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Abstract
In this paper, our goal is to enhance the interpretability of Generalized Linear Models by identifying the most relevant
interactions between categorical predictors. Searching for interaction effects can quickly become a highly combinatorial, and
thus computationally costly, problemwhenwehavemanycategorical predictors or even a fewof thembutwithmanycategories.
Moreover, the estimation of coefficients requires large training samples with enough observations for each interaction between
categories. To address these bottlenecks, we propose to find a reduced representation for each categorical predictor as a binary
predictor, where categories are clustered based on a dissimilarity. We provide a collection of binarized representations for
each categorical predictor, where the dissimilarity takes into account information from the main effects and the interactions.
The choice of the binarized predictors representing the categorical predictors is made with a novel heuristic procedure that
is guided by the accuracy of the so-called binarized model. We test our methodology on both real-world and simulated data,
illustrating that, without damaging the out-of-sample accuracy, our approach trains sparse models including only the most
relevant interactions between categorical predictors.

Keywords Generalized linear models · Interpretability · Categorical predictors · Interactions · Clustering of categories

1 Introduction

Modeling interactions between categorical predictors is stan-
dard practice in many empirical applications using linear
models. For example, in randomized control trials it is com-
mon to include interactions between a treatment and a set
of covariates to search for treatment effect heterogeneity
[9, 14, 16]. Other types of studies on education, health,
or labor market outcomes, also commonly include inter-
actions between socioeconomic status and characteristics
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like race and ethnicity [4, 8, 10, 15]. There is a common
approach to modeling categorical predictors and their inter-
actions in linearmodels that involves encoding each category
and each combination of categories using a single binary
variable, commonly referred to as one-hot dummy encod-
ing [2]. However, learning from a model with interactions
becomes challenging when there are many categorical pre-
dictors and/or categories [12].

The simplest case of an interaction between categorical
predictors is the one given by two binary predictors. As an
illustration, consider the real-world German credit dataset
used in our numerical section. The aim is to perform a super-
vised classification task, where we try to classify people
according to a set of predictors as good or bad in terms of
credit worthiness. This dataset contains 967 records. Con-
sider two of its binary predictors, namely, Telephone (in
clients name) and Foreign worker. The interaction between
two binary predictors can bemodeled by adding a new binary
predictor which is the combination of both characteristics. In
our example that would mean individuals with Telephone (in
clients name) = 1 and Foreign worker = 1. Clearly, it is
easy to interpret the role of both binary predictors and their
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interaction, as this only involves looking at three coefficients.
In our example, we would have one coefficient for the effect
of Telephone (in clients name) = 1 compared to the Tele-
phone (in clients name) = 0, another one for Foreign worker
= 1 compared to Foreign worker = 0, and the last one for
the interaction, i.e., for Telephone (in clients name) = 1 and
Foreign worker = 1. Therefore, in this paper the goal is to
binarize the categorical variables.

Continuing with the example above, consider now the
case in which we have two categorical predictors, such as
Job (with 4 categories) and Purpose (with 11 categories). To
model the interactions between two categorical predictors,
we need a coefficient for each possible combination of a cate-
gory from the first predictor and another from the second one.
Clearly, when interpreting these two categorical predictors
and their interaction, we require (many) more coefficients.
In our example we need to estimate 3 coefficients associated
with the categories of predictor Job, 10 for the categories of
predictor Purpose and 3 · 10 = 30 for the interaction terms.
This means that we need to estimate a total of 43 coefficients
to interpret the role of both categorical predictors and their
interaction. Needless to say, the number of parameters to be
estimated is even higher if we have more than 2 categorical
predictors in the dataset. In our example, if we consider the
pairwise interactions between all 13 categorical predictors
in the German dataset, we would have to estimate 379 coef-
ficients, after the deletion of the interactions for which we
have no data. This makes the estimation of some coefficients
imprecise and adds noise to the regression since we have too
few records (967) with respect to the high number of param-
eters to be estimated. Our methodology aims at dramatically
reducing this complexity.

In this paper, we propose to find a reduced representation
of the categorical predictors as binary predictors to tackle
the burden of having too many coefficients to estimate with
possibly too few records. As an illustration, let us take the
categorical predictor Job which includes categories Unem-
ployed/unskilled - non-resident, Unskilled - resident, Skilled
employee/official, Management/self-employed/highly quali-
fied employee/officer. If some of these categories have a
similar impact on the response variable, we could group them
together. Say, for instance, Unemployed/unskilled - non-
resident andUnskilled - resident are in one group and Skilled
employee/official and Management/self-employed/highly
qualified employee/officer in another group. Thus, instead of
4 binary variables associated with Job, we would have just
one, indicating whether the individual shows any category
of the first group. Similarly, instead of 11 binary variables
for Purpose, after splitting the categories into two groups,
we would have just one. Then, the interaction between Job
and Purpose would be represented by just one coefficient.
By doing so, and after the deletion of interactions for which
we have no data, our approach reduces from 379 to 34 the

number of coefficients associated with all categorical predic-
tors and their interactions in the German dataset.

In this paper, we propose a novel methodology to bina-
rize the categorical predictors in Generalized Linear Models
(GLM) to model interactions. The goal is to split the cat-
egories associated with each categorical predictor into two
groups, such that categories in the same group have a similar
impact on the response variable. Thus, wemake categories in
the same group share the same coefficient in the GLM, with
the hope that accuracy is not affected much while reducing
the number of coefficients. We provide a collection of bina-
rized representations for each categorical predictor,where the
dissimilarity takes into account information from the main
effects and the interactions. The choice of the binarized pre-
dictors representing the categorical predictors is made with
a heuristic procedure that is guided by the accuracy of the
so-called binarized model.

Our approach to binarizing the categorical predictors to
model interactions offers several advantages. First, assum-
ing that the samples of records associated with categories
are homogeneous enough, by binarizing the categories we
avoid having an over-parametrized model with a coefficient
to be estimated per category. Second, we have just one coef-
ficient for each categorical predictor and another one for
each interaction between two categorical predictors. This is
a step towards enhancing the interpretability of the General-
ized LinearModel with interactions. Third, our methodology
searches for groups of similar categories that have a similar
impact on the response. This is in contrast to shrinkagemeth-
ods like the version of group lasso proposed by [3, 12], where
the goal is just to select relevant predictors and interactions.
Fourth, since we are grouping together similar categories,
with our approach we have more records to estimate each
coefficient, which together with the homogeneity ensures
lower standard errors as pointed by, e.g., [11] and [6].

The rest of the paper is organized as follows. Section 2
introduces the algorithm to binarize the categorical predictors
using information from the main effects and the interactions.
Section 3 illustrates the performance of our methodology on
real-world and simulated data, compared to lasso and group
lasso. Finally, conclusions and future research are collected
in Section 4.

2 Methodology

In this section, we detail the methodology to find a reduced
representation of categorical predictors as binary predic-
tors. First, we introduce the notation for the Generalized
Linear Model (GLM) with categorical predictors and their
interactions. We then introduce a dissimilarity measure
between categories of the same predictor based on the GLM
coefficients. With this dissimilarity, we define an iterative
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algorithm, where in each iteration we cluster the categories
of a predictor into two groups to achieve a reduced repre-
sentation as a binary variable. The binarized predictors will
be used to train the so-called binarized GLM in which each
categorical predictor is modeled using its reduced represen-
tation.

Let us first describe the required notation. We have J cat-
egorical predictors. Predictor j has K j categories, which,
when needed will be denoted with letters of the alphabet. In
the GLM using the traditional one-hot encoding, a categori-
cal predictor j with K j categories is represented by K j − 1
binary variables, one for each category, leaving one out for
contrast. Therefore, for each categorical predictor, we will
leave out one of its categories. We follow the notation in
[12]. Consider a GLM where the outcome Y is related to X ,
comprising the predictors and their interactions, through a
link function G:

E [Y |X ] = G
(
α +

J∑
j=1

X j · β j + X j :l · � j :l
)
, (1)

where α is the intercept, X j is the vector of binary variables
associated with the K j − 1 categories of categorical pre-
dictor j , with corresponding parameter vector β j . The term
X j :l is the interaction between categorical predictors j and
l, with the corresponding vector of model parameters � j :l ,
where X j :l is the Kronecker product between X j and Xl . For
example, for K j = 3 and Kl = 4, we have

X j :l = (
X jb X jc

) ∗ (
Xlb Xlc Xld

)

= (
X jb:lb X jb:lc X jb:ld X jc:lb X jc:lc X jc:ld

)
,

where X jb:lb is the interaction between category b of pre-
dictor j and category b of predictor l, and � jb:lb is its
corresponding coefficient. The rest of the terms can be
defined in a similar fashion.

A couple of remarks about the GLM in (1) are worth
noting. First, for a binary response variable Y ∈ {0, 1}, a
natural choice of link function G is the Logit, which we use
in Section 3. The approach below can deal with other types
of response variables, such as count data, as well as other
link functions, such as the one in Poisson regression. Sec-
ond, among the J categorical predictors we may have binary
ones. These are already represented in themost compact form
and therefore do not need to be binarized. Third, our method-
ology can also handle data containing continuous predictors,
as in Section 3, but for the sake of notational simplicity, we
have decided not to include them in (1).

We will now explain how the binarization of a given cat-
egorical predictor, say s, is performed. If s is an ordinal

categorical predictor, we apply the approach in [5]. In this
case, there is a natural order in the categories of s, which is
used to define the so-called feasible clusterings of the cate-
gories. For a given threshold value τ , a feasible clustering is
one in which the first τ categories of s compose the first clus-
ter, and the remaining ones the second cluster. By changing
τ appropriately, we obtain all possible feasible clusterings of
the categories and the correspondingbinarized representation
of the ordinal variable s. Therefore, these ordinal predictors
are not included in the discussion below.

In case s is a non-ordinal categorical predictor, we have
a more complex relationship between the response variable
and the predictors, with both marginal as well as interaction
effects, and therefore the approach in [5] is not applicable.
Thus,wewill inspect themarginal effects and the interactions
in (1) to build a dissimilarity matrix which can then be used
in a clustering procedure to find two clusters for categorical
predictor s.

Let us explain how we calculate the dissimilarity between
the pair of categories b and c of predictor s. Category b is
similar to category c if they affect the response variable in
a similar way. We calculate this by estimating the GLM in
(1) and comparing the marginal coefficients for b and c, as
well as the coefficients associated with the interactions for
these categories.Given the challenges of training aGLMwith
all possible interactions, where we would have, in general,
an overparametrized model, we consider the interaction of s
with another categorical predictor j . As we will see below,
we iterate over all the possibilities j , having thus different
dissimilarity matrices for s yielding a different binarization
of s.

We are now ready to define the dissimilarity between the
categories b and c of predictor s, when modeling the inter-
action between s and j :

δ
( j)
s (b, c) = (1 − λ)δmar

s (b, c) + λδints (b, c), (2)

where δmar
s (b, c) = |βb − βc| is the difference, in absolute

terms, between the pair of marginal coefficients for b and
c, δints (b, c) is the �1 distance between the two interaction
coefficient vectors, and λ ∈ [0, 1]. We place more weight on
the information provided by the interaction coefficients the
higher the value of λ. Note that even when λ = 0, in which
case the interaction coefficients do not play a role in (2), the
dissimilarity still contains information from the interactions
through the marginal coefficients, since they have been esti-
mated from a model including these interactions.

Let δ
( j)
s denote the dissimilarity matrix, which contains

the dissimilarities between all possible pairs of categories of
predictor s, when modeling the interaction between s and j .
With δ

( j)
s , and using a clustering procedure, we can cluster
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Fig. 1 Binarization steps for
categorical predictor Job from
the German dataset, when
interaction effects with
categorical predictor Housing
are considered

the categories of s into two groups, such that categories in
the same group affect the response variable in a similar way.
These two groups yield a reduced representation of predictor
s as a binary variable, where all categories in the same group
now affect the response variable in the same way.

In Fig. 1we illustrate this process when s is the categorical
predictor Job from theGerman dataset, seeTable 2 for the full
list of predictors. For the sake of clarity, we have shortened
the names of the categories of Job to their first word. We
estimate the coefficients in the GLM in (1) with all marginal

Fig. 2 Pseudocode for the binarization algorithm of categorical predictors to model interactions
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Table 1 Description of the
datasets used to test the
binarization algorithm

Dataset N Response distribution J P
∑J

j=1 K j K j

Coil-2000 5,822 94% − 6% 5 80 77 41,6,10,10,10

Bank marketing 4,119 89% − 11% 9 10 47 12,4,7,10,5,3,2,2,2

German 967 30% − 70% 13 7 51 4,5,7,5,5,4,3,4,3,3,4,2,2

Adult 32,561 24% − 76% 8 5 104 9,16,7,15,6,5,42,2,2

Simulated 12,000 45% − 55% 4 2 35 4, 4, 12, 15

effects and the interactions between the categories of Job and
the ones from another predictor, namelyHousing, with three
categories, namely Rent, Own and For free. The coefficients
can be found in Fig. 1a. Note that Own has been chosen as
the reference category forHousing, having thus a coefficient
equal to zero, which explains the column of zeroes in the
table in Fig. 1a. This is the same for the category Skilled of
Job, in this case explaining the row of zeroes.

Then, we calculate the dissimilarity matrix δ
(Housing)
Job

using (2) with λ = 0.5, see Fig. 1b. We apply a hierarchi-
cal clustering procedure with the resulting clusters shown in
Fig. 1c. With this, we find a reduced representation of pre-
dictor Job as a binary variable that takes on value 1 if Job is
equal to Unemployed or Unskilled and 0 otherwise.

Our goal is to try out different binarizations of predic-
tor s in order to find a good one in terms of accuracy. The
dissimilarity matrix δ

( j)
s depends on which interactions are

incorporated in (1). In our example above, if instead of inter-
acting Job with Housing, we interact it, for instance, with
Status of existing checking account, we would have had a
different dissimilarity matrix. By doing this for all possible
predictors j �= Job, we would have J−1 dissimilarity matri-
ces, δ

( j)
Job, j = 1, . . . , J − 1. Then, we would have J − 1

different binarizations for the same categorical predictor that

we could choose from, based on out-of-sample accuracy.
After making the choice and binarizing the predictor using
the corresponding clustering, we incorporate this reduced
representation in the next decision tomake, namely, the bina-
rization of another categorical predictor.

The pseudocode of our algorithm to binarize categorical
predictors to model interactions can be found in Fig. 2. In
lines 1 to 3, we initialize the parameters of the algorithm. In
lines 7 to 17, we choose randomly the next predictor to bina-
rize and estimate the coefficients in the GLM in (1) which
includes all marginal effects and the interactions between the
categories of s and another categorical predictor at a time.
Then, we calculate the dissimilarity matrices and apply a
clustering procedure to find different binarizations of the cat-
egorical predictor. In line 18, we estimate the coefficients in
the GLM, in a similar fashion as before, but here we have s
binarized. The binarization of s that gives the highest out-of-
sample accuracywill be chosen, and the categorical predictor
will be considered binarized in this way for the steps to come.
Once all predictors are binarized,we train, in line 21, the bina-
rized GLM, GLMB

i , including all binary predictors and we
evaluate its performance in a validation set. Since the order in
which we binarize predictors matters, we repeat the process
m times and finally choose the final GLMB

i that gives the

Table 2 German dataset: description of the categorical predictors

Categorical predictor Name K j Top counts Ordinal

X1 Status of existing checking account 4 A14: 394, A11: 274, A12: 269, A13: 63 Yes

X2 Credit history 5 A32: 530, A34: 293, A33: 88, A31: 49 No

X3 Purpose 7 A43: 280, A40: 234, A42: 181, A41: 103 No

X4 Savings accounts/bonds 5 A61: 603, A65: 183, A62: 103, A63: 63 Yes

X5 Present employment since 5 A73: 339, A75: 253, A74: 174, A72: 172 Yes

X6 Personal status and sex 4 A93: 548, A92: 310, A94: 92, A91: 50 No

X7 Other debtors/guarantors 3 A101: 907, A102: 52, A103: 41 No

X8 Property 4 A123: 332, A121: 282, A122: 232, A124: 154 No

X9 Other installment plans 3 A143: 814, A141: 139, A142: 47 No

X10 Housing 3 A152: 713, A151: 179, A153: 108 No

X11 Job 4 A173: 630, A172: 200, A174: 148, A171: 22 No

X12 Telephone (in clients name) 2 A191: 596, A192: 404 No

X13 Foreign worker 2 A201: 963, A202: 37 No
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Fig. 3 Simulated dataset:
coefficients in the data
generating model

highest out-of-sample accuracy.

3 Numerical illustrations

In this section, we illustrate the performance of our bina-
rization methodology for categorical predictors to model
interactions. We focus on supervised classification and use
as a baseline the logistic regression (LR), where G in (1) is
the logit function. The binarized LR, obtained with the algo-
rithm inFig. 2, is compared againstLR, lasso andgroup lasso.
These four models are trained with interactions between the
categorical predictors. For completeness, we also include the
LR in which only marginal effects are modeled, and refer to
it as LR without interactions. As performance criteria, for
each model we report its classification accuracy and its rela-
tive complexity, which is defined as the number of estimated
coefficients for the categorical predictors and their interac-
tions relative to the number of estimated ones for LR. With
this, the lowest value of the relative complexity is equal to
0, when the categorical predictors do not play a role in the
model.

Ourmessage is twofold. First,wewill illustrate thatLR has
a poor classification accuracy performance since the num-
ber of coefficients to estimate,

∑J
j=1 K j + ∑

1≤ j<s≤J K j ·
Ks , can be very large compared to the number of records

available, while for some of the combinations of categories
from j and s there may not be enough records. Second, we
will show that the accuracy of the binarized LR is com-
parable to that of the benchmarks, while the binarized LR
outperforms them in terms of relative complexity, which is
our measure of interpretability.

The algorithm in Fig. 2 has two parameters, namely the
number of iterationsm and the weight λ. We chosem = 200
but, by looking at the output of all iterations, one could see
that in these datasets a smaller number would have yielded
almost the same results. As for λ, after performing a sensi-
tivity analysis, we decided to set it to 0.5. In our benchmark
datasets, other choices returned similar values. We perform
ten-fold cross-validation to select the final binarization of the
categorical predictors. The output of this algorithm is fur-
ther simplified using a stepwise selection routine in which
we select the relevant marginal and interaction effects. To
make the comparison fair, we apply this selection to LR and
binarized LR, guided by the Akaike Information Criterion
(AIC) measure. For lasso and group lasso, we perform ten-
fold cross-validation to select the shrinkage parameter. For
group lasso, we implement the version in [12] that considers
interactions, the categories associated with each categorical
predictor are part of the same group.We coded our algorithm
in R and conducted the experiments in aWorkstation with an
Intel ® CoreTM i5-4460 processor with 8 GB of RAM.

Table 3 Real-world datasets: accuracy and relative complexity in the validation set, for the LR without interactions, binarized LR, lasso and group
lasso models

Criterion Model Coil2000 Bank marketing Adult German

Accuracy (%) LR without interactions 94.28 91.6 85.05 76.78

LR 89.68 83.93 79.20 62.19

Binarized LR 93.62 92.10 84.28 76.44

Lasso 93.79 91.15 82.93 76.37

Group lasso 93.74 90.24 80.41 73.32

Relative complexity (%) LR without interactions 12.41 7.68 16.36 4.68

Binarized LR 6.58 6.14 8.97 3.64

Lasso 0.00 7.24 33.03 30.08

Group lasso 59.24 29.61 100 88.39
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The rest of this section is organized as follows. Section 3.1
describes the datasets, Section 3.2 is devoted to the analysis
of the real-world datasets, and Section 3.3 to the simulated
dataset.

3.1 Datasets

Our methodology is illustrated on four real-world datasets
available at the UCI Machine Learning Repository [7] and
one simulated dataset, see Table 1. In the first two columns,
we report the name of the dataset and the total number
of records (N ). In the remaining columns, we report the
response distribution, i.e., the percentage of observations
with response Y = 0 and the percentage with Y = 1, the
number of categorical predictors (J ), which includes binary
ones too, the number of continuous predictors (P), the total
number of categories (

∑J
j=1 K j ), and the number of cate-

gories for each categorical predictor (K j ).

To illustrate the resulting binarized LR, we show the
resulting coefficients and p-values for one of our real-world
datasets, namely, theGerman dataset. In theGerman dataset,
we try to classify people according to a set of predictors
as good or bad in terms of creditworthiness. We have 967
records with 13 categorical predictors. Table 2 shows a sum-
mary of the categorical predictors in the dataset including the
full name of the predictor, the number of categories, the four
categories with the top counts, and whether the predictor is
ordinal or not. Predictors X12 and X13 are already binary.
Therefore, the first 11 categorical predictors are the ones that
need to be binarized. The three ordinal predictors have been
binarized using the methodology in [5]. The eight remaining
ones are binarized using the algorithm in Fig. 2.

Now let us explain how we have designed the simulated
experiment. We want to have clear groups of coefficients
within each categorical predictor. The existence of clear
groups would lead to an over-parametrized logistic regres-
sion if estimated using the one-hot dummy encoding. We

70

80

90

0 25 50 75 100
Relative Complexity

Ac
cu

ra
cy

Model
Binarized

Group lasso

Lasso

Original

Original without interactions

Fig. 4 Real-world datasets: accuracy and relative complexity in the validation set, for the LR without interactions, binarized LR, lasso and group
lasso models
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generate 12, 000 records of 4 categorical predictors, drawn
from a multinomial distribution with equal probabilities for
each category, and 2 continuous predictors from a normal
distributionwithmean 0 and standard deviation 1. Our gener-
ating model has only one interaction effect, namely, between
the first two categorical predictors. The response Y ∈ {0, 1}
is generated from the binomial distribution with probabilities
obtained by applying the logistic regression model, using the
coefficients in Fig. 3. The groups of categories are clear when
we observe these coefficients. For example, categories b and
c of predictor X1 share the same value of the coefficient,
β1b = β1c = 2, while for a and d we have β1a = β1d = 0.
In summary, there is an equivalent generating model where
the four categorical predictors are binary, namely, B1 with
coefficient equal to 2, B2 with 2, B3 with −1 and B4 with

2.5, and one relevant interaction, namely, B1:2 with coeffi-
cient −6. In Section 3.3, we will show that our algorithm is
able to recover this equivalent binary generating model.

3.2 Real-world datasets

In this section, we illustrate the performance of our binariza-
tion algorithm in four real-world datasets in termsof accuracy
and relative complexity. These estimates are obtained as fol-
lows: the dataset is split into a training sample (70%), a test
sample (15%), and a validation sample (15%). The model
is built in the training sample, we choose the binarization
of the categorical predictors using the out-of-sample perfor-
mance in the test sample and we report its final accuracy in
the validation sample. The process is repeated ten times and

Fig. 5 German dataset: binarization of the categorical predictors. Note that X12 and X13 are already binary, i.e., B12 = X12 and B13 = X13, and
therefore have not been included here
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we report as an estimate the average out-of-sample accuracy.
A similar process is used for the benchmarks, LR without
interactions, LR, lasso and group lasso.

The accuracy and the relative complexity can be found
in Table 3 and in Fig. 4, both measured as a percentage.
We can see that for all datasets, LR gives a lower accu-
racy than the binarized LR. This is because in the real-world
datasets the number of records associated with each category
is not evenly distributed, andhence, some categories have few
observations which lead to even fewer observations for the
interactions. In some cases, this is exacerbated by the small
absolute number of observations, like in theGerman dataset,
where the ratio of the number of coefficients associated with
the categorical predictors, after deleting those for which we
donot have records (379/967)makes training thismodel very
challenging. In this dataset, the accuracy goes from 62.19%
for LR to 76.44% for the binarized LR. This outperformance
of the binarized LR can be seen in the other three real-world
datasets too.

The relative complexity of binarized LR is competitive
not only against LR but also when compared with the LR
without interactions, which has much fewer coefficients to
be estimated. For theGerman dataset, the relative complexity
of the binarized LR is 3.64%, while 4.68% for LR without
interactions. This outperformance is even more pronounced
in the Coil2000 and Adult datasets where the binarized LR

halves the relative complexity of the LRwithout interactions.
In conclusion, we are able to model the interactions, as well
as work with a much smaller model.

Comparing the binarized LR to lasso and group lasso, we
find that our algorithm produces a model with higher accu-
racy for the datasetsAdult andBankmarketing. ForCoil2000
and German, our method performs similarly to lasso and
group lasso in terms of accuracy. In terms of relative com-
plexity, in three out of four datasets, our method results in a
smaller model.

For the binarized LR model in the German dataset, Fig. 5
reports for each categorical predictor the two clusters of
categories yielding the reduced representation as a binary
predictor. For instance, let us look at the first and the last
categorical predictors to be binarized, namely X1 defined
as Status of existing checking account (with 4 categories)
and X11 defined as Job (with 4 categories). For X1, bina-
rized as B1, cluster 1 contains one category (... < 0DM)
and cluster 2 the remaining three (... < 200DM, ... >= 200
DM/salary assignments at least 1 year, no checking account).
For X11, binarized as B11, cluster 1 contains three cat-
egories (unemployed/unskilled - non-resident, unskilled -
resident, skilled employee/official) and cluster 2 the remain-
ing category (management/self-employed/highly qualified
employee/officer). As pointed out in the introduction, it is
now easier to interpret the role of Status of existing checking

Fig. 6 German dataset: coefficients for the binarized model with interactions and their significance, where * indicates a p-value below 0.1, **
below 0.05, and *** below 0.01, before and after the stepwise variable selection procedure has been applied
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Table 4 Simulated dataset:
accuracy and relative
complexity in the validation set,
for the LR without interactions,
binarized LR, lasso and group
lasso models

Criterion Model Simulated dataset

Accuracy (%) LR without interactions 78.49

LR 78.53

Binarized LR 78.45

Lasso 77.83

Group lasso 78.08

Relative complexity (%) LR without interactions 11.59

Binarized LR 1.45

Lasso 17.15

Group lasso 4.65

account and Job and their interaction, as this only involves
looking at three coefficients, the ones of B1, B11, and B1:11.
Figure 6 helps us visualize these coefficients.

Figure 6 provides information about the coefficients of
the binarized LRmodel before the stepwise variable selection
procedure has been applied (Fig. 6a) and after (Fig. 6b). In the
diagonal of each matrix we find the marginal coefficients for
the binary predictors and outside the diagonal the coefficients
for their interactions when both binary predictors are set to
one. Looking at Fig. 6b, we can see that there are 12marginal
coefficients, 2 are significant at the 1% level, and 4 more at
the 5%. As for the interactions, there are 9 coefficients after

a stepwise selection has been performed. From those, 3 are
significant at the 1% level, 1 more at the 5%, and 2 additional
ones at the 10%.At the 1% level, Savings account/bonds (B4)
andOther debtors / guarantors (B7) are significant, aswell as
the interactions between Status of existing checking account
and Job (B1:11), Credit history and Other installment plans
(B2:9), and Present employment since and Property (B5:8).

3.3 Simulated dataset

In this section, we discuss the results for the simulated
dataset. As before, we split the data into a training sample

Fig. 7 Simulated dataset:
generating model (left) and
coefficients of original model
with 95% confidence intervals
(right)

Generating
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Fig. 8 Simulated dataset:
equivalent binary generating
model (left) and coefficients of
binarized model with 95%
confidence intervals (right) Generating

−6 −4 −2 0 2 4

B1:B2

B1

B2

B3

B4

Estimated
−6 −4 −2 0 2 4

B1:B2

B1

B2

B3

B4

Binarized

(70%), a test sample (15%), and a validation sample (15%).
The model is built in the training sample, the parameters are
chosen using the test sample, and the performance is mea-
sured in the validation sample. We repeat the process ten
times, and report average out-of-sample accuracy and rela-
tive accuracy.

Table 4 reports the accuracy and the relative complexity.
The conclusions are similar, as before.While all models have
a similar accuracy, the binarized LR outperforms the bench-
marks in terms of relative performance. This means that our
approach allows us to model the interactions, using a much
smaller model. We end this section by illustrating how our
binarization algorithm is able to recover the underlying gen-
erating model. On the right panel of Fig. 7, we plot the value
of the coefficients and their 95% confidence intervals for the
original model with interactions, while the left panel plots
the values used by the data generating model. We plot sim-
ilar information in Fig. 8 for the binarized LR. We see that
we recover the generating model in both cases, while in the
binarized LR the coefficients are estimated with a larger sam-
ple, resulting in smaller standard errors, as seen in the 95%
confidence intervals around the coefficients.

4 Conclusions

In this paper, we have presented an approach to binarizing
categorical predictors that enables working with interactions
in Generalized Linear Models. Our approach offers several
advantages. First, given that the samples of categories are
homogeneous enough, by binarizing we can avoid having
an over-parametrized model with a coefficient for each cat-
egory. Second, we estimate just one coefficient for each
categorical predictor and another one for each interaction.
This gives a more interpretable model compared to having
all the categories as binary variables. Third, by binarizing
the categories we have more records to estimate each coef-
ficient, which together with the homogeneity ensures lower
standard errors. In the numerical section, we have used a
simulated dataset and four real-world ones from supervised
classification. In all these cases, our algorithm, in which the
GLMwith the logit function was used, considerably reduces
the number of coefficients of the model, allowing the user
to interpret and select interactions between the new bina-
rized categorical predictors. We end by noting that, although
for simplicity themethodology has been tested on supervised
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classificationwith the logistic regression as baseline, the very
same approach is applicable to classification and regression
tasks, as long as they are based on GLM.

A fruitful line of future work is related to the use of cat-
egorical predictors that contain sensitive information. In the
future, our clustering methodology could take into account
not only the overall accuracy but also a fair treatment of the
sensitive groups [1, 13, 17]. Another interesting line of future
research is the pursuit of metaheuristics that can deal with
large-scale datasets involving an extremely large number of
categories.
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