

Towards a Data Privacy-aware Execution Zone Creation on
Cloud/Fog Platform

Mazumdar, Somnath; Dreibholz, Thomas

Document Version
Accepted author manuscript

Published in:
Proceedings of the 49th Euromicro Conference Series on Software Engineering and Advanced Applications
(SEAA)

DOI:
10.1109/SEAA60479.2023.00030

Publication date:
2023

License
Unspecified

Citation for published version (APA):
Mazumdar, S., & Dreibholz, T. (2023). Towards a Data Privacy-aware Execution Zone Creation on Cloud/Fog
Platform. In S. Biffl (Ed.), Proceedings of the 49th Euromicro Conference Series on Software Engineering and
Advanced Applications (SEAA) (pp. 140-149). Euromicro. https://doi.org/10.1109/SEAA60479.2023.00030

Link to publication in CBS Research Portal

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us (research.lib@cbs.dk) providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 04. Jul. 2025

https://doi.org/10.1109/SEAA60479.2023.00030
https://doi.org/10.1109/SEAA60479.2023.00030
https://research.cbs.dk/en/publications/aacd5ae1-c2ac-4c7e-be84-cf523a94e77b

Towards A Data Privacy-Aware
Execution Zone Creation on Cloud/Fog Platform

Somnath Mazumdar
Department of Digitalization

Copenhagen Business School
Solbjerg Plads 3, 2000 Frederiksberg, Denmark

sma.digi@cbs.dk

Thomas Dreibholz
Centre for Resilient Networks and Applications

Simula Metropolitan
Pilestredet 52, 0167 Oslo, Norway

dreibh@simula.no

Abstract—Cloud computing is now a ‘go-to’ platform for
running various types of application. A wide spectrum of users
needing software and hardware resources have embraced the
cloud. Following the cloud business model, one is either a cloud-
based service provider or a cloud service (hardware and software)
user. There is a continuous evolution in the cloud ecosystem
to support the ever-changing features of user applications. The
cloud ecosystem has added a new resource delegation model
to accommodate such new requirements. This new resource
delegation model is known as fog. Both, cloud and fog platforms,
employ complex hardware and software to provide better run-
time support for applications. This paper presents a message-
based privacy-aware application execution zone management
framework for the cloud/fog platform. The framework aims
to create a static execution zone based on the performance
of the user application and the data privacy requirements. It
also enables the user to set the resource termination conditions.
Here, we have prototyped the proposed framework and showed
how the proposed approach works with message structure and
experiments with a P4 switch. We also present how the prototype
could be implemented on a cloud/fog platform.

Index Terms—Cloud, Data, Fog, Message, Privacy, Resource
Management.

I. INTRODUCTION

Cloud computing is now a well-accepted platform for
various types of applications. However, the cloud is better
suited for latency-tolerant applications and compatible with
applications that can tolerate delays up to 100 ms [1]. Fog1

has been developed to offer lower latency and is based on
distributed heterogeneous platforms [2]. Fog units are placed
between the cloud and the user, while being resourcefully
supported by the cloud. The fog platform is composed of
potentially resource-constrained devices [3], and managing
such platforms is expensive and not trivial. Offloading user
applications to fog can lead to performance improvements,
and these applications may contain sensitive data and code.
Third parties, including Internet service providers (ISPs), share
online user data (such as real-time location) for their financial
benefits [4]. Therefore, the preservation of the privacy of code
and data is essential.

Problem Context. The recently coined term ‘confidential
computing’ aims to create a space to process workloads

1In this paper, we follow NIST’s Fog definition.

securely [5]. Unfortunately, the core functionality of con-
fidential computing is mainly dependent on the underlying
hardware. Generally, standard virtual machines (VMs) hosted
on hypervisors share memory to communicate with hosts and
other VMs. Popular vendor-specific confidential computing-
based memory solutions have also been shown to suffer from
multiple issues, such as memory encryption, memory integrity,
and attestation issues [6]. In general, existing solutions are
code-focused, while users have to subscribe to other data
management solutions for data security. Currently, there is
no such solution where users of the public cloud service,
primarily on the infrastructure-as-a-service (IaaS) layer, can
get resources based on their specified application requirements
together with data transmission restrictions.

This paper aims to fill the gap by prototyping a privacy-
aware application deployment framework for a cloud/fog
platform owner. It creates an ‘execution zone’ based on
user-specified resources required for application and data
transmission-related preferences. One such preference is user
data privacy2 and also preferred resource selection. User data
sets can be spread across multiple clouds, including private
data stores or private clouds. Our framework accepts user data
with privacy preferences and other requirements as input. It
sends the list of resources, such as VMs details, to users after
applying the preferences. However, while the framework col-
lects user preferences, authentication and authorisation must be
enforced for increased data privacy. Overall, this work focuses
on giving users more control over their data and allowing the
service provider to automate the application deployment to a
certain extent. Data transmission-related controls can be done
by restricting countries, hardware, and routing.

Research Context. In this paper, we answer the research
question: How to generate an execution zone for a user-defined
data privacy-aware application on a cloud/fog platform? We
assume that a single cloud service provider owns cloud and
fog. Such a service provider collects user preferences to create
an execution zone. These zones are based on application
requirements and user data privacy policies. To do that, the
platform owner will generate relevant messages. After the

2We define privacy as free from intrusion and able to control one’s data,
while security refers to data protection against unauthorised access to user
data. In some cases, privacy and security may overlap.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

https://orcid.org/0000-0002-1751-2569
mailto:Somnath Mazumdar <sma.digi@cbs.dk>
https://orcid.org/0000-0002-8759-5603
mailto:Thomas Dreibholz <dreibh@simula.no>

successful creation of zones, users will receive the details
of the resources to use for application deployment. If a user
subscribes to one particular public cloud service provider, the
fog service will only be from that provider. This step has been
taken to reduce the inter-domain management issues, mainly
the data transmission cost. The overall execution zone creation
process is application-agnostic.

Data transmission management helps to restrict data in a
particular region and route data traffic through the allowed
path. In this way, we support user data privacy rules. Resources
can be released via a control message. To realise the allocation
and deallocation of resources, we developed two control
messages for the platform owner. This control message-based
approach can also support dynamic resource requirements to
some extent, leading to better resource adaptation.

Generally, resource orchestration optimises existing compu-
tational resources with dynamic resource requirements while
achieving service-level objectives. There are many scholarly
resource orchestration-related works on fog [7] and cloud [8].
However, it is still an important problem. The proposed frame-
work is based on centralised orchestration3 control topology to
reduce data communication issues. Generally, for distributed
and decentralised orchestration control topologies, data ex-
change is required to implement the framework effectively [9].
Overall, in this paper, our contributions are:

1) We have proposed a message-based static resource alloca-
tion framework to create an application-agnostic privacy-
aware execution zone. The primary aim of this paper is
to propose and prototype such a framework.

2) There are two types of control messages: one is to
set the resource creation and data transmission rules
(termed as INIT message), and another is to release
them (termed as STOP message). We also presented the
message structures and implemented them.

3) We have shown how data transmission can be controlled
using the encoded rules. We also discuss how this proto-
type can be implemented in a real setup.

Due to the delimitation of this research, no explicit data failure
or data compression support is provided.

II. RELATED WORK

Resource orchestration aims to offer the best viable as-
signment of available resources to meet the quality of ser-
vice (QoS) and optimise execution time for the services while
reducing energy costs. We refer the readers to the survey [7]
that focuses on orchestration in fog, [8] for cloud platform,
and [10] to learn more about the computation offloading
process in the cloud ecosystem.

[11] presents a service provisioning mechanism for
resource-competing cloud applications. The proposed mech-
anism creates execution zones to assign resources. [12] in-
troduces a resource orchestration algorithm for optimal parti-
tioning of shared cloud/edge resources. Here, each application

3In this paper, we define ‘orchestration’ as ‘an effective resource arrange-
ment to generate an application-specific execution zone’.

Country/Region
(EU/EEA, BRICS)

Autonomous
System

Platform
Type

Environment
Type

Performance
Info

Instance
Count

Application Level Information

Privacy
Preference

Resource
Type

Private Enterprise
Number

Containers

VMs

Users

Submit
Requests

Data flow Control Information

Execution
Zone

Returns lists of

Resource (e.g., VMs)

Message
Generator

Message
Controller

Virtualized
Infrastructure

Manager InstructsCreates

INIT STOP

Figure 1: Application and data-level message creation process
of the proposed framework.

can define its orchestration strategy through declarative state-
ments. To find a trade-off between the platform owner’s and
the application’s requirements, another workload orchestration
framework is proposed in [13].

To preserve the privacy of smart home owners, a cloud/fog-
based framework has been proposed in [14], while [15] man-
ages dynamic IoT data processing flows for a cloud-native
platform. Next, [16] presents a fuzzy decision tree-based
task orchestration algorithm to support dynamical changes
and heterogeneous devices. Overall, we found a gap in the
literature, which focuses on the message-based creation of
privacy-aware application execution zones, focusing primarily
on data privacy for cloud-native platforms.

III. PROPOSED FRAMEWORK

The proposed message-based framework (see Figure 1) is
aimed at the owner of a cloud/fog platform that offers services
at the IaaS level. In such a setup, a subscriber/user will request
cloud/fog resources in the form of VMs and containers with
their required quantity. The proposed framework allows users
to add preferences related to the code execution environment
and data transmission. The resources will be statically mapped
based on application-level information (blue shade of Fig-
ure 1), and the resources that will exchange data may follow
the user preferences (green shade of Figure 1). Users can
run any type of application. If the data packet transmission
during execution does not meet the rules, the packets will be
discarded. After satisfying the user preferences, he/she will
receive a list of VM or container instances (including their
IP addresses) to deploy applications. It is worth noting that
the framework uses a first-fit matching method to satisfy user
resource preferences. If there is no match, the user will be
informed. Next, the user could decide to change priorities and
try again or wait. The framework does not use any complex
resource allocation algorithm, but such an algorithm can be
added.

A. Primary Stages

The proposed techniques are based on three primary stages.
These steps are:

1) Receiving Request: Resource usage requests can be sub-
mitted by a RESTful API.

2) Request Handling: After receiving application-specific
requirements, the service provider verifies whether the
fog has available resources. If not, the user will be
informed to change preferences or wait until the resources
are released. It also checks data privacy preferences
simultaneously.

3) Resource Allocation: Broadly, resource orchestration can
be divided into resource mapping, scheduling, and data
placement. The proposed framework only supports static
resource mapping and privacy-aware data placement. This
stage outputs the VM/container IP details, constituting an
‘execution zone’ for a requested application.

The scenarios of computing resource consumption of ap-
plications can change dynamically. In general, adding or re-
moving VMs or container instances according to load (known
as horizontal scaling) or resizing existing allocated resources
(known as vertical scaling) is popular. Our aim is to make
the process simple and easy to implement. To achieve this
goal, the framework has two primary features. They are
i) customised execution zone creation satisfying user-specified
data transmission constraints (refer to Subsection IV-A); and
ii) releasing computing resources (refer to Subsection IV-E)
after execution.

B. User-Level Information Collection
1) Application Level: The user can provide six types of

application-level information during the resource request pro-
cess (see the blue shade of Figure 1). First, the user specifies
whether or not the application’s privacy should be preserved. If
so, then the preferences related to data flow must be mentioned
(see Subsection III-B2). Next, the user must specify whether
cloud and fog will be used. The user mentions whether the
application is latency-sensitive or latency-tolerant (denoted as
performance info). The user also needs to provide details
related to the type of environment. The application can run in
a container (fog) or a VM (mainly in the cloud). The fog will
be the default choice if the application is latency sensitive. If
required resources are unavailable, the user must wait until the
necessary resources become available. Users must also declare
the required resource type within the preferred platform. Some
hardware is only available in the cloud, such as FPGAs4

and large GPUs5. This communication between the platform
and the user is done via messages using JavaScript Object
Notation (JSON) format. As it is a static mapping among the
resources, the user is responsible for scheduling applications
on the received resources (i.e. VMs and containers) and
handling run-time management issues.

2) Data Level: The framework collects three primary
pieces of information (see green shade of Figure 1) for
providing privacy-aware data transfer. They are i) country,
ii) autonomous system (AS), and iii) private enterprise num-
ber (PEN). These details must be encoded in the rules of

4FPGA: Field Programmable Gate Array.
5GPU: Graphics Processing Unit.

the execution zone for data transmission. We have assumed
that the number of data flow control messages will equal the
number of user data sets. However, configuring per-data flow
rules is also possible. Adopting a message-based framework
allows us to simplify the control flow mechanism. Router logic
enables data packet transfer. For instance, the data traffic can
be confined to a geography/region level, ISP level, and network
equipment level.

C. Information Processing and Resource Allocation

Upon receiving user input, the message generator creates
an INIT message (refer to Figure 1). The INIT message
contains application and data-level privacy specifications. The
message controller uses this information to create an exe-
cution environment, including provisioning instances by the
cloud/fog service provider via the Virtualised Infrastructure
Manager (VIM). The proposed framework would create a
separate virtual LAN (VLAN) for the application. Different
VLANs shield unrelated execution environments from each
other. It means that a security breach in one application
will not affect other co-located applications. It also provides
privacy-aware routing to all cloud/fog resources and routing
to the Internet (if necessary).

In general, ISPs do not provide privacy-aware routing,
while [14] suggests using virtual private networks (VPN)
over non-privacy-aware ISPs. To prevent the derivation of
privacy-relevant information from encrypted VPN user data
traffic, [14] proposes a switch/router-based framework that
uses such VPN connections to aggregate traffic from multiple
IoT applications. Generally, there are two ways of specifying
privacy preferences in IP packets:

1) Using the DiffServ Code Point (DSCP): This approach
does not increase packet sizes, but limits marking capa-
bilities to just 6 bits. Because only 6 bits of the IPv4
Type of Service (TOS) field or IPv6 Traffic Class field
in the IP header are available for customisation. In this
paper, we have selected this option.

2) Adding an IPv4 option or IPv6 extension header: This
allows more flexibility with variable-length privacy infor-
mation. However, adding additional information increases
packet sizes. It means that it needs a larger maximum
transmission unit (MTU). Alternatively, the MTU can
remain unchanged, leading to a smaller payload (i.e.
maximum segment size (MSS) of the Transport Layer
protocol) or fragmented.

For implementation, we have used a Programming Protocol-
independent Packet Processors (P4) [17] based switch to
provide marking and packet processing. P4 is standard and
provides an open, vendor-independent way to realise custom
functionalities in network devices. It allows us to imple-
ment advanced features for marking and custom-protocol
deep packet inspection. Network monitoring may be used for
resource deletion to identify an idle execution environment.
Such monitoring could be done using the proposed framework
thanks to P4.

{
"type": "INIT",
"application_id": "a94e7...82491",
"privacy": {

"regions": [[ALLOW_SPECIFIC,"EEA"],
[DENY_ALL]],↪→

"countries": [[DENY_SPECIFIC, 240]],
"as": [[DENY_SPECIFIC, 3320]],
"equipment": [[DENY_SPECIFIC, 9]]

},
"performance": "latency",
"environment": "container",
"platform_type": "cloud+fog",
"resource_type": "CPU",
"instance-count": 2,
"instance-details": {

"cores": 2,
"memory": 2048,
"storage": 16384,
"image": "Ubuntu-22.04"

}
}

Listing 1: JSON format of INIT message.

IV. PROCESSING OF PREFERENCES

There are two types of messages the message generator
(refer to Figure 1) can send to the controller: i) INIT message:
to create the data privacy-aware application execution zone and
i) STOP message: to release the unnecessarily held resources.
In other words, an execution zone created by an INIT message
can be deleted by a corresponding STOP message. A STOP
message can be created by the user’s prespecified conditions
or the system’s current state, such as memory or I/O stalls or
CPU usage threshold.

The message controller generates both control messages,
which the controller intercepts. As a next stage, it creates
configuration instructions for VIMs (of clouds/fogs; i.e. create
networks, instances), network and P4 switch(es).

A. Execution Zone Creation via INIT message

Each application uses a unique identifier in the form
of a Universally Unique IDentifier (UUID), which
is application_id. An example INIT message is
presented in Listing 1, which contains both the privacy and
the resource specifications (see Figure 1). It identifies the
execution environment and leads to allocating a network
address, including VLAN ID. It is worth noting that users
can manually assign or request via the INIT message if a
running application requires more resources.

B. Applying Data Privacy to Execution Zone

Privacy information can be found in the Privacy
Preference block (refer to Figure 1). It contains constraints
for:

1) Countries: The countries are supported by enlisting
the ITU-T E.212 mobile country code6 (MCC).

• Region(s): Specification of a geographical/eco-
nomic/political region string. For instance, European

6MCC: https://en.wikipedia.org/wiki/Mobile country code.

Union (EU), European Economic Area (EEA)7, and
BRICS8. Each region is mapped to a list of countries.
Regions are used to simplify the specifications.

2) AS: AS are denoted by ISPs and transit networks by
the Internet Assigned Numbers Authority (IANA) Au-
tonomous System (AS) number9.

3) Equipment: Networking equipment vendors can also be
listed by their IANA private enterprise number10 (PEN).

C. Enforcing Data-Flow-Related Constraints for Execution
Zone

The message controller ensures the data-flow-related con-
straints specified in the INIT message are handled ef-
fectively. Each constraint (total four) is specified by lists,
where each item is a tuple of action (DENY_SPECIFIC,
DENY_ALL, ALLOW_SPECIFIC, ALLOW_ALL) and value
(i.e. region/country/AS/PEN). The lists of all four
constraints are checked sequentially. According to the actions,
the VIM matches the requirements if its properties do not lead
to a denial.

• DENY_SPECIFIC=0: The specified value is prohibited.
If it matches the cloud, it cannot be used.

• DENY_ALL=1: Any value is prohibited. There is no need
to specify a value. DENY_ALL can be used for the last
entry of the constraint list for disallowing all other values.

• ALLOW_SPECIFIC=2: The specified value is allowed.
• ALLOW_ALL=3: Any value is allowed. There is no need

to specify a value.
The example in Listing 1 (refer to the disclaimer in

Section VII) uses ALLOW_SPECIFIC to allow the ‘EEA
explicitly’ regions (i.e. all EEA countries), but deny any
other region with DENY_ALL as last tuple. We used con-
stants (DENY_SPECIFIC, DENY_ALL, ALLOW_SPECIFIC,
ALLOW_ALL) here for illustration, but the JSON message
uses the numeric values above. The countries specification
applies DENY_SPECIFIC to disallow MCC 240 (Sweden),
allowing any other country with implicit ALLOW_ALL (no
need to specify). Together with the regions setting, the
example would allow all EEA countries except Sweden.
Furthermore, the as constraint disallows using the network
of Deutsche Telekom (AS 3320), while the equipment
constraint disallows Cisco devices (PEN 9). The resource
specifications are checked when a cloud matches the privacy
requirements.

D. Applying Other Application Preferences

In addition to the Privacy Preference option, the
user needs to submit five additional pieces of information.
They are:

1) Platform Type specifies whether fog, cloud, or both
resources are required during application deployment.

7EEA: Covers the EU, Iceland, Liechtenstein, and Norway.
8BRICS: Brazil, Russia, India, China, and South Africa.
9AS: https://www.cidr-report.org/as2.0/autnums.html.
10PEN:

https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers.

https://en.wikipedia.org/wiki/Mobile_country_code
https://www.cidr-report.org/as2.0/autnums.html
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers

{
"type": "STOP",
"application_id": "a94e7...82491",
"instances": {
"Fog2": ["C3"]

}
}

Listing 2: JSON format of STOP message.

2) Performance Information denotes the applica-
tion type, either latency-sensitive or latency-tolerant.

3) Environment Type denotes that the VM, container,
or both will be used during deployment.

4) Resource Type: Many recent applications (such as
machine learning) require variable CPU core counts or
special-purpose accelerators (such as FPGAs and GPUs).

5) Instance Count: When requesting the resource type,
users also needed to list the required number/capacity of
the hardware.

If a cloud is compatible with the requirements, the VIM
(refer to Subsection IV-F) of the cloud/fog is contacted for
the actual availability of resources according to the number of
instances and the details of the instance (i.e., number of cores,
amount of memory and storage, the requested VM/container
image). When available, instances and the underlying network
configuration are created. It also includes VLAN configuration
and VPN connections. For an existing execution environment,
using the INIT message can also support additional resource
requirements (resource scaling).

E. Resource Release via STOP Message

Generally, in public cloud platforms, the users are respon-
sible for releasing the resources after use. The STOP message
can terminate stalled or completed applications without user
intervention. Faster termination of unnecessarily held fog
resources helps to accommodate more fog users. The STOP
message aims to automate this process. Listing 2 represents
the JSON structure of the STOP message, which contains
the application_id (see Subsection IV-A). If there is no
further specification of which instances are to be deleted, the
whole execution environment is terminated. Otherwise, only
the selected resource (here: container instance ‘C3’ in ‘Fog2’)
is released.

A STOP message can help the user to enforce the rule
of whether memory or I/O stalls are allowed. This situation
is relevant when an application is stuck or fails due to
buggy code. User-specific conditions, such as the execution
of deadline-based applications, can also be used as another
condition for resource termination. Furthermore, if a running
application requires fewer resources, a STOP message can be
used to release unnecessary resources.

F. Resource Management via VIM

A VIM generally manages the compute (CPUs, GPUs,
FPGAs), storage, and physical and virtual networks, including
ports and access control within the corresponding cloud/fog

Table I: Available cloud with platform level information.
Name, Country (Code) Environment Platform Resources Equipment

Fog1, NO (242) Container Cloud/Fog C HP (11), Dell (674)
Fog2, DK (238) Container Cloud/Fog C, G Huawei (2011), ZTE (3902)

PrivateCloud1, NO (242) VM Cloud C, F Huawei (2011)
PrivateCloud2, DK (238) VM Cloud C, F Dell (674), Fujitsu (79)
PublicCloud1, US (310) VM Cloud C, G, F Cisco (9), Dell (674)
PublicCloud2, RU (250) Container Cloud C, G Huawei (2011)
PublicCloud3, CN (460) VM Cloud C, G, F Huawei (2011), ZTE (3902)
PublicCloud4, DE (262) VM Cloud C, F Siemens (1894), Robotron (44957)

infrastructure. That is, it manages the virtualised infrastructure
(including VM and container images) and provides system-
state-level monitoring for performance engineering. It is a vital
component of an orchestration architecture used at the IaaS
level (refer to Figure 2).

OpenStack is a well-known VIM hosting VMs, while Ku-
bernetes is popular for hosting containers. We can add another
abstraction layer to manage the composition of virtual network
functions (VNFs) to network services, which are instantiated
via VIMs in the underlying virtualisation infrastructures. Open
Source MANO (OSM)11 is an example of such a management
and orchestration software stack.

The proposed framework is independent of the VIM and
its underlying virtualisation infrastructure. The message con-
troller communicates with the VIM via the Control API
(typically a RESTful API with JSON messages) to instantiate
networks and VMs/containers and to remove them after use.
It is only necessary to add infrastructure-dependent VIM
communication by extending the message generator to support
another public cloud provider.

V. EVALUATION

We have evaluated our proposed framework using a cloud/-
fog research test bed. Our local private cloud setup comprises
devices connected to a custom P4-based switch. Port-0 of
this switch is connected to a router, connecting the setup over
the Internet. The cloud/fog ecosystem, including the P4 switch,
runs on Ubuntu Linux. In our target switch, a P4 program
realises the required functionalities, such as a MAC-to-port
forwarding table, while using privacy rules.

A. Experimental Setup

Table I provides the available clouds/fog providers of the
example, containing fog together with private and public
clouds in China (CN), Denmark (DK), Germany (
DE). Norway (NO), Russia (RU) and United States (
US). They provide different types of environments (VM or
container) with varying types of resources (i.e. CPU (denoted
as ‘C’), GPU (denoted as ‘G’), and FPGA (denoted as ‘F’)
in Table I). In our setup, we rely on VPNs. It means that we
do not expect any privacy support from ISPs, which would be
difficult in reality. We also assume that we establish our own
VPN connections between the local network (Home) and the
cloud and, therefore, do not specify AS numbers here. Instead,
we only use example equipment PENs.

B. Experimental Results

11Open Source MANO (OSM): https://osm.etsi.org/docs/user-guide/latest/.

https://osm.etsi.org/docs/user-guide/latest/

1. INIT/STOP
 Message

Database

Message
Controller

Public Cloud - 1 Public Cloud - 2 Public Cloud - 3

Containers

Fog Platform

VPN Endpoint Control API

Virtualisation
Infrastructure Manager

e.g., OpenStack Controller

3. Creates
(VMs + Containers)

Switch/
Router

2. Creates
networks (VPNs, VLANs..)

Message
Generator

Figure 2: Overview of resource orchestration process during deployment at cloud/fog platform.

1) Control Message Functionality Checking: Eight exam-
ple requests are summarised in Table II, with the relevant
details from the corresponding INIT message (see Subsec-
tion III-C). To improve readability, we represent MCCs and
PENs by names and use (✓,value) for ALLOW_SPECIFIC
and (×,value)/(×) for DENY_SPECIFIC/DENY_ALL to de-
clare privacy requirements (as explained in Subsection IV-A).
In particular, requests have privacy requirements. For in-
stance, EEA without Sweden (SE) for the first request
(755b9...04f51), BRICS without South Africa (ZA) for
the third (5050f...522ca), America without Canada (CA)
for the fourth (83042...2aaed), or only allowing Siemens and
Robotron equipment for the sixth (ded95...62d9e). The first
six requests create new execution environments, while the last
two increase the resources of existing execution environments
(i.e. resource scaling). Furthermore, Table III shows two
STOP messages, deleting all of the sixth (ded95...62d9e) and
selected instances (i.e. scaling down) of the second execution
environment (9ed1d...0eb38).

Listing 3 shows an excerpt of the execution environments
created and configured in a JSON structure. It contains
the execution environments with their application_id,
VLAN allocation in the home network, IP network allocations,
VPN settings, and the container or VM instances with their
addresses. Note that our system uses IPv6 Unique Local
addressing [18] to avoid global ambiguities. This is not strictly
necessary from a functional perspective (the same private IPv4
address ranges may be reused in different VLANs). However,
it helps to detect security-relevant configuration issues, such
as misconfigured VLANs.

{
"755b94a1-2847-4bb8-b530-cfca97404f51": {
"vlan_id": 1000,
"vpn": {
"Fog1": {
"from": "HOME-SWITCH",
"to": "Fog1-SWITCH"

},
"Fog2": {
"from": "HOME-SWITCH",
"to": "Fog2-SWITCH"

}
},
"network_id": 274468950876,
"network": "fd3f:e79f:d35c:3e8::/64",
"instances": {
"Fog1": {
"C1": {
"cores": 2,
"memory": 1024,
"storage": 8192,
"address": "fd81:50db:efe3:3e8::1:1"
...

},
...

},
"Fog2": {
...

}
}

},
"9ed1d0da-14f0-4549-87de-6f447df0eb38": {
...

},
...

}

Listing 3: Execution environments after processing all INIT
and STOP messages listed in Table II.

Table II: Processed INIT message requests (NB: Exec. Env.
means Execution Environment).

Exec. Env. Constraint Type Constraint Value
755b9...04f51 Privacy Regions (✓,EEA), (×)
755b9...04f51 Privacy Countries (×, SE)
755b9...04f51 Resources Performance latency
755b9...04f51 Resources Environment container
755b9...04f51 Resources Platform type cloud+fog
755b9...04f51 Resources Resource type CPU
755b9...04f51 Resources Instance count 2
755b9...04f51 Resources Cores 2
755b9...04f51 Resources Memory 1024
755b9...04f51 Resources Storage 8192
9ed1d...0eb38 Privacy Regions (✓,EU), (×)
9ed1d...0eb38 Privacy Countries (×, SE)
9ed1d...0eb38 Resources Performance latency
9ed1d...0eb38 Resources Environment VM
9ed1d...0eb38 Resources Platform type cloud
9ed1d...0eb38 Resources Resource type CPU
9ed1d...0eb38 Resources Instance count 3
9ed1d...0eb38 Resources Cores 4
9ed1d...0eb38 Resources Memory 2048
9ed1d...0eb38 Resources Storage 16384
5050f...522ca Privacy Regions (✓,BRICS), (×)
5050f...522ca Privacy Countries (×, ZA)
5050f...522ca Resources Environment container
5050f...522ca Resources Platform type cloud
5050f...522ca Resources Resource type CPU
5050f...522ca Resources Instance count 8
5050f...522ca Resources Cores 2
5050f...522ca Resources Memory 1024
5050f...522ca Resources Storage 8192
83042...2aaed Privacy Regions (✓,America), (×)
83042...2aaed Privacy Countries (×, CA)
83042...2aaed Resources Environment VM
83042...2aaed Resources Platform type cloud
83042...2aaed Resources Resource type GPU
83042...2aaed Resources Instance count 4
83042...2aaed Resources Cores 16
83042...2aaed Resources Memory 8192
83042...2aaed Resources Storage 65536
f885e...89c29 Privacy Regions (✓,EEA), (×)
f885e...89c29 Privacy equipment (×,Huawei)
f885e...89c29 Resources Environment VM
f885e...89c29 Resources Platform type cloud
f885e...89c29 Resources Resource type CPU
f885e...89c29 Resources Instance count 8
f885e...89c29 Resources Cores 4
f885e...89c29 Resources Memory 2048
f885e...89c29 Resources Storage 16384
ded95...62d9e Privacy Regions (✓,EEA), (×)
ded95...62d9e Privacy equipment (✓,Siemens), (✓,Robotron), (×)
ded95...62d9e Resources Environment VM
ded95...62d9e Resources Platform type cloud
ded95...62d9e Resources Resource type FPGA
ded95...62d9e Resources Instance count 3
ded95...62d9e Resources Cores 16
ded95...62d9e Resources Memory 8192
ded95...62d9e Resources Storage 65536
5050f...522ca Privacy Regions (✓,BRICS), (×)
5050f...522ca Privacy Countries (×, ZA)
5050f...522ca Privacy equipment (×,Cisco)
5050f...522ca Resources Environment VM
5050f...522ca Resources Platform type cloud
5050f...522ca Resources Resource type FPGA
5050f...522ca Resources Instance count 2
5050f...522ca Resources Cores 16
5050f...522ca Resources Memory 8192
5050f...522ca Resources Storage 65536
755b9...04f51 Privacy Regions (✓,EEA), (×)
755b9...04f51 Privacy Countries (×, SE)
755b9...04f51 Resources Performance latency
755b9...04f51 Resources Environment container
755b9...04f51 Resources Platform type cloud+fog
755b9...04f51 Resources Resource type GPU
755b9...04f51 Resources Instance count 2
755b9...04f51 Resources Cores 2
755b9...04f51 Resources Memory 1024
755b9...04f51 Resources Storage 8192

Table III: Processed STOP message requests.

Execution Environment Instances
ded95...62d9e (all)
9ed1d...0eb38 PrivateCloud2/V2

Figure 3: Execution environments after processing the first six
INIT messages of Table II.

Figure 4: Execution environments after processing the all
INIT and STOP messages of Table II and Table III.

2) Resource Visualisation: To make the resulting configu-
ration more intuitive, we also visualised the output of Listing 3
in Figure 3 (after processing the first six INIT messages of
Table II) and Figure 4 (after processing all INIT messages of
Table II, and the STOP messages of Table III). The figures
show the set of all execution environments (using the red
line colour), where each execution environment is drawn as
an outer circle (using the blue line colour). The inner circles
(using black line colour) represent the enumerated VM (Vn) or
container (Cn) instances at each cloud/fog provider, where the
background colour corresponds to the clouds/fogs of Table I.
The size of the instance circles corresponds to the number of
cores.

During the creation of the six execution environments (i.e.
the first six requests; refer to Figure 3), the first request
(755b9...04f51) for cloud and fog resources in the EEA
without Sweden is serviced by the fog provider ‘Fog1’ in
Norway with two container instances. The second request
(9ed1d...0eb38), asking for three cloud VMs in the EEA
without Sweden, gets fulfilled by ‘PrivateCloud2’ in Denmark.
The third request (5050f...522ca) for eight cloud containers
in the BRICS region without South Africa is served by
the Russian public cloud provider ‘PublicCloud2’. The sixth
request (ded95...62d9e) for three cloud VMs in the EEA with
Siemens and Robotron equipment uses the German cloud
provider ‘PublicCloud4’.

After creation, the setup is scaled by two more INIT
messages and two STOP messages (see Figure 4): The sixth
execution environment (ded95...62d9e; with the three VMs in
‘PublicCloud4’) is completely deleted. The second execution
environment (9ed1d...0eb38; with three cloud VMs in ‘Private-
Cloud2’) is scaled down: VM instance ‘V2’ is deleted, leaving
only the VM instances ‘V1’ and ‘V3’. The third execution
environment (5050f...522ca; with eight cloud containers in
‘PublicCloud2’) is scaled up with two VMs providing FPGA.
Since the Russian ‘PublicCloud2’ does not provide FPGA, this
adds two instances in the Chinese ‘PublicCloud3’. It also leads
to the addition of another VPN connection for the additional
cloud provider. Finally, the last request scales up the cloud/fog
resources of the first execution environment (755b9...04f51)
by adding GPU resources. Since ‘Fog1’ only provides CPU
resources, the requested GPU resources are fulfilled by adding
‘Fog2’ with two containers. They may need an additional VPN
connection to ‘Fog2’.

3) Privacy Markings Processing: A DSCP-based marking
scheme is presented in Table IV for an additional VPN
connection setup, defining bits in the Traffic Class/TOS field
corresponding to the allowed regions. Note that regions may
overlap, e.g. Scandinavia (Bit 7) is part of the EEA (Bit 6)
and has some overlap with the EU (Bit 5). This scheme is
simple but does not provide all the required constraints. There-
fore, even when applying this simplified marking, additional
knowledge is necessary to ensure conditions such as prohibited
equipment or countries. Table V shows the corresponding
simplified privacy markings as Traffic Class/TOS bits. The
alternative and more complex solution would be to let the P4-

Table IV: Using Traffic Class/TOS for privacy marking.

Bit Description
7 Allow Scandinavia (DK, NO, SE)
6 Allow EEA area (GDPR privacy rules)
5 Allow EU area (GDPR privacy rules)
4 Allow American area (Americas, i.e. US, CA, etc.)
3 Allow BRICS area (BR, RU, IN, CN, ZA)
2 Allow North Africa and Middle East

Table V: Traffic Class/TOS privacy marking in the VLANs.

Execution Env. VLAN ID 7 6 5 4 3 2
755b9...04f51 1000 1 1 1 0 0 0
9ed1d...0eb38 1001 0 0 1 0 0 0
5050f...522ca 1002 0 0 0 0 1 0
83042...2aaed 1003 0 0 0 1 0 0
f885e...89c29 1004 1 1 1 0 0 0
ded95...62d9e 1005 1 1 1 0 0 0

switch add a header with full privacy restrictions as in Table II.
Assuming that the ISP supports the marking schema, and

‘Fog2’ (in Denmark) could be reached via another provider
supporting the privacy marking scheme, routing to ‘Fog2’
would be possible without VPN. However, for the first ex-
ecution environment (755b9...04f51), it must be ensured that
the routing does not involve Sweden (see the restrictions in
Table II). If this cannot be ensured (which is likely), or the
underlying networks do not support privacy marking (very
likely), VPNs are necessary to ensure privacy. Therefore,
Listing 3 also shows a VPN to ‘Fog2’. Note that one VPN
connection may be shared by different VLANs, combining
(but not mixing, the VLANs would still be kept separately
within a VPN connection) traffic to camouflage the applica-
tions’ traffic patterns. [19] shows that multiple ISPs (including
ISPs with different privacy-enabled interconnections) can also
be supported.

4) Target Execution Environment: In this paper, the frame-
work’s primary aim is to show the functionality of two con-
trol messages while allocating the execution zones. Figure 5
illustrates how the execution environment could be set up for
multiple users. The P4-switch has assigned a separate VLAN
for each of the N execution environments. On Port 0, the
switch connects a trunk port to a router. The router connects to
the Internet. It can also maintain VPN connections. Depending
on the implementation, both functionalities could be integrated
into one device.

VI. DISCUSSION

In the following, we will briefly discuss routing configura-
tions, the applicability, and lessons learnt from this work.

A. A Note on Routing Configuration

We already mentioned in Subsection III-C that no free space
is available in the IPv4 or IPv6 header, except for the six bits
of the DSCP as part of the Traffic Class/TOS field. Adding
an extra header will increase the overhead and also the packet

Public
Cloud - 1

Public
Cloud - 2

Public
Cloud - 3

Fog -1
Private Cloud - 1

Fog - 2 Private Cloud - 2

Internet

VPN Connection

ISP

P4-switch

Router

Internal Networks
(VLANs)

VLAN
Trunk

Execution
Env. 1

Execution
Env. N

Using Privacy
Marking

Other Network Operator (with Privacy Support)XConnections
not via SE

Port 0

Figure 5: Possible implementation of user-specific multiple execution environments.

length. To avoid this problem, we have used the DSCP-based
approach.

1) Source Routing: On another side, for security reasons,
IP source routing is usually disabled. A privacy-focused source
routing requires remote network topological information. Such
details are only available to ISPs. They are also security-
relevant. That means that it is unlikely that an ISP will reveal
such information. Furthermore, source routing would provide
a possibility for network-based attacks [20]. Therefore, it is
not practically applicable.

2) MPLS: Existing Multi-Protocol Label Switch-
ing (MPLS) is expensive but can be ideal not only for
real-time applications. MPLS lacks encryption and cannot
easily set up a direct network connection to specific cloud
servers. Overall, MPLS sends packets along predetermined
network paths and does not support a series of intermediary
destinations. However, correctly choosing the predetermined
network paths makes it possible to fulfil paths and hardware
constraints while keeping the latency low.

3) VPN: Generally, VPNs encrypt user data packets. Users
use VPNs to protect against snooping. While a VPN protects
the packet contents, it still allows one to derive some privacy-
related information from the encrypted packets. For instance,
the data volumes, packet sizes, and interarrival times let one
assume the type of application and usage pattern (e.g. video
streaming, voice call, and bulk data download). Ideally, data
from several applications, with added dummy traffic (i.e.
additional traffic, causing additional cost) and traffic shaping,
would make it possible to camouflage these details. VPNs
could also be combined with MPLS to maximise privacy.

In an ideal case, we should have support from the ISPs to
support privacy-aware routing by handling packets according
to privacy markings set by the P4 switch. P4 provides full

programmability, i.e. traffic handling can be custom-made on
standard devices in a vendor-independent way. Suppose that
ISP support for privacy is not possible. In that case, VPNs
could be established and traffic routed between local (home)
and remote (cloud) networks, ideally multiplexing different
traffic flows and adding dummy traffic to camouflage traffic
patterns.

B. Applicability of the Proposed Framework

Our framework aims to create a data privacy-aware execu-
tion zone based on user preferences. A VIM can restrict the
execution of an application between two fog units and use
other fog units to execute another application. By selectively
setting the parameters, it is possible to allow the platform to
assume a particular configuration that provides more perfor-
mance for a specific application.

The proposed framework aims to generate a privacy-aware
execution zone and automates the resource termination pro-
cess. We already mentioned in Section III that we used a
simple matching allocation approach, as we assumed that
the platform owners already employed better strategies. The
resource scheduling process can be more advanced by applying
complex or metaheuristics with this framework.

1) Overhead: Now the question arises: What is the over-
head of our framework? The generation and processing of
INIT and STOP messages, i.e. transmission and processing
of small JSON messages, is a simple and lightweight pro-
cess, including the simple resource selection according to the
constraints. Communication with cloud providers via VIMs
and actual configuration instantiation and startup of contain-
ers/VMs takes most of the time. For example, instantiating a
standard size VM on a public cloud platform can take two to

three minutes. Therefore, the overhead is low compared to the
necessary initialisation of the cloud instance via VIM.

2) Security: Security related to data communication and
storage is beyond the scope of this paper. In that case, existing
commercial security solutions should be used. For example,
VPNs and firewalls can be used to improve communication
security. In contrast, encrypted network communication, such
as Transport Layer Security (TLS), can be used between the
service provider and the user.

C. Learned Lessons

The primary aim of this paper is to validate our framework’s
functionality and present preliminary results to the community.
To our knowledge, existing works are different from ours. It is
also worth noting that technical cooperation from ISPs is de-
sirable to transform the proposed prototype into a commercial-
grade solution. During the experimentation, we learned about
two primary issues:

1) Performance: In other related experiments [21], it is
found that the end-to-end data packet flow path is not
fixed. Network latency, including reliability, may change
with changing ISPs. Changing IP protocols from IPv4
to IPv6 can also impact network performance. Even the
data packets flow differently inside commercial and non-
commercial ISPs.

2) Scalability: We have implemented the framework in a P4
software switch to validate the functionality. However,
we faced scalability issues, due to the employed software
switch. A P4 hardware switch would be the choice for a
more extensive setup, but existing P4 hardware switches
are challenging to configure.

VII. CONCLUSION AND LONG-TERM PERSPECTIVES

A smart selection of specific platforms (either fog or
cloud) to run applications can optimise cost and improve
performance. Here, we present a message-based framework
to generate an execution zone, according to user data privacy
and application preferences, using two JSON-based control
messages. The INIT message specifies how to configure the
execution environment based on user preferences?, and how
the data should be handled while in transit? The STOP mes-
sage releases the held resources while satisfying user preset
conditions. Here, we have shown how DSCP-based privacy
marking rules could effectively work to create such execution
zones. We also prototyped the framework and presented the
message structure with eight zone creation scenarios and two
resource termination scenarios. Thus, we have validated our
approach and made the point that such techniques can be
feasible. For a more extensive scope, we need active support
from ISPs.

In the future, we will consider multi-cloud ecosystems
for dynamically optimising allocations, using orchestration
platforms (such as Open Source MANO) to create complex
network services. We also plan to make the execution zone
‘elastic’ to adapt to the dynamic requirements of specific
application types, such as distributed deep learning models. We

also consider applying a lightweight machine learning model
for resource count with resource type prediction to optimise
resource modules’ allocation.

DISCLAIMER

The country and company names used in this paper are
purely for research purposes and to make our scenarios
applicable. No one should infer other meanings (directly or
indirectly, explicitly or implicitly) from it.

REFERENCES

[1] I. Pelle et al., “Towards Latency-Sensitive Cloud Native Applications:
A Performance Study on AWS,” in 12th International Conference on
Cloud Computing. IEEE, 2019, pp. 272–280.

[2] M. Iorga et al., “The NIST Definition of Fog Computing,” National
Institute of Standards and Technology, Tech. Rep., 2017.

[3] A. Yousefpour et al., “All One Needs to Know about Fog Computing
and Related Edge Computing Paradigms: A Complete Survey,” Journal
of Systems Architecture, pp. 289–330, 2019.

[4] F. Staff, “A Look At What ISPs Know About You: Examining the
Privacy Practices of Six Major Internet Service Providers,” Federal
Trade Commission, Tech. Rep, 2021.

[5] D. P. Mulligan et al., “Confidential Computing - A Brave New World,” in
Int’l Symposium on Secure and Private Execution Environment Design.
IEEE, 2021, pp. 132–138.

[6] R. Guanciale et al., “SoK: Confidential Quartet-Comparison of Platforms
for Virtualization-Based Confidential Computing,” in Int’l Symposium on
Secure and Private Execution Environment Design. IEEE, 2022, pp.
109–120.

[7] B. Costa et al., “Orchestration in Fog Computing: A Comprehensive
Survey,” ACM Computing Surveys, vol. 55, pp. 1–34, 2022.

[8] T. L. Duc et al., “Machine Learning Methods for Reliable Resource
Provisioning in Edge-Cloud Computing: A Survey,” ACM Computing
Surveys, vol. 52, pp. 1–39, 2019.

[9] X. Masip et al., Collaborative Mechanism for Hybrid Fog-Cloud Sce-
narios. John Wiley & Sons, 2020, pp. 7–60.

[10] H. Lin et al., “A Survey on Computation Offloading Modeling for Edge
Computing,” Journal of Network and Computer Applications, vol. 169,
2020.

[11] R. Landa et al., “Self-Tuning Service Provisioning for Decentralized
Cloud Applications,” IEEE Transactions on Network and Service Man-
agement, vol. 13, no. 2, pp. 197–211, 2016.

[12] G. Castellano et al., “A Service-Defined Approach for Orchestration of
Heterogeneous Applications in Cloud/Edge Platforms,” IEEE Transac-
tions on Network and Service Management, vol. 16, pp. 1404–1418,
2019.

[13] D. Santoro et al., “Foggy: A Platform for Workload Orchestration in
a Fog Computing Environment,” in IEEE International Conference on
Cloud Computing Technology and Science. IEEE, 2017, pp. 231–234.

[14] S. Mazumdar and T. Dreibholz, “Secure Embedded Living: Towards A
Self-Contained User Data Preserving Framework,” IEEE Communica-
tions Magazine, vol. 60, no. 11, pp. 74–80, 2022.

[15] B. Cheng et al., “FogFlow: Orchestrating IoT Services over Cloud and
Edges,” NEC Technical Journal, vol. 13, pp. 48–53, 2018.

[16] C. Mechalikh et al., “A Fuzzy Decision Tree Based Tasks Orchestration
Algorithm for Edge Computing Environments,” in Advanced Information
Networking and Applications. Springer, 2020, pp. 193–203.

[17] P. Bosshart et al., “P4: Programming Protocol-Independent Packet Pro-
cessors,” ACM SIGCOMM Computer Communication Review, vol. 44,
pp. 87–95, 2014.

[18] R. M. Hinden and B. Haberman, “Unique Local IPv6 Unicast Ad-
dresses,” IETF, Standards Track RFC 4193, 2005.

[19] S. Mazumdar and T. Dreibholz, “Towards a Privacy Preserving Data
Flow Control via Packet Header Marking,” in 24th Int Conf on High
Performance Computing & Communications. IEEE, 2022, pp. 1509–
1516.

[20] P. Biondi and A. Ebalard, “IPv6 Routing Header,” in Proceedings of the
CanSecWest Security Conference, 2007.

[21] T. Dreibholz and S. Mazumdar, “Find Out: How Do Your Data Packets
Travel?” in 18th International Conference on Network and Service
Management. IEEE, 2022, pp. 359–363.

	Introduction
	Related Work
	Proposed Framework
	Primary Stages
	User-Level Information Collection
	Application Level
	Data Level

	Information Processing and Resource Allocation

	Processing of Preferences
	Execution Zone Creation via INIT message
	Applying Data Privacy to Execution Zone
	Enforcing Data-Flow-Related Constraints for Execution Zone
	Applying Other Application Preferences
	Resource Release via STOP Message
	Resource Management via VIM

	Evaluation
	Experimental Setup
	Experimental Results
	Control Message Functionality Checking
	Resource Visualisation
	Privacy Markings Processing
	Target Execution Environment

	Discussion
	A Note on Routing Configuration
	Source Routing
	MPLS
	VPN

	Applicability of the Proposed Framework
	Overhead
	Security

	Learned Lessons

	Conclusion and Long-Term Perspectives
	References

