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A B S T R A C T

The tail risks can exhibit different and important features than average measures of risk in interconnected 
electricity markets. This paper examines the interconnectedness of tail risks within the regionally interconnected 
Australian National Electricity Market. We use the Conditional Autoregressive Value-at-Risk (CAViaR) and time- 
varying parameter vector autoregression (TVP-VAR) connectedness approach. Analysing historical data between 
01 January 2006 and 04 February 2024. The results show significant levels of connectedness for both negative 
and positive tail risks, highlighting the dynamic and interdependent nature of these markets. Notably, we 
identify asymmetries in the transmission of tail risks and their key drivers, including oil market volatility and 
global geopolitical risks. Our findings show that some regions play a pivotal role in the risk dynamics across the 
regions of the network and the influence of energy source diversity on risk profiles. The study underscores the 
complexity of managing the expected increase in tail risks in interconnected electricity markets, emphasizing the 
need for adaptive, forward-thinking strategies tailored to evolving global and local conditions.

1. Introduction

The electricity markets increasingly grapple with the inherent chal
lenges of highly limited storage, inelastic demand, and supply con
straints as energy transition deepens. Therefore, understanding the 
dynamics of risk transmission becomes paramount, especially in an 
interconnected framework where regional shocks can propagate with 
significant economic and operational implications (Pesaran and Pick, 
2007; Newbery et al., 2016). This study presents an in-depth exploration 
of the tail risk spillover effects in the Australian National Electricity 
Market (NEM), using a Conditional Autoregressive Value at Risk 
(CAViaR) and Time-Varying Parameter Vector Autoregression (TVP- 
VAR) model to dissect the nuances of time-varying connectedness and its 
determinants.

Tail risk in the electricity market refers to extreme events—such as 
natural disasters, sudden fuel price changes, regulatory shifts, or tech
nological failures—that can cause massive price spikes. Although 
infrequent, these events are increasing and can disproportionately 
impact market stability and the overall economy. Tail risk 

connectedness illustrates how these extreme risks are linked and trans
mitted across physically interconnected electricity markets like the 
NEM. For example, an extreme event in one market (like the 2016 tor
nadoes in South Australia that destroyed 23 transmission towers) can 
affect other regional markets.

However, a low level of connectedness isn’t always desirable. While 
it might indicate resilience to localized shocks, it can also suggest a 
fragmented or dysfunctional system, undermining the goal of an inte
grated electricity market. Conversely, high connectedness isn’t neces
sarily unfavourable. Although it can make the system more vulnerable to 
widespread disruptions from a single tail risk event, it also allows for 
rapid sharing of information and resources, enabling quicker responses 
to emerging risks. Therefore, understanding tail risks and their level of 
connectedness is crucial for effective risk management in electricity 
markets and for ensuring efficient operation of the entire system.

The NEM’s unique structure, enabling electricity trade across five 
directly interconnected regions, offers a compelling case for studying 
interconnectedness and its impact on market stability and efficiency. 
While prior research has explored volatility spillovers, skewness, and 
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kurtosis within the NEM (Clements et al., 2015; Manner et al., 2019; Do 
et al., 2020), these studies often lack a comprehensive analysis of tail 
risks and their asymmetric behaviour under different market con
ditions—such as during the COVID-19 pandemic, geopolitical tensions, 
and regulatory changes like market suspension and fuel price caps. By 
employing the CAViaR and TVP-VAR models, this paper aims to provide 
a detailed understanding of how extreme risks are transmitted across the 
NEM’s interconnected regions, contributing to the literature on elec
tricity market integration and risk management strategies.

Spillover effects refer to the impact that disturbances or crises in one 
region can exert on another through external connections (Diebold and 
Yilmaz, 2012). In financial contexts, these effects are predominantly 
marked by the spread of significant price fluctuations and volatility. In 
the electricity sector, analysing these spillover phenomena is crucial, 
particularly for entities engaged in multiple electricity markets, due to 
the associated risks of concurrent price surges and heightened volatility. 
Our study is centred on the Australian National Electricity Market 
(NEM), a cohesively integrated network with robust connections among 
its constituent regions.1 It operates on a spot market basis, where the 
alignment of supply and demand in real-time establishes the pricing for 
each region. The NEM transitioned from a 30-min average to a 5-min 
single period settlement price since October 2021. The impact of this 
rule change on the transmission of tail risks also needs to be examined. 
Electricity transmission between these regions is facilitated by inter
connectors, which are high-voltage lines linking neighbouring markets, 
enabling the importation of electricity from regions with lower prices to 
those with higher prices.

The examination of tail risk spillover effects garners significant in
terest within the Australian electricity markets. First, spot prices in the 
NEM are notably more volatile and prone to spikes than those observed 
in similar markets elsewhere (Higgs and Worthington, 2008; Mayer and 
Trück, 2018), with simultaneous occurrences of price spikes across 
various regions (Clements et al., 2015; Ignatieva and Trück, 2016). 
Therefore, scrutinizing tail risk spillovers could unveil deeper under
standing into the mechanisms behind the spread of extreme price events. 
Moreover, an overarching goal of the NEM is to evolve into a unified 
market featuring consistent prices throughout the states (Australian 
Energy Market Commission, 2013). Second, the regions within the NEM 
remain somewhat segregated, as evidenced by notable price disparities 
across markets (Higgs, 2009; Apergis et al., 2017; Nepal and Foster, 
2016; Do et al., 2020; Naeem et al., 2022). Concerns regarding potential 
underinvestment in interconnectors have been voiced, making the 
analysis of tail risk spillovers essential to evaluate the current effec
tiveness of market interconnections and the NEM’s capacity for 
achieving broader integration (Ciarreta and Zarraga, 2015).

Building on this background, we examine the transmission of tail risk 
and its drivers across five Australian regional electricity markets from 
January 1, 2006, to February 4, 2024. We first employ the Conditional 
Autoregressive Value-at-Risk (CAViaR) model by Engle and Manganelli 
(2004) to measure daily positive and negative tail risks for each market. 
Then, we quantify tail risk spillover effects using the time-varying pa
rameters vector autoregression (TVP-VAR) model from Antonakakis 
et al. (2020). The TVP-VAR approach offers advantages over traditional 
connectedness methods (Diebold and Yilmaz, 2009; Diebold and Yilmaz, 
2012) by avoiding loss of observations and being insensitive to selected 
rolling windows. This method has been used in recent studies on energy 
market spillovers (Naeem and Arfaoui, 2023; Siddique et al., 2023; 
Wang et al., 2024). Using the estimated time-varying tail risk connect
edness indices, we investigate the impacts of global risk factors and 
domestic determinants on tail risk transmission from 2006 to 2024. We 
carefully segment this period to analyse the drivers of connectedness 

during key crises, including the Global Financial Crisis, the COVID-19 
pandemic, and the Russia-Ukraine conflict.

Our study yields several key results. First, the CAViaR model quan
tifies the magnitude of tail risk for each regional electricity market. 
Among the five markets, South Australia exhibits the highest levels of 
both positive and negative tail risk, while New South Wales shows the 
lowest levels. Second, we observe significant tail risk spillover effects 
across markets, with average negative and positive tail risk Total 
Connectedness Indices (TCIs) of 27.13 % and 29.97 %, respectively. This 
11 % difference suggests an asymmetry in tail risk spillover within the 
NEM, indicating that positive tail risks are more interconnected than 
negative ones. Third, regarding the specific roles of each regional market 
in the tail risk network, Victoria and South Australia emerge as the most 
crucial net transmitters of both negative and positive tail risk over the 
sample period. Conversely, New South Wales and Tasmania are the 
primary absorbers of negative and positive tail risk, respectively.

Our time-varying analyses provide further insights into tail risk 
connectedness within Australian regional markets. We find that the 
magnitude of tail risk spillover effects is highly volatile over time, 
fluctuating between 10 % and 80 %. Notably, significant increases in 
both positive and negative tail risk TCIs occur during the middle of the 
COVID-19 pandemic and at the onset of the Russia-Ukraine conflict. 
Using the frequency connectedness approach by Baruník and Křehlík 
(2018) to decompose tail risk connectedness, we highlight that long- 
term spillover effects are the predominant drivers of overall 
connectedness.

Given that TCIs are time-varying, we investigate the determinants of 
tail risk spillover using a comprehensive set of explanatory variables. 
Over the full sample period, our results indicate that global uncertain
ties—such as crude oil volatility, global geopolitical risk, and risk 
aversion indicators—significantly impact tail risk connectedness. 
Additionally, the Australian term spread, reflecting the country’s eco
nomic outlook, considerably influences the transmission of tail risk 
among regional electricity markets.

Our study contributes to the literature in several ways. First, we are 
the first to explore the dynamics of tail risk spillover effects among 
Australian regional electricity markets using the Conditional Autore
gressive Value at Risk (CAViaR) model. Previous studies on the NEM 
have focused on volatility connectedness (Apergis et al., 2017; Han 
et al., 2020; Naeem et al., 2022), high-moment spillover effects (Do 
et al., 2020), and dependence structures (Higgs, 2009; Nepal and Foster, 
2016; Apergis et al., 2020; Manner et al., 2019). Given the inherent 
volatility of Australian electricity prices (Higgs and Worthington, 2008; 
Mayer and Trück, 2018), examining tail risk spillover and its dynamics is 
essential. While Do et al. (2020) explored the transmission of extreme 
events (skewness) and their occurrence (kurtosis) within the NEM, our 
study advances this by using CAViaR to measure tail risk, providing a 
more nuanced and direct assessment of potential financial impacts. 
Specifically, our approach allows us to investigate both negative and 
positive tail risks, highlighting asymmetries in tail risk spillover. This 
precise quantification of worst-case financial outcomes under extreme 
market conditions offers actionable insights crucial for effective risk 
management and policy formulation.

Second, our research enhances understanding of tail risk connect
edness in the NEM by examining the temporal evolution of connected
ness indices. We uncover significant fluctuations in tail risk spillovers 
linked to NEM events like operational changes, regulatory updates, and 
external shocks. This analysis highlights the dynamic nature of risk 
spillovers and provides crucial insights into market interconnectedness 
over time. These findings are vital for energy sector stakeholders, aiding 
in the development of adaptive risk management strategies that can 
respond to evolving market risks and regulatory changes. Such strategies 
are particularly important in light of events like the introduction of the 
5-min settlement rule and fuel price caps, which have significantly 
impacted market dynamics and risk perceptions.

Third, because existing literature rarely addresses the determinants 

1 The Australian Energy Regulator (2017) defines the National Electricity 
Market (NEM) as consisting of five regional markets: New South Wales (NSW), 
Queensland (QLD), South Australia (SA), Tasmania (TAS), and Victoria (VIC).
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of interconnectedness, our research extensively analyses these factors 
over the sample and crisis periods. We find that global uncertain
ties—such as crude oil volatility, geopolitical risks, and risk aver
sion—significantly impact tail risk connectedness among Australian 
regional markets. This deepens our understanding of how external 
economic forces influence risk dynamics in interconnected electricity 
markets. Furthermore, our study reveals that the Australian term spread, 
a key domestic economic indicator, substantially affects tail risk trans
mission across regional markets. By highlighting the term spread as a 
barometer of the country’s economic outlook, we illuminate the link 
between macroeconomic indicators and energy sector-specific risk fac
tors. This underscores how national economic health shapes the risk 
landscape of sectoral markets, offering a novel perspective on the 
interconnectedness between broader economic conditions and sector- 
specific risk profiles.

Finally, our study sheds light on the drivers of tail risk connectedness 
during crises. By analysing global and domestic factors such as the 
Global Financial Crisis, the COVID-19 pandemic, and the Russia-Ukraine 
conflict, we identify elements that intensify risk transmission across 
Australian regional electricity markets. Our analysis reveals that crude 
oil volatility, global geopolitical risks, and changes in the national 
economic outlook—particularly term spreads—significantly elevate tail 
risk connectedness. This understanding enables policymakers and mar
ket operators to pinpoint vulnerabilities and tailor risk management 
strategies effectively, ensuring mitigation efforts are targeted and 
adaptive to evolving economic conditions. Thus, we contribute to the 
literature on energy market dynamics during crisis periods (e.g., Bane
rjee et al., 2024; Naeem and Arfaoui, 2023; Abdullah et al., 2023a, 
2023b; Akyildirim et al., 2022).

The paper is structured as follows: Section 2 reviews the relevant 
literature. Section 3 outlines the methodology employed in this study. 
Section 4 presents the data. Section 5 discusses the empirical results 
derived from the analysis. Section 6 provides policy implications of the 
findings and concludes the paper.

2. Literature review

Established in 1998, the NEM is a wholesale electricity market 
covering the eastern and south-eastern states of Australia, including 
Queensland, New South Wales, the Australian Capital Territory, Victo
ria, South Australia, and Tasmania. It operates on a market-based sys
tem, facilitating the efficient generation, transmission, and distribution 
of electricity across the interconnected regional markets. Electricity 
markets within the NEM exhibit heightened volatility compared to other 
financial or commodity markets (Han et al., 2020; Evelyn Chanatásig- 
Niza et al., 2022). Han et al. (2020) emphasize the significance of 
physically interconnected markets in driving volatility spillovers and 
relate dynamic spillover patterns to specific short-term market events 
and long-term changes in renewable energy shares and regulatory 
mechanisms. Evelyn Chanatásig-Niza et al. (2022) highlight the 
importance of realized variances and covariances in accurately 
capturing volatility spillovers across different regions within the NEM.

Long-term structural changes—such as shifts in renewable energy 
shares, fuel mix compositions, and the implementation of regulatory 
mechanisms like the Carbon Pricing Mechanism, price settlement rules, 
or fuel price caps—significantly impact risk dynamics within the NEM 
(MacGill, 2010; Han et al., 2020; Ignatieva and Trück, 2016; Gonçalves 
and Menezes, 2022a, 2022b; Simshauser, 2023; Pourkhanali et al., 
2024; Csereklyei and Khezr, 2024). MacGill (2010) discusses policy 
changes aimed at integrating wind power into the NEM and their im
plications for market dynamics. Ignatieva and Trück (2016) find positive 
price dependence between markets connected via interconnector lines, 
using copula models to capture dependence structures across regional 
electricity spot prices. Pourkhanali et al. (2024) discover that fuel price 
caps lowered wholesale electricity prices in Queensland and New South 
Wales but not in Victoria, highlighting the uneven efficacy of regulatory 

measures across different regions. Csereklyei and Khezr (2024) reveal 
that transitioning from a 30-min average to a 5-min settlement in 
October 2021 led to up to 4.9 % lower prices due to changes in strategic 
bidding behaviour.

Efforts to integrate the NEM face challenges in efficient resource 
allocation, network losses, and constraints across interregional inter
connectors (Nepal and Foster, 2016; Apergis and Lau, 2015). Nepal and 
Foster (2016) analysed market integration using econometric tech
niques on daily electricity spot prices, highlighting significant network 
losses and interconnector constraints that hinder efficiency. Apergis and 
Lau (2015) investigated electricity price stability across Australian 
states, finding market instability due to structural breaks and carbon 
policy changes. Anderson et al. (2007) examined forward contracts and 
risk management practices in the Australian electricity market, 
revealing significant gaps between academic assumptions and actual 
market practices. Understanding contracting processes and risk man
agement strategies is crucial for effective risk mitigation and market 
operation.

Recent studies have used advanced econometric and network anal
ysis techniques to examine market dynamics within the NEM (Yan and 
Trück, 2020; Apergis et al., 2020; Do et al., 2020). Yan and Trück (2020)
applied dynamic network analysis to regional spot electricity prices, 
uncovering significant dependencies among interconnected markets. 
Apergis et al. (2020) used regular vine copula techniques to explore the 
dependence structure of state-level electricity prices over different pe
riods, enhancing understanding of risk management practices. Do et al. 
(2020) quantified the interconnectedness of higher moments within the 
NEM using a fractionally integrated VAR model. Together, these studies 
provide a comprehensive view of price interactions and risk de
pendencies, informing strategies for managing market volatility and 
enhancing stability.

While studies on NEM market dynamics cover volatility, risk trans
mission, policy changes, market integration challenges, forward con
tracts, and methodological advancements—offering valuable insights 
for enhancing market efficiency and stability—they have limitations 
that highlight the need for tail risk measures like the Conditional 
Autoregressive Value at Risk (CAViaR) model and dynamic connected
ness techniques to fully quantify tail risk spillovers. Research by Han 
et al. (2020) and Evelyn Chanatásig-Niza et al. (2022) often fails to 
capture extreme tail events crucial for assessing market stability under 
severe conditions. Methods used by Anderson et al. (2007) and Apergis 
et al. (2020) may oversimplify interconnectedness, potentially under
estimating tail risk connectedness. Do et al. (2020) utilize skewness and 
kurtosis to assess extreme events but do not directly quantify potential 
financial losses. In contrast, Value-at-Risk (VaR) provides actionable 
data by quantifying potential losses within specific confidence intervals 
and timeframes, aiding better decision-making in volatile markets. 
Furthermore, the literature lacks exploration into the determinants of 
tail risk connectedness—a gap this paper addresses by offering insights 
into the drivers of risk dynamics within the NEM. Addressing these 
limitations with advanced methodologies enables more accurate risk 
assessments and informs more effective risk management strategies for 
stakeholders.

3. Methodologies

3.1. Conditional autoregressive value-at-risk (CAViaR)

To quantify the time-varying value-at-risk (VAR) of the NEM, we 
employ the conditional autoregressive value-at-risk (CAViaR) model 
developed by Engle and Manganelli (2004). Unlike traditional ap
proaches that estimate value-at-risk (VaR) by first deriving the distri
bution of returns and then inferring quantiles indirectly, the slope 
CAViaR method allows direct estimation of VaR and offers enhanced 
flexibility (Abdullah et al., 2023a, 2023b). This method also accounts for 
asymmetric effects, an important feature not accommodated by the 
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symmetric absolute value method or the indirect GARCH(1,1) approach. 
Furthermore, the asymmetric slope CAViaR model imposes an autore
gressive process on the VaR of a specific quantile, as described mathe
matically as 

VaRα,t(β) = β0 + β1VaRα,t� 1(β) + β2x+
t� 1 + β3x�

t� 1 (1) 

where VaRα,t denotes the VaR at the confidence level (1 � α)2 in day t; β0 
is the intercept of the model; β1 indicates the weights of lagged VaRs; 
VaRα,t� 1(β) represents lagged VaRs; and β2 and β3 show the impacts of 
positive and negative returns (i.e., x+

t� 1 and x�
t� 1

)
on the VaR, 

respectively.

3.2. TVP-VAR connectedness

To explore the dynamic transmission of tail risk among the Austra
lian regional electricity markets, we employ the methodology outlined 
in Antonakakis et al. (2020). Antonakakis et al. (2020) propose a dy
namic connectedness approach based on time-varying vector autore
gressions (TVP-VAR) initially developed by Koop and Korobilis (2012). 
Compared to the traditional connectedness framework by Diebold and 
Yilmaz (2012), the results of TVP-VAR based connectedness approach 
are not influenced by the size of the rolling window. Furthermore, the 
TVP-VAR based connectedness framework does not cause loss of ob
servations and is suitable for low frequency datasets. Given these ad
vantages, this approach has been utilized in recent studies exploring the 
interconnectedness network in global financial markets (e.g., Bouri 
et al., 2021a, 2021b; Benlagha et al., 2022; Ali et al., 2023; Polat et al., 
2024).

Based on the Bayesian Information Criterion (BIC), we utilize a sta
tionary TVP-VAR(1), specified as follows, 

Yt = βtYt� 1 + εtεt ∼ N(0, St) (2) 

βt = βt� 1 + vtvt ∼ N(0, Rt) (3) 

Yt = Atεt� 1 + εt (4) 

where Yt denotes Nx1 vector of negative or positive tail risks of 
Australian electricity markets, measured by the CAViaR model; εt and vt 
are Nx1 vectors. At , St, βt and Rt are NxN matrices. Eq. (4) represents the 
Wold decomposition of the system, where the time-varying coefficients 
of the vector moving average (VMA) form the basis of the connectedness 
index. This index was introduced by Diebold and Yilmaz (2012) utilizing 
the generalized impulse response function (GIRF) and the generalized 
forecast error variance decomposition (GFEVD), concepts further 
developed by Koop et al. (1996) and Pesaran and Shin (1998). The focus 
of our study is specifically on the h-step error variance in the forecast of 
variable i that arises due to shocks to variable j, which is mathematically 
expressed as follows: 

φ̃g
ij,t =

∑h� 1
t=1 Ψ2,g

ij,t

∑N

i=1

∑h� 1
t=1 Ψ2,g

ij,t

(5) 

with φ̃g
ij,t denotes the h-step ahead GFEVD, Ψg

ij,t(h) = S� 1/2
ij,t Ah,tΣtεij,t , Σt is 

the covariance matrix for the error εij,t and 
∑N

j=1φ̃g
ij,t(h) = 1,

∑N
i,j=1φ̃N

ij,t(h) = N.Utilizing the GFEVD, we construct the Total 
Connectedness Index (TCI) which quantifies the degree of interconnec
tedness across the network, as delineated by: 

TCIg
h(h) =

∑N
i,j=1,i∕=jφ̃

g
ij,t(h)

∑N

j=1
φ̃g

ij,t(h)

x100 (6) 

Initially, we focus on the spillover effects from variable i to all 
others,3 which we define as the total directional connectedness to 
others, defined as follows: 

DSIg
i→j(h) =

∑N
j=1,i∕=jφ̃

g
ji,t(h)

∑N

j=1
φ̃g

ji,t(h)

x100 (7) 

Secondly, we calculate the spillover effects from all variables to 
variable i,4 which is referred to as the total directional connectedness 
from others, specified as follows: 

DSIg
j→i(h) =

∑N
j=1,i∕=jφ̃

g
ij,t(h)

∑N

i=1
φ̃g

ij,t(h)

x100 (8) 

Third, we determine the net spillover index (NSI) by calculating the 
differences between the total directional connectedness to others and 
from others. The NSI is defined as follows: 

NSIg
i,t(h) = DSIg

i→j(h) � DSIg
j→i(h) (9) 

The sign of the net spillover index indicates whether a variable acts 
as a net transmitter of shocks to network (NSIg

i,t(h) > 0) or a net recipient 
of shocks from the network (NSIg

i,t(h) < 0). This distinction helps in 
identifying the directional influence of the variable within the overall 
network dynamics.

4. Data and preliminary analysis

4.1. Sample and data

To explore the tail risk connectedness among Australia’s regional 
electricity markets, daily data on price series for Victoria (VIC), South 
Australia (SA), New South Wales (NSW), Queensland (QLD), and Tas
mania (TAS) were collected from the NEM website between 1st January 
2006 and 4th February 2024. The research period is chosen based on 
data availability and covers significant events related to global economy 
and energy markets, such as the Global Financial Crisis, the COVID-19 
pandemic, and the Russia-Ukraine war. The daily market price data 
was transformed into log-differenced daily returns.5 As Australian prices 
are subject to monthly seasonality (Naeem et al., 2022), we adjusted the 
daily log return for monthly seasonality using seasonal adjustment 
method of daily time series by Ollech (2021).

Fig. 1 illustrates the adjusted daily returns of the chosen markets, 
highlighting the substantial volatility of regional electricity markets, 
aligning with the findings of Han et al. (2020). Furthermore, these 
markets witnessed pronounced fluctuations between 2020 and 2024, a 
period marked by the COVID-19 pandemic and the onset of the conflict 
between Russia and Ukraine.

4.2. Descriptive statistics

Table 1 summarizes key statistics for the adjusted return series. Daily 
average returns for electricity prices vary across the states, with positive 
returns observed in New South Wales (NSW), Queensland (QLD), while 
negative returns are seen in South Australia (SA), Victoria (VIC), Tas
mania (TA). South Australia (SA) has the lowest daily average return of 

2 In our study, α = 5% is used for negative tail risk and α = 95% is used for 
positive tail risk.

3 The values of To row in the connectedness table presented in Section 5.
4 The values of From column in connectedness tables presented in Section 5.
5 The daily log returns are displayed in Appendix A1.
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Fig. 1. Seasonally adjusted return series of electricity prices across Australian regions. 
Note: This graph shows the seasonally adjusted return series of the selected regional electricity markets in Australia for the period between 01 January 2006 and 04 
February 2024.

Table 1 
Descriptive statistics of adjusted return series.

NSW QLD SA VIC TA

Mean 0.0001 0.0001 � 0.005 � 0.001 � 0.003
Variance 0.018 0.03 0.074 0.028 0.04
Skewness � 0.595 � 0.042 � 0.124 � 0.323 � 0.347
Kurtosis 40.496 29.395 14.166 30.816 36.865
JB 429478*** 226093*** 52526*** 248590*** 355744***
ERS � 2.988*** � 11.012*** � 8.445*** � 22.306*** � 8.548***
Q(10) 529*** 638*** 106*** 471*** 205***
Q(20) 1033*** 1074*** 1318*** 1391*** 946***

Note: This table reports the descriptive statistics of seasonally adjusted daily return series of Australian regional electricity markets between January 01, 2006, to 
February 04, 2024. LB-Q(10) and LB-Q(20) represent the Ljung-Box Q-statistics up to the 10th and 20th order autocorrelation. Jarque-Bera statistics indicate the test 
for the normality of sample data. ERS test represent the Elliott et al. (1996) unit root test. *** denotes the cases where the null hypothesis of no autocorrelation (for LB 
Q test), and normal distribution (for JB test), and a presence of a unit root (for ERS test) is rejected at the 1 % significance level.
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� 0.005. Additionally, return variance reveals that South Australia (SA) 
exhibits the highest volatility. Tasmania (TA) and Queensland (QLD), 
show higher price volatility, while Victoria (VIC) and New South Wales 
(NSW) demonstrate the lowest volatility.

Table 1 shows that all regional markets exhibit a negative skewness, 
indicating a tendency towards extreme negative returns across the 
board. There is a noticeable variation in skewness across the markets, 
with substantial disparities. Moreover, the presence of high kurtosis 
values over 3 for each market highlights the frequent appearance of 
extreme returns, pointing to a leptokurtic distribution. This suggests the 
importance of implementing a tail risk connectedness approach for 
examining spillover effects in Australian regional markets. The diag
nostic tests presented in the last four rows of Table 1 verify the non- 
normality, stationarity, and autocorrelation within the return series 
for the markets under study. The Jarque-Bera test outcomes refute the 
possibility of a normal distribution, while Elliott-Rothenberg-Stock 
(ERS) tests ascertain stationarity, and Ljung-Box Q statistics reveal sig
nificant autocorrelation at both 10 and 20 lags.

5. Empirical results and discussion

5.1. CAViaR estimation results

Based on the adjusted return series, we estimate the negative and 
positive tail risk using 95 % and 5 % Conditional Autoregressive Value- 
at-Risk (CAViaR) (Engle and Manganelli, 2004). The negative and pos
itive tail risks of all return series are plotted in Figs. 2 and 3, respectively. 
The figures show a similar upsurge in tail risk during the Global 
Financial Crisis, the COVID-19 pandemic, and the Russia-Ukraine con
flict, implying the magnifying impacts of these events on both negative 
and positive tail risk connectedness among Australian regional elec
tricity markets.

Table 2, Panels A and B, detail the summary statistics for negative 
and positive tail risks, respectively, revealing significant insights into the 
tail risks within Australian regional electricity markets. Notably, South 
Australia (SA) exhibits the most pronounced tail risks among the mar
kets analysed, with the highest negative and positive tail risks recorded 
at � 0.312 and 0.324, respectively. This is followed closely by Victoria 
(VIC) with values of � 0.201 for negative tail risk and 0.238 for positive 
tail risk. Conversely, New South Wales (NSW) shows the least tail risk 
across the periods studied, with � 0.138 for negative tail risk and 0.141 
for positive tail risk.

Furthermore, the variability of tail risk in SA, with variances of 0.061 
for negative and 0.09 for positive tail risks, stands out when compared to 
other regions. This suggests a more pronounced fluctuation in tail risk 
within the South Australian market. Additionally, the skewness of the 
tail risk variables indicates that negative tail risks are generally nega
tively skewed, while positive tail risks tend to be positively skewed. The 
kurtosis values highlight that all tail risk measures exhibit a fat-tailed 
distribution, suggesting a higher likelihood of extreme outcomes. 
Lastly, the application of the Elliott-Rothenberg-Stock (ERS) unit-root 
test across all variables confirms their stationarity.

Figs. 4 reveals correlations in negative and positive tail risks within 
Australian regional markets. Fig. 4a shows that negative tail risks are 
positively correlated, indicating simultaneous movements across mar
kets, but with varying strengths. The lowest correlations are between 
Tasmania (TA) and Queensland (QLD) at 0.06, and Tasmania (TA) and 
New South Wales (NSW) at 0.14. In contrast, the highest correlations are 
between Victoria (VIC) and South Australia (SA) at 0.56, and Victoria 
(VIC) and Tasmania (TA) at 0.35. Similarly, Fig. 4b shows linkages of 
positive tail risks, with the weakest correlation between Tasmania (TA) 
and Queensland (QLD) at 0.07, and the strongest between South 
Australia (SA) and Victoria (VIC) at 0.6. These varying correlation 
magnitudes across both negative and positive tail risks highlight the 
complex risk dynamics and interdependencies within Australia’s 
regional electricity markets.

Estimating tail risk using the 5 % and 95 % Conditional Autore
gressive Value-at-Risk (CAViaR) model highlights the urgent need to 
examine tail risk connectedness in Australian regional electricity mar
kets, especially following global events like the Global Financial Crisis, 
the COVID-19 pandemic, and the Russia-Ukraine conflict. Our analysis 
reveals significant regional variations in risk exposure, with South 
Australia and Victoria notably more vulnerable, and intricate risk cor
relation patterns emphasizing the importance of understanding these 
dynamics. These findings underscore the necessity of adopting advanced 
risk management strategies to handle the complexities of tail risk 
connectedness. Strategies include dynamic hedging to adapt to market 
fluctuations and using tailored financial instruments like weather de
rivatives or catastrophe bonds to mitigate sector-specific risks such as 
natural disasters. Additionally, employing stress testing and scenario 
analysis can help utilities prepare for potential crises, while incorpo
rating machine learning for predictive analytics enhances the detection 
and management of emerging risks.

5.2. Averaged tail risk connectedness

In this section, we employ the Time-Varying Parameter Vector 
Autoregression (TVP-VAR) approach to analyse the connectedness of tail 
risks within the Australian regional electricity markets over our sample 
period. The analysis, as detailed in Tables 3 and 4, reveals the average 
measures of connectedness for both negative and positive tail risks. The 
Total Connectedness Indices (TCIs) for negative and positive tail risks 
are found to be 27.13 % and 29.97 %, respectively. These results suggest 
a significant level of interconnectedness, where, on average, 27.13 % of 
a market’s negative tail risk and 29.97 % of its positive tail risk can be 
attributed to historical variations in the tail risks of other markets in the 
network. This highlights the notable influence of past tail risk events 
across the markets, underscoring the importance of considering the 
dynamic and interdependent nature of risk factors in the regional elec
tricity market landscape.

Total Connectedness Indices (TCIs) reveal an asymmetry in the 
transmission of positive and negative tail risks across the network. The 
TCI for positive tail risk is 29.87 %, about 11 % higher than the negative 
tail risk TCI at 27.13 %. This suggests that significant spikes in electricity 
prices are more readily transmitted throughout the network than sig
nificant drops. This asymmetrical transmission has important implica
tions for risk management and policy formulation. It indicates that 
market infrastructure and regulations may more efficiently propagate 
upward price pressures rather than mitigate them, potentially leading to 
increased volatility and risk exposure during price surges. Understand
ing this asymmetry is crucial for developing balanced risk management 
strategies that address both sharp price increases and decreases. This 
insight underscores the need for targeted interventions and adaptive 
policies to ensure market stability and protect against the asymmetric 
propagation of tail risks.

The detailed analysis of tail risk connectedness among Australian 
regional electricity markets uncovers significant heterogeneity in the 
extent of spillover effects across different regions. Through Tables 3 and 
4, it becomes evident that the interconnectedness of tail risks varies 
markedly from one market to another, indicating the asymmetrical 
impact of risk factors across the network. Specifically, Tasmania (TA) 
stands out for its lower level of connectedness within the network. Ta
bles 3 and 4 quantitatively demonstrate this by showing that only 17.24 
% (21.35 %) of Tasmania’s negative (positive) tail risk is attributable to 
historical fluctuations in the negative tail risks of other markets. 
Furthermore, Tasmania’s contribution to the network total negative 
(positive) tail risk is similarly modest, at 16.43 % (17.77 %). This sug
gests that Tasmania’s market is relatively isolated in terms of negative 
tail risk spillovers, implying a degree of resilience or decoupling from 
broader market dynamics.

Tasmania’s minimal dependency on fossil fuels significantly con
tributes to its lower connectivity with other Australian states regarding 
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tail risk transmission in the energy market.6 Tasmania’s minimal reli
ance on fossil fuels contributes to its lower tail risk connectivity with 
other Australian states in the energy market, primarily due to its 
dependence on renewable hydropower. Firstly, Tasmania is insulated 
from global oil and gas price volatility caused by geopolitical tensions 
and supply disruptions. Regions reliant on fossil fuels are more exposed 
to these risks, but Tasmania’s renewable infrastructure reduces its sus
ceptibility to such economic shifts, lowering its tail risk interconnec
tedness with other regions. Secondly, hydropower offers stable and 
predictable energy generation, leading to fewer extreme price spikes or 
dips that could transmit tail risk to other states. In contrast, fossil fuel- 
dependent regions may experience abrupt cost increases when global 

fuel prices rise, resulting in higher tail risk spillovers due to synchro
nized price shocks. Lastly, Tasmania’s geographic isolation and the 
limited capacity of the Basslink interconnector decouple its market dy
namics from mainland Australia. While the interconnector facilitates 
energy trade, Tasmania’s self-sufficiency reduces the need for substan
tial imports or exports, limiting its exposure to market fluctuations in 
other states and further reducing potential tail risk transmission.

Furthermore, the absence of a robust electricity futures market for 
Tasmania significantly contributes to its lower tail risk connectivity with 
other Australian states.7 Unlike other regions, Tasmania lacks a well- 
developed platform for trading electricity futures and forward 

Fig. 2. Value-at-risk (5 %) (Negative tail risk) using CAViaR approach. 
Note: This graph shows the time-varying negative tail risks of the selected regional electricity markets in Australia for the period between 01 January 2006 and 04 
February 2024.

6 See Appendix 2A for the power generation by fuel sources of different 
Australian regions.

7 In Australia, ASX Electricity Derivatives (including futures) are listed for 
trading on the Australian state regions of NSW, VIC, QLD and SA. See, https 
://www.asx.com.au/markets/trade-our-derivatives-market/overview/ener 
gy-derivatives/electricity
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contracts. This deficiency limits the ability of market participants to 
hedge against future price fluctuations, reducing speculative trading and 
financial interconnectedness with other states.

In regions where electricity futures markets are active, such as 
Queensland, Victoria, and New South Wales, these financial instruments 
enable participants to manage risk by locking in prices for future de
livery.8 This activity not only facilitates greater liquidity but also fosters 
a network of financial relationships among market participants across 
different states. Consequently, any significant market event or price 
shock can propagate through these financial channels, increasing the 
likelihood of tail risk spillovers.

Tasmania’s lack of an electricity futures market means that its energy 
transactions are predominantly confined to the spot market and long- 
term bilateral agreements. These arrangements are typically localized 

and involve fewer external parties, limiting the state’s exposure to the 
broader national market’s financial dynamics. The absence of forward 
contracts and hedging opportunities makes it less attractive for external 
retailers and generators to enter the Tasmanian market due to the higher 
risk associated with unhedged price volatility.

In stark contrast, Victoria (VIC) exhibits the highest degree of 
interconnectedness with the rest of the market network. According to 
Tables 3 and 4, a substantial 36.1 % (39.66 %) of Victoria’s negative 
(positive) tail risk originates from other markets, and it contributes an 
even larger 40.26 % (42.43 %) to the network’s aggregate negative 
(positive) tail risk. This prominent role underscores Victoria’s signifi
cant influence on, and vulnerability to, the broader market’s risk land
scape. Other states such as New South Wales (NSW) and South Australia 
(SA) display high levels of integration in terms of negative tail risk 
spillovers. NSW, for instance, sees 34.89 % (33.85 %) of its negative tail 
risk stemming from the network, while contributing 27.1 % (34.09 %) 
back to it. SA’s figures are similarly telling, with 27.88 % (32.25 %) of its 
negative (positive) tail risk coming from the network and a significant 

Fig. 3. Value-at-risk (95 %) (Positive tail risk) using CAViaR approach. 
Note: This graph shows the time-varying positive tail risks of the selected regional electricity markets in Australia for the period between 01 January 2006 and 04 
February 2024.

8 See Australian Electricity Market Overview: Energy Derivative Financial 
Year 2023: https://www.asxenergy.com.au/products/electricity_futures
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31.82 % (33.33 %) contribution to the network’s total negative (posi
tive) tail risk. These disparities in tail risk connectedness underscore the 
complex web of risk interdependencies within Australian regional 
electricity markets. Markets like VIC, NSW, and SA act as key nodes in 
the network’s risk dynamics, significantly impacting the overall tail risk 

landscape due to their high degree of connectedness. Conversely, Tas
mania’s relatively isolated position regarding risk spillovers reveals 
unique characteristics and suggests different risk management needs 
within the network.

The results in Tables 3 and 4 highlight the intricate dynamics of 

Table 2 
Descriptive statistics of value-at-risk series.

Panel A. Negative tail risk (CAViaR 5 %)

NSW QLD SA VIC TA

Mean � 0.138 � 0.202 � 0.312 � 0.201 � 0.191
Variance 0.01 0.029 0.061 0.042 0.03
Skewness � 2.45 � 4.63 � 3.34 � 4.74 � 4.47
Kurtosis 8.39 31.80 15.20 34.92 35.22
JB 24715*** 287060*** 72232*** 342654*** 345634***
ERS � 8.472*** � 25.10*** � 19.46*** � 18.96*** � 17.63***
Q(10) 28868*** 4879*** 6085*** 8008*** 7446***
Q(20) 25671*** 2162*** 3581*** 3125*** 3257***

Panel B. Positive tail risk (CAViaR 95 %)

NSW QLD SA VIC TA

Mean 0.141 0.178 0.324 0.238 0.2
Variance 0.032 0.042 0.09 0.068 0.037
Skewness 5.197 4.369 3.031 3.837 4.204
Kurtosis 38.64 28.56 12.60 22.24 30.73
JB 419124*** 233529*** 51171*** 144909*** 265728***
ERS � 23.09*** � 23.509*** � 19.88*** � 15.96*** � 19.38***
Q(10) 6887*** 6011*** 9357*** 13985*** 9267***
Q(20) 2868*** 2432*** 5427*** 6617*** 4202***

Note: This table reports the descriptive statistics of negative and positive tail risks of Australian regional electricity markets between January 01, 2006, to February 04, 
2024. Negative and positive tail risks are computed based on the CAViaR model with the confidence level of 95 % (α = 5%) and 5% ((α = 95%), respectively. LB-Q(10) 
and LB-Q(20) represent the Ljung-Box Q-statistics up to the 10th and 20th order autocorrelation. Jarque-Bera statistics indicate the test for the normality of sample 
data. ERS test represent the Elliot, Rothenberg, and Stock’s (1996) unit root test. *** denotes the cases where the null hypothesis of no autocorrelation (for LB Q test), 
and normal distribution (for JB test), and a presence of a unit root (for ERS test) is rejected at the 1 % significance level.

Fig. 4. Correlation matrix of CAViAR. 
Note: This graph shows the matrix of pair-wise Pearson correlation coefficients between the negative (positive) tail risks of the selected regional electricity market in 
Australia for the period between 01 January 2006 and 04 February 2024.
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pairwise tail risk spillovers among Australian regional electricity mar
kets, revealing significant variability in the strength of these connections 
across different states.9 Understanding the underlying factors contrib
uting to this variability is crucial for interpreting the risk landscape and 
developing targeted risk management strategies. The most notable 
relationship exists between South Australia (SA) and Victoria (VIC), 
where they exhibit the highest levels of mutual tail risk spillover. His
torical data shows that Victoria’s negative tail risk variations account for 
18.66 % of SA’s negative tail risk, with a reciprocal contribution of 19.2 
% from SA to Victoria. For positive tail risks, 19.77 % of SA’s positive tail 
risk is influenced by Victoria, and SA impacts Victoria’s positive tail risk 
by 19.28 %. This significant two-way connection underscores a deep 
interdependency between these markets, which can be attributed to 
several key characteristics.

First, SA and VIC are physically interconnected through high- 
capacity transmission lines, notably the Heywood and Murraylink 
interconnectors. This physical connectivity allows substantial electricity 
flow between the two states, meaning that disruptions or shocks in one 
market can directly impact the other, leading to synchronized risk 
profiles. The ease of electricity transfer facilitates immediate responses 
to supply and demand fluctuations, making both markets highly sensi
tive to each other’s operational conditions.

Second, both SA and VIC underwent early privatization of their 
electricity sectors—VIC between 1995 and 1997 and SA in 1999.10 This 
shift introduced private ownership and a more commercially driven 

approach to electricity generation and supply, fostering competitive 
market environments. The competitive pressures may lead to similar 
investment decisions, pricing strategies, and risk management practices. 
As market participants in both states respond to comparable incentives 
and market signals, this can contribute to higher tail risk connectedness.

Third, both states have aggressive renewable energy targets and have 
integrated significant amounts of wind and solar power into their grids. 
This reliance on renewable energy sources, which are variable and 
weather-dependent, can introduce volatility into the electricity supply. 
Policy changes or external factors affecting renewable energy can 
simultaneously impact both states, amplifying the spillover of tail risks. 
For instance, a sudden drop in wind generation due to weather changes 
can affect supply levels in both markets, leading to price spikes and 
increased market stress.

Lastly, several energy companies operate in both SA and VIC, 
meaning that financial or operational issues within these companies can 
affect both markets.11 Corporate strategies, investment decisions, and 
risk exposures are thus more likely to have cross-border impacts. If a 
major energy provider faces financial difficulties, the repercussions can 
resonate in both states, influencing market confidence and stability.

The interaction between New South Wales (NSW) and Queensland 
(QLD) also demonstrates significant cross-market tail risk transmission, 
albeit to a lesser extent than the SA-VIC pair. Negative tail risk spillovers 
from NSW influence QLD’s risk profile by 12.46 %, with QLD recipro
cating at 14.83 %. For positive tail risks, NSW contributes 13.92 % to 
QLD, and QLD impacts NSW by 14.06 %. Factors contributing to this risk 
transmission include their reliance on similar energy sources. Both states 
heavily depend on black coal for electricity generation, alongside sub
stantial investments in rooftop solar and large-scale solar farms. Shared 
exposure to coal price fluctuations, supply chain disruptions, and solar 
generation variability due to weather conditions can lead to synchro
nized risk profiles.12

Additionally, NSW and QLD are connected through the Queens
land–New South Wales Interconnector (QNI), facilitating electricity flow 
between the states. This interconnection allows market shocks or 
stresses in one state to propagate to the other. Operating under com
parable regulatory frameworks and market rules within the National 
Electricity Market (NEM), both states may respond similarly to policy 
changes, affecting market stability and risk. For example, a policy shift 
affecting coal-fired power stations could simultaneously impact elec
tricity prices and supply in both NSW and QLD.

In contrast, the lowest levels of tail risk transmission are found be
tween QLD and other states such as TAS, SA, and VIC. These interactions 
exhibit minimal tail risk spillover, indicating a degree of isolation or 
decoupling. Reasons for this reduced interconnectedness include 
geographical separation and limited physical interconnections. QLD is 
geographically distant from SA and TAS, with no direct transmission 
lines connecting them. The absence of physical interconnections means 
that electricity cannot flow directly between these states, reducing the 
potential for immediate risk spillovers.

Moreover, differing energy mixes contribute to this decoupling. TAS 
is predominantly reliant on hydroelectric power and thus has an energy 
profile that is less susceptible to the same risks affecting QLD’s coal and 
solar-based generation. SA and VIC, with higher proportions of wind and 
solar energy, face different operational challenges and market dynamics 
compared to QLD. Variations in state-specific regulations, renewable 
energy targets, and market incentives can lead to differing market be
haviours. For instance, TAS operates under unique hydrological condi
tions affecting hydroelectric generation, which are not directly related 
to the coal and solar dynamics in QLD. Furthermore, fewer energy 

Table 3 
Averaged connectedness table of negative tail risk.

NSW QLD SA VIC TA From

NSW 65.11 14.83 4.79 11.36 3.9 34.89
QLD 12.46 80.47 2.83 2.52 1.72 19.53
SA 3.39 1.86 72.12 18.66 3.97 27.88
VIC 8.1 1.96 19.2 63.9 6.84 36.1
TA 3.16 1.36 5 7.72 82.76 17.24
To 27.1 20.01 31.82 40.26 16.43
NSI � 7.78 0.48 3.95 4.17 � 0.81
TCI 27.13

Note: This table reports the averaged connectedness indices across the selected 
electricity markets, estimated based on TVP-VAR connectedness approach using 
negative tail risk series. NSI denotes Net Spillover Index. TCI indicates Total 
Connectedness Index.

Table 4 
Averaged connectedness table of positive tail risk.

NSW QLD SA VIC TA From

NSW 66.15 14.06 5.06 10.98 3.76 33.85
QLD 13.92 77.26 3.45 3.33 2.05 22.74
SA 4.96 2.95 67.75 19.77 4.57 32.25
VIC 9.94 3.05 19.28 60.34 7.39 39.66
TA 5.26 2.19 5.55 8.35 78.65 21.35
To 34.09 22.24 33.33 42.43 17.77
NSI 0.23 � 0.5 1.08 2.77 � 3.58
TCI 29.97

Note: This table reports the averaged connectedness indices across the selected 
electricity markets, estimated based on TVP-VAR connectedness approach using 
positive tail risk series. NSI denotes Net Spillover Index. TCI indicates Total 
Connectedness Index.

9 The off-diagonal elements for each column represent pairwise spillover to 
other variables, and the off-diagonal elements for each row represent pairwise 
spillover received from other variables. Pairwise spillover indicates how a 
shock causes many variations in the row variable’s forecast error to the column 
variable.
10 Victoria and South Australia are the only regions where electricity networks 

are 100 % privately owned. Source: https://www.energynetworks.com.au 
/resources/fact-sheets/guide-to-australias-energy-networks/

11 For example, the “big three”, including Origin Energy, AGL Energy and 
EnergyAustralia, are major electricity companies in both SA and VIC.
12 See Appendix A2 for power generation by fuel sources in Australian 

regions.

S.D. Pham et al.                                                                                                                                                                                                                                 Energy Economics 141 (2025) 108123 

10 



companies operate across these state pairs, reducing the likelihood of 
corporate-level risks spilling over between markets.13 The lack of 
overlapping market participants means that financial or operational is
sues are more contained within individual states, limiting cross-border 
impacts.

Fig. 5 visualizes the tail risk connectedness across Australian elec
tricity markets, with Fig. 6a and b depicting networks for negative and 
positive tail risks, respectively. Node size reflects each market’s overall 
contribution to net tail risk spillovers within the network. Node colour 
differentiates market roles: dark blue indicates net transmitters of 
shocks, while yellow represents net recipients. In Fig. 5a, Victoria (VIC), 
South Australia (SA), and Queensland (QLD) are key net transmitters of 
negative tail risk within the network, with VIC being the most influen
tial, followed by SA. Conversely, New South Wales (NSW) and Tasmania 
(TA) are primary net recipients, with NSW serving as the main absorber 
of negative tail risk. The graphical representation highlights strong risk 
transmission channels between VIC and SA, and between NSW and QLD, 
confirming earlier analyses.

Transitioning to positive tail risk dynamics in Fig. 5b, a shift in roles 
among regional markets becomes apparent under the influence of 
extreme positive shocks. NSW, for instance, reverses its stance to 
become a net distributor of positive tail risks, marking a significant 
deviation from its previous position as a net recipient. Conversely, QLD 
shifts towards becoming a net recipient, diverging from its role as a 
transmitter. Remarkably, Tasmania (TA) assumes the position of the 
most pronounced net receiver of positive tail risks within this context. 
Consistently, VIC maintains its role as the foremost distributor of posi
tive tail risks, underscoring its critical influence across both spectrums of 
tail risk connectedness.

This persistent role of Victoria (VIC) as the most crucial net trans
mitter of both negative and positive tail risks can be linked to its highly 
liquid electricity futures market.14 The liquidity in VIC’s futures market 
attracts a diverse array of market participants, including generators, 
retailers, and financial institutions, who engage in active trading and 
hedging activities. This vibrant trading environment not only facilitates 
efficient price discovery and risk management but also enhances the 
transmission of shocks—both adverse and favourable—throughout the 
National Electricity Market (NEM). The abundance of futures contracts 
allows participants to swiftly adjust their positions in response to market 
developments, which can amplify the spread of tail risks to other 
regions.

5.3. Dynamics of tail risk connectedness

Building on our previous analysis of averaged tail risk connectedness 
in Australian regional electricity markets, we now examine their dy
namics over time. Fig. 6 illustrates the dynamic Total Connectedness 
Indices (TCIs) for negative and positive tail risks within the National 
Electricity Market (NEM), depicted by blue and orange lines, respec
tively. The TCIs are highly variable, diverging from the average levels of 
27.13 % (negative) and 29.97 % (positive), and fluctuate between 
approximately 13 % and 77 % over the observed period, starting at 
about 55 % in January 2006. This wide range indicates substantial 
volatility in the market’s risk environment. Key observations include a 

general synchronicity in the movement of the indices, suggesting that 
both types of tail risks often mirror each other’s behaviour, reflecting a 
cohesive risk landscape within the NEM. However, notable divergences 
occur during periods like 2012 to 2018 and early 2021, where the gap 
between positive and negative TCIs widens. These intervals highlight 
times of heightened differentiation in market sentiment or external in
fluences that affect the perception and manifestation of risk differently. 

Fig. 5. Networks of tail risk connectedness. 
Note: These graphs illustrate the network connectedness across the selected 
electricity markets. Fig. 5a and b describes the network connectedness for 
negative and positive tail risks, respectively. The node colour represents the 
role of net transmitter (dark blue)/ receiver (yellow) of tail risks. The node size 
is determined by the magnitude of the net tail risk spillover of each asset. The 
thickness of the arrow edge indicates the strength of pairwise directional 
spillover. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)13 For instance, AGL Energy has substantial generation assets and retail op

erations in New South Wales (NSW), Victoria (VIC), and South Australia (SA), 
but its presence in QLD is more focused on retail, with minimal generation 
assets, and it has little to no operations in TAS. See, chrome-extension:// 
efaidnbmnnnibpcajpcglclefindmkaj/https://www.agl.com.au/content/dam/ 
digital/agl/documents/about-agl/investors/2022/220819-agl-energy-annual- 
report-2022.pdf.
14 Trading volume of electricity futures in Queensland was the highest among 

regional states. See, https://www.aer.gov.au/industry/registers/charts/quarte 
rly-base-futures-prices-and-volume-traded.
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Outside these periods, the distinctions between positive and negative 
tail risks diminish, indicating a return to a more uniform risk trans
mission profile.

In addition, the analysis of the time-varying TCIs reveals that fluc
tuations in the connectedness indices are intricately linked to a myriad 
of domestic and international occurrences. Specifically, events that are 
unique to a country—highlighted by the Australia Energy Regulator as 
involving unusually high demands for energy, bottlenecks in inter
connector capacities, or significant power generation shortfalls—have a 
pronounced effect on these indices.15 Examination of spillover plots 
distinctly shows a reactive pattern where the TCIs exhibit noticeable 
surges in response to these critical market events. This reaction signals 
an amplified risk of simultaneous significant price fluctuations in 
various regional electricity markets, indicating a heightened state of 
inter-market interconnectedness. Instances like the pronounced TCI 
spikes at the end of 2009, which corresponded with operational chal
lenges and strategic bidding by generators in New South Wales (NSW), 
exemplify this correlation. Similarly, the elevated TCI levels witnessed 
in the early part of 2023 can be attributed to key events such as the 
negative weekly pricing in Victoria (VIC) or the phasing out of Liddell 
from the NEM operations.16

Two recent regulatory changes within the National Electricity Mar
ket (NEM)—namely, the 5-min settlement rule implemented in October 
2021 and the introduction of fuel price caps in December 2022—have 
triggered noticeable responses in the time-varying Total Connectedness 
Index (TCI) for negative and positive tail risks. The 5-min settlement rule 
was introduced to enhance market efficiency by aligning the financial 
settlement interval with the operational dispatch interval, aiming for 
more accurate price signals and improved market performance. The fuel 

price caps were introduced to mitigate the impact of escalating fuel costs 
on electricity prices, aiming to protect consumers and ensure stability 
within the market.

The implementation of the 5-min settlement rule significantly 
impacted both negative and positive tail risk TCIs. Initially, the negative 
tail risk TCI rose due to uncertainty as market participants adapted to 
the new mechanism, indicating heightened volatility. Over time, it sta
bilized as confidence improved and volatility reduced. The positive tail 
risk TCI also saw an immediate increase as participants exploited more 
precise price signals for gains, followed by a gradual decline as the 
market adjusted and initial opportunities diminished.

The introduction of fuel price caps in December 2022 led to signifi
cant changes in both TCIs. Contrary to expectations, the negative tail 
risk TCI sharply increased due to concerns over potential supply con
straints and market distortions from capped prices, leading to height
ened uncertainty and volatility. Simultaneously, the positive tail risk TCI 
also increased, indicating that participants found new opportunities for 
gains within the constrained price environment. The sustained elevation 
suggests participants effectively navigated the new regulatory land
scape, adjusting strategies to capitalize on the new conditions.

In summary, regulatory changes within the NEM, specifically the 5- 
min settlement rule and fuel price caps, have had distinct impacts on 
negative and positive tail risk TCIs. The 5-min settlement rule initially 
increased volatility but eventually led to a more stable market as par
ticipants adapted. Conversely, fuel price caps resulted in an immediate 
and sustained increase in both tail risk TCIs, highlighting complex 
market responses to such interventions. These developments underscore 
the dynamic nature of the NEM and the need for continuous monitoring 
and adaptation to regulatory changes to understand and manage 
evolving market risks.

Extending beyond the confines of domestic market incidents, the 
analysis also draws attention to the global landscape, where significant 
international crises have left their mark on the energy markets. Events of 
global magnitude, including the Global Financial Crisis (GFC), the 
sweeping COVID-19 pandemic, and the tumultuous Russia-Ukraine 
conflict, are mirrored in the fluctuations observed in the TCI readings. 
These periods are characterized by noticeably elevated TCIs, which are 
indicative of the far-reaching impacts these crises have had on the 

Fig. 6. Time-varying connectedness index of negative and positive tail risks. 
Note: This figure shows the time-varying Total Connectedness Index (TCI) for negative (blue) and positive (orange) tail risks, during the research period.

15 The full list of critical events in the NEM from 2006 to 2023 is synthetized 
from the State of Energy Market reports issued by Australia Energy Regulator 
from 2006 to 2023. It is presented in Appendix AX.
16 Australia Gas Light Company (AGL) closed Liddell Power Station, a large 

coal-burning power stations in April 2023. This closure has pushed up energy 
prices in Australia. Source: https://reneweconomy.com.au/energy-oligopoly- 
turns-screws-on-customers-after-liddell-exit-and-renewable-pause/.
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dynamics of energy supply, demand, and pricing. The GFC, despite not 
plunging the Australian economy into a recession, had far-reaching 
negative effects across various sectors, including the pivotal energy 
sector.17 The narrative further unfolds with the onset of the COVID-19 
pandemic and the Russia-Ukraine conflict, during which there was a 
pronounced intensification in the transmission of tail risk, evidenced by 
a sharp rise in TCIs during the second quarter of 2021, coinciding with a 
surge in COVID-19 cases and the implementation of lockdown measures 
by regional governments.18 The early stages of 2022, marked by the 
escalation of the Russia-Ukraine war, also saw TCI levels remaining at 
elevated levels, highlighting the significant disruption caused by 
geopolitical conflicts on global energy markets and, by extension, the 
transmission of tail risk within the NEM.

Overall, the analysis of time-varying TCIs highlights the NEM’s 
vulnerability to tail risk transmission due to shifts in local market con
ditions and global geopolitical and economic factors. This examination 
underscores the NEM’s sensitivity to various disturbances and illumi
nates the complex interplay governing its risk dynamics. It emphasizes 
the necessity for adaptive, forward-thinking risk management strategies, 
urging stakeholders to consider a wide spectrum of potential impacts.

Our analysis extends to the dynamic net spillover indices across 
regional markets within the NEM. Fig. 7 illustrates temporal fluctuations 
of total net spillover indices for each of the five regions, corresponding 
to the “NSI” row from Tables 3 and 4. This visualization yields several 
key insights. Firstly, the intensity and flow of net tail risk spillovers are 
dynamic and vary over time. For instance, while average connectedness 
analysis shows Victoria (VIC) predominantly as a net source of both 
negative and positive tail risks, the time-varying plot reveals that VIC 
alternates between being a net recipient and a net distributor. This 
shifting role is consistent across all regions, highlighting the fluid nature 
of risk transmission within the NEM and underscoring the critical role 
each state plays in both distributing and absorbing tail risk spillovers, 
emphasizing the network’s interconnectedness and mutual reliance. 
Secondly, despite short-term variances between the net spillover indices 
(NSIs) for negative and positive tail risks, there is a noticeable alignment 
in their long-term trends. This alignment suggests a deeper structural 
similarity in how these tail risks are assimilated across the network over 
time. It indicates that, despite immediate differences in responses to 
specific risk types, the regional markets within the NEM eventually 
converge towards a unified approach in handling both negative and 
positive risk spillovers.

5.4. Frequency decomposition of tail risk connectedness

To deepen our understanding of how tail risk is transmitted among 
Australian regional electricity markets across various time scales, we 
employ the frequency connectedness approach by Baruník and Křehlík 
(2018). This method enables us to dissect the time-varying total 
connectedness indices (TCI) depicted in Fig. 6 into distinct time hori
zons, specifically targeting short-, medium-, and long-term effects. The 
resulting analysis, illustrated in Fig. 8, categorizes these effects into 
periods of 1 day for short-term, 2 to 5 days for medium-term, and over 5 

days for long-term connectedness. This frequency-domain connected
ness analysis is crucial as it reveals the dynamics of tail risk spillover 
across different temporal scales, providing insights into the persistence 
and propagation of risks within the market. Understanding these tem
poral dynamics is essential for developing suitable risk management 
strategies that are effective at mitigating impacts over varying dura
tions, thereby enhancing the resilience of the electricity market infra
structure against potential disruptions.

Fig. 8 delineates the time-frequency analysis of the Total Connect
edness Indices (TCI) for negative and positive tail risks across Australian 
regional electricity markets, as shown in panels A and B respectively. 
This analysis yields several notable observations that enrich our un
derstanding of the dynamics of tail risk connectedness. Primarily, it is 
observed that the long-term TCI consistently represents the largest 
component of the total TCI, suggesting that the spillover of tail risk has a 
more pronounced and sustained impact over longer durations (e.g., 
longer than a week). This is followed by medium-term TCI, with short- 
term TCI contributing the least. This pattern persists throughout the 
entire research period, highlighting a characteristic tendency for risks in 
these markets to be more deeply interconnected over extended periods 
rather than day-to-day fluctuations.

Moreover, the analysis reveals that long-term TCI exhibits the 
highest level of volatility, oscillating significantly over the observed 
period. Specifically, for negative tail risks (Fig. 8a), the long-term TCI 
fluctuates between 5 and 45, while for positive tail risks (Fig. 8b), it 
ranges from 7 to 57. This volatility underscores the variable nature of 
long-term risk transmission across Australian regional electricity mar
kets, likely influenced by broader economic cycles, policy changes, or 
significant external events. In contrast, the medium-term TCI exhibits 
less volatility, with values ranging between 1.5 (1) and 15 (19) for 
negative (positive) tail risks, suggesting a moderate level of fluctuation 
that reflects more transient market conditions. The short-term TCI shows 
the least variability, ranging from 0.3 (0.1) to 5 (4.5) for negative 
(positive) tail risks, indicating that immediate tail risk spillover effects 
are relatively minor and less impactful on the overall risk landscape.

These observations indicate that tail risk connectedness in Australian 
regional electricity markets varies significantly across time horizons and 
market conditions. The predominance and volatility of long-term 
connectedness highlight the importance of structural market charac
teristics and external economic influences. Policymakers and market 
operators must adopt long-term strategic planning and risk management 
to address prolonged risk exposures, while also implementing respon
sive practices for shorter-term spillovers. A dynamic, comprehensive 
risk management approach across various time scales is essential to 
ensure the resilience and stability of the electricity market against both 
immediate and prolonged challenges, supporting efficient operation and 
sustainable development amid evolving conditions.

5.5. Drivers of the connectedness indices

5.5.1. Analysis for the whole sample period
Given the observed significant fluctuations and volatility in tail risk 

connectedness measures, it’s imperative for participants in the NEM to 
closely monitor their tail risk through these pivotal drivers. To delineate 
the factors influencing these connectedness indices, we implement the 
model as outlined below: 

TCIt = β + γXt� 1 + εt (10) 

where TCIt is the dynamic total connectedness index (TCI), which is 
computed for the negative and positive tail risks; β denotes the intercept; 
εt represents the error term; and Xt� 1 demonstrates a vector of five 
explanatory variables.

17 Numerous effects of the Global Financial Crisis (GFC) on Australia’s econ
omy have been recorded. These include a significant depreciation of the 
Australian dollar, dropping from 0.98 USD in July 2008 to 0.6 USD by October 
2008. Additionally, there was a sharp decline in the total value of household 
assets, ranging between 13 % and 14 %. The period also saw a reduction in 
household consumption and a rise in unemployment rates. Source: https:// 
www.aph.gov.au/binaries/house/committee/itrdlg/financialcrisis/report/gfc 
%20final%20report.pdf.
18 Victoria announced a state-wide lockdown on 26 May 2021, followed by 

Greater Sydney and parts of New South Wales on 25 June 2021, Greater Mel
bourne and parts of Victoria on 15 July 2021. Source: https://www.aph.gov. 
au/Parliamentary_Business/Committees/Senate/COVID-19/COVID19/Report/ 
section?id=committees%2Freportsen%2F024920%2F79485.
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dynamics, affecting demand, pricing, and volatility. Monitoring eco
nomic indicators is thus essential for anticipating and managing po
tential impacts on the electricity market. Karali and Ramirez (2014) also 

reveal that energy commodities tend to experience increased volatility 
as the term spread contracts, highlighting the interconnectedness of 
economic indicators with energy market behaviour.

We apply Ordinary Least Squares (OLS) estimation to Eq. (10)

Fig. 8. Time-frequency decomposition of TCI.
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following Bouri et al. (2021a, 2021b), Ji et al. (2019), Tan et al. (2020), 
Abdullah et al. (2023a, 2023b).21 The results, adjusted for hetero
scedasticity using Newey and West’s (1987) robust standard errors, are 
detailed in Table 5, offering noteworthy insights into the dynamics of 
tail risk transmission. Overall, the significant adjusted R-squared values, 
which range from 13.01 % for the TCI of negative tail risk to 17.71 % for 
the TCI of positive tail risk, underscore the explanatory power of the 
independent variables in accounting for TCI fluctuations. The robust 
F-statistics further validate the model’s selection of independent 
variables.

For positive tail risk connectedness (Column 2), the implied oil 
volatility (OVX) has a significant and strong influence, with a positive 
and significant coefficient of 13.60. This indicates that fluctuations in 
the global crude oil market play a crucial role in amplifying extreme 
positive price movements in the Australian electricity markets. The 
significance of OVX aligns with the interconnectedness of global energy 
markets, where increases in oil price volatility can lead to higher pro
duction costs and, consequently, higher electricity prices. The global 
geopolitical risk index (GOPRX) also shows a significant positive effect 
on positive tail risks, as evidenced by a coefficient of 2.70. This suggests 
that heightened geopolitical tensions contribute to increased uncer
tainty and risk in the electricity markets, potentially due to concerns 
over energy security and supply chain disruptions. In addition, the risk 
aversion index (RAI) exhibits a pronounced impact on positive tail risk 
connectedness, with a coefficient of 17.03. This underscores the role of 
global investor sentiment in driving extreme positive price movements, 
where increased risk aversion leads to higher demand for energy com
modities as safe assets, pushing prices upward.

For negative tail risk connectedness (Column 1), the influence of 
global factors like OVX is not statistically significant, implying that in
ternational oil market volatility does not play a significant role in 
negative tail risk transmissions within the NEM. Similarly, the effects of 
GOPRX and RAI, while significantly positive, are less pronounced for 

negative tail risks. GOPRX has a coefficient of 2.48, and RAI has a co
efficient of 10.86. The less pronounced impacts might be explained by 
the fact that negative tail risks in the NEM are primarily driven by do
mestic factors, particularly structural oversupply and low net system 
demand events. The increasing penetration of inflexible base load plants 
and renewable energy sources like solar photovoltaic (PV) and wind 
power leads to periods of excess supply, especially during times of low 
demand (Mwampashi et al., 2021; Gonçalves and Menezes, 2022a, 
2022b).

Regarding domestic economic indicators, the implied volatility of 
the Australian stock market appears to have no significant effect on the 
tail risk connectedness indices, suggesting that domestic stock market 
volatility does not directly impact the transmission of tail risks within 
regional markets. However, the term spread (TERMSPR) yields signifi
cant insights; its negative coefficients in both models indicate that a 
narrowing term spread, which often signals a deteriorating economic 
outlook, markedly intensifies the transmission of tail risks across 
regional markets. This observation implies that economic conditions 
play a crucial role in the dynamics of risk transmission within the sector, 
with worsening economic forecasts potentially exacerbating the spread 
of tail risks.

In summary, these findings provide a comprehensive view of how 
global uncertainties, geopolitical risks, investor sentiment, and domestic 
economic conditions collectively influence the transmission of tail risks 
in the energy sector, offering valuable insights for policymakers, in
vestors, and market participants in developing strategies to mitigate 
these risks.

5.5.2. Heterogeneous impacts of drivers across different crisis periods
In this subsection, we extend the analysis of the drivers of tail risk 

connectedness indices by investigating their impacts over different crisis 
periods, including the Global Financial Crisis, the COVID-19 pandemic, 
and the Russia-Ukraine war. Extending the analysis of the drivers of tail 
risk connectedness indices in Australian regional electricity markets to 
include different crisis periods is essential for multiple compelling rea
sons. First, each crisis brings unique challenges and impacts on energy 
markets. The GFC highlighted financial and economic vulnerabilities, 
COVID-19 exposed the effects of global health emergencies on supply 
and demand, and the Russia-Ukraine conflict underscores geopolitical 
risks. Second, understanding the impact of various crises on tail risk 
connectedness enables policymakers and market operators to gauge the 
resilience of the energy sector. It provides insights into how prepared the 
market is for managing unforeseen shocks and stresses, guiding im
provements in risk management practices and infrastructure resilience. 
Third, Insights from crisis period analyses can inform the development 
of regulatory frameworks and policies tailored to safeguarding against 
the specific types of risks each crisis presents. Lastly, given the 
increasing integration of global markets, understanding the impact of 
international crises on Australian energy markets is crucial. It sheds light 
on global interdependencies and how external shocks can ripple through 
the energy sector, affecting supply, demand, and prices.

Following Abdullah et al. (2023a, 2023b), we choose the periods 
associated with the crisis periods as follows: the Global Financial Crisis 
from 18 July 2006 to 31 December 2011; the COVID-19 crisis from 01 
January 2020 to 31 December 2021; and the Russia-Ukraine conflict 
from 01 January 2022 to 16 March 2023. Panels A, B, and C of Table 6
give the estimation results of the Eq. (10) for the specified periods. The 
results show a heterogeneous impact over the sub-samples.

In Panel A, during the GFC, the analysis reveals that the implied 
volatility of crude oil (OVX) played a significant role in both negative 
and positive tail risk connectedness, with a notably stronger impact on 
positive tail risks. This period coincided with the rise of coal seam gas 
development in Australia, leading up to the LNG export industry around 
2014 (Simshauser and Nelson, 2015). The anticipation of LNG exports 
and increasing investment in coal seam gas heightened the sensitivity of 
the Australian energy markets to global oil price volatility, as reflected 

Table 5 
Determinants of tail risk connectedness.

TCI for negative tail risk 
(1)

TCI for positive tail risk 
(2)

OVX 4.63 
(2.83)

13.60*** 
(2.44)

GOPRX 2.48*** 
(0.63)

2.70** 
(0.83)

RAI 10.86*** 
(0.94)

17.03*** 
(2.13)

ASV � 3.41 
(2.13)

� 6.03 
(2.71)

TERMSPR � 6.37*** 
(1.71)

� 5.18** 
(1.64)

Intercept 39.45*** 
(11.03)

74.00*** 
(12.77)

R-squared 0.1301 0.1771
F-statistics 182.57 320.20***

Note: This table presents the regression results of Eq. (10) to investigate the 
effects of various global and domestic factors on the Total Connectedness Index 
(TCI) among Australian regional electricity markets for the whole research 
period. Eq. (10) is estimated using OLS estimation with t-statistics computed 
using Newey and West’s (1987) robust standard errors. ***, **, and * indicate 
statistical significance at 10 %, 5%, and 1% level, respectively.

21 To address potential endogeneity issues, we confirmed low multi
collinearity (all independent variables have VIF values around 3 or lower; see 
Table 2R) and included lagged dependent variables in Eq. (10) to minimize 
reverse causality. Reverse causality is unlikely, as tail risk transmission in the 
National Electricity Market (NEM) does not influence global factors like OVX, 
GOPRX, RAI, Australian stock market volatility, or interest rates.
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in OVX. This suggests that oil market volatility was a critical factor in 
driving tail risk spillovers in Australian electricity markets during this 
period.

Interestingly, global geopolitical risk (GOPRX) had minimal impact, 
indicating that the crisis’ effects were more directly tied to market 
volatility rather than geopolitical uncertainties. The Risk Aversion Index 
(RAI) and Australian stock market volatility (ASV) both significantly 
contributed to tail risk connectedness, particularly for negative tail risks, 
highlighting the influence of domestic market sentiment and stock 
market fluctuations. The negative association with the term spread 
(TERMSPR) across both types of tail risks suggests that economic ex
pectations and interest rate differentials were also key factors in shaping 
risk transmission during the GFC.

Throughout the COVID-19 pandemic, the determinants of tail risk 
connectedness exhibited different patterns compared to the GFC as 
evidenced in Panel B. OVX had an insignificant impact, highlighting that 
crude oil volatility was not a primary driver of tail risk spillovers during 
the pandemic. This can be attributed to low oil prices during this period, 
which led to low LNG and domestic gas prices. Additionally, there was 
high coal plant availability and rising renewable energy market shares, 
contributing to a stable domestic energy supply and reducing the 
sensitivity to global oil market volatility.22 Instead, GOPRX was a sig
nificant factor for both types of tail risks, reflecting the heightened 
impact of geopolitical risks in a globally interconnected crisis. RAI’s 
strong association with positive tail risks underscored the pandemic’s 
influence on investor sentiment, marking a shift from the GFC where risk 
aversion uniformly affected both tail risks. ASV remained influential, 
especially for positive tail risks, indicating ongoing sensitivity to do
mestic stock market volatility. The negative effect of TERMSPR, though 
less pronounced than during the GFC, continued to highlight economic 
outlook considerations.

In Panel C, during the Russia-Ukraine conflict, the OVX significantly 
affected negative tail risk connectedness, marking a stark contrast to its 
negligible influence during the COVID-19 pandemic. This period was 
notable in the NEM for an uncharacteristically high level of coal gen
eration plant failures, including prolonged outages at Kogan Creek, Loy 
Yang, and Bayswater power stations, and the partial closure of Liddell.23

Additionally, a La Niña weather event led to low solar output, resulting 

in an over-reliance on natural gas.24 Domestic gas prices, linked to 
global LNG markets in crisis due to the conflict, increased significantly. 
These factors heightened the sensitivity of the Australian electricity 
markets to global crude oil volatility, as reflected in OVX, thereby 
influencing negative tail risk connectedness.

GOPRX’s impact was observed mainly on positive tail risks, differing 
from its broad influence during the pandemic, indicating specific 
geopolitical risk perceptions affecting market optimism or pessimism. 
RAI’s mixed effects, particularly its negative association with positive 
tail risks, reveal complex investor sentiment dynamics during the war. 
The influence of ASV was more balanced across tail risks compared to its 
stronger effect on negative tail risks during the GFC and on positive tail 
risks during the pandemic. TERMSPR’s negligible impact marks a de
parture from its significant negative association in previous crises, 
suggesting changing dynamics in how economic expectations influenced 
tail risk connectedness.

Across all panels, the variation in determinants’ significance and 
impact on tail risk connectedness during different crises highlights the 
dynamic interplay between external shocks, market volatility, geopo
litical risks, and investor sentiment. While crude oil volatility (OVX) and 
domestic stock market fluctuations (ASV) consistently emerge as pivotal 
factors, the influence of global geopolitical risks (GOPRX) and risk 
aversion (RAI) varies, reflecting the unique contexts of each crisis. These 
insights underscore the complexity of tail risk transmission mechanisms 
in Australian regional electricity markets and emphasize the need for 
crisis-specific risk management and policy interventions.

5.6. Robustness checks

To ensure the robustness of our analysis, we employed both 1 % 
CAViaR (α = 1%) and 99 % CAViaR (α = 99%) to measure negative and 
positive tail risks, respectively. Subsequently, we recalculated the time- 
varying Total Connectedness Indices (TCIs) using these metrics to 
confirm the stability and reliability of our findings across different 
measures of tail risk. The recalculated TCIs, alongside those obtained 
using 5 % CAViaR and 95 % CAViaR from our baseline analysis, are 
presented in Appendix A4. The comparative figures in the appendix 
demonstrate a strong correlation between the newly computed TCIs and 

Table 6 
Determinants of tail risk connectedness across crisis periods.

Panel A. During GFC Panel B. During COVID-19 Panel C. During war

NTCI 
(1)

PTCI 
(2)

NTCI 
(3)

PTCI 
(4)

NTCI 
(5)

PTCI 
(6)

OVX 9.51*** 
(1.47)

16.05*** 
(1.60)

� 0.01 
(0.71)

0.31 
(0.85)

15.45*** 
(1.35)

2.27* 
(1.12)

GOPRX 0.01 
(0.68)

0.87 
(0.73)

1.53*** 
(0.35)

2.11*** 
(0.35)

0.91 
(0.62)

1.30* 
(0.58)

RAI 3.15* 
(1.41)

1.71 
(1.47)

0.97 
(0.59)

3.73*** 
(0.89)

0.56 
(2.85)

� 12.43** 
(3.92)

ASV 8.09*** 
(1.37)

3.30* 
(1.45)

2.69* 
(1.12)

7.12*** 
(1.31)

2.84* 
(1.53)

2.07 
(1.88)

TERMSPR � 2.70*** 
(0.40)

� 4.57*** 
(0.41)

� 1.82*** 
(0.48)

� 1.48** 
(0.49)

� 0.22 
(0.23)

0.27 
(0.23)

Intercept � 23.25*** 
(4.88)

� 35.97 
(5.25)

23.66*** 
(2.49)

29.97*** 
(3.02)

94.05*** 
(3.79)

46.94 
(3.08)

Adj. R-squared 0.2142 0.2471 0.0536 0.1531 0.3385 0.0996
F-statistics 63.86*** 78.19*** 9.03*** 17.86*** 62.16*** 7.38***

Note: This table presents the regression results of Eq. (10) to investigate the effects of various global and domestic factors on the Total Connectedness Index (TCI) 
among Australian regional electricity markets for sub-sample periods (i.e., crisis periods) including Global Financial Crisis (GFC), COVID-19, and Russia-Ukraine war. 
NTCI and PTCI stands for the TCI of negative tail risks, respectively. Eq. (10) is estimated using OLS estimation with t-statistics computed using Newey and West’s 
(1987) robust standard errors. ***, **, and * indicate statistical significance at 10 %, 5 %, and 1% level, respectively.

22 See, https://www.aer.gov.au/industry/registers/charts/gas-market-prices.
23 See, https://www.reuters.com/business/energy/australias-agl-energy-ext 

ends-victoria-power-station-outage-by-month-oct-2022-09-12/.

24 https://climateextremes.org.au/large-scale-climate-drivers-in-austr 
alia-2022/#:~:text=La%20Ni%C3%B1a%20conditions%20first%20began,per 
sisted%20through%20early%20winter%202022.
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