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Abstract
High-frequency market making is a liquidity-providing trading strategy that simultaneously generates many bids and asks for 
a security at ultra-low latency while maintaining a relatively neutral position. The strategy makes a profit from the bid-ask 
spread for every buy and sell transaction, against the risk of adverse selection, uncertain execution and inventory risk. We 
design realistic simulations of limit order markets and develop a high-frequency market making strategy in which agents 
process order book information to post the optimal price, order type and execution time. By introducing the Deep Hawkes 
process to the high-frequency market making strategy, we allow a feedback loop to be created between order arrival and the 
state of the limit order book, together with self- and cross-excitation effects. Our high-frequency market making strategy 
accounts for the cancellation of orders that influence order queue position, profitability, bid-ask spread and the value of the 
order. The experimental results show that our trading agent outperforms the baseline strategy, which uses a probability density 
estimate of the fundamental price. We investigate the effect of cancellations on market quality and the agent’s profitability. 
We validate how closely the simulation framework approximates reality by reproducing stylised facts from the empirical 
analysis of the simulated order book data.

Keywords  High-frequency trading · Deep Hawkes process · Deep learning · Agent-based models · Market making

1  Introduction

Technological innovations and regulatory initiatives in the 
financial market have led to the traditional exchange floor 
being displaced by the electronic exchange. The electronic 
exchange is a fully automated trading system programmed to 
incisively enforce order precedence, pricing and the match-
ing of buy and sell orders. Each order’s pricing, submission 
and execution is performed using sophisticated algorithmic 
trading strategies, which account for 85% of the equity mar-
ket’s trading volume [40]. High-frequency trading (HFT, 
or high-frequency trader), a subset of algorithmic trading, 
is characterised by exceptionally high speeds, minuscule 
timeframes and complex programs for initiating and liqui-
dating positions [51]. The critical discussion on the role of 
HFT in a fragmented market has been reignited after the 
Flash Crash of 6 May 2010 [25]. This systemic intra-day 
anomaly only lasted for a couple of minutes, but temporarily 

wiped away a trillion dollars in market value. The analysis 
of agents resolved transaction level data in the E-mini by 
[25] also looks at the behaviour of market makers, whose 
inventory dynamics remain stationary in conditions of fluc-
tuating liquidity. Even though the market design of E-mini 
has no high-frequency market maker liability, unlike equity 
markets, this seminal paper [25] gave a boost to research 
aimed at understanding high-frequency market making or 
other liquidity-providing strategies in an algorithmic trad-
ing setting.

Market making is a liquidity-providing trading strategy 
that quotes numerous bids and asks for a security in anticipa-
tion of making a profit from a bid-ask spread, while main-
taining a relatively neutral position [6]. The high-frequency 
market making strategy can be characterised as subset of 
HFT that uses latency, at a scale of nanoseconds, to trade 
in a fragmented market [35]. The growing literature reports 
that the market makers provide quality liquidity, improve 
market quality, contribute to price efficiency and have a 
positive but moderate welfare effect [3, 25, 35]. However, 
there is another strand in the literature that argues that the 
quality of liquidity is deceptive. The orders are character-
ised as phantom liquidity, which quickly disappears before 
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other market participants can access it. The optimal design 
of market making strategies is therefore an important ques-
tion for practical applicability, market design and security 
exchange regulations.

The research on market making spans numerous disci-
plines, including finance [1, 2, 5, 15, 17, 20, 44], agent-based 
modeling [7, 12, 47, 59], and artificial intelligence [14, 26, 
53]. Inspired by seminal work of [20] and its mathemati-
cal formulation [2], the quintessential research in finance 
considers market making as a stochastic optimal control 
problem. In a simplistic setting, the market is modelled as a 
stochastic process, in which market makers try to maximise 
the expected utility of their profit and loss under inventory 
constraints [17]. In parallel to inventory-based models, [15] 
proposed information-based models, in which market mak-
ers face adverse selection risk emerging from informed trad-
ers. The unrealistic assumptions placed on market models 
to mathematically extract the market maker’s asset pricing 
forces researchers to look beyond stochastic optimal control 
approaches.

Market making has also been extensively investigated in 
agent-based modelling (ABM, or agent-based model) lit-
erature [12, 59]. The ABMs in market making evolved from 
zero intelligence to an intelligent variant by incorporating 
order book microstructure for order placement, execution 
and pricing policy. For example, [41] reinforced the zero-
intelligence market maker model with order arrival follow-
ing mutually exciting Hawkes processes. The Hawkes pro-
cess has been exhaustively used in an empirical estimation 
and calibration of market microstructure models deemed 
essential for designing optimal market-making strategies 
[19, 38, 41]. In these models, the arrival rate of orders is 
not dependent on the state of the limit order book. However, 
the empirical results suggest the existence of feedback loop 
between order arrival and the state of the limit order book, 
together with self- and cross-excitation effects, for which 
current models fail to account [16, 38]. In addition, the 
Hawkes process constrains the parametric specification for 
conditional intensity, which limits the model’s eloquence. To 
tackle the parametric specification problem, [34] proposed 
the Neural Hawkes process (NHP), in which the Hawkes 
process is generalised by calculating the event intensities 
from the hidden state of a long short-term memory (LSTM). 
Despite the success of the NHP in natural language process-
ing [34], the facile LSTM architecture might be inadequate 
when it comes to modelling noisy, asynchronous order book 
events.

In recent years, deep learning has made significant 
inroads into high- frequency finance. The Convolutional 
Neural Network (CNN) architecture and its variants were 
used to model price-formation mechanisms using order book 
events as input [10, 52, 55, 57]. However, the CNN archi-
tectures are not sophisticated enough to capture self- and 

cross-excitation effects in the limit order book (LOB) [60]. 
The deep long-short term memory (DLSTM) architecture 
performs a hierarchical processing of complex order book 
events, and as such is able to capture the temporal structures 
of LOB [49, 50]. The architecture of the DLSTM is same 
as the previously introduced LSTM, apart from the fact that 
it involves multiple LSTM layers stacked on top of each 
other. The DLSTM is efficient in performing the hierarchical 
processing of noisy order book data which has also complex 
spatial-temporal dependency between order book events and 
highly non-linear. The literature supports our claim that only 
LSTM will not be able to capture that robust pattern [49, 
50]. Additionally, the multivariate asynchronous order book 
data have non-normal conditional distributions which would 
be not that easy to learn using LSTM only.

However, training the DLSTM model directly through 
stochastic gradient descents, initialised with random param-
eters, may have led to the backpropagation algorithm being 
trapped within multiple local minima [50, 58]. To circum-
vent the aforementioned limitations, the literature proposed 
an unsupervised pre-training of each layer and a stacking 
of many convolutional layers [58]. Other tailored heuristics 
developed after trial and error methods to train a deep neu-
ral network relatively easily includes Naive initialization, 
LeCun initialization, Kaiming initialization, layer-sequential 
unit-variance (LSUV) initialization, Finite width networks 
and Dynamical isometry [54, 58]. We use Stacking Denois-
ing Autoencoders (SDAEs) together with DLSTM to resolve 
the random weight initialisation problem in base architecture 
[50]. SDAEs are quite effective at filtering out noisy and 
non-linear order-level data at minuscule resolutions [29]. 
Additionally, the above discussed tailored initialization heu-
ristics require the tuning the scaling of the random initial 
point whose complexity increases as the network becomes 
deep. Also, It would be hard to directly extend the deriva-
tion of initialisation to general non-linear activations [54]. 
As stated extensively in [58], we follow the training process 
for SDAE same as earlier work.

The exemplary predictive performance of deep-learning 
models has encouraged researchers to augment order book 
data with agent-based artificial market simulation, for the 
purpose of investigating algorithmic trading strategies [31]. 
The success of the model is dependent on the simulation 
framework of the financial market being close to realism. 
However, algorithmic trading research is still waiting for 
market simulators that could be used for developing, train-
ing, and testing algorithms in a manner similar to classic 
Atari 2600 games simulator [36]. In this paper, we develop 
realistic simulations of the financial market and use them 
to design a high-frequency market making agent using the 
Deep Hawkes process (DHP). The DHP models the streams 
of order book events by constructing a self-exciting mul-
tivariate Hawkes process and a limit order state process, 
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which are coupled and interact with each other. Based on a 
long stream of high-frequency transaction-level order book 
data for the different events (e.g. buy, sell, cancel, etc), the 
high-frequency market makers use DHP to accurately pre-
dict every held-out event.

This paper is the first to incorporate DHP into the mar-
ket making strategy, which allows feedback loops between 
order arrival and the state of the limit order book, together 
with self- and cross-excitation effects. We extend the neu-
rally self-modulating multivariate point process [34] to the 
deep framework by stacking SDAE with DLSTM, result-
ing in DLSTM-SDAE. The SDAE resolves the problem 
associated with weight initialisation, multiple local min-
ima and ultra-noisy order book data that the stacked recur-
rent network fails to address. Our approach outperforms 
the NHP in predicting the next order type and its time. The 
gained predictive power helps agents to outperform the 
benchmark market making strategy, and uses a probability 
density estimate of the fundamental price. We outline our 
contribution as follow. We designed a multi-asset simula-
tion framework that is scalable and can augment markets 
of substantial size. The framework is built on realistic mar-
ket architecture, interface kernels, a matching engine and 
the Financial Information eXchange (FIX) protocol [46]. 
We are first to introduce a feedback loop between order 
arrival and the state of the order book using DHP in the 
high-frequency market making setting. However, the key 
limitation of our framework is its inability to take account 
of the basket events, external events and actions-reactions 
of multiple agents trading in the markets. We investigate 
the predictive and trading performance of the agents with 
the benchmark. We explore the effect of cancellation on 

order queue position, agent’s profitability, bid-ask spread, 
and value of order relative to queue position, in order to 
verify the existing empirical findings [11, 37].

The rest of the paper is organized as follow. Section 2 
explains the novel deep Hawkes process. Section 3 illus-
trates the multi-agent simulation framework. Section 4 
elaborates on the experimental configuration. Section 5 
provides the results of the experiments. Section 6 presents 
our conclusions.

2 � Deep Hawkes process

In this section, we propose that the DHP be used to concur-
rently model the order book event timings and associated 
event types. By assimilating it into the order arrival pro-
cess, the high-frequency market makers have control over 
the sending of different orders at specific points in time. The 
basic idea behind our approach is to view the conditional 
intensity of the Hawkes process as a nonlinear determin-
istic function of past history, and to use DLSTM to auto-
matically learn a high-dimensional representation from the 
data. A schematic example representing an order book event 
sequence from DHP is shown in Fig. 1. Unlike traditional 
Hawkes Process [19], the base rate in DHP is not constant 
and shifts after each event. Additionally, the intensities drift 
(solid lines) are non-monotonic because the hidden states 
of DLSTM may decay at different rates. The hidden states 
have delayed response in comparison to the exponential 
decay [34]. Next, we discuss each component of the figure 
in detail.

Fig. 1   Snapshot of order book event stream from the DHP. A 
DLSTM-SDAE takes the sequence of previous order book events 
(circles) to have hidden state representation (squares) of the top layer 
in stacked LSTM architecture, which in turn gives future intensities 
(solid lines) eventually approaching the base rate (dashed line). Here, 

an order book event (Event-1) excite itself but inhibits other (Event-
2). Similarly, the order book event (Event-2) excites itself, and excites 
or inhibits the earlier (Event-1) as per the counting process. The sud-
den jump in intensity depicts immediate effects. The example is taken 
from NHP [34]
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2.1 � DLSTM‑SDAE

In an ideal setting, the performance of the DLSTM model 
proved to be empirically better than existing contemporary 
statistical and deep modules. However, as the non-linear 
variables are modelled in such a way as to be scaled up, 
the overall learning of the models suffers greatly due to the 
back-propagation algorithm trapped within multiple local 
minima [50]. This may be the biggest hurdle when it comes 
to modelling limit order book events that comprise complex, 
asynchronous non-linear multivariate time series. The ultra-
noisy order book data also makes processing more chal-
lenging. To circumvent the limitations of the conventional 
stacked LSTM model, we use the stacked denoising auto-
encoder (SDAE) together with DLSTM. The SDAE enables 
the deep neural networks with multiple nonlinear hidden 
layers to learn complex features from noisy limit order book 
data [29, 58] and resolves the random weight initialization of 
LSTM’s units problem in DLSTM [50]. Figure 2 shows the 
proposed DLSTM- based SDAE architecture for DHP. It is 
worth to be mentioned that, the SDAE and DLSTM are inde-
pendent architecture. We only employ SDAEs to denoise 
the non-stationary and noisy asynchronous order book data. 
The pre-trained high-level hidden state, a robust representa-
tion of the order book event is then passed to DLSTM. In 
short, the SDAEs act as a non-linear denoiser that enhances 
data robustness. The DLSTM deals with the asynchronous 
order book data where events are high dimensional and have 
a complex spatial-temporal relationship. Of course, this 
reduces the model’s interpretability and complexity.

The architecture of SDAEs can be designed by staking 
multiple Denoising Autoencoders (DAE) [58]. DAEs have 
been widely used to extract low-dimensional features of 
raw data by using an inbuilt network module, an encoder 
and a decoder. While the encoder learns the robust low-
dimensional representation of the data, the decoder recon-
structs the raw data with minimum reconstruction loss. First, 
the input �

�
 is corrupted into �̃

�
 using stochastic mapping 

�̃
�
∼ SD(�̃� ∣ ��) . Then, the autoencoder maps corrupted 

input �̃
�
 to a hidden representation h = f𝜃(�̃�) with encoder 

f𝜃(�̃�) = (W�̃
�
+ b) . Lastly, the decoder g�′ reconstruct 

z = g𝜃� (�̃�) from the hidden representation h . The param-
eters � and �′ are trained using stochastic gradient descent to 
minimize reconstruction error measured in the squared error 
loss L2(x, z) = ‖x − z‖2 . Once mapping is learned, the high-
level hidden state h is applied for training the next layer. For 
our model, we use Gaussian noise to corrupt the raw order 
book data. For detail learning procedure in SDAE, please 
refer to seminal paper on the subject [58].

To denoise the high-dimensional order book data, 
we adopt convolutional DAEs. Here, the convolutional 
encoder uses customized CNN architecture to reduce 
the spatial dimension of the order book data by increas-
ing the depth. On the contrary, the convolutional decoder 
does the reverse operation. The convolutional encoder 
consist of two convolutional layers, Conv.(32 filters, 
size = 16 × 16, stride = 1 × 2) , a batch normalization layer 
and leaky rectifying linear units an activation layer. The 
architecture of the convolutional decoder part is inversely 
symmetric to the convolutional encoder. We use two convo-
lutional layers to integrate the convolutions effect of order 
book events over time and multiple order book depths.

As shown in Fig. 2, the reconstructed order book data is 
denoised by SDAEs layers in DLSTM-SDAE architecture. 
Then at time t, the denoised input �

�
 from SDAE is then 

passed to first layer of LSTM together with previous hidden 
state h1

t−1
 . The hidden state at time t, h1

t
 is calculated using 

recursive LSTM procedure. Its is then moved to next time 
step and LSTM layers. In the second layer, the hidden state 
h1
t
 and the previous h2

t−1
 is used to compute h2

t
 and procedure 

repeats until last layer is complied.

2.2 � Model formulation

Let {tn,�n, kn}n∈ℕ be a stream of order book event, where tn 
are times of occurrence of an event, its component �n , and 

Fig. 2   The DLSTM-SDAE 
architecture
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their corresponding mark {kn}n∈ℕ in kn ∶= {1,… ,K} . Then, 
the probability that the next event occurs at time tn is of type 
kn is ℙ{(tn,�n, kn) ∣ Hn, (tn − tn−1)}dt . We are interested in 
the model to predict next event stream {tn,�n, kn} given a 
past history of event kn , evaluate its likelihood and simulate 
the next event stream by learning from the past event stream. 
Equation (1) shows the associated intensity function of the 
DHP with relaxed positivity constraints:

The hidden state h(t) is updated from the memory sell c(t) 
as in Eq. (2).

The life of interval (tn−1, tn] is determined by the next event 
kn at tn , DLSTM reads {tn,�n, kn} and updates the current 
memory cells c(t) to cn+1(t) , associated with hidden state 
h(tn) . The other parameters of the DLSTM are recursively 
updated according to the Eq. (3).

where xn is n th input vector represented by one hot encoding 
of new order book event kn ; the activation functions �(x) / 
�(x) are sigmoid / hyperbolic tangent function, respectively; 
WAB (e.g., Wci ) is the weight matrix from the memory cell 
to input gate vector; bB denotes the bias term of B with 
B ∈ {i, f , c, o, d} , ̄̄s is exponential decay parameter and 
f (x) = s log(1 + exp(x∕s)) , s > 0 is scaled soft plus func-
tion. As it can be seen in the Eq. (3), the parameters are 
updated using the hidden state h(tn) at time tn , succeeding 
its decay over interval tn − tn−1 rather previous hidden state. 
The memory cell c(t) on the interval (tn−1, tn] follows power-
law distribution decaying from cn+1 to ĉn+1 and defined as:

The DHP, with novel discrete update of stacked LSTM 
state, allows the model to capture a delayed response, 
fits non-interacting event pairs, and copes with partially 

(1)𝜆k(t) = fk(w
⊤
k
h(t))

(2)h(t) = �
�
⊙ 𝜙(c(t)) for t ∈ (tn−1, tn]

(3)

in+1 = 𝜎
(
Wxixn +Whih(tn) +Wcic(tn) + bi

)
,

fn+1 = 𝜎
(
Wxf xn +Whfh(tn) +Wcf c(tn) + bf

)
,

cn+1 = 𝜙
(
Wxcxn +Whch(tn) + bc

)
,

cn+1 = fn+1 ⊙ c(tn) + in+1 ⊙ cn+1,

�cn+1 =
�fn+1 ⊙�c(tn) +

�in+1 ⊙ cn+1,

on+1 = 𝜎
(
Wxoxn +Whoh(tn) +Wcoc(tn) + bo

)
,

̄̄sn+1 = f
(
Wxdxn +Whdh(tn) +Wcdc(tn) + bd

)
,

(4)
c(t) = �cn+1 +

(
cn+1 −�cn+1

)((
t − tn

)− ̄̄pn+1
)
for t ∈ (tn, tn+1]

observed event streams. Mei and Eisner [34] discuss in 
detail these benefits of the neural version of the model. In 
order to ensure mathematical tractability, we have illustrated 
parameter updates for one of the layers of stacked LSTM, 
but this can be easily extended to deep architecture. For 
example, the hidden state hb at block b in stacked LSTM 
is recursively computed from b = 1 :N and t = 1 :T  using 
hb
t
= �(Whb−1hbh

b−1
t

+Whbhbh
b
t−1

+ bh).

2.3 � Feedback loop exploration

The empirical results [16, 38] indicate the existence of 
feedback loop between the order flow and the shape of the 
LOB, together with the self- and cross-excitation effects. 
In order to efficiently capture this feedback effect in high-
dimensional parameter space, we infuse the feedback loop 
exploration process into the DLSTM-SDAE architecture, as 
discussed in Fig. 2. In connection with designing the deep 
network architecture and appropriate regularisation, we 
take into consideration that the network can automatically 
explore distinct feedback loops for different types of events 
and their codependency. For example, the feedback effect of 
market buy and sell orders on price, volume and the bid-ask 
spread of LOB.

Consequently, we design a fully connected deep network 
in which each neuron represents an LOB state or feedback 
effect of the preceding layer, in order to automatically 
explore the feedback loop. Furthermore, the neurons in the 
same layer are partitioned into � blocks to take into account 
different combinations of feedback loops. The correspond-
ing regularisation is incorporated into the loss function and 
descr ibed by � = min

W
xB
� + �

1

∑
B ∈ S

��WxB
��1 +

�2
∑

B ∈ S

∑�

�=1

���WxB,�
T���2,1 , where � is the loss function 

of the DLSTM, and other two terms are feedback loop regu-
larization applied to each block in the network [61]. 
WxB ∈ ℝ

NN×KJ is weight matrix, with number of neurons NN 
and inputs dimension KJ . The S characterizes the set of 
gates and cell in LSTM neurons for each block in DLSTM. 
Lastly, the ‖W‖2,1 =

∑
i

�∑
j w

2
i,j

 is a structural �21 norm. 
The loss function was solved by using Adaptive Moment 
Estimation (Adam) [24]. Adam optimization is an augmen-
tation to stochastic gradient descent that is memory effi-
cient, extremely insensitive to hyperparameters, works with 
sparse gradients, is appropriate for non-stationary objec-
tives, and learns the learning rates itself on a per-parameter 
basis. It is well suited for highly noisy and/or sparse-gradi-
ent order book data.
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2.4 � Parameters estimation

Given a collection of sequence of order book events S , 
{tn,�n, kn}n∈ℕ , the the log-likelihood of the model can be 
expressed as the sum of the log-intensities of lapsed event 
minus an integral of the aggregate intensities over the whole 
interval observed till T:

The parameter (k, t) is estimated maximizing L using Adam 
[24] and Monte Carlo methods [34]. The frequently used 
thinning algorithm adapted from multivariate Hawkes 
process is then used to sample random sequence from the 
model.

3 � Multi‑agent simulation framework

In this section, we describe the important components of 
multi-agent-based modelling, including environment (mar-
ket simulator), agent ecology (trading strategies) and reward 
(profit and loss), to study the behaviour of high-frequency 
market making agents whose strategies employ Deep 
Hawkes processes.

3.1 � Market simulator

In this paper, we have designed a multi-asset market simula-
tor from scratch, which is scalable to markets of substantial 
size. The asynchronous event-based interface is built over 
realistic market architecture, interface kernels, a matching 
engine and the FIX protocol—an open electronic com-
munications protocol standard used to carry out trades in 
electronic exchanges. The market architecture consolidates 
the communication interface, market and matching engine. 
Figure 3 outlines key components of market architecture 
and their interaction from a high-level perspective. The 

(5)L =
∑

n∶tn≤T
log �kn (tn) − �

T

t=0

�(t)dt,

agents connect to the market via a kernel that hosts order 
management details. This acts as a transmission channel 
between agents and markets, thereby providing the extreme 
throughput and lowest latency for order transactions. It 
also throttles the amount of transactions, as per the mar-
ket requirement. As such, there is a guarantee of fairness 
between agents waiting to place orders. All the communica-
tion between kernels and market happens through FIX pro-
tocols. The markets represent an information interchange, in 
which heterogeneous agents communicate through kernels 
for order transactions, processing and execution according 
to the matching engine, as per the financial instruments. 
The markets respond to order status by sending an execu-
tion report that covers the period from start to market reset 
event. This provides opportunities for agents to tweak the 
parameters in their trading strategies after every trading 
period if required. At the core of the market simulator are 
several matching engines for different financial instruments. 
Each matching engines matches bids and asks to execute 
trades in specific instruments. The orders are matched using 
price-time priority mechanisms. In this context, among bids 
or asks, the matching algorithms give priority to orders with 
the highest or lowest price. The ties are broken by giving 
preference to orders with the earliest submission time com-
pared to other orders. Our simulator uses innovative kernels 
and FIX protocols which brings it close to realistic mar-
ket. The simulator can be scaled to any number of markets, 
assets class as well as any number of agents. However, in 
the present work,the agents trade a single asset in an equity 
market.

3.2 � Market ecology

In this paper, we adapt the market ecology from the different 
strands of academic literature [25, 28, 32, 33, 42, 45, 56].

3.2.1 � Deep Hawkes market makers

The order book events in the securities market are stochasti-
cally excited or impeded by a pattern in the past event 

Fig. 3   The multi-asset market simulator. The simulator accounts for 
multiple heterogeneous agents trading in multi-asset markets. The 
agents trained themselves on the various market data and places buy/
sell/cancellations (B/S/C) orders to the market via kernels, which use 

the FIX protocol for order transactions, processing and execution. 
The orders are matched using priority mechanism algorithms, e.g. 
price-time. All the simulated order book records including placing, 
transactions and execution are then stored in the datafed engine
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streams. The market makers are interested in learning the 
distribution and structure of order book events stream to 
accurately predict the next order (limit orders, market orders, 
cancellations, etc.) together with an associated labels (price, 
volume, etc.). Given a stream of order book events 
{tn,�n, kn}n∈ℕ , the market makers calculate the probability 
that the next event occurs at time tn is of type kn and its prob-
ability density conditioned on the history of events Hn by 
�(t)dt = ℙ{(tn,�n, kn) ∣ Hn, (tn − tn−1)}  a n d 
fn(t) = �(t) exp

(
− ∫ t

tn−1
�(�)d�

)
 . To predict the time and the 

next event having minimum loss without information about 
t he  t ime  tn  ,  we  choose  t̂n = ∫ ∞

tn−1
tfn(t)dt  and 

k̂n = argmax
k

∫ ∞

tn−1

𝜆k(t)

𝜆(t)
fn(t)dt . The associated intensity func-

tion for calculating the next order book events is the same as 
DHP as described in Eq. 1.

The deep hawkes market maker (DHMM) place orders at 
a specified depth relative to the mid-price, pt . At each time 
step t, the DHMM agent’s pricing mechanism is given by 
p
a,b
t = pt +

∑�

i=1
i ⋅ Ji,u

t
−
∑�

i=1
i ⋅ Ji,d

t
 , where pt  is the mid 

price at time t, Ji,u is the number of upward jumps with i ticks, 
and Ji,d is the number of downward jumps with i ticks between 
0 and t, i = 1,… , � . The intensities of Ji,u and Ji,d are �k,u(t) 
and �k,d(t) , respectively, 𝜆k,i(t) = fk,i(w

⊤
k,i
h(t)), k = u, d . The 

parameters of the above are calculated as discussed under 
model formulation in Sect. 2.2.

Most of the quantitative finance research into the high-
frequency market making problem is based on the assumption 
of constant order size [22]. However, the empirical analyses 
suggests that the order sizes have striking statistical distribu-
tion at different timescales [30, 39, 48]. The limit order size 
follows �-Gamma distribution [39]. The market maker’s will-
ingness to sell or buy specified quantities of securities is 
defined as qa,b

lt
= [𝛤 (𝛼, 𝛽)]qmax

qmin
⋅

(
It±Ī

Ī

)
 , where It is inventory 

at time t, Ī maximum inventory, and � (�, �) is �-Gamma dis-

tribution is described as � (�, �;q) = 1

Z

(
q

�

)�[
1 − (1 − �)

q

�

] 1

1−�
, 

Z = ∫ ∞

0

(
q

�

)�[
1 − (1 − �)

q

�

] 1

1−�
dq.

One striking feature of equity markets is the existence of 
short- lived limit orders that are modified or cancelled once 
every 50 milliseconds [11]. The limit order cancellation is an 
important characteristic of market making strategies that are 
related to expected profit, bid-ask spread and order queue posi-
tion. We model cancellation sizes as follows 
q
a,b
ct =

[
Pc(q;Q)

]qmax
qmin

⋅

(
It±Ī

Ī

)
, where Pc(q;Q) is truncated geo-

metric distribution [30]. The LOB is represented as 
[Q−i ∶ i = 1,… , L] and [Qi ∶ i = 1,… , L] with corresponding 
quantities qi . The truncated geometric distribution is defined 
as Pc(q;Q) = ℙ[q|Q] = p0

c
(1−p0

c
)q−1

1−(1−p0
c
)Q
1{q≤Q}.

Finally, the market order follows a mixture of truncated 
geometric distribution and the dirac delta distribution [30]. 
The market order size that a market maker is willing to buy or 
sell is described as:

The parameters {p0
c
, p0

m
, �0, �k, �∞} are estimated using a 

maximum likelihood method. The details of estimation 
and calibration can be retrieved from the [30]. The market 
orders are used to clear the unexecuted inventory at the end 
of trading.

3.2.2 � Probabilistic market makers

To ensure fair competition with DHMM and incorporate 
the existing state-of-the-art, we include a probabilistic 
estimate-based benchmark strategy [12] adapted to our 
simulation framework. In this market making strategy, the 
agent attempts to track the fundamental price of securities 
by maintaining a probability density estimate of the fun-
damental price. The probabilistic market makers (PMM) 
intent to sell or buy q unit of security at time t for price 
p
a,b
t  in a market populated with uninformed, informed and 

noisy informed agents. Let us assume that the fundamen-
tal price of the security at time t is ft , � be the fraction of 
informed agents and the probability of buy or sell orders 
by the uninformed agents is � . The noisy informed agents 
assumes that the price of securities follow normal distribu-
tion pt = ft +Ns(0, �

2
n
) . Whereas the fundamental price 

of security evolves according to a jump process. The order 
book event defines the jump and prices follow normal dis-
tribution. The PMM ask and bid prices at time t are then 
defined as:

(6)

qa,b
mt

=
�
Pm(q;Q)

�qmax
qmin

⋅

�
It ± Ī

Ī

�
,

Pm(q;Q) = 𝜃0
p0
m
(1 − p0

m
)q−1

1 − (1 − p0
m
)Q

1{q≤Q}

+

⌊ Q−1

5
⌋�

k=1

𝜃k1{q=5k+1} + 𝜃∞1{q=Q,Q≠5n+1}.
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where PBuy,Sell is a priori probability of a buy or sell order 
and Ns(0, �n) is sample from normal distribution. The bids/
asks equations derivation, its approximate solutions, den-
sity estimate update, and algorithm are discussed in the 
benchmark paper [12]. We add layers of complexity on 
the benchmark algorithm by allowing the PMM to sam-
ple order or cancellations size from a normal distribution. 
The order cancellations size at time t determined as follows 
q
a,b
t;o,c = 𝜂o,c(p̄t − p̄t−1) +Ns(0, 𝜎

2
o,c
), 0 < 𝜂o,c < 1.

3.2.3 � Fundamental traders

Fundamental traders decide to trade based on the presump-
tion that the securities prices will eventually return to their 
basic, intrinsic or fundamental value. Therefore, they strive 
to buy (sell) the security when the price at time t is below 
(above) its fundamental value. Fundamental traders are pre-
dominantly categorised as buyers or sellers, depending on 
the inventory at the end of a trading day. The accumulation 
of directional net positions is an important element in iden-
tifying buyers or sellers, since the latter acquire sizable net 
positions by executing numerous small-size orders, while 
the former only execute a couple of large orders [25, 32]. 
According to the agent ecology literature, the fundamental 
traders assume that fundamental value of a security will fol-
l o w  a  r a n d o m  w a l k 
ft = ft−1(1 + 𝛿f )(1 + xt), 𝛿f > 0; xt ∼ N(0, 𝜎2

x
) . Given last 

mid-price at time t, the limit order price by fundamental 
t r a d e r s  i s  d e t e r m i n e d  b y 
pt = p̄t−1(1 + 𝛿f )(1 + zt), zt ∼ N(0, 𝜎2

z
) . Finally, the order 

under fundamental traders strategy are calculated as follows 
qt;f = 𝜂f (ft − p̄t−1) +Ns(0, 𝜎

2
f
), 0 < 𝜂f < 1 . The decision to 

buy or  sel l  is  governed by fol lowing logic 

Dt =

{
Buy, qt;f ≥ 0

Sell, qt;f < 0
.

3.2.4 � Chartist traders

Unlike fundamental traders, the chartist or technical trader’s 
strategy depends on predicting future price direction based 
on past price movement. The chartist traders in our simula-
tion framework use a simple trend-following strategy 

(7)

pa,bt = 1
PBuy,Sell

ft=p
a,b
t

∑

ft=fmin

[(

(1 − �)� + ��(s(0, �2n ) ≷ (pa,bt − ft))
)

ft��(f = ft)
]

+ 1
PBuy,Sell

ft=fmax
∑

ft=p
a,b
t +1

[(

(1 − �)� + ��(s(0, �2n ) ≶ (ft − pa,bt ))
)

ft��(f = ft)
]

PBuy,Sell =
ft=p

a,b
t

∑

ft=fmin

[

(1 − �)� + ��(s(0, �2n ) ≷ (pa,bt − ft))
]

��(f = ft)

+
ft=fmax
∑

ft=p
a,b
t +1

[

(1 − �)� + ��(s(0, �2n ) ≶ (ft − pa,bt ))
]

��(f = ft)

described in [28]. The price, order size and trade direction 
are described as pt = p̄t−1(1 + 𝛿c)(1 + zt), zt ∼ N(0, 𝜎2

c
) , 

qt;c = 𝜂c(p̄t−1 − p̄t−2) +Ns(0, 𝜎
2
c
), 0 < 𝜂c < 1  a n d 

Dt =

{
Buy, qt;c ≥ 0

Sell, qt;c < 0
.

3.2.5 � Noise traders

In the securities market, noise traders make trad-
ing decisions based solely on non-information. In the 
models, they serve as an essential proxy for random-
ness, no trade and no speculation. We incorporate the 
slightly more evolved noise or background traders from 
a seminal paper by [59]. The noise traders ask or bid 
price is determined by its fundamental private valua-
tion and trading strategy. The fundamental value evolves 
according to a mean-reverting stochastic process [59]. 
ft = max

[
0, 𝜂nf̄ + 𝜂n(1 − ft−1) + yt

]
, 0 < 𝜂n < 1; yt ∼ N(0, 𝜎2

n
) . 

The private valuation for the noise traders at time t is given 
by pv = max

[
0, df

]
, df ∼ N(ft, �

2
v
) . The noise trader calcu-

lates its private value and decide to buy or sell qt;n order 
sampled from a normal distribution,N(0, �2

n
) , with equal 

probability of 1/2.

3.3 � Reward design

Unlike traditional reward design, in which an agent’s per-
formance is assessed at the end of a trading period, we 
calculate the agent’s instantaneous rewards at each 
timestep t. The reward function for the agents (j) com-
prises profit & loss (PnL), inventory cost (IC) and transac-
tion cost (TC). The PnL is simple profit or loss made by 
the agents through buying or selling security at the 
e x c h a n g e .  I t s  i s  d e f i n e d  a s 
PnLt;j = qa

t;j

(
pa
t;j
− p̄t

)
+ qb

t;j

(
p̄t − pb

t;j

)
 . As a agent’s inven-

tory is exposed to the volatility of the market price, we 
incorporate it our reward design using a term associated 
with inventory cost. Its given by ICt;j = It;j

(
p̄t − p̄t−1

)
 . 

Finally, we consolidate a quadratic penalty on the number 
of shares executed to account for transaction cost. Specifi-
cally, the transaction cost for order executed qe

t
 by agent j 

till time t is TCt;j = ℸ
(
qe
t;j

)2

, 0 < ℸ < 1 . The reward func-
tion is the sum of orders bought or sold plus inventory cost 
less a transaction cost penalty Rt;j = PnLt;j + ICt;j − TCt;j.

3.4 � Capital allocation

The amount of currency units held by an agent is represented 
by capital. Prior to securities market opening in simulation 
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framework, every heterogeneous agents endowed with dif-
ferent amount of capital by a power law distribution. The 
agent’s initial capital ca follows a power law if it is drawn 
from drawn from a probability distribution p(ca) ∝ ca

−�a . 
The �a is referred as scaling parameter which ordinarily lies 
between 2 and 3 [8].

4 � Experiments

In this section, we elaborate on data, its processing, per-
formance metrics, benchmarks, training and the parameter 
configuration for the proposed model.

4.1 � Data

We use the publicly available historical Nasdaq TotalView-
ITCH 5.0 data feed sample1 to reconstruct limit order book 
[21]. The reconstructed database provides tick-by-tick details 
of full order book depth by listing every quote and order at 
each price level of a specific security in Nasdaq, NYSE, and 
regional-listed securities on Nasdaq. The raw data feed in the 
binary format has a series of sequenced messages to describe 
the system, securities, order, and trade events at a resolution 
of the nanosecond scale. The event stream at nanosecond 
timestamp guarantees the inclusion of stochastically missing 
events which might increase the predictive accuracy of the 
Deep Hawkes model. Although the neural hawkes model 
[34] is expressive enough to take account of missing event 
stream, it makes sense to access the performance of deep 
hawkes model at millisecond resolution order book data as 
compared to nanoseconds. Nasdaq uses multiple messages 
to indicate the current order, trading, system, and circuit 

breakers event’s status as discussed in technical report [43]. 
For mathematical tractability, we have sampled high fre-
quency data for hundred most liquid securities over eight 
days from reconstructed orderbook. The extracted sample 
data consists of approximately a billion transaction records 
at nanosecond resolutions together with the possible event 
of limit order buy/sell, market order buy/sell, and cancella-
tions partial/full.

The reconstructed orderbook data is divided into training, 
validation and test set. For a single security at nanosecond 
and millisecond resolution, the descriptive statistics are 
given in Table 1. The validation set is included to optimize 
the model’s hyper-parameters while training, thus having 
control at over-fitting. To avoid high variance in the data set, 
we only record the average value over multiple splits denoted 
by ≈ in the Table 1.

The next step after sampling data into training, valida-
tion and test set is to understand the class distribution of 
the discussed sample. Deep learning algorithms are often 
found to perform poorly if the training dataset suffers from 
substantial class-imbalance [4]. We didn’t encounter class-
imbalance issues in our dataset and used classification error 
rate as a performance metric for predicting buy, sell, or can-
cel event classes. The class distributions of the training set 
at nanosecond and millisecond resolutions are given in the 
Fig. 4. It is evident from the figure that data is balanced and 
pose fewer challenges while making a prediction. It is worth 
mentioning that we have only taken eight days of order book 
data provided by NYSE. We refrain from making any big 
claim on the causality of the data. It is also unclear how the 
sample of eight days was collected.

Table 1   Descriptive statistics of 
the orderbook data

Data # Orderbook event token Stream length

Train Val Test Min Mean Max

Nanosecond ≈ 9,210,480 921,000 2,302,620 26,752 85,874 116,217
Millisecond ≈ 432,116 42,252 108,029 1167 3670 5216

Fig. 4   Class distribution of 
orderbook data

1  ftp://​emi.​nasdaq.​com/​ITCH/​Nasdaq_​ITCH/.

ftp://emi.nasdaq.com/ITCH/Nasdaq_ITCH/
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4.2 � Performance metrics

DHMM agents use DHP to accurately predict Experiments 
order book events (buy, sell or cancel) and their timing. The 
accuracy of DHMM’s predictions in terms of events and 
time is an important determinant of its trading profitability. 
The performance metrics are vital components for meas-
uring the performance of the trained model’s prediction 
reliability with observed test data. The widely used scale-
dependent metric[23], root mean square error (RMSE) and 
classification error rate (ER) were used to evaluate the pre-
diction performance of the Neural Hawkes model. Follow-
ing [34], we predict each prevailed order book event stream 
{tn,�n, kn} from the past event stream Hn and evaluate pre-
diction using RMSE and ER.

The predominant metric for evaluating the performance of 
the agents is profit and loss at the end of the trading period. 
However, this approach may be misleading, as agents are 
tested across heterogeneous securities, with varying pricing 
and liquidity structures. Alternatively, to efficiently capture 
spread, we use a normalised PnL (NPnL) with inventory and 
quadratic transaction costs. The NPnL is calculated every 
hour by dividing the total reward by the weighted average 
market spread. To take account of the small inventories 
maintained by the market maker,, [53] introduced the mean 
absolute position (MAP) metric. An extreme score under 
this metric indicates a risky speculative strategy, while a 
moderate one indicates a strategy based on a stagnant mar-
ket. We record the variability for NPnL and MAP using the 
standard deviation and mean, respectively.

4.3 � Benchmarks

We aim to evaluate the performance of the DHMM with a 
modified probabilistic estimate-based benchmark strategy 
[12]. The market making strategy is an extension of the 
classic information-based model [15], in which agents use 
the probability estimates of the fundamental price of securi-
ties to set bid and ask prices. The agents can sample limit, 
market or cancellation orders from the normal distribution 
or contradictory to a unit market order. We implement the 
probabilistic estimate-based strategy at the top of our simu-
lation framework in continuous-time simulation rather than 
a discrete-time simulation. This provides the perfect test-bed 
to assess the performance of the simulation framework in 
extending the discrete-time mechanisms to continuous-time, 
where heterogeneous agents interact asynchronously.

The DHP extends the seminal NHP to the deep learning 
framework in a market making setting. We introduce the 
novel architecture to circumvent complications related to 
random weight initialisation, training and noisy order-level 
data [50]. Given that the NHP is the kernel of our proposed 
deep model, we evaluate the performance of market making 

agents that use the earlier model in their trading strategies. 
For comparison purposes, we use the same architecture and 
training mechanism as discussed in the seminal paper [34]. 
The neurally self-modulating multivariate Hawkes process 
also acts as benchmark model for evaluating DHP’s perfor-
mance on the prediction of order book events and in terms 
of time on the reconstructed limit order book data.

4.4 � Training

The high-frequency marker making agents uses DHP to 
learns from reconstructed limit orderbook data to place 
bids or asks or cancels at suitable time. The learned predic-
tion is then infused into the market making strategy to trade 
with the simulation framework. The agents learn the system 
parameters in a two-step process. Firstly, the preprocessed 
order book stream, n-th event, kn is embedded into a latent 
space before passing into SDAE layer together with tim-
ing tn . The deep network, consists of a stack of multiple 
DAEs, generate higher representation of convoluted order 
book events interaction. The high level denoised represen-
tations are then fed into DLSTM to predict the next order’s 
type and the time to evaluate the loss. The DLSTM-SDAE 
learns the deep representation in two phases: pre-training 
and fine-tuning. In pre-training, a greedy layer-wise struc-
ture is used to train each layer of DAE iteratively, to form 
a three-layer SDAE. At the end of pre-training, a stack 
of three LSTMs is produced as an output of SDAE. Sec-
ondly, the parameter of DLSTM-SDAE is then fine-tuned 
to minimise the error in predicting events and time, using 
using stochastic gradient-descent and Adam optimisation 
algorithms. The early stopping methods used on the vali-
dation set’s log-likelihood performance were also used on 
the held-out validation set to avoid overfitting. We also add 
isotropic Gaussian noise to augment generalisation in the 
performance of the events’ classification. Table 2 lists the 
hyper-parameters tuned by validation set performance for the 
DLSTM-SDAE network architecture. The other non-LSTM 
parameters includes sn ∈ ℝ and Wn ∈ ℝ

D as discussed in 
Sect. 2. The market making agent using NHP uses single 
layer LSTM and the number of hidden nodes from a small 
set (64, 128, 256, 512, 1024) as described in the base paper 
[34]. The hyperparameters are optimized based on the per-
formance of the validation set.

The high-frequency market making agents are trained in 
the simulation framework for 1000 trading days. Each trad-
ing day starts at 9:30 and lasts until 16:00. Two hundred 
trading days were used to fine tune the hyper-parameters 
using random search. We acknowledge the existence of dif-
ferences between the real data and simulated data, but firmly 
believe that they are generated from the same mechanisms—
a claim substantiated by agent-based models that reproduce 
stylised facts similar to empirical findings. Taking the above 
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into consideration, we train market makings agents using 
DHP and NHP for 100 trading days five times. The aim of 
this exercise is to synchronise the agents’ learning over dif-
ferent sets of data generated from the same stochastic pro-
cess. We then test the performance of the agents against the 
benchmark for 300 trading days. To ensure fair competition 
with market making agents, we use heterogeneous market 
ecology consisting of fundamental, chartist and random 
agents. The important parameters pertaining to the trading 
agents in the simulation framework are given in Table 2.

5 � Results

In this section, we investigate the performance of market 
making agents in predicting types of order book events and 
their timestamps. Having learned which orders to send and 
at what time, we evaluate the agent’s trading performance 
in the simulation framework. We tweak order cancella-
tions to examine the impact on the agent’s profitability and 
the microstructure of the order book. We then check the 

robustness of the model by performing sensitivity analysis. 
Finally, we validate our simulation framework by reproduc-
ing stylised facts with our simulated data.

5.1 � Predictive performance

Given a stream of order book events {tn,�n, kn}n∈ℕ , the mar-
ket makers seek to predict the next event type and its time. 
We evaluate predictive performance of t̂n and k̂n using RMSE 
and ER, respectively.To avoid getting entangled in the prob-
lem of overfitting, we divide the training set into the sub-
training and validation sets. We train DHP and NHP models 
on the sub-training set so as to choose hyperparameters for 
validation set. Following the training procedure of [34], we 
generate the predictive performance of the market making 
agents on reconstructed order book data at nanosecond reso-
lution in Fig. 5. As is evident from the figure, neither model 
is invariably better at predicting events or, in particular, 
time. It seems that the both models do not explicitly address 
the complex dynamics of asynchronous order book data at 
nanosecond resolution. The event dynamics at nanosecond 

Table 2   Parameters 
configuration

Description Parameter/hyperparameter Value

Total sessions size �total 1300 days
Training sample size �train 1000 days
Testing sample size �test 300 days
Total number of traders at ≈ 104

Number of market makers am 3
Number of fundamental traders af 3000
Number of chartist traders ac 6000
Number of noise traders an 4000
Initial capital �a ∼ p(2.3) × 104

Min inventory min Inv ∼ −p(2.3) × 105

Max inventory max Inv ∼ p(2.3) × 105

Scale factor sn 1
LSTM weights Wn ∼ N(0, 0.01)

DHMM limit order parameters � (�, �) � (0.07, 1.52)

DHMM limit order cancellations parameters Pc(q;Q) 0.60
Fraction of informed agents � 0.33
Probability of buy/sell by uninformed agents � 0.33
PMM order cancellation size parameter �o,c 0.04
Fundamental order size parameter �f 0.04
Chartist order size parameter �c 0.04
Noise price parameter �u 0.04
Transaction cost penalty ℸ 0.06
Number of layers (DAE/LSTM) NL 3/3
Number of hidden unit per layer NH1024
Learning rate for pretraining �LPT 0.05
Learning rate for fine-tuning �LFT 0.10
Number of pretraining epochs �PT 100
Additive isotropic Gaussian noise �noise ∼ N(0, 0.50)
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timestamps need much more sophisticated models to filter 
noise and to model event interaction and non-linearity.

In Fig. 6, we evaluate the predictive performance of the 
high-frequency market-making agents using millisecond 
data sampled from the reconstructed order book. Com-
pared to the earlier results, the DHP model’s performance 

has drastically increased. In addition, the time prediction is 
consistently better than with the NHP. To further strengthen 
our claim, we assess the significance of DHP’s predictive 
superiority over NHP using the Diebold-Mariano (DM) test 
[13]. We check whether DHP’s RMSE is statistically signifi-
cant over NHP’s? We use a multivariate version of the test 

Fig. 5   Performance evaluation of high-frequency market making agents in predicting order book events and time at nanosecond resolution. The 
standard deviation over 10 experiments using different train-val-test sample is denoted by error bar

Fig. 6   Performance evaluation of high-frequency market making agents in predicting order book events and time at millisecond resolution. The 
standard deviation over 10 experiments using different train-val-test sample is denoted by error bar

Fig. 7   Classification performance on different classes
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using the multivariate loss differential series as discussed in 
the article for forecasting electricity prices [27]. The p-value 
of 0.002 summarizes that DHP’s RMSE is significantly more 
accurate than NHP’s RMSE.

To assess whether the high-frequency market-making 
agent’s performance is consistent with overall classes or the 
other, we plot their event prediction error on the buy, sell 
and cancel classes in Fig. 7. The event prediction error for 
buy and sell are consistent with the classification perfor-
mance in all classes. However, the event prediction error for 
the canceled class has increased. The reason for the same 
is attached to the stochastic nature of price which drives 
the order book dynamics. The order cancellations let high-
frequency market-makers dynamically adjust the price in the 
hope of tighter spreads and better execution.

The deep model with novel architecture and pre-training 
module are sophisticated enough to capture excitation and 
feedback effects in the order book. Now the question is 
whether the gain in order arrival time and order type accu-
racy is due to the better initialization or model architecture 
in particular DLSTM? To do so, we compare the mean 
length scale in the final layer and the empirical variance 
of length scales across layers as a function of the network 
depth discussed in seminal work [18]. We find that mean 
square length decreases exponentially with the network 
depth. However, the empirical variance of length scales 
across layers grows approximately linearly with the net-
work depth, confirming that the gain in classification accu-
racy and regression gain is due to network architecture 

rather than initialisation. We tested the data-dependent 
weight initialization technique, layer-sequential unit-var-
iance (LSUV) initialization with our data set. The readers 
interested in intuition, empirical evidence and theoretical 
discussion of the above results should refer to the original 
article [18]. For brevity, we have used exported the results 
in our context.

The results also substantiate the claim of the NHP model 
regarding stochastically missing data. The order book events 
at millisecond timestamps theoretically omit the events at 
the finer time resolution, but they are generated by a different 
mechanisms. This is the reason why there are completely dif-
ferent results at the two time resolutions. The Deep Hawkes 
model presented here is expressive enough to learn true pre-
dictive distribution with scholastically missing events, but 
only if they are generated from the same mechanism. By 
integrating the predictive capabilities into the market mak-
ing strategies, the agents trade in a simulation framework 
populated with heterogeneous trading strategies. In the next 
section, we explore the agents’ trading performance.

5.2 � Trading performance

The trading performance of the high-frequency market mak-
ing agents is discussed in Table 3. Our simulation frame-
work evaluates various models, including the Neural Hawkes 
model, the benchmark probabilistic estimate model, and 
our proposed Deep Hawkes model. According to the per-
formance metrics specified in Table 3, our proposed agent 
using DHP (DHMM) consistently outperforms the PMM 
and NHMM, which suggests that the proposed trading agent 
benefits by learning the robust microstructure of order book 
data. Further, the DHP lets the agent capture the self- and 
cross-excitation effects of the limit order book together with 
a feedback loop, to place the right order at the right time. 
We discuss the performance of each agent in detail below.

As shown in Fig. 6, the DHMM is better at predicting 
the type of order and its time compared to NHMM. This is 

Table 3   Mean and standard deviation on the NPnL and MAP for dif-
ferent market makers

Agents NPnL [ 105] MAP[unit]

Mean Std.Dev. Mean Std.Dev.

DHMM 2.1 ± 18.26 17 ± 20
NHMM 1.1 ± 4.09 4 ± 6
PMM − 1.6 ± 79.55 41 ± 74

Fig. 8   Trading agents performance with DHMM, NHMM and PMM while training, testing and random day
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an important element of the market making strategy. The 
novel DLSTM-SDAE architecture allows the agents to learn 
the hidden representation of the noisy order book data, and 
therefore to place orders that add to its profitability. Further-
more, DHMM exhibits a faster convergence rate compared 
to NHMM, as shown in Fig. 8.

The baseline strategy used by PMM maintains a probabil-
ity density estimated on the basis of fundamental price. The 
fundamental price evolves according to the jump process, 
following a normal distribution. This works in the favor of 
PMM, which makes more profit at the beginning, as verified 
in Fig. 8.Over time, however, the DHMM and NHMM learn 
the art of placing the right order with the right intensity. 
Afterwards, the profitability of the PMM fall dramatically. 
The PMM might perform better if it took a long position 
over several days, rather than trading intraday. It would be 
interesting to check the performance of the PMM agents 
with different probability density estimate conditions on the 
joint distribution of microstructure features.

5.3 � Order cancellation effect

Massive numbers of order cancellations in a short period 
are a distinctive attribute of the equity market. For example, 
at Nasdaq Nordic, order cancellations typically account for 
40% of submitted limit orders on a particular trading day. 
Market making strategies using limit order cancellations 
contribute to the market marker’s profit, bid-ask spread and 
order queue position [11]. We study the distribution of profit, 
bid-ask spread and order queue position by removing the 
cancellations mechanism in the base simulation framework. 
We estimate the intrinsic value of the order relative to the 
queue position by applying the model developed by [37]. 
The agent’s order queue position provides an estimate of 
number of orders ahead of the agent’s order at a particular 
price. A position at the front of the queue guarantees prompt 
execution, higher fill rate, low latency and lower adverse 
selection cost. We estimate the queue position in the order 
book by reconstructing the limit order book from the simu-
lated data feed.

Lets us suppose that the high-frequency market mak-
ing agent places a limit order at time t = 0 seeking best 
ask price pa which gets filled or canceled at time � . Fill-
ing the order pays the agent pa while cancellations 

pay nothing. We now describe the value of the order 
perceived by agents relative to the queue position as 
Vt = �[(pa − pt)����� − (p − pt)����� ∣ Ft] = ��t(���t − ���t) =

fill probablity(liquidity spread premium − adverse selection cost) , 
w h e r e  ��t ≜ ℙ

(
���� ∣ Ft

)
,���t ≜ (

pa − pt
)
,���t ≜

�
[
(p� − pt) ∣ Ft, ����

]
.

To empirically calibrate the above model, we take the 
same parameters used by [37]. These are exponential order 
size distribution, trade arrival rate (TAR), average trades 
size (ATS), trade size in the stan-dard lot (TSS), cancella-
tion arrival rate (CAR), average cancellation size (ACS), 
price jump arrival rate (PJR), average jump size (AJS), mar-
ket impact (MI) and average queue size (AQS). The trade 
size is identified as the limit order or market order, contrary 
to aggressive market orders as described by [37]. Table 4 
specifies the estimated parameters for simulated data with no 
cancellation mechanisms (Simulated NC), without cancel-
lation mechanisms (Simulated WC) and an average (Simu-
lated AV) over 21 days. The paper itself provides more detail 
regarding the parameters, calibration and model fitting [37].

Table 4 shows that an absence of cancellation mecha-
nisms at the high-frequency market maker’s end leads to a 
drastic increase in the average queue size. The decrease in 
the cancellation rate increases the queue size, which affects 
the high-frequency market maker’s profitability, bid-ask 
spread and market impact. The value of the order as a func-
tion of the queue position, bid-ask spread, and the agent’s 
profit efficiently captures the claim illustrated by the data in 
Fig. 9. The wider bid-ask spread when agent’s are unable to 
cancel the limit order in Fig. 9d has negative effect on the 
profitability (Fig. 9e) as compared to scenarios with can-
cellations (Fig. 9a, b). As stated in the above model, the 
value of an order that is not filled is zero. Figure 9f shows 
that an increase in queue length decreases the probability of 
execution, and therefore the value. The value of the order 
becomes flat, as the queue length is extremely large. Our 
results are consistent with the findings of [11] when inves-
tigating the determinants of order cancellations. It is diffi-
cult to infer causal relationships between cancellations and 
market microstructure variables based on artificially created 
scenarios, but this approach nonetheless it paves the way for 
future investigation using order level data.

Table 4   Estimated parameters for simulated orderbook data

Data TAR (/min) ATS (shares) TSS (shares) CAR (/min) ACS (shares) PJR (/min) AJS (ticks) MI AQS (shares)

Simulated NC 2.53 3467 7664 92.72 5061 1.26 0.32 10.91 16,416
Simulated AV 2.04 4037 6901 82.21 4022 1.01 0.46 8.76 23,554
Simulated WC 5.26 6329 8083 43.71 1107 3.75 2.06 11.92 40,191
Simulated AV 4.07 5463 9147 40.31 1560 3.01 2.06 13.02 46,815
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5.4 � Sensitivity analysis

We perform sensitivity analysis on the proposed model by 
changing the hyperparameters—specifically, the number of 
layers, the number of hidden units per layer and the noise 
level. The aim is to confirm the robustness of the model, 
rather than overfitting parameters. Table 5 shows the per-
formance of our proposed model when there is an increase 
in the number of layers, hidden units and noise level. The 
model is robust to the noise level at the optimal choice of 
numbers of layers, parameters and hidden units.

5.5 � Validation

The validation of the trading simulation framework is per-
formed by measuring how successfully the simulation’s 
output exhibits persistent empirical patterns in the order 
book data. Such empirical patterns are common across 
various markets and instruments, and even timescales 
are often classified as“stylised facts” [9]. We present a 
nominal set of stylised facts, reproduced from the empiri-
cal analysis of simulated order book data, as shown in 
Fig. 10.

Fig. 9   Effect of limit order cancellations on the market. The top row 
(marked WC) represents the distribution when the market maker’s 
agents can cancel the limit orders. The bottom row (marked NC) rep-
resents a situation with no cancellations. BAD is intraday bid-ask dis-

tribution, DHMMP is profit distribution of DHMM over the trading 
day, and VOPQ is the value of the orders relative to queue position. 
The average queue length on a particular trading day is represented 
by a black triangle

Table 5   Sensitivity to the 
number of hidden units and 
Gaussian noise

The DLSTM-SDAE used in our model has 3 DAE layers and 3 LSTM layers. In performing sensitivity 
analysis, we fix the 3 LSTM layers and change only the DAE layer

# Number of layer 1 # Number of layer 2 # Number of layer 3

Number of hid-
den unit per 
layer

(64, 128, 256, 512, 1024) (64, 128, 256, 512, 1024) (64, 128, 256, 512, 1024)

RMSE (4.6, 4.4, 4.1, 4.1, 4.0) (3.5, 3.0, 3.0, 2.5, 2.5) (2.0, 2.0, 2.0, 1.5, 1.5)
ER (55.7, 55.7, 55.7, 50.4, 54.0) (47.2, 44.4, 44.1, 44.1, 44.1) (37.5, 37.0, 35.0, 35.0, 34.0)
Gaussian noise (0.10, 0.20, 0.30, 0.40, 0.50) (0.10, 0.20, 0.30, 0.40, 0.50) (0.10, 0.20, 0.30, 0.40, 0.50)
RMSE (7.2,5.9, 4.3, 5.4, 6.5) (4.1,3.9, 3.0, 4.0, 4.6) (2.2,2.2, 2.0, 2.1, 2.1)
ER (60.2,55.9, 50.1, 60.0, 63.5) (55.6,52.2, 49.1, 55.3, 67.5) (37.2,37.9, 37.3, 37.1, 37.2)
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Let p(t) be the price of a security at time t . 
Given a timescale �t , we define log return at �t as 
r(t,�t) = ln p(t + �t) − ln p(t) . The cumulative distribu-
tion (CDF)of returns is given as F�t(x) = ℙ[r(t,�t) ≤ x] 
. The derivative of the earlier gives probability den-
sity function (PDF) F�

�t
= f�t, empirically estimated for 

normalized simulated return, as illustrated in Fig. 10a. 
The cumulative distribution of return follows power 
law F𝛥t ∼ |r|−𝛼 with 2 < 𝛼 < 5 . In Fig.  10b, the posi-
tive tail F+

�t
(x) = ℙ[r(t,�t) ≥ x]  and the negative tail 

F−
�t
(x) = ℙ[r(t,�t) ≤ x] of cumulative distribution  shown 

as yellow circles and green squares  exhibit power law  
as denoted by the red line with � = 2.8 . In Fig. 10c, we 
show the absence of the autocorrelation of price change, 
defined as �(�) = Corr(r(t,�t), r(t + �,�t)) . The autocor-
relation function (ACF) drastically decays to zero in few 
lags.

6 � Conclusions

We have developed a market making strategy that takes 
account of the feedback loop between the order arrival 
and the state of the LOB, with self- and cross-excitation 
effects, while placing an order in our realistic simulation 
framework. The strategy was designed by integrating the 
self-modulating multivariate Hawkes process with DLSTM-
SDAE. The data-driven approach performed adversely in 
relation to predicting the next order type and its timestamp 
when fitted to reconstructed order book data at nanosecond 
resolution. When trained with millisecond resolution data, it 
outperforms NHP in prediction tasks and benchmark market 
making strategies in trading performance. We have demon-
strated that extending the DHP in a market making setting 
accomplished better performance when validating empirical 
claims about the effect of cancellation on the determinants 
of order size.

6.1 � Limitations

Applying DHP in an equity market has its own set of chal-
lenges and limitations. There are two important challenges/
limitations we can think of in this context. In the current set-
ting, an artificial high-frequency market-making, the agents 
can insert or suppress order book events (e.g. buy/sell, can-
cellations, etc) and observe the price change. The DHP is 
then used to infer the causal effect between actions and order 
book events. However, in the equity market populated with 
high-frequency market makers and other market participants, 
multiple agents with their own action space, observe each 
other actions or events to maximize the future trading profit 
or loss. This in turn distorts the learning curve of the agents 
to uncover the actions/events which influence the future 
reward. Next is the reliance of DHP based on Deep LSTM 
on maximum likelihood estimates which involve intractable 
integrals that need to be approximated. While modeling buy/
sell/cancellations for stocks, there is a high probability that 
the models based on DHP will be able to capture long-term 
dependencies in the order book.

6.2 � Future work

Our modelling approach is still far from inferring causality, 
but does pave the way exploring a range of diverse research 
avenues. The most important and immediate of these are 
listed below. Apply more advanced pre-processing, architec-
ture, and learning algorithms to filter out ultra-noisy order 
book data at nanosecond timestamps. Explore an intensity-
free approach for Hawkes processes with learning mecha-
nisms other than the maximum likelihood approach. Embed-
ding DHP within the reinforcement learning framework to 
learn the optimal policy. Extend the model to the deep rein-
forcement learning framework, in which the agent’s trading 
action and reward from the simulator are asynchronous sto-
chastic events characterised by marked multivariate Hawkes 
processes. Extract the agent’s trading algorithm parameters 

Fig. 10   Stylised facts reproduced from simulated order book data. All graphs were generated on the basis of �t = 1 ms
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directly from the order book data , rather than from random 
seeds or empirical literature.
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