤ 21 AND B > 6.68
2 0.99 0.44 LSTAT > 7.67 AND PTRATIO > 14.4

2−4 1 1.00 0.97 PTRATIO ≤ 21.2 AND B > 6.68
2 0.99 0.44 LSTAT > 7.67 AND PTRATIO > 14.4

2−5 1 1.00 0.97 PTRATIO ≤ 21.2 AND B > 6.68
2 1.00 0.53 LSTAT > 6.73 AND PTRATIO > 14.4



III.5 Conclusions

In this chapter, we have introduced an MILP model to simultaneously cluster individuals and

provide rule-based explanations for the clusters. We have assumed that we have at hand a dis-

similarity between the individuals. We have also assumed that we have rules based on features

characterizing the individuals, which are to be combined with the AND operator to obtain expla-

nations for the clusters. We have measured the quality of the clustering by minimizing the total

dissimilarity between individuals in the same cluster, while the goodness of the explanations has

been pursued by maximizing the number of true positive cases across all clusters and minimizing

the number of false positive cases. Our approach can be applied in a post-hoc fashion to interpret

the clusters of any Cluster Analysis approach or the clusters available to the user in the form of

cluster membership labels. We have illustrated, in real-world datasets, the good performance of

these explanations already for length ` = 2, i.e., for very concise ones.

To end, it would be interesting to sharpen the corresponding mathematical optimization for-

mulation for (CinterP), as well as to model alternative forms of intra-homogeneity of the clusters.

Another line of future research that is worth considering is the modeling of fairness constraints

[Abraham et al., 2020].
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Chapter IV

On enhancing the explainability and

fairness of tree ensembles
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IV.1 Introduction

The literature has reported some controversial/unfair decisions made with Artificial Intelligence /

Machine Learning algorithms when, e.g., assessing the risk of potential recidivism or making social

benefit allocations [Rudin, 2019]. This, together with the need of users (e.g., physicians, judges,

civil servants, citizens) to understand why the model made a decision, calls for enhancing the

transparency of Supervised Learning algorithms [Blanquero et al., 2020, European Commission,

2020, Goodman and Flaxman, 2017, Panigutti et al., 2023, Rudin et al., 2022]. In this chapter, we

contribute to this stream of literature enhancing the explainability and fairness of tree ensembles

for classification and regression tasks.

Decision trees are seen as the benchmark methodology in transparent classification [Carrizosa

et al., 2021b]. A decision tree is defined by a series of if-then queries, which are easy to ex-

plain/interpret, in which features are compared against cutoff values. However, decision trees may

not be that accurate and they may also suffer from instability, i.e., negligible changes in one feature

may yield a rather different accuracy. To overcome these shortcomings, tree ensembles, in which a

collection of decision trees are combined [Gambella et al., 2021, Mǐsić, 2020], have been proposed.

The most common strategies to train tree ensembles are bagging or boosting [Friedman, 2001]. In

the former one, bootstrapping defines the training sample for each tree, while random sampling

on the set of features is used to reduce the number of if-then rules checked in each of the branch

nodes. A classic example of this is the Random Forest [Biau and Scornet, 2016, Breiman, 2001].

In boosting, a sequential approach is used in which a new decision tree is added in each iteration

with the aim to improve the error made by the tree ensemble at hand. A classic example of this is

the XGBoost [Chen and Guestrin, 2016]. By construction, tree ensembles are far less explainable

than decision trees, since, in general, almost all features are used in prediction with many cutoffs

[Vidal and Schiffer, 2020]. Also by construction, tree ensembles do not allow a proper modeling of

fairness.

In this chapter, we assume that we have a tree ensemble at hand and propose the Explainable

and Fair Tree Ensemble (EFTE) methodology. This consists in modifying the original tree ensemble

to, possibly at the expense of a decrease in accuracy, improve its explainability and fairness. As is

customary in Supervised Classification, we have observations split into K classes and characterized

by p features, either numerical or categorical. Some of these observations share a sensitive attribute,

such as race or low income, and we need to ensure that the classifier does not discriminate against

them and/or amplify the biases that may be present in the dataset [Romei and Ruggieri, 2014,

Zafar et al., 2017].
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The goal of the EFTE is to enhance the transparency of tree ensembles by design, i.e., by

imposing it in the training process, while aiming for a competitive accuracy. The starting point of

our approach is a collection of classification trees T , where for each tree we have the if-then rule

associated with each branch node and the class assigned to each leaf node. The source of these

trees can vary. They may have been obtained by training a Random Forest or an XGBoost, or

they can simply be a collection of weak learners each of them with a tree structure. The EFTE

associates a weight to each tree in T . The weights are optimized to ensure a good trade-off between

classification accuracy, explainability, and fairness. Our measure of explainability is sparsity, the

typical surrogate [Carrizosa et al., 2021b], and thus we impose an upper bound on the number

of features used by EFTE. Our fairness measure is the classification accuracy for the sensitive

observations, which we aim to have as high as possible. See Besse et al. [2022], Miron et al. [2020],

Carrizosa et al. [2022a], Mehrabi et al. [2022] and references therein for other fairness metrics.

Inspired by the models to train Support Vector Machines [Carrizosa and Romero Morales, 2013,

Vapnik, 1995, 1998], we model the EFTE using a Mixed Integer Linear Programming (MILP)

formulation, where there are only binary decision variables to model the sparsity. In our numerical

results, we show that for standard datasets used in the fairness literature, we can dramatically

enhance the fairness of the benchmark, namely the popular Random Forest, while using only a

few features, all without damaging the misclassification error.

The chapter is organized as follows. In Section IV.2 we introduce the EFTE and the MILP

formulation. In Section IV.3 we illustrate the performance of the EFTE in terms of misclassification

error, fairness, and explainability in real-world datasets. In Section IV.4 we conclude the chapter

and propose a number of lines of future research.

IV.2 The EFTE model

In this section, we introduce the Explainable and Fair Tree Ensemble (EFTE) classifier and an

MILP formulation that is scalable in the number of observations. We start by presenting the

information available from the collection of trees at hand that will be combined to yield an EFTE.

We have a classification problem with K classes indexed by the set K = {1, . . . ,K}, defined in

a feature space X ⊂ Rp. Note that we can handle both numerical and categorical features, where

for the latter ones we transform them into 0-1 features using the one-hot encoding.

Our methodology requires as a starting point a set of classification trees T of cardinality T.

Since the trees are in place, we know what features are used in the branch nodes. We use for this

the notation f tj , j = 1, . . . , p and t = 1, . . . ,T, such that f tj is equal to 1 if feature j is used at least
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once in tree t and 0 otherwise. We also know the class assignment rule used by each of the trees.

Note that one of the most popular ways to make the class assignment is using the majority rule,

where any individual in a given leaf node of the tree is associated with the most frequent class in

such a leaf node. We use for this the notation ψt : X → K, t = 1, . . . ,T, where ψt(x) denotes the

class assigned by tree t to datapoint x ∈ X . We would like to stress that both types of data f tj

and ψt(x) are obtained prior to the training of the EFTE.

To build the EFTE we have a training sample I of n = |I| observations, namely, {(xi, ki)}i∈I ,

where xi ∈ Rp is the feature vector characterizing observation i and ki ∈ K is its class membership.

Recall that we have the so-called sensitive individuals that we want to protect against an unfair

treatment in terms of misclassification error in the training process. Therefore, we introduce

notation I1 ⊂ I for the individuals in I that belong to the sensitive group, with n1 = |I1|.

As abovementioned, we know the class assigned by each tree to each observation in the training

sample, namely, ψt(xi) for i = 1, . . . , n and t = 1, . . . ,T. For each tree t, we define the parameter

ytk(xi) that is equal to 1 if observation i = 1, . . . , n is predicted class k by tree t and 0 otherwise,

i = 1, . . . , n, k = 1, . . . ,K and t = 1, . . . ,T. This notation will be convenient when defining the

class score that EFTE uses to make predictions.

The EFTE has two goals, namely, to achieve a good and fair classification accuracy as well as a

good sparsity, a surrogate of explainability. To this aim, we propose a mathematical optimization

model to select only a few features in the classifier, to eliminate the trees using features outside

the set of selected ones, and to weigh the remaining trees to achieve a good and fair classification

accuracy. Therefore, we define the following decision variables and parameters. Let ωt ∈ [0, 1] be a

continuous decision variable that models the weight that the EFTE allocates to tree t, t = 1, . . . ,T.

Let φj be a binary decision variable equal to 1 if feature j is used in the model and 0 otherwise.

Let η ∈ (0, 1] be an upper bound on the maximum weight allocated to each of the trees and

ν ∈ {1, 2, . . . , p} an upper bound on the number of features used by the EFTE.

Usually, one requires a good classification accuracy by minimizing the misclassification error

in the training sample, hereafter misclas(ω, T , I). In this chapter, we also aim to have a fair

misclassification error. Therefore, in addition, we propose to minimize the misclassification error

in the subsample of sensitive individuals of the training sample, i.e., I1, hereafter misclas(ω, T , I1).

We follow a weighted approach and combine these two terms using the parameter α ≥ 0, defining

the fair misclassification error as:

fairmisclas(ω, T , I;α) := misclas(ω, T , I) + αmisclas(ω, T , I1). (IV.2.1)

With this, our performance measure fairmisclas gives weight 1 + α to the misclassification error
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incurred on an individual of the sensitive group and 1 on an individual outside the protected group.

The higher α the more stress we put in ensuring the correct classification in the individuals from

the sensitive group.

Once we know the weights ωt for each tree in the ensemble, the EFTE makes class assignment

using
∑T

t=1 ω
tytk(xi), i.e., the score associated to class k for individual i = 1, . . . , n. We assign

class k̃i ∈ {1, . . . ,K} to individual i = 1, . . . , n if

k̃i ∈ arg max
k

T∑
t=1

ωtytk(xi).

With this, we consider the prediction is correct if

T∑
t=1

ωtytki(xi) ≥
T∑
t=1

ωtytk(xi) + ε ∀k 6= ki, (IV.2.2)

with ε > 0. Note that this parameter ε is used to model a conservative approach, such that for

a record where we have a tie, and thus the difference between the best score and the second best

score is below ε, we count this as a misclassification error.

The most straightforward way to count the number of individuals in which we incur a misclas-

sification error would be to introduce binary decision variables for each individual and each class

[Carrizosa et al., 2021b], to check whether the inequalities in (IV.2.2) are satisfied. However, this

hard way of modeling errors is not scalable for large training samples since it includes as many

binary decision variables as observations in the data set, and it can overfit the training data. In-

stead, we propose a soft approach using deviation decision variable which is a continuous decision

variable ξi ≥ 0, to measure the violation of the inequalities in (IV.2.2). This strategy is similar

to the one used to train Support Vector Machines [Carrizosa and Romero Morales, 2013, Vapnik,

1995, 1998].

The second goal of the EFTE is to ensure that only a few features are used, i.e., the classifier

is sparse. This is achieved by imposing an upper bound on the number of features used by the

EFTE.

The MILP formulation of the EFTE that we will use in the numerical section reads as follows:

min
ω,φ,ξ

1

n

n∑
i=1

ξi + α
1

n1

n1∑
i=1

ξi (IV.2.3)

s.t.

T∑
t=1

ωtytki(xi) ≥
T∑
t=1

ωtytk(xi)− ξi + ε, i = 1, . . . , n, k = 1, . . . ,K : k 6= ki, (IV.2.4)

T∑
t=1

ωt = 1, (IV.2.5)
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p∑
j=1

φj ≤ ν, (IV.2.6)

ωt ≤ η φj , j = 1, . . . , p, t = 1, . . . ,T : f tj = 1, (IV.2.7)

ωt ≥ 0, t = 1, . . . ,T (IV.2.8)

φj ∈ {0, 1}, j = 1, . . . , p, (IV.2.9)

ξi ≥ 0, i = 1, . . . , n. (IV.2.10)

Let us discuss the objective function (IV.2.3) and constraints (IV.2.4) together. Constraints

(IV.2.4) ensure that ξi is well-defined. If
∑T

t=1 ω
tytki(xi) ≥

∑T
t=1 ω

tytk(xi) + ε for all k 6= ki,

then without loss of optimality we can choose ξi = 0, i.e., there is no misclassification error. How-

ever, if this is not the case, then ξi > 0. Now, it is clear that the objective function (IV.2.3)

minimizes a proxy for the fair misclassification error with the help of deviation variables ξi. Note

that the deviations of the protected observations in I1 are weighted with 1 + α and the rest with

1. Constraint (IV.2.5) ensures that the weights ωt sum up to 1 across the T trees. Therefore ωt is

the fraction of the total weight, and thus the importance, allocated to tree t. Constraint (IV.2.6)

ensures that the EFTE can use at most ν features. Constraints (IV.2.7) are twofold. First, they

ensure that φj is well-defined, i.e., if feature j cannot be used in the EFTE, namely φj = 0, then

ωt = 0 for each tree using that feature. Second, they impose the upper bound η on the weight ωt,

for each t. Constraints (IV.2.8)–(IV.2.10) specify the nature of the decision variables ω,φ and ξ.

In sum, EFTE has been formulated as an MILP problem with at most T p+ 2 + n (K− 1) linear

constraints, T + n non-negative decision variables, and p binary decision variables.

Once the EFTE has been trained, we make class predictions in new individuals in the following

manner. For an individual with feature vector x, recall that ytk(x) is equal to 1 if tree t assigns

class k to it, and otherwise 0, t = 1, . . . ,T and k = 1, . . . ,K. Then, the EFTE predicts class

k̃ ∈ arg max
k

T∑
t=1

ωtytk(x),

where, in case of ties, we can break them randomly.

A few remarks can be made about the EFTE formulation (IV.2.3)–(IV.2.10). The first one is

on the feasibility of the formulation. For small values ν, the problem may be infeasible. This is

probably the case for trees coming from training a random forest in which no pruning has been

applied, and therefore there may not be trees using only a few features. This is less of an issue in

XGBoost where many trees of very small depth are combined. The same holds for η, namely, for

small values of this parameter the problem is infeasible. This will certainly be the case if η < 1
T , as

even by taking the maximum possible value of the weights would violate constraint (IV.2.5). The
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second remark is on the nature of the parameter η. This can be seen as a regularization parameter

on the tree ensemble [Hastie et al., 2009]. If η = 1 only a few trees may be chosen, with the risk

of overfitting to the training sample. However, as we decrease the value of this parameter we force

more trees to be part of EFTE.

To end this section, we briefly discuss two important extensions of the EFTE. First, our method-

ology can easily incorporate more sophisticated forms of sparsity. In the current formulation, we

control the total number of features used in the EFTE. We can also control the number of features

used from a given group. This is meaningful for categorical features, where for each j categorical

we have a group of 0-1 features (one per category) associated with j coming from its one-hot

encoding. We may want to impose sparsity within the group, and thus using as few categories

as possible from j. The grouping of features may also appear when we have features of differ-

ent natures such as socioeconomic ones or demographic ones. Again, one may want to impose

group sparsity, i.e., controlling the sparsity within each of these groups [Beńıtez-Peña et al., 2021,

Friedman et al., 2010]. Second, the EFTE can also deal with regression tasks, where the response

variable is a continuous amount. In this case, for each tree in T , we would know the predicted

response for each individual, as well as the features used at least once. The EFTE would combine

these predictions with the weights of the trees. The goal of the EFTE in regression would be to

make these predictions as accurate as possible, as fair as possible, while using as few as possible

features. To train this model we need to solve a Mixed Integer Convex Quadratic Problem with

linear constraints, where again we only have binary decision variables associated with the selection

of features. Indeed, the decision variables are still the weights associated to the trees ωt and the

0-1 variables φj to decide which features can be used by the EFTE. The objective function mini-

mizes the mean squared error in I, as opposed to the misclassification error, and similarly for the

sensitive individuals in I1. As for the feasible region, we only need constraints (IV.2.5)–(IV.2.9),

as the remaining ones we saw above relate to the definition of the misclassification error and are

not needed in the regression task.

IV.3 Numerical results

In this section we illustrate the performance of the EFTE on two publicly available datasets in

terms of misclassification error, fairness, and explainability, benchmarking our approach against a

very well-known class of tree ensembles, namely, Random Forests [Breiman, 2001].

We illustrate our methodology on two binary classification datasets, i.e., with K = 2 classes,

often used in the fairness literature [Le Quy et al., 2022], namely the PIMA diabetes dataset [Dua
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Table IV.1: Description of the features in the COMPAS dataset and the K = 2 classes.

Features Description

Sex Sex
Age Age in years
Age cat Age category
Race Race
Days b screening arrest The number of days between COMPAS screening and arrest
Decile score A continuous variable, the decile of the COMPAS score
Priors count The prior offenses count
C charge degree Charge degree of original crime
Score text ProPublica-defined category of decile score

Class Defendant is rearrested within 2 years (class 1) or not (class 2)

and Graff, 2017] and the COMPAS dataset [Angwin et al., 2016]. From Chapter III, we may recall

that the PIMA dataset contains patients records and is used to predict whether a patient has

diabetes. The COMPAS dataset contains records of crime defendants and is used to assess potential

recidivism risk. The description of the features, the two classes and the sensitive group can be

found in Table III.5 for the PIMA dataset and in Table IV.1 for the COMPAS dataset. For the PIMA

dataset, the sensitive group is the set of individuals with diabetes, i.e., those in class k = 2. For

the COMPAS dataset, the sensitive group is the set of African-Americans not being rearrested within

2 years, i.e., African-Americans in class k = 2. Note that in the PIMA dataset we are performing a

classical cost-sensitivity analysis [Carrizosa et al., 2021b, Turney, 1995], where EFTE focuses on

ensuring that the misclassification error is small for individuals at risk of diabetes, class k = 1,

while ensuring that the overall misclassification error is also small. For the COMPAS dataset, EFTE

focuses on some of the individuals of class k = 2 at risk of racial discrimination when predicting

recidivism, namely, the ones showing the attribute African-American for the categorical feature

Race in Table IV.1.

The dimension of the datasets is provided in Table IV.2, including the number of observations,

the percentage of observations in the sensitive group, the number of features (p), the number of

classes (K), and the class split. Note that we have both numerical and categorical features and

therefore p refers to the number of features after the categorical ones have been coded through

binary features, having one for each category of each categorical feature. The last column of Table

IV.2 refers to the accuracy of a standard Random Forest (RF) with 500 trees of unlimited depth,

trained using the scikit-learn library [Pedregosa et al., 2011].

Variable importance metrics have been developed to enhance the transparency of Random

Forests and other tree ensemble models [Altmann et al., 2010]. To give a first impression on the

importance of the features for the classification task, we report the variable importance metric

that is given by the scikit-learn library when training the random forest in Table IV.2, namely,
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Table IV.2: The dimension of the benchmark datasets to test EFTE and the out-of-sample mis-

classification error of the standard RF.

dataset # obser-

vations

% sensitive

observations

p K class split RF error RF error

in sensitive

group

PIMA 768 35% 8 2 35%/65% 23.78% 42.94%
COMPAS 6172 25% 20 2 46%/54% 36.27% 40.11%

the Mean Decrease in Impurity (MDI). This can be found in Figure IV.1 for the PIMA dataset and

Figure IV.2 for the COMPAS dataset. For the PIMA dataset, Glucose is by far the feature with the

highest importance, BMI, Age, DiabetesPedigreeFunction follow, while the remaining four features

have a much lower value of the importance. For the COMPAS dataset, Age is the feature with the

highest importance, closely followed by Priors count, Decile score and Days b screening arrest.

The remaining sixteen features, many of them associated with categorical features such as Race,

have a much lower value of the importance metric.

The design of the experiments is as follows. We split the dataset into 3 samples: training

(67%), validation (16.5%), and testing (16.5%). The training sample is used to build and reweight

the initial trees. To build the EFTE, we consider stump trees. For each continuous feature, we

construct (at most) 100 trees based on the percentiles of the corresponding feature where we split

the observations below the percentile from the rest. Note that we may have fewer than 100 trees,

as there may be repeated trees if the percentiles coincide. For each categorical feature, we build

one tree per category where we split the observations showing that category from the rest. The

validation sample is used to choose the best values of the EFTE parameters ε and η. We consider

ε ∈ {2−3, 2−2, 2−1} and η ∈ {2−5, 2−4, 2−3, 2−2, 2−1, 20}. We use the testing sample to report the

performance of the EFTE in terms of misclassification error, fairness, and explainability. To end,

we run five Monte Carlo simulations and report the average performance for each criterion across

all runs. The number of stump trees in the EFTE, i.e., T, for the first run is 508 for the PIMA

dataset and 199 for the COMPAS one, but other runs have similar values.

To illustrate the trade-off between the different criteria, we show results for a set of values of the

parameters α and ν. Recall that 1+α is the weight we give to the misclassification error incurred in

individuals from the sensitive group while this weight is 1 for the remaining individuals, and ν is the

maximum number of features that the EFTE can use. We consider α ∈ {0} ∪ {2−3, 2−2, 2−1, 20},

where the higher the value of α the fairer we are towards individuals in the sensitive group. For

ν, we use all possible values, namely ν ∈ {1, 2, . . . , p}.

89



To solve the MILP formulation (IV.2.3)–(IV.2.10), that builds the EFTE, we use Gurobi

[Gurobi Optimization, 2020] with Python [Python Core Team, 2015] on a PC Intel R©Core TM

i7-8665U, 16GB of RAM. Each of the MILP instances, for different training samples and different

values of the parameters, was solved to optimality in less than 1 second for the PIMA dataset and

less than 6 seconds for the COMPAS one.

We benchmark our methodology against a Random Forest (RF) with 500 trees of the unlimited

depth. As for the EFTE, we consider the RF with a limited number of features, namely the ν

features with the highest value of the variable importance of the standard RF with all features,

for ν ∈ {1, 2, . . . , p}. For instance, when ν = 1, the RF is trained only with Glucose for the PIMA

dataset and with Age for the COMPAS dataset, as seen in Figures IV.1 and IV.2 respectively. Note

that when ν = p the RF is trained using all the features and thus it coincides with the standard

RF, for which the out-of-sample accuracies were reported in Table IV.2.

The results on misclassification error, fairness and explainability for the PIMA dataset can be

found in Figures IV.3, IV.5 and IV.7 (left panel), while for the COMPAS dataset can be found in

Figures IV.4, IV.6 and IV.7 (right panel).

We start discussing the misclassification error and the fairness of the EFTE in the PIMA dataset.

Figure IV.3a plots the average out-of-sample misclassification error, while Figure IV.3b refers to the

average out-of-sample misclassification error for the sensitive observations in the different testing

samples, our measure of fairness. Note that the misclassification error of the standard RF, i.e.,

when all features can be used and given in Table IV.2, corresponds to the point at the far right

of the RF line. As one can see in Figure IV.3a, the EFTE gives similar results to the RF in

terms of out-of-sample misclassification error, or even better, for small values of the parameter α

tested, namely, α ∈ {0} ∪ {2−3, 2−2, 2−1}. It is natural to see that the larger the value of α the

higher the value of the misclassification error of EFTE. In Figure IV.3b we can see that the EFTE

shows better results in terms of out-of-sample misclassification error in the sensitive observations

compared to the RF for higher values of α, namely, α ∈ {2−1, 20}, for smaller values of α the

EFTE and RF are comparable, and for α = 0 EFTE is slightly worse. In sum, this means that

there are values of α for which the EFTE gives similar overall misclassification error to RF and is

much more fair towards the sensitive group than its benchmark.

We now discuss the explainability of the EFTE in the PIMA dataset, using two metrics, namely,

the number of features and the number of stump trees used. Recall that in the MILP formulation

(IV.2.3)–(IV.2.10), we have the parameter ν which is an upper bound on the number of features

used in the EFTE. However, the fair and explainable tree ensemble may use even fewer features.
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In Figure IV.5a, we count the actual number of features used by the EFTE and display the average

number across the five folds, for each value of ν and α tested. Combining Figures IV.3 and IV.5a,

we can see that the misclassification error and the fairness are very similar for all values of ν ≥ 4,

meaning that with half of the features, we can find a good trade-off between these two criteria. For

ν ≥ 4, the number of features used by the EFTE is between 3.6 and 5, and thus, our methodology

is selective and not using the whole budget ν.

To complement Figure IV.5a, Figure IV.7 (left panel) displays the average number of folds in

which a feature is used. We have a plot for each value of α, where the color coding in each plot is

the same as in Figure IV.3. To ease the visualization of these averages, we use a heatmap with a

cell for each value of ν (horizontal) and each feature (vertical), where the features are in decreasing

order of the variable importance metric in Figure IV.1. The darker the cell the more folds are using

that feature for the corresponding value of ν. In Figure IV.7 we can see that Glucose is always used

by the EFTE, and most of the times BMI is, which we recall are the two features with the largest

values of the variable importance metric in Figure IV.1. BloodPressure is never used, except for

one value of α and ν, while Pregnancies, with a lower value of the variable importance is often

used by the EFTE. Table IV.3 displays the EFTE with α = 0.5, ν = 4, ε = 0.125 and η = 0.5, for

one of the five Monte Carlo simulations. We can see that the variables used are Glucose, with the

stump with the highest weight, and then Pregnancies, BMI and DiabetesPedigreeFunction.

Table IV.3: The EFTE (trees and weights) for the PIMA dataset, with α = 0.5, ν = 4, ε = 0.125

and η = 0.5, for one of the five Monte Carlo simulations.

Left Node of Stump Tree t ωt

Pregnancies ≤ 0.352941 0.1250
Glucose ≤ 0.572864 0.4375
Glucose ≤ 0.723618 0.1250
BMI ≤ 0.582593 0.1250
DiabetesPedigreeFunction ≤ 0.242955 0.1250
DiabetesPedigreeFunction ≤ 0.248565 0.0625

We continue discussing another explainability metric of the EFTE, namely, the number of

stump trees actually used in the tree ensemble, i.e., those for which the continuous decision variable

ωt 6= 0. Figure IV.5b displays the results for the PIMA dataset, where we count the number of trees

active in the ensemble and plot the average results across the five folds, for each value of α and ν

tested. We can see that from the roughly 500 trees we start with, only a few of them are actively

used by EFTE. We use no more than 60 trees, in general, while for ν ≥ 4 we use no more than 20

trees. Since we are using stumps this means that only a few thresholds of the (continuous) features

play a role in the classification task.
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To end with the PIMA dataset, we note that the EFTE with α = 0 and ν = 1 obtains a

comparable misclassification error to the standard RF i.e. when all RF can make use of all the

features, and better to the one obtained by RF when trained only on Glucose, the feature with

the highest variable importance in Figure IV.1. As we can see in Figure IV.7, the top plot of the

left panel, Glucose is also the feature selected by the EFTE, while from Figure IV.5b we can see

that the EFTE uses close to 60 stump trees all defining thresholds of the feature Glucose. The

outperformance of the EFTE for α = 0 against RF may be explained by the fact that the weights

assigned to the stump trees are optimized.

The conclusions that can be drawn for the COMPAS dataset are similar, as Figures IV.4, IV.6

and IV.7 (right panel) depict. Except for α = 1, the EFTE gives similar results to the RF in terms

of out-of-sample misclassification error or slightly better. For all the values of α, the EFTE shows

better results in terms of out-of-sample misclassification error for the sensitive observations. In

terms of explainability, we can see that the misclassification error and the fairness are very similar

for all values of ν ≥ 8, while for ν ≥ 8 the number of features used by the EFTE is between 4 and

7. As before, our methodology selects only a few features even for larger values of the budget ν.

In Figure IV.7 we can see that Age, Priors count, and Decile score are always used by the

EFTE, for ν ≥ 4, which we recall are the three features with the largest values of the variable

importance metric in Figure IV.2. As for the remaining chosen features by the EFTE, the ranking

of the variable importance is not necessarily followed for larger values of ν. Table IV.4 displays the

EFTE with α = 0.5, ν = 4, ε = 0.125 and η = 0.5, for one of the five Monte Carlo simulations. We

can see that in addition to Age, Priors count, and Decile score, we also use Days b screening arrest.

Table IV.4: The EFTE (trees and weights) for the COMPAS dataset, with α = 0.5, ν = 4, ε = 0.125

and η = 0.5, for one of the five Monte Carlo simulations.

Left Node of Stump Tree t ωt

Age ≤ 0.012821 0.041667
Age ≤ 0.025641 0.083333
Age ≤ 0.192308 0.041667
Age ≤ 0.269231 0.041667
Age ≤ 0.833333 0.104167
Priors count ≤ 0.052632 0.041667
Priors count ≤ 0.131579 0.041667
Priors count ≤ 0.552632 0.041667
Priors count ≤ 0.578947 0.041667
Priors count ≤ 0.657895 0.041667
Days b screening arrest ≤ 0.5 0.020833
Days b screening arrest ≤ 0.516667 0.020833
Days b screening arrest ≤ 0.716667 0.020833
Days b screening arrest ≤ 0.733333 0.020833
Decile score ≤ 0 0.354167
Decile score ≤ 0.666667 0.041667
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From Figure IV.6b, we can see that we use less than 35 trees, in general, although we have

around 200 to start with. Some of those correspond to thresholds on the continuous variables,

while others to critical categories of the categorical features, such as Race.

We note that for the COMPAS dataset, our methodology outperforms RF in terms of fairness

for α = 0, while is slightly better in terms of misclassification error. This outperformance may be

explained by the fact that we only use a few thresholds of the continuous features as well as a few

attributes of the categorical features, and thus we are less prone to overfit [Carrizosa et al., 2021a,

2022c].

To end this section, we show similar plots to those in Figure IV.3 for the PIMA dataset, when the

stump trees used as starting point for the EFTE methodology come from building an XGBoost

in the training sample, while the remaining of the design of experiments stays the same. The

results can be found in Figure IV.8 for XGBoosts with 1000 stump trees. For this dataset, both

figures show a similar tradeoff between the misclassification error and the fairness of the EFTE,

with slightly better fairness in Figure IV.8 at the cost of higher misclassification error.
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Figure IV.1: Variable importance plot for a standard RF trained on the PIMA dataset.

Figure IV.2: Variable importance plot for a standard RF trained on the COMPAS dataset.

IV.4 Conclusions

In this chapter, we trade off some of the accuracy of the tree ensemble to enhance its sparsity,

ensuring that we use fewer features, and its fairness towards a group sharing a sensitive attribute,

ensuring that the accuracy in this group is as high as possible. This means that the feature selection
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is not only guided by the overall misclassification error but also the misclassification error in the

sensitive group. We propose an MILP formulation to train the Explainable and Fair Tree Ensemble

(EFTE), where the classification error is modeled through continuous decision variables as opposed

to binary ones. Therefore, our formulation has the advantage of being scalable in the number of

observations. Our numerical results illustrate the EFTE built from a pool of stump trees. For two

datasets often used in the fairness literature, we can show that the EFTE dramatically improves

the fairness of the ensemble without harming the overall misclassification error, and that this is

true even if we use less than half of the features.

As for future research, there are two interesting directions. The first one is about the collection

of classification trees T at hand to train the EFTE. To warrant a good sparsity of the EFTE, it

is important that each individual tree in T is using only a few features. This is the case if the

trees are shallow, such as those coming from an XGBoost. If the trees are deep, as is normally the

case for trees coming from a Random Forest, we can prune them in a preprocessing step [Liu and

Mazumder, 2023], before adding them to T . Instead, one can simultaneously prune the trees and

train the EFTE. Hence, in addition to the decision variables associated with the weights of the trees

and the selection of the features, we need new ones to model the pruning of the trees. The second

one is about the fairness measure optimized by the EFTE. We have modeled the misclassification

error in the sensitive group, but there are other criteria we could have considered such as the

disparate mistreatment [Miron et al., 2020]. The study of efficient mathematical optimization

formulations for these two problems is left as an open question.
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(a) Out-of-sample misclassification error

(b) Out-of-sample misclassification error in sensitive observations

Figure IV.3: Out-of-sample misclassification error and fairness in the PIMA dataset of the EFTE

and RF.
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(a) Out-of-sample misclassification error

(b) Out-of-sample misclassification error in sensitive observations

Figure IV.4: Out-of-sample misclassification error and fairness in the COMPAS dataset of the EFTE

and RF.
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(a) Number of used features

(b) Number of used trees

Figure IV.5: Average number of features (above) and average number of trees (below) used by the

EFTE in the PIMA dataset.
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(a) Number of used features

(b) Number of used trees

Figure IV.6: Average number of features (above) and average number of trees (below) used by

EFTE in the COMPAS dataset.
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Figure IV.7: Heatmap of the average number of folds in which a feature is used by the EFTE in

the PIMA dataset (left) and the COMPAS dataset (right).
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(a) Out-of-sample misclassification error

(b) Out-of-sample misclassification error in sensitive observations

Figure IV.8: Out-of-sample misclassification error and fairness in the PIMA dataset of the EFTE

and RF, when XGBoost is used to generate the stump trees.



Chapter V

Fair treatment allocation via tree

ensembles
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V.1 Introduction

Nowadays, it is common to use data from observational studies in treatment allocation problems

[Athey et al., 2019, Bertsimas et al., 2019, Jo et al., 2021], where one has to decide which individuals

will receive treatment and which not. Examples abound in, e.g., personalized medicine, lending

services, and online advertising. It has been shown that individuals may react differently to the

treatment of interest [Xie et al., 2012]. With the ability to collect large datasets, researchers

can now design personalized treatment allocation policies [Fernández-Loŕıa and Provost, 2022,

Kleinberg et al., 2015] through newly developed non-parametric methods predicting heterogeneous

treatment effects (HTE), i.e., the expected value of the difference of outcomes between being

treated or not, conditional to the values of the covariates linked with each individual, see Tran

et al. [2023] for a review.

Once the HTE has been predicted for the individuals, the treatment is allocated to those with

the highest values of HTE using a threshold of interest. However, this plausible allocation strategy

may lead to unfair decisions [Athey, 2017, Baumgaertner, 2022, Bénard et al., 2021, Constantaras

et al., 2023, Kayser-Bril, 2020, Kim and Zubizarreta, 2023, Nabi et al., 2019]. Indeed, historical

data may suffer from biases linked to sensitive attributes, such as gender or age. If the prediction

algorithm is not carefully designed, the predictions may inherit these biases, yielding unequal

treatment allocations to individuals in the sensitive (e.g., women or elderly patients) and the non-

sensitive (e.g., men or non-elderly patients) groups. This may cause discrimination in socially

impactful settings such as in criminal justice [Gelman et al., 2007], healthcare [Obermeyer et al.,

2019], or credit scoring [Das et al., 2023].

Let me illustrate the need for fairness considerations with an example of access to healthcare

resources. For patients with advanced osteoarthritis, surgical intervention is one of the effective

treatments. The replacement of the affected joints can improve quality of life. It has been found

that some racial minorities show worse outcomes [Usiskin and Misra, 2022]. If a decision maker

needs to target surgery to the most cost-effective patients and uses for it an algorithm without any

fairness awareness, then, due to the existing biases in the data, the prediction of the treatment

effect might be lower for individuals from these racial minorities (sensitive group). This leads to a

lower chance of being selected for surgery in the sensitive group, which may be socially undesirable

and needed to be mitigated. In Kim and Zubizarreta [2023] and references therein, it is advocated

that the allocation of healthcare resources should be based not only on cost-effective but also on

ethical values.

To mitigate algorithmic bias many fairness metrics have been proposed in the literature [Baro-
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cas et al., 2023, Khademi et al., 2019, Jo et al., 2021, Zafar et al., 2017], mainly for Supervised

Learning, as in Chapter IV. In this chapter, I introduce a fairness measure to ensure that the

predicted treatment effects in the two groups (sensitive and non-sensitive) on average do not differ

much. Designing a prediction model for the HTE that takes into account, on top of accuracy,

my fairness measure, yields corrected HTE predictions both in the sensitive and the non-sensitive

groups. These corrected predictions can enhance the availability of the treatment to the sensitive

group, hopefully with a small impact on the population.

In this chapter, I propose the Fair Heterogeneous Treatment Effect Forest (FhteF) methodology,

which aims to predict the HTE for treatment allocation while ensuring that the predictions in the

sensitive group do not differ significantly from those in the non-sensitive group. The main idea

of the FhteF is to use a given ensemble of treatment effect predictors and assign weights to each

of them such that good predictors in terms of accuracy and fairness contribute more. As the

predictors of the treatment effect I leverage the Tree Ensemble with linear models in the leaves.

Before describing the FhteF, I introduce some notation. Individuals have associated the fol-

lowing random variables:

• X is a vector of p explanatory variables.

• W is a binary variable indicating whether the individual has been treated (W = 1) or not

(W = 0).

• Y (W ) is the outcome for W given, i.e., Y (W ) = W Y (1) + (1−W ) Y (0) [Imbens and

Rubin, 2015]. With this, the treatment effect is expressed as Y (1) − Y (0). Note that for

a given individual, Y (W ) is the observed outcome, given as either Y (1) or Y (0), while

Y (1−W ), referred in the literature as the potential outcome, is not observed, and therefore

the treatment effect Y (1)− Y (0) cannot be observed either.

• A novel aspect of this chapter is considering in addition the binary variable Z indicating

whether the individual belongs to the sensitive group (Z = 1) or not (Z = 0).

I adapt the definition of heterogeneous treatment effect [Künzel et al., 2019] to this fairness setting.

The HTE for an individual with X = x as the vector of explanatory variables and Z = z as the

sensitive group membership value is thus defined as τ(X, z) = E [Y (1)− Y (0)| (X, Z) = (x, z)].

The treatment allocation then can be done via a policy function g(X, z) = 1{τ(X, z) > τ̄}, where

τ̄ a threshold of interest.

To train the prediction model for the HTE, the sample {(Xi, Zi,Wi, Yi(Wi))}i∈I of size |I| = n

is at hand. Hereafter, I denote by I1 the set of training sample observations in the sensitive group,
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i.e., I1 = {i ∈ I : Zi = 1}, of size |I1| = n1, and by I0 those in the non-sensitive group, namely,

I0 = {i ∈ I : Zi = 0}, of size |I0| = n0. With this, I = I0 ∪ I1 and n = n0 + n1.

The HTE is the expected value of the treatment effect conditional to given values of (X, Z).

Therefore, I need to predict the potential outcome for each of the individuals in the training

sample, which automatically gives their corresponding treatment effect. For a given individual,

with characteristics (Xi, Zi,Wi, Yi(Wi)), there are mainly two plausible approaches to predicting

the potential outcome Yi(1−Wi). The first one considers similar individuals in the covariates, in

my case (X, Z), but with treatment value 1 −Wi [Frölich, 2004] to make the predictions. The

second one adjusts the well-known machine learning methodology Random Forests (RFs) [Breiman,

2001]. In this case, obviously, the treatment variable W cannot be used in the splitting rules, while

the goal of the splitting rule is to maximize heterogeneity in the covariates while balancing the

individuals from the treated and not treated groups. The Generalized Random Forest [Athey et al.,

2019, Wager and Athey, 2018] is one of the most well-known of these methodologies. None of these

approaches allows direct control on the differences in the predictions made for the sensitive and

the non-sensitive groups.

In contrast with the aforementioned methods, the FhteF predicts HTE with fairness considera-

tions. The procedure has two steps. In the first step, a random forest consisting of T decision trees

is built. In each tree, branching is performed taking into account only the features in (X, Z). At

each leaf node, a linear regression model is built to predict both Y (1) and Y (0) from the observed

values of (X, Z,W, Y (W )). In the second step, predictions for Y (1) and Y (0) are obtained for

any individual. This is done by defining weights for the different trees, and predicting Y (1) and

Y (0) as the weighted averages of the predictions obtained in the first step at the different leaf

nodes of the forest. Similarly to Chapter IV, these weights are obtained by optimizing a convex

combination of the mean squared error of the predictions and my fairness measure.

By design, all trees in the RF yield accurate predictions (I optimize mean squared errors), and,

thanks to the reweighting, FhteF gives more importance to fairier trees. I model the FhteF using

a Convex Quadratic Programming formulation with a linear constraint, which can be efficiently

solved with existing commercial solvers for small and medium sizes of the problem.

The remainder of the chapter is organized as follows. In Section V.2, I introduce a mathematical

optimization formulation for the FhteF, that reweights the trees in the RF to predict fair HTEs.

In Section V.3, I illustrate the performance of the FhteF on simulated datasets. The results of the

study show that the FhteF significantly improves fairness compared to the benchmark, namely

the Generalized Random Forest. In Section V.4, I provide concluding remarks and lines of future
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research.

V.2 The FhteF model

In this section, I provide a Mathematical Optimization formulation for the Fair Heterogeneous

Treatment Effect Forest (FhteF).

Recall that in the first step of the FhteF I build an RF, with a linear model at each leaf node.

The model for leaf node l in tree t has the form

Y (W ) = β0
t l +Wβwt l +X>βxt l + Zβzt l + εt t, (V.2.1)

where β0
t l is the independent term, βwt l the coefficient of the treatment variable, βzt l the one of the

sensitive attribute, βxt l the vector of coefficients of the p explanatory variables, and ε the error

term. Clearly, this linear model gives me the prediction for the two possible outcomes, for all

observations i falling in this leaf node, namely, Ŷit(Wi) and Ŷit(1−Wi), while the HTE prediction

is equal to the estimated coefficient of the treatment variable, i.e., τ̂t l = β̂wt l.

In the second step of the FhteF, the trees in the RF are reweighted to enhance the fairness

of the HTE predictions. Let ωt ≥ 0 be the continuous decision variable representing the weight

of tree t. The predictions returned by the FhteF are a combination of the leaf nodes’ predictions

with the tree weights ωt. Let me illustrate it for observation i. For tree t, i falls in a single leaf

node denoted as l(i). Thus, the HTE prediction for i is equal to τ̂i =
∑T

t=1 ωt β̂
w
t l(i), while the

outcome predictions are Ŷi(Wi) :=
∑T

t=1 ωt Ŷit(Wi) and Ŷi(1−Wi) :=
∑T

t=1 ωt Ŷit(1−Wi). I define

my measure of fairness as the absolute value of the difference between the average predicted HTE

in I1 and that in I0, i.e., ∣∣∣∣∣∣ 1

n1

∑
i∈I1

T∑
t=1

ωtβ̂
w
t l(i) −

1

n0

∑
i∈I0

T∑
t=1

ωtβ̂
w
t l(i)

∣∣∣∣∣∣ . (V.2.2)

With this, the mathematical formulation of the FhteF reads as follows:

min
ω

1

n

n∑
i=1

(
Yi −

T∑
t=1

ωtŶit(Wi)

)2

+ α

∣∣∣∣∣∣ 1

n1

∑
i∈I1

T∑
t=1

ωtβ̂
w
t l(i) −

1

n0

∑
i∈I0

T∑
t=1

ωtβ̂
w
t l(i)

∣∣∣∣∣∣ (V.2.3)

s.t.
T∑
t=1

ωt = 1, (V.2.4)

ωt ≥ 0, ∀t. (V.2.5)

The objective function (V.2.3) is the weighted sum of two terms. The first term minimizes the

mean squared error (MSE) of the predicted observed outcome. The second term, with a weight
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of α ≥ 0, measures the fairness of the HTE predictions. The higher the weight α the fairer the

model, while when α = 0, the model ignores fairness and the only goal is accuracy. Constraint

(V.2.4) ensures that the weights ω are normalized, which is a form of regularization [Hastie et al.,

2009]. Constraint (V.2.5) specifies the nature of the decision variable ω.

The objective function (V.2.3) is nonsmooth as it includes an absolute value. With standard

techniques, an equivalent smooth formulation is obtained. With this, model (V.2.3)–(V.2.5) can

be reformulated as a Convex Quadratic Programming problem with a linear constraint, with T+1

continuous variables, where T variables relate to the weights and the last variable relates to the

linearization of the absolute value.

The FhteF predicts the HTE for the observations in the training sample. In addition, the

FhteF can also be used to make predictions in new observations. Once the FhteF has been built,

the predicted treatment effect of a new individual, say s, is equal to
∑T

t=1 ω̂tβ̂
w
t l(s).

It is worth mentioning that the FhteF can handle other methods instead of the RF, such as

an XGBoost [Chen and Guestrin, 2016]. We would expect in this case more trees but shallower,

and therefore a larger size of the FhteF. With respect to the linear model in the leaf nodes, in the

numerical section I have used an OLS regression, but I could have used instead, e.g., a LASSO

regression [Tibshirani, 1996].

V.3 Numerical results

In this section, I present the obtained results for the FhteF for different values of the parameter

α. In Section V.3.1, I first consider the simulated data generating model as in Athey and Imbens

[2016]. Please note that this paper is not devoted to fairness, and therefore this simulated data

does not take into account any sensitive attribute. In Section V.3.2, I modify this simulated

data generating model to incorporate a sensitive attribute and different degrees of unfairness. I

benchmark the FhteF against the Generalized Random Forest (GRF) [Athey et al., 2019, Wager

and Athey, 2018]. To build the GRF I used the grf package [Tibshirani et al., 2023] for R [R Core

Team, 2023].

The design of the experiments is as follows. I draw a training sample {(Xi, Zi,Wi, Yi(Wi))}i∈I

with n = 50, 000 individuals. I train an RF using the scikit-learn library [Pedregosa et al., 2011]

with T ∈ {1, 000, 2, 000} regression trees. The trees are of unlimited depth but with a limit of

having at least 50 observations in each leaf node to be able to estimate the treatment effect via an

OLS regression. Also, all leaf nodes have at least 10 observations of the treated and non-treated

groups respectively.
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To solve the smooth reformulation of (V.2.3)–(V.2.5) Gurobi [Gurobi Optimization, 2020] and

Python [Python Core Team, 2015] on a PC Intel R©Core TM i7-8665U, 16GB of RAM are used.

All the instances are solved to optimality within 5 seconds.

V.3.1 Results for the case without sensitive attributes

I consider the simulated data generating model introduced in Athey and Imbens [2016], which does

not contain any sensitive attribute. The generating model has the form

Y (W ) = η (X) +
1

2
(2W − 1)κ (X) + ε, (V.3.1)

where X ∼ N(0, I) is a multivariate normal distribution with mean vector 0 = (0, . . . , 0) and

covariance matrix equal to the identity matrix I, ε ∼ N(0, 0.01) is normally distributed, and W

follows a Bernoulli distribution, W ∼ B(0.5). I draw i.i.d. realizations from X, ε and W , indexed

by i, yielding (Xi,Wi, Yi(Wi)). The first 50, 000 vectors will define the training sample, and the

remaining 50, 000 the testing sample.

I use the three types of simulated data in Athey and Imbens [2016], which I denote by D1,

D2 and D3, see Table V.1. They depend on the number of features p and the functional forms

of η(·) and κ(·). Note that datasets D2 and D3 include noisy features that are used to build the

model but not involved in the ground truth function. For each dataset in Table V.1, the HTE

for an individual with X = x as the vector of explanatory variables is known and given by the

corresponding κ(x).

Table V.1: Datasets without fairness considerations to test FhteF. The number of features p and

the functional forms of η(x) and κ(x) for the simulated data generating model in (V.3.1) are

displayed.

Dataset p η(x) κ(x)

D1 2 1
2x1 + x2

1
2x1

D2 10 1
2

∑2
k=1 xk +

∑6
k=3 xk

∑2
k=1 1 {xk > 0}xk

D3 20 1
2

∑4
k=1 xk +

∑8
k=5 xk

∑4
k=1 1 {xk > 0}xk

The obtained results on the test sample can be seen in Table V.2. Since I have the data

generating model, I can, for each individual, observe both Yi(1) and Yi(0), and thus the true HTE

are observed: τ(x) = κ(x). Hence, I report the average Euclidean distance between the true value

and predicted value of the HTE to show how far the obtained predictions of the treatment effects

are from the true values and refer to it as error. As one can see, the FhteF has the same result as

the GRF for dataset D1, while with more features the FhteF is less accurate but overall the error
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is still low. Also, as expected, the FhteF is more accurate with T = 2, 000 trees than with 1, 000.

In what follows, I proceed with T = 2, 000 trees.

Table V.2: Results on datasets without fairness considerations. The FhteF consists of T ∈

{1, 000, 2, 000} trees. The GRF consists of the default number of trees, T = 2, 000.

Dataset T FhteFerror GRFerror

D1
1, 000 0.00006

0.000052, 000 0.00005

D2
1, 000 0.0016

0.00032, 000 0.0015

D3
1, 000 0.0029

0.00092, 000 0.0028

V.3.2 Results for the case with a sensitive attribute

In the fairness analysis, I still consider the simulated data generating model in (V.3.1) but with

an adjustment that leads to unfairness in the data, those datasets I denote by D1f, D2f and D3f.

The explanatory variables X, the treatment variable W and the error term ε are the same but

now there is an additional sensitive feature Z defined in Table V.3. Note, in datasets D2f and D3f

there are noisy features as in datasets D2 and D3. As before, for each dataset in Table V.3, the

true HTE for an individual with X = x as the vector of explanatory variables and Z = z as the

sensitive group membership value is known and given by the corresponding κ(x, z).

Table V.3: Datasets with unfairness to test FhteF. The number of features p, the functional forms

of η(x) and κ(x, z) for the simulated data generating model in (V.3.1), and the probability distri-

bution of the sensitive attribute are displayed. Note that a Bernoulli draw decides the membership

the sensitive group.

Dataset p η(x) κ(x, z) Z

D1f 3 1
2x1 + x2

1
2x1 + z B

(
0.2 + 1

{∑2
k=1 xk ≥ 0

}
0.6
)

D2f 11 1
2

∑2
k=1 xk +

∑6
k=3 xk

∑2
k=1 1 {xk > 0}xk + z B

(
0.2 + 1

{∑4
k=1 xk ≥ 0

}
0.6
)

D3f 21 1
2

∑4
k=1 xk +

∑8
k=5 xk

∑4
k=1 1 {xk > 0}xk + z B

(
0.2 + 1

{∑7
k=1 xk ≥ 0

}
0.6
)

For simplicity, let me visualize the first unfair dataset, D1f, which has three covariates, p = 3:

x1, x2, z. Figure V.1 shows the output distribution and the true treatment effects κ(x, z) = 1
2x1+z.

As one can see, there is a clear difference between the sensitive, I1, and non-sensitive, I0, groups in

both functions. The FhteF is able to reduce this gap with different degree depending on parameter

α, see Figure V.2.
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(a) Y distribution (b) τ(x, z) = 1
2
x1 + z

Figure V.1: The distribution of the outcome Y and the true treatment effects for the sensitive and

non-sensitive groups for dataset D1f.

(a) predicted treatment effects, α = 2−6 (b) predicted treatment effects, α = 2−1

Figure V.2: The comparison of predicted treatment effects for the sensitive and non-sensitive

groups for dataset D1f.

In the following, I discuss the results for the FhteF with α ∈ {0}∪{2n}4n=−6 and the GRF with

T = 2, 000 trees, see Figure V.3. The upper plot of each subplot depicts the error for the FhteF

(black line) and GRF (red line) showing how far the predicted treatment effects are from the true

treatment effects. Despite one point (D1f, α = 0), the GRF error is lower than the FhteF error.

The bottom plot of each subplot refers to the unfairness. Please note that the actual unfairness

present in the dataset is equal to | 1
n1

∑
i∈I1 κ(Xi, Zi = 1) − 1

n0

∑
i∈I0 κ(Xi, Zi = 0)|. I then plot
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the unfairness of the predictions of the HTE relative to the actual unfairness for the FhteF (black

line) and GRF (red line). With any value of α, the relative unfairness for the FhteF is lower

than that of the GRF, which is very close to the actual unfairness. The behavior of the error and

relative unfairness shows the clear trade-off between these two objectives in the FhteF: the higher

the error, the lower the relative unfairness. Let me discuss the results for two values of α, namely,

α = 0, i.e., when we do not care about fairness, and α = 2−6, i.e., meaning that we put a small

weight towards having fairer outcomes. With these two values of the parameter α the error does

not differ much, but we observe a significant reduction in unfairness especially for the D1f dataset.

To end, it is worth mentioning that for the three datasets, the decrease in the relative unfairness

slows down when α ≥ 21.

V.4 Conclusions

In this chapter, I propose the Fair Heterogeneous Treatment Effect Forest (FhteF) to predict

treatment effects, where the goal is to minimize a weighted combination of the mean squared

error of the outcome predictions as well as my fairness measure, namely, the absolute value of

the difference between the in-sample average predicted treatment effect in the sensitive and in

the non-sensitive observations. The main idea of the developed model is to reweight the trees of

the initial RF predicting the treatment effects with linear models in the leaf nodes, such that the

weight associated with fairer trees is higher. I model this as a Convex Quadratic Programming

problem and present numerical results on simulated data, illustrating that I can reduce unfairness

without sacrificing much accuracy. With the FhteF, researchers are able to properly address the

existing unfairness in the data, to improve the availability of the treatment in the sensitive group,

hopefully with a small decrease in the overall impact on the population.

There are some lines of interest for future research. The first one relates to handling more gen-

eral cases of the treatment variable and of the sensitive group membership variable. In Chapter

V, I have assumed two values for the treatment variable, namely, being treated or not. As for

the sensitive attribute, I have assumed that observations are sensitive or not. Dealing with mul-

tiple values for the treatment variables and/or the existence of multiple sensitive groups requires

extending the definition of the fairness measure in (V.2.2).

The second one refers to the prescription of the best treatment among the collection of available

treatments. One option to make the prescription is to use the Empirical Welfare Maximization

(EWM) approach [Kitagawa and Tetenov, 2018] which learns a treatment assignment policy by

maximizing the data-driven average social welfare. This requires extending FhteF by adding the
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(a) Dataset D1f (b) Dataset D2f

(c) Dataset D3f

Figure V.3: Results on datasets with unfairness. The FhteF and GRF consist of T = 2, 000 trees.

EWM term to the objective function. Other natural extensions are incorporating the cost of

treatment and/or constraints on the budget available.
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Chapter VI

General conclusions and future work
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In this Ph.D. dissertation, I enhance the transparency of well-known Machine Learning method-

ologies. More precisely, I use Mathematical Optimization to take into account explainability and

fairness, the forms of transparency we consider, while preserving accuracy.

Chapters II and III are dedicated to enhancing explainability in Cluster Analysis. In both

chapters, we assume that a dissimilarity between the individuals is given. We consider different

types of explanations, namely prototype-based and rule-based ones. A prototype-based explanation

is a distance-based explanation, where a prototype individual, close to the cluster, is chosen to

represent it. A rule-based explanation is a feature-based explanation, where clauses defined by the

features and joined by the AND operator, are assigned to the clusters.

In Chapter II, based on the work in Carrizosa et al. [2022b], we have proposed two models to

find prototypes for each cluster, such that the selected prototype is close (similar) to its cluster and

far (dissimilar) from other clusters. We develop two MILP models, inspired by classic Location

Analysis problems, that differ in the way individuals are allocated to prototypes. In Chapter III,

based on the work in Carrizosa et al. [2023a], we introduced an MILP model to simultaneously

cluster individuals and provide rule-based explanations for the clusters. This approach can be

applied either in a post-hoc manner to interpret existing clusters as done in Chapter II, or when

clusters are sought along with explanations.

A possible extension concerning the results of Chapters II and III would be to consider other

clustering objectives. In this dissertation, we examine the partition clustering type of models, but

we could investigate, e.g., density-based clustering [Kriegel et al., 2011]. On the other hand, an

alternative perspective can be to model fairness measures that are suitable for Cluster Analysis

[Chhabra et al., 2021].

In Chapter IV, based on the work in Carrizosa et al. [2023b], we consider another Machine

Learning task, namely classification and regression via Tree Ensembles, where we need to protect

a group of observations sharing a sensitive attribute. In order to enhance explainability, we model

sparsity such that we use fewer features. In order to enhance fairness, we aim for the accuracy

in the sensitive group to be as high as possible. Thus, we optimize three objectives, namely,

accuracy, sparsity, and fairness, via reweighting the trees in the ensemble. We propose an MILP

formulation to train the Explainable and Fair Tree Ensemble (EFTE), where the misclassification

error is modeled through continuous decision variables as opposed to binary ones.

In this chapter, we consider global sparsity as the proxy for explainability. As for future

research, we could implement other types of sparsity. For instance, we could model forms of

sparsity suitable for complex data such as hierarchical data [Carrizosa et al., 2022c].
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In Chapter V, based on the work in Kurishchenko [2023], which is my solo-authored paper,

I consider a treatment allocation problem. I propose the Fair Heterogeneous Treatment Effect

Forest (FhteF) to predict treatment effects, where the goal is to have high accuracy and fairness.

I use Tree Ensembles, where in the leaves linear models are used to predict the treatment effect.

I reweight the obtained trees such that the total accuracy is maximized as well as the fairness. I

model this as a Convex Quadratic Programming problem.

Finally, the results of Chapter V can be extended as follows. Firstly, I could generalized the

model to the multivariate or continuous cases of the treatment variable and the sensitive group

membership variable. Secondly, one can reformulate the model by adding the Empirical Welfare

Maximization term. With this, the model would give direct prescriptions for the best treatment.

To end, there exist interesting extensions of the works presented in this Ph.D. dissertation,

e.g., to model Differential Privacy or other desirable properties of algorithmic decisions.
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