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Abstract

In an incomplete market setting with heterogeneous prior beliefs, we show that

public information can have a substantial impact on the ex ante cost of capital, trading

volume, and investor welfare. In a model with exponential utility investors and an asset

with a normally distributed dividend, the Pareto effi cient public information system

is the system which enjoys the maximum ex ante cost of capital, and the maximum

expected abnormal trading volume. The public information system facilitates improved

dynamic trading opportunities based on heterogeneously updated posterior beliefs in

order to take advantage of the disagreements and the differences in confidence among

investors. This leads to a higher growth in the investors’certainty equivalents and, thus,
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a higher equilibrium interest rate, whereas the ex ante risk premium on the risky asset

is unaffected by the informativeness of the public information system. In an effectively

complete market setting, in which investors do not need to trade dynamically in order

to take full advantage of their differences in beliefs, the ex ante cost of capital and the

investor welfare are both higher than in the incomplete market setting, but they are

independent of the informativeness of the public information system, and there is no

information-contingent trade.

Keywords: Heterogeneous Beliefs; Public Information Quality; Dynamic Trading;

Cost of Capital; Investor Welfare
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One of the things that microeconomics teaches you is that individuals are not

alike. There is heterogeneity, and probably the most important heterogeneity here

is heterogeneity of expectations. If we didn’t have heterogeneity, there would be

no trade. But developing an analytic model with heterogeneous agents is diffi cult.

—Ken Arrow, in D. Colander, R.P.F. Holt and J. Barkley Rosser (eds.), The

Changing Face of Economics. Conversations with Cutting Edge Economists. The

University of Michigan Press, Ann Arbor, 2004, p. 301.

1 Introduction

Financial markets are not complete, and investors in financial markets are not alike– both

in terms of preferences, wealth and beliefs. Acknowledging these facts, we develop a simple

analytical model with exponential utility investors, who have heterogeneous beliefs over

normally distributed dividends, which shows that the public information system plays a key

role for the investors’welfare, the asset prices, and for the trading volume in the financial

market. We show that the Pareto effi cient public information system is the system, which

enjoys the maximum ex ante cost of capital, and the maximum expected abnormal trading

volume. In an incomplete market, imperfect public information facilitates dynamic trading

opportunities based on heterogeneously updated posterior beliefs, which allow the investors

to better take advantage of their disagreements and their differences in confidence.

The vast majority of prior studies in the accounting and finance literature of the impact

of public information system choices, such as financial reporting regulation, on equilibrium

asset prices, trading volume, and investor welfare, recognize differences in preferences and/or

wealth, but assume that the investors’prior beliefs are identical, although their posterior

beliefs may vary due to differences in the information they have received (see, e.g., Harsanyi

1968). In complete markets, this assumption typically leads to so-called no-trade theorems

(see, e.g., Milgrom and Stokey 1982), implying that the theory cannot explain the significant

trading volume in actual financial markets, for example, around earnings announcements as

first documented by Beaver (1968), unless some unmodeled noise trading is injected into the

price system (see, e.g., Grossman and Stiglitz 1980, Hellwig 1980, and Kyle 1985).

But why should all investors have been born equal? Some investors may be more opti-

mistic or more confident in their estimates than others, for example, due to different DNA

profiles or past experiences which are completely unrelated to the uncertainty and informa-

tion in financial markets (see, e.g., Morris 1995, for a critical discussion of the common prior

assumption in economic theory). Moreover, despite significant financial innovations over the

last four decades, financial markets are probably still incomplete even if we allow for dynamic
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trading strategies, for example, due to individual idiosyncratic risks (see, e.g., Krueger and

Lustig 2010, and Christensen et al. 2011) or heterogeneous prior beliefs. In this paper, we

develop a simple equilibrium model with heterogeneous prior beliefs and incomplete markets

allowing us to study (in closed-form) the impact of public information system choices on

both equilibrium asset prices, trading volume, and investor welfare.

We compare the equilibrium in the incomplete market setting to the equilibrium in an

otherwise identical effectively complete market setting in which there exists a derivative

security specifically targeted towards the investors’ incentive to take speculative positions

based on their heterogeneity in beliefs. In that economy, the investors do not need to trade

dynamically in order to take full advantage of their differences in beliefs. The ex ante cost

of capital and the investors’welfare are both higher than in the incomplete market setting,

but there is no trade, and the public information system plays no role. More generally, this

result suggests that the existence of derivative markets and the public information system

have complementary roles in facilitating improved investor welfare in financial markets.

A large literature in accounting and finance studies the impact of information on firms’

cost of equity capital both theoretically and empirically.1 The general theme in this literature

seems to be that more public disclosure of information will reduce firms’cost of equity capital

which, in an exchange economy, is equivalent to higher stock prices. The intuition is simple.

A firm’s cost of equity capital is the riskless interest rate plus a risk premium. Releasing

more informative public signals reduce the uncertainty about the size and the timing of

future cash flows and, therefore, also the risk premium.

This intuition, however, pertains only to the cost of capital when measured after the

release of information, i.e., the ex post cost of capital.2 Christensen et al. (2010) show that

if the cost of capital is measured before any signals from the information system are realized,

i.e., the ex ante cost of capital, then the public information system has no impact on the ex

ante cost of capital and, thus, no impact on the ex ante stock prices, in competitive exchange

economies with homogeneous prior beliefs and both public and private investor information.

The public information system only serves to affect the timing of release of information and,

thus, to affect the allocation of the total risk premium for future cash flows over time.

1Theoretical studies include Easley and O’Hara (2004), Hughes et al. (2007), Lambert et al. (2007, 2012),
Christensen et al. (2010), Armstrong et al. (2011), and Bloomfield and Fischer (2011), while empirical studies
include Botosan (1997), Botosan and Plumlee (2002), Easley et al. (2002), and Francis et al. (2008), among
many others.

2Although this intuition may seem simple and straightforward, one has to be careful in interpreting these
results in multi-period models in which any interim period has elements of both ex post and ex ante effects
(see the discussion in Christensen et al. 2010). In a standard continuous-time model, Veronesi (2000) shows
that more precise public signals about economic growth tend to increase conditional equity premia through
a higher equilibrium covariance between current consumption and stock returns.
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Is a low ex ante cost of equity capital and, thus, high ex ante stock prices good or bad?

In a partial equilibrium analysis focusing on a single firm and its shareholders, the answer

is clearly “good.”This is merely a cousin of the familiar value maximization principle for

competitive markets, cf. Debreu (1959). However, financial reporting regulation (and other

mandated disclosure requirements) is about choosing information systems for the economy

at large. In such settings, a general equilibrium analysis is in order and, in general, welfare

consequences of policy changes cannot be assessed directly through stock market values.

For example, how is the other component of the cost of equity capital, i.e., the riskless

interest rate, affected by changes in the information system in the economy? In competitive

exchange economies with homogeneous prior beliefs, time-additive preferences, and public

information, the ex ante riskless interest rates will not be affected by changes in the infor-

mation system (see, e.g., Christensen et al. 2010 and the references therein). We show that

even for an exchange economy, but with heterogeneous prior beliefs, the ex ante equilibrium

interest rate is affected by the informativeness of the public information system. In particu-

lar, the ex ante equilibrium interest rate is a linear increasing function of the growth in the

investors’certainty equivalents. More effi cient dynamic trading opportunities based on the

heterogeneity in prior beliefs and public information increase the growth in certainty equiv-

alents, while (in our particular model) the ex ante risk premium is unaffected by the public

information system. In other words, from a general equilibrium perspective, the preferred

public information system is the system, which enjoys the highest ex ante cost of equity

capital and, thus, the lowest ex ante stock prices.

Our analysis focusses on a competitive exchange economy and, thus, a relevant question is

whether the higher ex ante cost of capital due to more effi cient dynamic trading opportunities

based on the heterogeneity in prior beliefs and public information comes with a negative real

effect due to costlier financing of firms production in a more general production economy.

Interestingly, introducing a riskless standard convex production technology into the setting

of this paper, a higher ex ante cost of capital is associated with positive real effects. A higher

ex ante cost of capital is a consequence of a higher growth in certainty equivalents and, thus,

the intertemporal trade-off between current and future aggregate consumption changes such

that it becomes optimal to invest less in production (and, thus, consume more) now and

consume less in the future. Such changes in production choices would then reduce the ex

ante cost of capital, in equilibrium, but not fully back to the level with less effi cient dynamic

trading opportunities.

Our model is a two-period extension of the classical single-period capital asset pricing

model with heterogeneous beliefs of Lintner (1969). For simplicity, we assume there is a

single risky asset in non-zero net-supply paying a known dividend at t = 0 and a normally
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distributed dividend at t = 2. The investors have time-additive exponential utility, and

we assume, for simplicity, that they have identical time-preference rates and risk aversion

parameters. However, their prior beliefs at t = 0 for the dividend at t = 2 can differ with

regard to both the mean and the precision (i.e., the inverse variance or confidence).

It is well known that Pareto effi cient allocations in settings with heterogeneous beliefs

require not only an effi cient sharing of the risks, but also an effi cient side-betting arrangement

(see, e.g., Wilson 1968). If the investors’ prior precisions are identical, then the Pareto

effi cient side-betting (or speculative positions) based on their disagreements about the mean

can be achieved by trading in the risky asset and the zero-coupon bond at t = 0: The

optimistic (pessimistic) investors hold more (less) than their effi cient risk sharing fraction of

the risky asset.

If the investors have different prior precisions, trading in the risky asset and the zero-

coupon bond at t = 0 does not facilitate effi cient side-betting: An investor with a low (high)

prior precision would like to have a payoff at t = 2 which is a convex (concave) function of

the dividend.3 The key is that investors with low precisions value a convex payoffmore than

investors with higher precisions and, thus, trading gains can be achieved with non-linear

payoffs. Based on the seminal paper, Wilson (1968), we show that if a derivative security in

zero net-supply with a payoff at t = 2 equal to the square of the dividend on the risky asset

is also available for trade at t = 0, then the market is effectively complete such that both

Pareto effi cient risk sharing and side-betting are achieved (see also Brennan and Cao 1996).

On the other hand, if this dividend derivative specifically targeted towards the heterogeneity

in the investors’prior precisions is not available for trade, then it can be valuable to have

public information and another round of trading at the interim date t = 1.

We consider a simple public information system with a public signal at t = 1 equal to

the t = 2 dividend on the risky asset plus independent noise. The investors have identical

normally distributed beliefs for the noise in the signal, i.e., a zero mean and a common

signal precision, such that the investors’posterior precisions for the dividend are equal to

their heterogeneous prior dividend precisions plus the common signal precision. This spec-

ification allows us to measure the informativeness of the public information system by the

signal precision. Hence, while we assume the investors may disagree about the fundamen-

tals in the economy (i.e., the dividends), we assume the investors have homogeneous beliefs

about the noise in the information system, i.e., the investors have so-called concordant be-

liefs (Milgrom and Stokey 1982) or homogeneous information beliefs (Hakansson, Kunkel,

3Note that this is similar to so-called Gamma strategies in derivatives pricing and risk management
(see, e.g., Hull 2009, Chapter 17). However, while the Black-Scholes model can accommodate differences in
expected returns, it does not allow for heterogeneous volatilities among investors on the underlying asset.
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and Ohlson 1982).4 This is in contrast to the growing so-called differences-of-opinion litera-

ture in which the investors have homogeneous beliefs about the fundamentals in the economy,

but disagree on how to interpret common public signals.5 This literature is mainly targeted

towards explaining empirical stylized facts for the relationship between trading volume and

stock returns, whereas our model allows us to investigate the relationship between the infor-

mativeness of the public information system and the equilibrium asset prices and investor

welfare (in addition to trading volume).

If the investors have homogeneous prior dividend precisions, there will be no equilibrium

trading at t = 1 contingent on the public signal. If they also have an identical prior mean,

they hold on to the effi cient risk sharing fraction of the risky asset after trading at t = 0,

while disagreements about the mean and the associated effi cient side-betting is facilitated

by trading at t = 0 (as noted above). However, if the investors have heterogeneous prior

dividend precisions, they update their posterior beliefs differently, and this gives the basis

for additional trading gains contingent on the public signal. In particular, the equilibrium

investor demand for the risky asset at t = 1 is an increasing (decreasing) function of the

public signal for investors with a lower (higher) prior dividend precision than the investors’

average prior dividend precision. Since the public signal is equal to the dividend plus noise,

investors with low (high) prior dividend precisions will, in equilibrium, achieve a payoff at

t = 2 which is a convex (concave) function of the dividend on the risky asset. Hence, another

round of trading in the risky asset (and the zero-coupon bond) contingent on the public

information at t = 1 partly facilitates the effi cient side-betting based on the heterogeneity in

prior dividend precisions.

However, the investors’equilibrium payoffs at t = 2 are also affected by the independent

noise in the public signal, which implies that the additional side-betting opportunities come

with a cost. Moreover, reducing the variance of the noise in the public signal (and, thus,

increasing the signal precision) reduces the heterogeneity in the investors’posterior beliefs

as well as the risk premium in the equilibrium price of the risky asset. In the limit with a

perfect public signal, there will be no equilibrium trading at t = 1, since the risky asset and

the zero-coupon bond become perfect substitutes. Consequently, the trading gains decrease

if the signal precision becomes too high. We show that the trading gains are maximized

with an imperfect public information system with a signal precision equal to the investors’

4This assumption ensures that Pareto effi cient allocations will only include side-betting on the public
signal to the extent that it is informative about the fundamentals and not because it is informative about
payoff-irrelevant events (see, e.g., the discussion in Christensen and Feltham 2003, Appendix 4A).

5This literature includes Harrison and Kreps (1978), Varian (1985, 1989), Harris and Raviv (1993),
Kandel and Pearson (1995), Scheinkman and Xiong (2003), Cao and Ou-Yang (2009), Banerjee and Kremer
(2010), and Bloomfield and Fischer (2011), among others.
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average prior dividend precision. This is also the information system which has the maximum

expected abnormal trading volume at t = 1.

The trading gains following from an imperfect public signal at t = 1 translate directly into

higher ex ante certainty equivalents of the investors’t = 2 consumption, and this reduces the

demand for the zero-coupon bond at t = 0 and, thus, increases the equilibrium interest rate

from t = 0 to t = 2.6 Hence, the equilibrium interest rate is also maximized for the public

information system with a signal precision equal to the investors’ average prior dividend

precision. Since the aggregate consumption at t = 0 is equal to the exogenous t = 0 dividend

on the risky asset, and the investors’trading gains are maximized for this information system,

this is also the unconstrained Pareto preferred public information system.

However, the investors may not unanimously prefer this system over public information

systems with different signal precisions. Of course, it is voluntary for the investors to refrain

from trading at t = 1, for example, an investor with a prior dividend precision equal to the

investors’average prior dividend precision does not engage in signal-contingent trading at

t = 1. However, the equilibrium interest rate affects the equilibrium asset prices at t = 0 and,

therefore, the equilibrium value of the investors’endowments. A low asset price due to a high

equilibrium interest rate is of course good if the investor wants to increase the holding of the

asset at t = 0, but it is bad if the investor wants to reduce the holding of the asset. Hence,

the individual investors’preferences over public information systems depend on their trading

gains (which in turn depend on the absolute difference between their personal prior dividend

precision and the investors’average prior dividend precision), and on their endowments of

the zero-coupon bond and the risky asset relative to their equilibrium holdings of these assets

at t = 0. We show how the investors’endowments can be re-allocated (for example, due

to a prior round of trading) such that all investors unanimously support the unconstrained

Pareto effi cient public information system.

In this paper, the heterogeneous prior beliefs are specified exogenously, and it is common

knowledge that investors have different beliefs. However, our analysis can be extended to

certain Hellwig-type noisy rational expectations equilibrium settings in which the heteroge-

neous beliefs are equilibrium posterior beliefs resulting from an initial trading round based

on homogeneous prior dividend beliefs, diverse private signals for a continuum of rational

investors, and a noisy supply of the risky asset (see, e.g., Grundy and McNichols 1989,

Kim and Verrecchia 1991a, Kim and Verrecchia 1991b, and Brennan and Cao 1996). It

is well known that these models have a multiplicity of linear equilibria (while our model

6We assume, for simplicity, that there is no consumption at the interim date t = 1 and, thus, only the
equilibrium interest rate from t = 0 to t = 2 has any substance (and not how that interest rate is divided
between the two periods).
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has a unique equilibrium). Some of these equilibria are fully revealing following subsequent

trading rounds based on independent public signals given the dividend (and, thus, do not

involve any trading), while there is one linear equilibrium which is only partially revealing

and, thus, involves non-trivial trading among rational investors. Of course, the former type

of equilibria are deemed “unappealing”if trading volume is the subject under investigation

and, thus, this literature focus on the latter.

The key property of the linear partially revealing rational expectations equilibrium is that

the rational investors cannot make better inferences about the private information/noise re-

lationship in the equilibrium price of the risky asset as subsequent public signals are released

(since, otherwise, the equilibrium price would be fully revealing).7 This means that the

investors react parametrically on equilibrium prices in subsequent trading rounds. Hence,

it makes no difference for the impact of public information whether the heterogeneous prior

beliefs are specified exogenously (as in our model) or these beliefs are equilibrium posterior

beliefs following an initial trading round based on diverse private signals and a noisy supply.

Consequently, the results we obtain for the impact of public information for effi cient side-

betting on trading volume are very similar to the corresponding results in this noisy rational

expectations equilibrium literature.

The noisy rational expectations equilibrium literature relies on the introduction of un-

modelled noise/liquidity trading. As pointed out by Cao and Ou-Yang (2009, page 303),

a “potential problem with this approach is that the argument to explain trading volume is

circular: it essentially requires new exogenous supply shocks to the stock to generate trad-

ing volume. In this sense, trading is imposed onto the economy rather than endogenously

generated.”Furthermore, since these models are single-date consumption models, public in-

formation has no impact on ex ante risk premia and interest rates and, thus, no impact on

the ex ante cost of capital and the ex ante stock price.

The rest of the paper is organized as follows. Section 2 presents the model and derives

the equilibrium asset prices and asset demands in the incomplete market economy with the

zero-coupon bond and the single risky asset as the only marketed securities. Section 3 estab-

lishes the relationship between the informativeness of the public information system and the

equilibrium asset prices, the ex ante cost of capital, the expected abnormal trading volume,

and the investors’welfare in the incomplete market economy. The effectively complete mar-

ket is introduced in Section 4. Section 5 concludes with some brief remarks on the empirical

7This condition requires that the independent noise terms in the subsequent public signals must all be
independent of the noise terms in the investors’diverse private signals. Hence, these models do not allow
for subsequent public signals being suffi cient statistics for earlier private information with respect to the
dividend as in the Grossman and Stiglitz type model of Demski and Feltham (1994), which in turn leads to
homogeneous posterior beliefs and an effi cient risk sharing following the public signal.
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and policy implications of our analysis.

2 The Model

In our basic incomplete market model, we examine the impact of heterogeneity in prior beliefs

and signal precision on equilibrium asset prices, trading volume, and investor welfare for a

two-period economy in which investors have identical preferences but differ in their prior

beliefs about the dividends on a single risky asset. The following two subsections describe

the model and the equilibrium, respectively.

2.1 Investor Beliefs and Preferences

There are two consumption dates, t = 0 and t = 2, and there are I investors who are endowed

at t = 0 with a portfolio of securities, potentially receive public information at t = 1, and

receive terminal normally-distributed dividends from their portfolio of securities at t = 2.

The trading of the marketed securities takes place at t = 0 and t = 1 based on heterogeneous

prior and posterior beliefs, respectively. There are two securities available for trade at t = 0

and t = 1: a zero-coupon bond that pays one unit of consumption at t = 2 and is in zero

net-supply, and the shares of a single risky asset that has a fixed non-zero net-supply Z

throughout. The investors are endowed with γi units of the t = 2 zero-coupon bond and z̄i
shares of the risky asset, i = 1, 2, · · · , I. In addition, the investors are endowed with κi units
of a zero-coupon bond, also in zero net-supply, paying one unit of consumption at t = 0. Let

γit and xit represent the units held by investor i of the t = 2 zero-coupon bond and the risky

asset after trading at date t, respectively. The market clearing conditions at date t are

I∑
i=1

γit = 0,

I∑
i=1

xit = Z, t = 0, 1.

A share of the risky asset pays a dividend d0 at date t = 0 and a dividend d at date t = 2.

We assume the investors have heterogeneous prior beliefs with respect to the t = 2 dividend

represented by ϕi(d) ∼ N(mi, σ
2
i ), i = 1, ..., I, where mi is the expected dividend per share

and σ2i is the variance of the dividend per share for investor i.

At t = 1, all investors receive a public signal y from an information system η, which is

jointly normally distributed with the dividend paid by the risky asset at t = 2. The public

signal is given as the dividend plus noise, i.e., y = d + ε, where ε and d are independent

and ϕ(ε) ∼ N(0, σ2ε). We refer to hε ≡ 1/σ2ε as the common signal precision, and we use

h(·) ≡ 1/σ2(·) throughout to denote precisions for the associated variances. Hence, while
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the investors may disagree about the fundamentals in the economy (i.e., the dividends), we

assume the investors have homogeneous beliefs about the noise in the information system,

i.e., the investors have concordant beliefs (Milgrom and Stokey 1982) or homogeneous infor-

mation beliefs (Hakansson, Kunkel, and Ohlson 1982). As noted in the Introduction, this

is in contrast to, for example, Cao and Ou-Yang (2009), Banerjee and Kremer (2010), and

Bloomfield and Fischer (2011), who assume that the investors have homogeneous beliefs

about the fundamentals, i.e., dividends and earnings, but disagree on how to interpret pub-

lic disclosures about these fundamentals. Our specification of the heterogeneity in beliefs

allows us to ask how the informativeness of the public information, i.e., the signal precision

hε, affects the equilibrium asset prices, the trading volume, and the investors’welfare.

The prior beliefs of investor i for the public signal and the dividend is ϕi(y, d) ∼ N(µi,Σi),

where

µi =

(
mi

mi

)
, Σi =

(
σ2i + σ2ε σ2i

σ2i σ2i

)
.

Hence, conditional on the public signal, the posterior beliefs of investor i at t = 1 about the

dividend is ϕi1(d | y) ∼ N(mi1, σ
2
i1), where

mi1 = ωiy + (1− ωi)mi , ωi =
σ2i

σ2i + σ2ε
, (1a)

σ2i1 = ωiσ
2
ε, hi1 = hi + hε. (1b)

The posterior mean is a linear function of the investors’signal, while the posterior variance

only depends on the informativeness of the information system and not on the specific signal.

Investor i’s prior distribution with respect to the posterior mean mi1, i.e., the pre-posterior

beliefs, is a normal distribution with a mean equal to the prior mean mi of the dividend and

variance σ2i0 = σ2i − σ2i1, i.e., ϕ(mi1) ∼ N(mi, σ
2
i0).

The investors trade in the zero-coupon bond with equilibrium price β0 at t = 0 and β1
at t = 1. We assume without loss of generality that β1 = 1 since there is no consumption

at t = 1. The equilibrium price of the risky asset at t = 0 is denoted p0(η), which reflects

the fact that the ex ante price at t = 0 may be affected by the public information system η.

The ex post equilibrium price of the risky asset at t = 1 given the public signal y is denoted

p1(y).

Investor i’s consumption at date t = 0 and t = 2 is denoted cit and we assume the

investors have time-additive utility. The investors have common period-specific exponential

utility functions, i.e., ui0(ci0) = − exp[−rci0] and ui2(ci2) = − exp [−δ] exp[−rci2], where
r > 0 is the investors’ common constant absolute risk aversion parameter, and δ is the

common utility discount rate for date t = 2 consumption. Our results are qualitatively
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unaffected by allowing investors to have different risk aversion parameters and different

utility discount rates.

2.2 Equilibrium with Public Information and Heterogeneous Be-

liefs

In this section, we derive the equilibrium in the economy with heterogeneous beliefs, public

information and trading in the zero-coupon bond and the single risky asset. There are two

rounds of trading: one round of trading at t = 0 prior to the release of information, and a

second round of trading subsequent to the release of the public signal at t = 1. We solve for

the equilibrium by first deriving the equilibrium prices at t = 1, and given this equilibrium,

we can subsequently derive the equilibrium prices at t = 0.

2.2.1 Equilibrium prices at date t = 1

From the perspective of t = 1, date t = 2 consumption for investor i is

ci2 = xi1d+ γi1,

and is thus normally distributed given the public signal y at t = 1. Investor i maximizes

his certainty equivalent of t = 2 consumption subject to his budget constraint, and given

period-specific exponential utility this can be expressed as

max
xi1,γi1

CE
i2

(xi1, γi1 | y, γi0, xi0)

= max
xi1,γi1

γi1 +mi1xi1 − 1
2
rσ2i1x

2
i1,

subject to γi1 + p1(y)xi1 ≤ γi0 + p1(y)xi0.

The first-order conditions imply that the optimal portfolio at t = 1 given investor i’s posterior

beliefs is

xi1(y) = ρhi1 (mi1(y)− p1(y)) , (2a)

γi1(y) = γi0 + p1(y)xi0 − p1(y)xi1(y), (2b)

where ρ ≡ 1/r is the investors’ common risk tolerance and hi1 = hi + hε is investor i’s

10



posterior precision for the terminal dividend. Market clearing at date t = 1 implies that

I∑
i=1

ρhi1 (mi1(y)− p1(y)) = Z ⇔

p1(y) = mh
1(y)− rσ21Z/I, (3)

where mh
1(y) is the precision weighted average of the investors’posterior means, i.e.,

mh
1(y) ≡ 1

I

I∑
i=1

hi1

h1
mi1(y), h1 ≡

1

I

I∑
i=1

hi1,

and σ21 is the inverse of the average posterior precision, i.e., σ
2
1 ≡ 1/h1.

Inserting the equilibrium price of the risky asset into investor i’s demand function in (2a)

yields

x∗i1(y) = ρhi1
(
mi1(y)−

[
mh
1(y)− rσ21Z/I

])
. (4)

The posterior beliefs, i.e., mi1(y) and hi1, are functions of the priors and the signal precision.

Hence, the equilibrium price of the risky asset and the equilibrium demand functions at date

t = 1 are affected by both the priors, the signal precision and, moreover, they are linear

functions of the public signal (through the posterior means, mi1 = ωiy+ (1− ωi)mi), which

implies that, in general, there is non-trivial trading at t = 1 in equilibrium. Note, however,

that if the investors have homogeneous prior precisions (such that ωi = ω and hi1 = h1 for

all i), the equilibrium demand is independent of the public signal.

Consider the two extreme cases for the signal precision separately. If the public signal

is a perfect signal of the dividend, i.e., hε → ∞ (σ2ε = 0), the investors get to know the

realization of the dividend already at t = 1 before any second-round trading can occur. In

this case, no arbitrage implies that

p1(y) = y = d.

That is, the equilibrium asset price at t = 1 is equal to the dividend and, thus, independent

of the prior beliefs (recall that the equilibrium interest rate from t = 1 to t = 2 is normalized

to zero).

When the signal tends to be uninformative, i.e., hε = 0 (σ2ε → ∞), the posterior beliefs
are equal to the prior beliefs and, thus,

p1(y) = mh − rσ2Z/I,

11



where

mh ≡ 1

I

I∑
i=1

hi

h
mi, h ≡ 1

I

I∑
i=1

hi, σ2 ≡ 1

h
.

In this case, the ex post asset price is, of course, independent of the signal but is a function of

the priors; and it is given as a precision weighted average of the investors’prior mean minus

a risk premium determined by the average prior precision. Moreover, with homogeneous

prior beliefs, i.e., mi = m, and σ2i = σ2, for i = 1, 2, ..., I, we have

p1(y) = m− rσ2Z/I,

which is the standard no-information exponential-utility/normal-distribution version of the

CAPM.

2.2.2 Equilibrium prices at date t = 0

We now determine the equilibrium ex ante prices and demand functions at t = 0, taking the

equilibrium at t = 1 characterized by Equations (3) and (4) as given. From the perspective

of t = 0, investor i’s date t = 2 consumption is

ci2 = [d− p1(y)]x∗i1(y) + p1(y)xi0 + γi0,

and investor i’s date t = 0 consumption is

ci0 = [p0(η) + d0] z̄i + β0γi + κi − p0(η)xi0 − β0γi0.

Conditional on the public signal at t = 1, investor i’s t = 1 certainty equivalent of t = 2

consumption is

CEi2 (xi0, γi0, x
∗
i1(y) | y) = γi0 + p1(y)xi0 + [mi1 − p1(y)]x∗i1(y)− 1

2
rσ2i1 (x∗i1(y))2 . (5)

Note that from the perspective of t = 0, the second term in CEi2 (xi0, γi0, x
∗
i1(y) | y) is

a normally-distributed variable, while the last two terms contain products of normally-

distributed variables if x∗i1(y) varies with the public signal at t = 1 (in which case it is

a non-degenerate normally distributed variable). Substituting in the equilibrium demand

functions and the equilibrium price of the risky asset at t = 1, i.e., equations (4) and (3),

yields the following result.
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Remark 1 Investor i’s t = 0 certainty equivalent of t = 2 consumption is given by

CEi2 (xi0, γi0) = γi0 + U1i + U2i +Mixi0 − 1
2
rVix

2
i0, (6)

where

U1i = 1
2
ρ ln

[
1 +

(
h− hi

)2
hi

hε(
h+ hε

)2
]
, (7a)

U2i = 1
2
ρ
hi
[
mih− hmh + rZ/I

]2
h
2

+ hihε
, (7b)

Mi =
hεhimi + h

2
mh − rhZ/I

h
2

+ hεhi
, (7c)

Vi =
hε

h
2

+ hεhi
. (7d)

The certainty equivalent CEi2 (xi0, γi0) can be expressed as a constant, i.e., γi0+U1i+U2i,

plus the certainty equivalent of xi0 units of a normally-distributed dividend with mean Mi

and variance Vi. Since there are no wealth effects with exponential utility, the investor’s

demand at t = 0 for the risky asset is the same as in a single-period model with this prior

mean and variance of a normally distributed dividend. However, note that these priors reflect

that there will be a second round of trading at t = 1 based on the public signal. The term

U1i is a function of the signal precision, but as we shall see below (as part of Proposition 2),

in equilibrium, the term U2i +Mixi0 − 1
2
rVix

2
i0 is independent of the signal precision. Thus,

the signal precision affects the equilibrium prices and the equilibrium investor welfare only

through the terms U1i.

With the investors’ t = 0 certainty equivalent of their t = 2 consumption determined,

investor i’s decision problem at t = 0 can be stated as follows

max
γi0,xi0

− exp (−rCEi0 (xi0, γi0))− exp (−δ) exp (−rCEi2 (xi0, γi0)) ,

where

CEi0 (xi0, γi0) = [p0(η) + d0] z̄i + β0γi + κi − p0(η)xi0 − β0γi0.

The first-order condition for investments in the zero-coupon bond is

−r exp (−rCEi0 (xi0, γi0)) β0 + r exp (−δ) exp (−rCEi2 (xi0, γi0)) = 0⇔
ι = δ + r (CEi2 (xi0, γi0)− CEi0 (xi0, γi0)) , (8)
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where ι ≡ − ln β0 is the zero-coupon interest rate from t = 0 to t = 2. The first-order

condition for investments in the risky asset is

−r exp (−rCEi0 (xi0, γi0)) p0(η) + r exp (−δ) exp (−rCEi2 (xi0, γi0)) [Mi − rVixi0] = 0.

Hence, the ex ante price and the demand for the risky asset at t = 0 can be expressed as

p0(η) = β0 [Mi − rVixi0] , (9a)

xi0 = ρ
Mi −R0p0(η)

Vi
, (9b)

where R0 = 1/β0. Thus, the market clearing condition for the risky asset implies that its

equilibrium price at t = 0 is

I∑
i=1

xi0 = Z ⇔

p0(η) = β0
[
M

υ − rV Z/I
]
, (10)

where

M
υ ≡ 1

I

I∑
i=1

υi
υ
Mi, υi ≡ V −1i , υ ≡ 1

I

I∑
i=1

υi, V ≡ υ−1.

In other words, the equilibrium price of the risky asset is equal to its discounted “risk-adjusted

expected dividend,”where the latter is defined as

EQ[ d ] ≡M
υ − rV Z/I.

The following proposition shows properties of the risk-adjusted expected dividend.

Proposition 1 The ex ante equilibrium price of the risky asset at t = 0 is equal to the

equilibrium riskless discount factor times the risk-adjusted expected dividend, i.e.,

p0(η) = β0E
Q[ d ]. (11)

The risk-adjusted expected dividend is independent of the information system, and it can be
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expressed as a function of the prior means and variances, i.e.,8

EQ[ d ] = mh − rσ2Z/I. (12)

Hence, given the priors, the risk-adjusted expected dividend is independent of the infor-

mation system at t = 1 and, in particular, it is determined entirely by the prior beliefs as if

there would be no second round of trading at t = 1. In other words, the informativeness of

the public signal at t = 1 affects the ex ante equilibrium asset price only through the impact

on the equilibrium interest rate.

Substituting the ex ante equilibrium price of the risky asset (11) into the demand func-

tions (9b), we obtain the investors’equilibrium demand for the risky asset at t = 0:

x∗i0 = ρV −1i

[
Mi − EQ[ d ]

]
. (13)

Substitution of Mi, Vi and EQ[ d ], and simplifying yield the following result.

Remark 2 In equilibrium, investor i’s t = 0 equilibrium demand for the risky asset is given

by

x∗i0 = ρhi
[
mi − EQ[ d ]

]
. (14)

Note that the equilibrium demand for the risky asset is the same as in an otherwise iden-

tical economy in which there is no public information at t = 1. In other words, the investors’

equilibrium demands are myopic, independently of the informativeness of the forthcoming

public signal. The equilibrium demand is increasing in the investors’prior mean and in the

prior dividend precision such that the more optimistic and confident investors invest more

in the risky asset than the more pessimistic and less confident investors. This result is a

consequence of the investors’incentive to take speculative positions based on their hetero-

geneous prior beliefs and, thus, the equilibrium entails “side-betting.”With homogeneous

priors, however, all investors hold the same effi cient risk sharing equilibrium positions in the

risky asset, i.e., x∗i0 = Z/I.

8This means that we can define the risk-adjusted probability measure Q explicitly such that under Q, the
terminal dividend is normally distributed as d ∼ N(mh−rσ2Z/I, σ2), and the noise ε is normally distributed
as ε ∼ N(0, σ2ε). Note that while the expected dividend under Q is uniquely determined in equilibrium, the
variance of the dividend under Q is not uniquely determined due to the market incompleteness and, thus,
we just take it to be σ2. Fortunately, the lack of the uniqueness of the variance has no consequences in the
subsequent analysis.
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Substituting the equilibrium portfolios into the certainty equivalents, we get

CE∗i0 = [p0(η) + d0] z̄i + β0γi + κi − p0(η)x∗i0 − β0γ∗i0, (15a)

CE∗i2 = γ∗i0 + U1i + U2i +Mix
∗
i0 − 1

2
rVi (x

∗
i0)

2 . (15b)

Substituting the equilibrium certainty equivalents into the expression for the interest rate

(8), we obtain

ι = δ + r (CE∗i2 − CE∗i0) . (16)

Using the market clearing conditions for the riskless and risky asset, and simplifying yield

the equilibrium interest rate.

Proposition 2 The equilibrium interest rate is given by

ι = δ + rU1 + Φ
({
mi, σ

2
i

}
i=1,...,I

)
, (17)

where

U1 ≡
1

I

I∑
i=1

U1i = 1
2
ρ

1

I

I∑
i=1

ln

[
1 +

(
h− hi

)2
hi

hε(
h+ hε

)2
]
, (18)

and Φ (·) is a function of the priors but independent of the signal precision,

Φ
({
mi, σ

2
i

}
i=1,...,I

)
≡ r

[
mh − d0

]
Z/I − 1

2
r2σ2 (Z/I)2 + 1

2

1

I

I∑
i=1

him
2
i − 1

2

(
mh
)2
h. (19)

If the investors have homogeneous prior expected dividends, i.e., mi = m, then

Φ
({
m,σ2i

}
i=1,...,I

)
= r [m− d0]Z/I − 1

2
r2σ2 (Z/I)2 . (20)

If the investors have homogeneous prior dividend precisions, the equilibrium interest rate is

independent of the signal precision.

The equilibrium interest rate is equal to the utility discount rate plus a function of the

signal precision and the priors. The function Φ (·) is a function of the priors only and,
thus, independent of the information system. Hence, the signal precision only affects the

equilibrium interest rate and, thus, the equilibrium price of the risky asset (since EQ[ d ] is

independent of hε by Proposition 1), through the logarithmic terms {U1i}i=1,...,I .
If the investors hold homogenous prior precisions (i.e., hi = h for all i), the logarithmic

terms are all equal to zero. Thus, in this case the signal precision does not affect the
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equilibrium prices at t = 0. Moreover, when mi = m, and σ2i = σ2, for i = 1, 2, ..., I, the

equilibrium interest rate can be expressed as

ι = δ + r (m− d0)Z/I − 1
2
r2σ2 (Z/I)2 .

Hence, in a benchmark setting with homogeneous prior beliefs, the equilibrium interest rate

is given as the utility discount rate plus a risk-adjusted expected dividend growth minus a

risk premium for the uncertainty in the dividend growth. Of course, this is the standard ex-

pression for the equilibrium interest rate in effectively complete markets with time-additive

HARA utilities and homogeneous prior beliefs (see, e.g., Christensen and Feltham 2009). On

the other hand, if the investors have homogeneous prior expected dividends, but heteroge-

neous prior dividend precisions, then there is an additional component to the equilibrium

interest rate, i.e.,

ι = δ + rU1 + r [m− d0]Z/I − 1
2
r2σ2 (Z/I)2 .

This additional component, i.e., rU1, depends on the signal precision, and it plays a key role

in the following analysis.

3 The Impact of Signal Precision on Ex Ante Asset

Prices, Trading Volume, and Investor Welfare

We are interested in how the informativeness of the public information system, i.e., the

signal precision, affects the ex ante equilibrium prices, the trading volume, and the investors’

ex ante expected utilities at t = 0 when the investors hold heterogeneous beliefs including

heterogeneous prior means and/or heterogeneous prior dividend precisions. We first examine

the impact on the ex ante equilibrium prices and the trading volume.

3.1 Ex ante Equilibrium Prices and Trading Volume

Proposition 1 establishes that the equilibrium asset prices at t = 0 are only affected by the

signal precision through the equilibrium interest rate. Furthermore, Proposition 2 establishes

that the equilibrium interest rate is also independent of the signal precision if the investors

hold homogeneous prior dividend precisions. This is due to the fact that in this case there is

no equilibrium trading at t = 1 based on the public signal (see, e.g., Grundy and McNichols

1989 for a similar result).

Proposition 3 When the investors hold identical prior dividend precisions, i.e., hi = h, i =

1, ..., I, the date t = 1 equilibrium portfolios are independent of the information system and
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equal to the date t = 0 equilibrium portfolios, i.e.,

x∗i1(y) = x∗i0, γ∗i1 = γ∗i0.

With heterogeneous prior dividend precisions, however, the signal precision plays a key

role in determining the equilibrium interest rate and, thus, the equilibrium price of the risky

asset at t = 0. As noted above, the impact of the signal precision on the equilibrium interest

rate is only through the logarithmic terms in (17). The following proposition characterizes

the equilibrium interest rate as a function of the signal precision.

Proposition 4 Assume the investors have heterogeneous prior dividend precisions. The

equilibrium interest rate is bell-shaped with respect to the signal precision hε.9 The unique

maximum for the equilibrium interest rate is attained when hε = h, and its minimum is

attained for uninformative information (hε = 0) and for perfect information (hε →∞).

The intuition for the result in Proposition 4 can be obtained from equation (16), in

which the interest rate is expressed as a linear increasing function of the growth in the

investors’certainty equivalents, CE∗i2 − CE∗i0. In equilibrium, all investors have the same

growth in certainty equivalents. For the two extreme values of the signal precision (hε = 0

and hε →∞) there is no trading at t = 1 based on the public signal: (a) for hε = 0, no new

information is released at t = 1 and, thus, the equilibrium portfolios after trading at t = 0

remain equilibrium portfolios; and (b) when the signal precision increases, the investors’

posterior beliefs converge and the risk premium in the equilibrium price of the risky asset

decreases, and in the limit for hε → ∞ all uncertainty is resolved at t = 1 and, thus, there

is no basis for additional trading. On the other hand, for intermediate values of the signal

precision (hε ∈ (0,∞)) there is non-trivial trading based on the public signal at t = 1 if the

investors have heterogeneous prior dividend precisions. The source of this trading is that the

investors can achieve improved side-betting based on their heterogeneously updated posterior

beliefs. These gains to trade translate directly into increased certainty equivalents of t = 2

consumption and, thus, a higher growth in their certainty equivalents, ceteris paribus. A

highly informative or an almost uninformative public signal at t = 1 yields only limited

side-betting benefits and, thus, the highest growth in certainty equivalents is obtained for

a unique interior signal precision hε = h. The equilibrium price of the risky asset is the

9Note the equilibrium interest rate looks bell-shaped after the transformation x = ln (1 + hε · 1.5E+07) .
However, the equilibrium interest rate has actually only one inflection point with respect to the signal
precision, i.e., hip = 2h. When hε ≤ hip (hε ≥ hip), the second derivative of the equilibrium interest rate
with respect to the signal precision is negative (positive) and, thus, the equilibrium interest rate is concave
(convex) with respect to the signal precision as the signal precision increases.
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product of the equilibrium riskless discount factor and the risk-adjusted expected dividend

(which is independent of hε by Proposition 1) and, thus, the equilibrium price of the risky

asset is inverted bell-shaped as a function of hε with a minimum point at hε = h.

Ex ante cost of capital

The ex ante cost of capital defined as the expected rate of return on the risky asset is an

ambiguous concept in a setting in which the investors have heterogeneous prior means for

the dividend on the risky asset. However, we can define the ex ante cost of capital as the

(continuously compounded) expected rate of return µxa(η) using the beliefs implicit in the

unambiguous ex ante equilibrium price of the risky asset, i.e., ϕh(d) ∼ N(mh, σ2),

exp (µxa(η)) ≡ mh

p0(η)
. (21)

Inserting the ex ante equilibrium price of the risky asset (11), and using Proposition 1 we

get that

µxa(η) = ι+$xa,

where the risk premium $xa is given by

$xa = ln

(
1 +

rσ2Z/I

mh − rσ2Z/I

)
.

Hence, the ex ante cost of capital for the risky asset µxa(η) is equal to the equilibrium

interest rate plus a risk premium $xa, which is independent of the informativeness of the

public signal.10 Propositions 2 and 4 then imply that the ex ante cost of capital is minimized

for no public information (hε = 0) and for perfect public information (hε → ∞), while it is
maximized for a unique interior signal precision hε = h. Is a low ex ante cost of capital good

or bad for the investors? We address this question in the following subsection.

In order to illustrate our results we use the following three-investor example throughout

with the parameters given in Table 1.

10Similarly, if we define investor-specific expected rates of returns based on their prior dividend be-
liefs, i.e., exp (µxai (η)) ≡ mi/p0(η), then the investor-specific “equity premiums,” i.e., $xa

i ≡ µxai (η) − ι =
ln
(
mi/

[
mh − rσ2Z/I

])
, are also independent of the informativeness of the public signal.
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Figure 1: Equilibrium interest rate, risk premium, and ex ante cost of capital as functions
of the signal precision hε given the parameters in Table 1. The scale on the horizontal axis
is x = ln (1 + hε · 1.5E+07).

Investor 1 Investor 2 Investor 3 Aggregate

Risk aversion (r) 0.01% 0.01% 0.01%

Utility discount rate (δ) 0.00% 0.00% 0.00%

Prior mean (mi) 800 1, 000 1, 200

Prior variance (σ2i ) 25, 000 37, 500 75, 000

Initial dividend (d0) 950

Supply (Z) 100

Table 1: Investor and risky asset parameters of the running example.

Figure 1 illustrates the equilibrium interest rate, the risk premium, and the ex ante cost

of capital as functions of the signal precision for the parameters in Table 1. Note that these

quantities are independent of the investors’individual endowments and, thus, even though

the investors have heterogeneous beliefs, the equilibrium admits aggregation as with HARA

utilities in effectively complete markets with homogeneous beliefs.

Trading Volume

The source of the increased growth in the investors’ certainty equivalents is the trading

gains based on the investors’heterogeneously updated posterior beliefs. In this section we

demonstrate that the signal precision, which maximizes the trading gains and, thus, the

equilibrium interest rate, also maximizes the expected abnormal trading volume.

Investor i’s equilibrium net-trade in the risky asset at t = 1 is τ ∗i (y) ≡ x∗i1(y)−x∗i0, where
x∗i1(y) is given in (4) and x∗i0 is given in (14). Inserting the definitions of the posterior means
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and precisions in (4), and simplifying yield the following result (see Kim and Verrecchia

1991a and 1991b for a similar result).

Remark 3 Investor i’s equilibrium net-trade in the risky asset at t = 1 is given by

τ ∗i (y) = ρ
hε
(
h− hi

)
h+ hε

[
y − EQ[ d ]

]
, (22)

and the risk-adjusted expected net-trade is equal to zero, i.e.,

EQ[ τ ∗i (y) ] = 0.

Hence, the sensitivity of the investor’s equilibrium net-trade increases with the difference

between the investor’s prior dividend precision hi and the average prior dividend precision h.

Furthermore, the equilibrium net-trade of the investors with lower (higher) prior dividend

precisions than the average is increasing (decreasing) in y = d + ε and, thus, their t = 2

consumption is a convex (concave) function of d. This relationship between the public signal

and t = 2 consumption is the source of the improved side-betting opportunities following

from the fact that investors with low prior dividend precisions value convex payoffs more

than investors with high prior dividend precisions.

Even though the risk-adjusted expected net-trade is equal to zero, the investors’ ex-

pected net-trade is not equal to zero, and it depends on their personal prior dividend beliefs.

Therefore, in order to investigate the impact of the signal precision on the expected trading

volume in the securities market as a whole, we define the abnormal net-trade of investor i

as the difference between the net-trade and the expected net-trade conditional on the t = 2

dividend, i.e.,

aτ ∗i (y) ≡ τ ∗i (y)− E[ τ ∗i (y) | d ] = ρ
hε
(
h− hi

)
h+ hε

ε.

Since the investors have concordant beliefs, they have homogeneous beliefs about their ab-

normal net-trades and, in particular, the abnormal net-trades are normally distributed with a

zero mean. Recognizing that some investors are selling while others are buying, the abnormal

trading volume per investor is defined as

T ∗ ≡ 1
2

1

I

I∑
i=1

| aτ ∗i (y) | .

The following proposition characterizes the expected abnormal trading volume.
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Proposition 5 The expected abnormal trading volume is

E [T ∗ ] =

√
hε

h+ hε

ρ√
2π

1

I

I∑
i=1

| h− hi | .

Assume the investors have heterogeneous prior dividend precisions. The expected abnormal

trading volume is bell-shaped with respect to the signal precision hε. The unique maximum for

the expected abnormal trading volume is attained when hε = h, and its minimum is attained

for uninformative information (hε = 0) and for perfect information (hε →∞).

The proposition establishes that the expected abnormal trading volume has the same

comparative statics as the equilibrium interest rate with respect to the signal precision, cf.

Proposition 4.11 Of course, the key empirical implication is that there is a direct positive

relationship between the empirically unobservable growth in certainty equivalents and the

expected (average) abnormal trading volume.

3.2 Ex ante Expected Utilities

The investors’ex ante expected utilities are affected in two ways by changes in the signal

precision. First, changes in the signal precision affects the gains to trade based on hetero-

geneously updated posterior beliefs and, thus, the growth in their certainty equivalents as

illustrated in the preceding subsection. Secondly, the signal precision affects the ex ante

equilibrium asset prices through the equilibrium interest rate and, thus, affects the value of

the investors’individual endowments. The latter may affect the investors in different ways

depending on their individual endowments relative to their equilibrium portfolio at t = 0.

The following lemma (partly) characterizes the impact of changing the signal precision on

the investors’ex ante expected utilities.

Lemma 1 The derivative of the investors’ex ante expected utilities with respect the signal
precision hε is given by

∂

∂hε
EU∗i0 = r exp (−rCE∗i0)

{
β0

∂

∂hε
U1i +

[
γ∗i0 − γi + EQ[ d ] (x∗i0 − z̄i)

] ∂

∂hε
β0

}
, (23)

where
∂

∂hε
β0 = −rβ0

∂

∂hε
U1.

All the investors’ex ante expected utilities have a stationary point at hε = h.
11Consequently, we do not present a figure of the expected abnormal trading volume as a function of the

signal precision for the numerical example.
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The gains to trade based on the public signal is reflected in the first term in the braces

of (23), ∂
∂hε
U1i, where U1i is investor i’s ex ante value of the trading gains at t = 1 and

is given in (7a). Of course, the investors can always refuse to engage in any second-round

trading at t = 1 and, thus, the ex ante value of trading gains is always non-negative, and

it is maximized for hε = h. Note that an investor with a prior dividend precision hi equal

to the average dividend precision h has an ex ante value of the trading gains equal to zero,

i.e., U1i = 0. This is due to the fact that the investor does not engage in signal-contingent

trading at t = 1 if hi = h (see equation (22)). On the other hand, all “more confident”and

“less confident”investors than the average have a strictly positive ex ante value of trading

gains, and these ex ante values are maximized for all investors exactly at the signal precision

at which the equilibrium interest rate is maximized, hε = h.

The positive ex ante values of trading gains (which will be realized when consuming

at t = 2) shift the investors’ incentive to consume more at t = 0 (in order to smooth

consumption over time) and, thus, increase the equilibrium interest rate. This reduces the

value of the investors’(positive) endowments of the t = 2 zero-coupon bond and the risky

asset through a reduction in the zero-coupon bond price, β0 (recall that the risk-adjusted

expected dividend of the risky asset is independent of the signal precision). This reduction is

maximized when the average ex ante value of the trading gains U1 is maximized at hε = h.

However, the reduction in the asset prices also makes it cheaper to buy these assets. Hence,

the impact of the changed equilibrium prices on the investors’consumption possibilities at

t = 0 depends on whether the investor wants to increase or decrease the holdings of the assets,

i.e., whether (γ∗i0 − γi) and (x∗i0 − z̄i) are positive or negative. These effects are reflected in
the second term in the braces of (23). Hence, in general, even though the signal precision has

a unique impact on the ex ante value of trading gains and on the equilibrium interest rate,

the investors’ex ante expected utilities may be affected in different directions by changes in

the signal precision. In other words, changes in the information system may not result in

Pareto improvements or Pareto inferior allocations– some investors may be better off while

other investors may be worse offdepending on their endowments relative to their equilibrium

asset holdings at t = 0.

In order to illustrate these effects of changes in the signal precision on the ex ante expected

utilities, we define investor i’s equilibrium ex ante certainty equivalent CExa
i (hε) as

− exp (−rCExa
i (hε)) ≡ − exp (−rCE∗i0)− exp (−δ) exp (−rCE∗i2) .

Of course, there is a positive one-to-one relationship between investor i’s ex ante expected

utility and his equilibrium ex ante certainty equivalent CExa
i (hε). Hence, the change in the
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Figure 2: Changes in equilibrium ex ante certainty equivalents ∆CExa
i (hε) as functions of

the signal precision hε given the parameters in Table 1 and endowments zi = Z/3, γi =
0, i = 1, 2, 3, and κ1 = κ3 = 5, 000, κ2 = −10, 000. The scale on the horizontal axis is
x = ln (1 + hε · 1.5E+07).

equilibrium ex ante certainty equivalent relative to the no public information case CExa
i (hε =

0), i.e.,

∆CExa
i (hε) ≡ CExa

i (hε)− CExa
i (hε = 0),

is a measure of investor i’s increased ex ante expected utility from changing the informative-

ness of the public information system from being uninformative to having a signal precision

of hε. Figure 2 illustrates these changes in investor welfare for the three-investor exam-

ple given in Table 1 assuming that the investors have effi cient risk sharing endowments of

the risky asset and zero endowments of the t = 2 zero-coupon bond, i.e., zi = Z/3 and

γi = 0, i = 1, 2, 3, while the endowments of the t = 0 zero-coupon bond are κ1 = κ3 = 5, 000

and κ2 = −10, 000.

Note that all three investors in Figure 2 have a stationary point for their equilibrium

ex ante certainty equivalent at hε = h (see Lemma 1). However, while the equilibrium ex

ante certainty equivalents of investors 1 and 3 are both maximized at hε = h, investor 2’s

equilibrium ex ante certainty equivalent is minimized at that point. Hence, investors 1 and

3 are both better off with an interior signal precision, whereas investor 2 is better off with

no public information (hε = 0) or perfect information (hε → ∞). The parameters in Table
1 are such that investor 2 has a prior dividend precision equal to the average prior dividend

precision, i.e., h2 = h. As noted above, this implies that investor 2 does not engage in signal-

contingent trading at t = 1 and, thus, his ex ante value of trading gains U12 is equal to zero.

Therefore, his equilibrium ex ante certainty equivalent is only affected by the changes in the

ex ante equilibrium asset prices. With the assumed effi cient risk sharing endowments of the
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risky asset and his negative endowment of the t = 0 zero-coupon bond, investor 2 is a “net

seller”of assets (for all levels of hε) at t = 0 (i.e., (γ∗i0 − γi)+EQ[ d ] (x∗i0 − z̄i) < 0) and, thus,

he is hurt by the lower equilibrium asset prices with interior signal precisions. On the other

hand, both investor 1 and investor 3 have strictly positive ex ante values of trading gains,

which exceed any loss from selling assets at the lower equilibrium asset prices for interior

signal precisions.

It is well known that even though a Pareto improvement can be achieved by changing

the public information system, the change of information system may leave some investors

better off and others worse off if the implementation of the equilibrium consumption plans

requires trading of assets at equilibrium prices which depend on the information system (see

Christensen and Feltham 2003, Chapter 7). The above example in Figure 2 illustrates such

a setting. In order to investigate whether there exists a Pareto superior information system,

consider a setting in which the investors have “equilibrium endowments.” The growth in

certainty equivalents is the same for all investors in equilibrium, and is maximized exactly

for the signal precision at which the equilibrium interest rate and, thus, the ex ante cost of

capital, is maximized, i.e., for hε = h. Hence, this level of signal precision is the obvious

candidate for a Pareto effi cient information system in a setting in which the endowments of

the three assets can be re-allocated among the investors, and this is indeed the case.

In order to see why, consider the investors’ equilibrium portfolios at t = 0. It fol-

lows from (14) that the investors’ equilibrium demand for the risky asset at t = 0, i.e.,

x∗i0 = ρhi
[
mi − EQ[ d ]

]
, depends on the prior beliefs but is independent of the informa-

tiveness of the public signal at t = 1. However, the investors’equilibrium demand for the

t = 2 zero-coupon bond at t = 0 varies with the signal precision. Consider any given signal

precision different from the average prior dividend precision, i.e., hε 6= h, and the associ-

ated equilibrium certainty equivalents, {CE∗i0,CE∗i2}i=1,...,I , and equilibrium prices, β0, p0(η).

We want to show that this system cannot be a Pareto effi cient information system. The

equilibrium demand for the t = 2 zero-coupon bond γ∗i0 is determined by

CE∗i0 = d0z̄i + p0(η) [z̄i − x∗i0] + β0 [γi − γ∗i0] + κi.

As noted above, the equilibrium prices are independent of the investors’individual endow-

ments. Hence, a re-allocation of the endowments of the three assets defined by

ẑi ≡ x∗i0, γ̂i ≡ γ∗i0, κ̂i ≡ CE∗i0 − d0x∗i0, (24)

implies that the investors do not trade at t = 0 given these endowments. That is, the

investors have equilibrium endowments relative to the signal precision hε, and they achieve
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the same certainty equivalents as with the original endowments. It then follows from Lemma

1 that

∂

∂hε
EU∗i0 = r exp (−rCE∗i0)

{
β0

∂

∂hε
U1i +

[(
γ∗i0 − γ̂i

)
+ EQ[ d ]

(
x∗i0 − ̂̄zi)] ∂

∂hε
β0

}
= r exp (−rCE∗i0) β0

∂

∂hε
U1i

= 1
2

exp (−rCE∗i0) β0
∂

∂hε
ln

[
1 +

(
h− hi

)2
hi

hε(
h+ hε

)2
]
.

Since the common term for all investors hε/
(
h+ hε

)2
is a concave function of the signal

precision, which is maximized for hε = h, all investors are weakly better off by marginally

increasing (decreasing) the signal precision for hε < h (hε > h). Hence, for any hε 6= h and

heterogeneous prior dividend precisions (such that there are investors with hi 6= h), there is

an allocation of the endowments such that there exists a Pareto superior equilibrium with

a marginal change in the signal precision. If hε = h, no such Pareto improvements can

be obtained, since ∂
∂hε
U1i = 0 for all investors in this case. These arguments establish the

following result.

Proposition 6 Assume the investors have heterogeneous prior dividend precisions.

(a) The information system with signal precision hε = h is the unique Pareto effi cient

public information system, and it enjoys the maximum equilibrium ex ante cost of

capital and the maximum expected abnormal trading volume.

(b) For given endowments, some investors may be worse off with information system hε =

h than with hε 6= h, but at least one investor is better off with information system

hε = h than with hε 6= h.

The trading gains are maximized with an intermediate level of signal precision hε = h,

and this yields a superior Pareto effi cient allocation with the maximum growth in certainty

equivalents and, thus, the maximum ex ante cost of capital and the maximum expected

abnormal trading volume. However, as demonstrated above, this level of signal precision

may leave some (but not all) investors worse off depending on their endowments and their

incentives to trade at t = 0. Table 2 illustrates a setting in which the endowments for the

example in Figure 2 are re-allocated as in (24) in order to achieve equilibrium endowments

relative to signal precision hε = 0.
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Figure 3: Changes in equilibrium ex ante certainty equivalents ∆CExa
i (hε) as functions of

the signal precision hε given the parameters in Table 1 and the endowments in Table 2. The
scale on the horizontal axis is x = ln (1 + hε · 1.5E+07).

Endowments Investor 1 Investor 2 Investor 3 Aggregate

zi −3.33 51.11 52.22 100

γi 34, 736 −19, 376 −15, 360 0

κi 34, 898 −22, 043 −12, 856 0

Table 2: Equilibrium endowments relative to hε = 0.

With the endowments in Table 2, all three investors do not trade at t = 0 if hε = 0,

and they achieve the same certainty equivalents as with the endowments in Figure 2. As

the signal precision is increased, the investors continue not to trade at t = 0 in the risky

asset (since x∗i0 does not depend on hε), but investor 2, who has a prior dividend precision

h2 equal to the average prior dividend precision h, starts to increase his holdings of the

t = 2 zero-coupon bond due to its lower equilibrium price. The other two investors reduce

their holdings of the t = 2 zero-coupon bond, i.e., sell units of the bond, even though its

equilibrium price decreases. This is due to the fact that increasing the signal precision

increases their future trading gains (which are realized at t = 2) and, thus, they also want to

consume more at t = 0 in order to smooth consumption across the two consumption dates.

Hence, all three investors gain from a higher signal precision (up to hε = h) as illustrated

in Figure 3 (although the gains to investor 2 are hardly visible in the graph). Of course, a

prior round of trading at t = −1 based on the belief that the signal precision will be hε = 0,

such that the investors have equilibrium endowments at t = 0 relative to hε = 0, ensures

that the investors at t = 0 unanimously support a public information system change to a

system with hε = h.
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4 Effectively Complete Market

The analyses in the preceding sections show that the public signal at t = 1 plays a key role

in determining the ex ante cost of capital, the expected abnormal trading volume, and the

investors’welfare. If the signal is uninformative or a perfect signal about the risky asset’s

dividend, there is no trading at t = 1. However, if the signal is imperfect and the investors

have heterogeneous prior dividend precisions, there will be signal-contingent trading at t = 1,

and the ex ante trading gains will be reflected in both a higher ex ante cost of capital, a

higher expected abnormal trading volume, and higher investor welfare. Hence, the key

role of the public signal is to facilitate improved dynamic trading opportunities based on

heterogeneously updated posterior beliefs in order to take advantage of the disagreements

and the differences in confidence among the investors. However, does the dynamic trading

in the zero-coupon bond and the risky asset based on the public signal allow the investors

to take full advantage of the differences in their beliefs? This is the question addressed in

this section, and the answer is, in general, no. Additional assets, such as various forms of

derivative securities, or more trading rounds based on a sequence of public signals may lead

to more effi cient side-betting based on the heterogeneous beliefs (see Brennan and Cao 1996

for a similar model with several trading dates). In the extreme, additional assets of the right

type may even eliminate the need for dynamic trading based on public signals. We examine

only this extreme case in this paper, and we leave the intermediate cases for future research.

The initial question is what would be the right types of derivative assets to facilitate fully

effi cient side-betting? Wilson (1968) gives almost immediately the answer to this question.

Wilson shows that with exponential utility and heterogeneous beliefs, a fully Pareto effi -

cient risk-sharing and side-betting contract is such that each investor gets his risk tolerance

fraction (i.e., υi = ρi/ρo,where ρo ≡ Σiρi) of the aggregate outcome (as with homogeneous

beliefs) plus a term, which depends on the state of nature. The fraction ρi/ρo is a constant

independent of the state and, thus, in a sense, the fully effi cient contract is still a linear

contract in terms of the aggregate outcome as it is in the homogeneous beliefs case. The

key is that the effi cient risk sharing and the effi cient side-betting can be separated into two

additive terms. In our setting, the dividend at t = 2 on the risky asset, Zd, constitutes

the aggregate outcome. Moreover, the t = 2 dividend is also a unique outcome-adequate

representation of the state and, thus, the dividend also enters into the effi cient side-betting

term. The effi cient side-betting term has the following form with homogeneous risk aversion

(see Christensen and Feltham 2003, Appendix 4A):

fi(d) = ρ

(
fo(d)− ln

(
ρ

λiϕi(d)

))
, i = 1, ..., I,

28



where

fo(d) ≡ 1

I

I∑
i=1

ln

(
ρ

λiϕi(d)

)
,

and λi is the positive expected utility weight in a central planner’s effi cient risk-sharing and

side-betting program. Note that Σi fi(d) = 0 and, thus, the side-betting terms constitute

a zero-sum game. Furthermore, with a normally distributed dividend, ϕi(d) ∼ N(mi, σ
2
i ),

i = 1, ..., I, the effi cient side-betting terms fi(d) can be expressed as quadratic functions of

the dividend d. Hence, any fully effi cient risk-sharing and side-betting allocation of the t = 2

dividend can be expressed as

c‡i2 = αi0 + αidd+ αisd
2, i = 1, ..., I, (25)

where αi0, αid, αis are investor-specific constants with Σiαi0 = Σiαis = 0 and Σiαid = Z.

This suggests that a t = 2 zero-coupon bond, the risky asset itself, and a derivative security

in zero net-supply with a payoff d2 would be suffi cient to trade at t = 0 to a fully effi cient

risk-sharing and side-betting allocation in a decentralized market setting without any need

for an additional round of trading at t = 1 based on the public signal.12 The following

analysis shows that this is indeed the case.13 ,14

Compared to the market structure in the preceding sections, we now add an additional

asset, denoted the dividend derivative, in zero net-supply with payoff d2 at t = 2, and prices

π0(η) and π1(y) at t = 0 and t = 1, respectively. The investors have endowments θi of this

asset at t = 0, and let θit be the units of the asset held after trading at date t satisfying the

12Note that if the investors have identical prior dividend precisions, then αis = 0, i = 1, ..., I, such that the
effi cient allocation is linear in d and, thus, the zero-coupon bond and risky asset are suffi cient to implement
the effi cient allocation without any trading at t = 1. Hence, in this setting, the market structure examined
in the preceding sections yields fully effi cient allocations independently of the public information system
(compare to Proposition 3).

13Brennan and Cao (1996) were the first to introduce a quadratic derivative as a means to achieve (ex
post) Pareto optimality in their noisy rational expectations equilibrium setting with heterogeneous posterior
equilibrium beliefs.

14As noted in the Introduction (footnote 4), our assumption of concordant beliefs ensures that Pareto
effi cient allocations only include side-betting on the public signal to the extent that it is informative about the
fundamentals, i.e., the payoff-relevant events. In their differences-of-opinion model, Cao and Ou-Yang (2009)
also introduce the d2 derivative security in order to effectively complete the market. In their model, however,
there is dynamic information-contingent trading in both the risky asset(s) and the derivative security. This
is because the side-betting in their model pertains to payoff-irrelevant events determining the differences
in how the investors interpret the public signal(s). Recall that “differences of opinion make a horse race,”
cf. Harris and Raviv (1993). In fact, in the Cao and Ou-Yang (2009) model with exponential utilities and
normally distributed dividends (like ours), a fully Pareto effi cient allocation based on the prior homogeneous
dividend beliefs can be achieved through trading only at t = 0 in the zero-coupon bond and the risky asset(s).
It is not obvious why the investors should chose subsequently to take speculative positions in the financial
markets based on public signals they disagree on how to interpret. Any other zero-sum betting game would
achieve the same result.
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market clearing conditions

I∑
i=1

θi =
I∑
i=1

θit = 0, i = 1, ..., I, t = 0, 1.

Investor i’s t = 2 consumption is now given as

ci2 = θi1d
2 + xi1d+ γi1.

Given the public signal at t = 1, the investor’s certainty equivalent of t = 2 consumption

can be calculated (using Lemma 2 in the appendix) to be15

CEi2 (θi1, xi1, γi1 | y) = γi1 + 1
2
ρhi1m

2
i1 − 1

2
ρ

[rxi1 − hi1mi1]
2

2rθi1 + hi1
+ 1

2
ρ ln

[
2rθi1 + hi1

hi1

]
and, thus, investor i’s decision problem at t = 1 given the public signal y is

max
θi1,xi1,γi1

CEi2 (θi1, xi1, γi1 | y)

subject to γi1 + p1(y)xi1 + π1(y)θi1 ≤ γi0 + p1(y)xi0 + π1(y)θi0.

The first-order conditions imply that the optimal portfolio at t = 1 given investor i’s posterior

beliefs is

xi1(y) = ρhi1

[
mi1 −

p1(y)

hi1 [π1(y)− p1(y)2]

]
, (26a)

θi1(y) = 1
2
ρ

[
1

π1(y)− p1(y)2
− hi1

]
, (26b)

γi1(y) = γi0 + p1(y)xi0 + π1(y)θi0 − p1(y)xi1(y)− π1(y)θi1. (26c)

The market clearing conditions for the two risky assets then imply that

p1(y) = mh
1 − rσ21Z/I, (27a)

π1(y) = σ21 +
[
mh
1 − rσ21Z/I

]2
. (27b)

Note that the equilibrium price of the risky asset at t = 1 is not affected by the addition of

the dividend derivative to the marketed assets (compare to (3)). Inserting the equilibrium

prices of the two risky assets into the investors’demand functions (26) and simplifying yield

15Here we assume that 2rθi1 + hi1 > 0. We later verify that this is indeed the case, in equilibrium.
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the equilibrium demands for the two risky assets,16

x†i1(y) = ρ
[
himi − hm

]
+ Z/I, hm ≡ 1

I

I∑
i=1

himi, i = 1, ..., I, (28a)

θ†i1(y) = 1
2
ρ
[
h− hi

]
, i = 1, ..., I. (28b)

Of course, the equilibrium prices of the two risky assets at t = 1 both depend on the public

signal at t = 1 and its informativeness. However, the equilibrium demands for the two risky

assets do neither depend on the specific public signal y at t = 1 nor on the informativeness of

the public information system– equilibrium demands at t = 1 only depend on the investors’

prior beliefs.17 Hence, there will be no signal-contingent trading at t = 1 and, therefore, the

equilibrium demands for the two risky assets will be the same at both t = 1 and t = 0, i.e.,

x†i0 = x†i1(y), θ†i0 = θ†i1(y), γ†i0 = γ†i1(y), (29)

and the equilibrium prices at t = 0 are the same as in (27) except that they are based on

the prior beliefs rather than the posterior beliefs and that they are discounted by the riskless

discount factor, i.e.,

p0(η) = β0E
Q [d] , (30a)

π0(η) = β0

[
σ2 +

(
EQ [d]

)2]
. (30b)

Inserting these equilibrium demands and equilibrium prices into investor i’s t = 2 certainty

equivalent and simplifying yield his equilibrium ex ante certainty equivalent of t = 2 con-

sumption,

CE†i2 = γ†i0 + 1
2
ρhi

[
m2
i −

(
EQ [d]

)2]
+ 1

2
ρ
(
EQ [d]

)2 (
hi − h

)
+ Υi,

where

Υi ≡ 1
2
ρ ln

[
h

hi

]
.

16Note that h− hi = h1 − hi1 and, thus, 2rθ†i1(y) + hi1 = h1 > 0 which was assumed in the derivation of
the investors’t = 2 certainty equivalent.

17In equilibrium, less confident investors than the average, i.e., hi < h, take long positions in the dividend
derivative, while more confident investors than the average take short positions. Note that the dividend
derivative resembles a “smooth” straddle and, thus, investors, who think the variance of the dividend is
high, like the convexity of its payoff, while investors, who think the variance is low, take a short position to
get a concave payoff profile. This result suggests that straddles, i.e., long positions in both a call and a put
option with the same strike price, play an important role in incomplete market settings with heterogeneous
beliefs about the risks on the underlying assets.
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Comparing this certainty equivalent to the equilibrium certainty equivalent in the setting

without the dividend derivative (see equation (15)) yields that

CE†i0 = d0z̄i + κi + π0(η)
[
θi − θ†i0

]
+ p0(η)

[
z̄i − x†i0

]
+ β0

[
γi − γ

†
i0

]
, (31a)

CE†i2 = CE∗i2 +
(
γ†i0 − γ∗i0

)
+ 1

2
ρ
(
EQ [d]

)2 (
hi − h

)
+ Υi − U1i. (31b)

The equilibrium interest rate is, as in the setting without the dividend derivative, determined

as the utility discount rate plus the risk aversion parameter times the growth in certainty

equivalents, i.e.,

ι = δ + r
(

CE†i2 − CE†i0

)
.

Using the market clearing conditions for the riskless and risky asset, and simplifying yield

the equilibrium interest rate.

Proposition 7 Consider the setting in which the investors can trade in the dividend deriv-
ative in addition to the zero-coupon bond and the risky asset.

(a) The equilibrium interest rate is given by

ι = δ + rΥ + Φ
({
mi, σ

2
i

}
i=1,...,I

)
, (32)

where

Υ ≡ 1

I

I∑
i=1

Υi = 1
2
ρ

1

I

I∑
i=1

ln

[
h

hi

]
.

(b) The equilibrium interest rate is independent of the signal precision hε.

(c) The equilibrium interest rate is strictly higher than the equilibrium interest rate in

the setting without the dividend derivative, irrespectively of the signal precision, i.e.,

Υ − U1 > 0, ∀hε ∈ (0,∞), if, and only if, the investors have heterogeneous prior

dividend precisions.

The higher equilibrium interest rate reflects that the investors can achieve more effi cient

side-betting based on their heterogeneous beliefs by being able to trade also in the dividend

derivative instead of having to rely on dynamic trading in the risky asset alone. Of course,

since there is no trading based on the public signal at t = 1 when the investors can also trade

in the dividend derivative, the equilibrium interest rate is independent of the informativeness

of the public signal.

The ex ante equilibrium prices of the risky asset are in both settings, with and without the

dividend derivative, determined as the equilibrium discount factor times the risk-adjusted
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Figure 4: Equilibrium interest rate, risk premium, and ex ante cost of capital as functions
of the signal precision hε given the parameters in Table 1 for the settings with the dividend
derivative and without the dividend derivative (i.e., the incomplete market (ICM) setting).
The scale on the horizontal axis is x = ln (1 + hε · 1.5E+07).

expected dividend on the risky asset. Since the latter is the same in both settings, the

equilibrium ex ante cost of capital, µxa(η) = ι+$xa, is independent of the informativeness

of the public signal in the setting with the dividend derivative, but it is uniformly higher

than in the setting without the dividend derivative (as a function of hε). Figure 4 illustrates

these differences for the three-investor example in Table 1.

Inserting the investors’t = 0 (and t = 1) equilibrium portfolios yields that the investors’

t = 2 equilibrium consumption is

c†i2 = θ†i0d
2 + x†i0d+ γ†i0

= fi(d) + υiZd,

where

fi(d) = 1
2
ρ
[
h− hi

]
d2 + ρ

[
himi − hm

]
d+ γ†i0, υi = 1/I.

Note that
I∑
i=1

fi(d) = 0,
I∑
i=1

υi = 1,

such that the consumption allocation can be expressed as a linear function of the aggregate
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outcome with a fixed slope but a state-dependent intercept.18 Wilson (1968) shows that this

is both a necessary and suffi cient condition for a fully effi cient risk-sharing and side-betting

allocation (see also Amershi and Stoeckenius 1983). Hence, the equilibrium in the setting

with the dividend derivative constitutes a fully Pareto effi cient risk sharing and side-betting

allocation. Since the growth in certainty equivalents is higher in the setting with the dividend

derivative than in the setting without it (as reflected by the higher equilibrium interest rate),

the addition of the dividend derivative yields a more effi cient market structure independently

of informativeness of the public signal. Of course, some investors are made better off by the

addition of the dividend derivative, but again some investors might be worse off depending

on the impact of the higher equilibrium interest rate on the value of their endowments.

Proposition 8 Assume the investors have heterogeneous prior dividend precisions.

(a) The market structure with the dividend derivative strictly dominates (in a Pareto ef-

ficiency sense) the market structure without the dividend derivative, and it enjoys a

strictly higher equilibrium ex ante cost of capital, irrespectively of the informativeness

of the public information system.

(b) For given endowments, some investors may be worse off with the addition of the divi-

dend derivative to the marketed assets, but at least one investor is made better off by

the addition of this asset.

Figure 5 shows the changes in the investors’ex ante certainty equivalents as functions

of the signal precision hε relative to the ex ante certainty equivalents without the dividend

derivative and a zero signal precision, hε = 0, i.e.,

∆CExa
i (hε) ≡ CExa

i (hε)− CExa
i (hε = 0),

where the ex ante certainty equivalents for hε > 0 are defined as

− exp (−rCExa
i (hε)) ≡ − exp

(
−rCE†i0

)
− exp (−δ) exp

(
−rCE†i2

)
,

− exp (−rCExa
i (hε)) ≡ − exp (−rCE∗i0)− exp (−δ) exp (−rCE∗i2) ,

for the setting with the dividend derivative and the setting without this asset (the incomplete

market (ICM) setting in the preceding sections), respectively, while the base ex ante certainty

18Note that the state-dependent intercept is comprised of (a) a fixed component, γ∗i0, which depends on
the endowments (as in a homogeneous beliefs setting), (b) a side-betting term due to differences between the
precision-weighted prior means, ρ

[
himi − hm

]
d, and (c) a side-betting term due to differences in the prior

dividend precisions, 12ρ
[
h− hi

]
d2.

34



100

200

300

400

500

0
0 2 4 6 8 10 12

Informativeness of public report
Investor 1 Investor 2 Investor 3
Investor 1 ICM Investor 2 ICM Investor 3 ICM

Figure 5: Changes in equilibrium ex ante certainty equivalents ∆CExa
i (hε) as functions of

the signal precision hε given the parameters in Table 1, the endowments in Table 2, and zero
endowments of the dividend derivative, θi = 0, i = 1, 2, 3. The scale on the horizontal axis
is x = ln (1 + hε · 1.5E+07).

equivalents, CExa
i (hε = 0), are defined by

− exp (−rCExa
i (hε = 0)) ≡ − exp (−rCE∗i0(hε = 0))− exp (−δ) exp (−rCE∗i2(hε = 0))

for both settings. The investors’endowments of the zero-coupon bonds and the risky asset

are the same as in Figure 3, and it is assumed that the investors have zero endowments of

the dividend derivative. Hence, Figure 5 shows the ex ante value to the investors of having

the public information system in the incomplete market setting versus the ex ante value to

the investors of the addition of the dividend derivative to the marketed assets at t = 0. In

this example, all three investors benefit from imperfect public information in the incomplete

market setting, but they benefit even more from the introduction of the dividend derivative

(again the gains to investor 2 are hardly visible in the graph– note that his equilibrium

holdings of the dividend derivative is equal to zero).

5 Concluding Remarks

We have developed a simple analytical model of public information and heterogeneous prior

beliefs allowing us to study the relationship between the informativeness of the public in-

formation system and the investors’welfare in an incomplete market setting. The source
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of the welfare improvements due to public information is the trading gains following from

the investors’speculative positions based on the differences in the precision of their prior

beliefs. These trading gains are reflected in an additional positive component in the equilib-

rium interest rate (in addition to the usual utility discount rate, the risk-adjusted aggregate

consumption growth and the risk premium for aggregate consumption risk). Moreover, the

model provides a direct positive relationship between welfare improvements and the expected

abnormal trading volume and, thus, it provides an empirical measure for the relationship

between public information systems and investor welfare. This result is in contrast to the

extant literature on the impact of public information on trading volume based on noisy ra-

tional expectations models (see, e.g., Kim and Verrecchia 1991a, McNichols and Trueman

1994, and Demski and Feltham 1994). Due to the unmodelled “noise traders,”these models

do not allow welfare comparisons of market structures with different public information sys-

tems. Similarly, the differences-of-opinion literature is also to a large extent silent about the

relationship between trading volume and investor welfare, mainly because trading volume in

these models is generated based on unmodelled heterogeneous beliefs about payoff-irrelevant

events as opposed to about the fundamentals of the economy.

Our analysis of the incomplete market setting shows that the public information must

be imperfect to be valuable. No information and perfect information rule out valuable dy-

namic trading strategies to take advantage of the differences in prior dividend precisions.

In this sense, our results are related to the so-called information-risk problem due to Hirsh-

leifer (1971), and to the literature on dynamically completing markets by trading long-lived

securities (see, e.g., Ohlson and Buckman 1981, Duffi e and Huang 1985, and Christensen

and Feltham 2003, Chapter 7). Hence, the model provides an argument for the gradual re-

lease of information by firms through, for example, earnings forecasts and quarterly earnings

announcements, such that the news at the annual audited earnings announcements is lim-

ited.19 In the limit, in which the public information about the normally distributed dividend

is generated by a continuous arithmetic Brownian motion and trading in the risky asset and

the zero-coupon bond is continuous, a dynamically complete market is achieved and, thus,

a fully Pareto effi cient Arrow-Debreu equilibrium can be implemented irrespectively of any

heterogeneity in prior beliefs, preferences, and wealth distributions (see Duffi e and Huang

1985).

A continuous public information flow may be considered an extreme model of information

flows in actual financial markets. We show that a dividend derivative specifically targeted

towards the investors’incentive to take advantage of their differences in dividend precisions

19Lev (1989) shows that earnings and earnings-related information only has an explanatory power of
about 5% of the cross-sectional and time-series variability of stock returns for medium-size windows.
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completely eliminates the need for dynamic trading based on public signals. This result,

however, relies heavily on our assumptions of exponential utilities (such that effi cient risk

sharing and side-betting arrangements are additively separable) and normally distributed

dividends and, thus, it cannot be expected to carry over to more general settings. On the

other hand, the result does show that derivative markets (i.e., securities with non-linear

payoffs) may play an important welfare enhancing role in incomplete markets with “jumps”

in public information flows. Careful modeling and investigations of the intimate relationship

between public information flows and the need for derivative markets could be a fruitful

topic for future research.

Finally, our model provides a direct positive relationship between welfare improvements

and the ex ante cost of capital, i.e., the Pareto effi cient public information system is the

system enjoying the maximum ex ante cost of capital and, thus, the lowest equilibrium

ex ante price of the risky asset. This (maybe at first counterintuitive) result shows the

importance of using a general equilibrium analysis in the evaluation of public information

systems, which have consequences for the economy at large. In our model, the impact of the

public information system on investor welfare is reflected through the equilibrium interest

rate, i.e., the expected marginal rate of substitution between current and future consumption.

The ex ante risk premium, however, is not affected by the public information system,

neither in the incomplete nor in the effectively complete market setting. While the impact

on the equilibrium interest can be expected to carry over to more general settings as a

measure of changes in investor welfare (through the expected marginal utility of future

consumption), the lack of an impact on the ex ante risk premium is quite likely specific to

our particular model with exponential utilities and normally distributed dividends.20 Qin

(2011) shows numerically that adding a call option to our incomplete market setting yields

an ex ante risk premium which (as a function of the signal precision) is not aligned with

investor welfare. The equilibrium interest rate and the investor welfare, however, are still

perfectly aligned and attain their unique maximum for a common interior signal precision.

Hence, it is probably wise to be cautious in making policy statements about, for example,

financial reporting regulation, based on empirical measures of equity premia (which are hard

to measure reliably anyway).

20See, however, Krueger and Lustig (2010), who in a related setting with power utilities gives suffi cient
conditions for market incompleteness being irrelevant for the equity premium.
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Appendix: Proofs

Proof of Remark 1: Substituting the t = 1 demand functions (2a) into investor i’s

certainty equivalent (5) yields

CEi2 (xi0, γi0, xi1(y))

= γi0 + xi0p1(y) + ρhi1 (m
i1
− p1(y)) (mi1 − p1(y))− 1

2
r (ρhi1 (mi1 − p1(y)))2 σ2i1

= γi0 + xi0p1(y) + 1
2
ρhi1 (mi1 − p1(y))2 ,

where p1(y) is given by (3). Investor i’s posterior mean in (1a) for the t = 2 dividend

can be expressed as weighted average of the prior mean and the public signal, i.e., mi1 =

ωiy + (1− ωi)mi, where ωi = σ2i / (σ2i + σ2ε). Thus, the precision weighted average of the

investors’posterior can be written as

mh
1 =

1

I

I∑
i=1

hi1

h1
mi1

=
1

I

I∑
i=1

1

h1
[hεy + himi]

= σ21
[
hεy + hmh

]
,

and, consequently, the t = 1 equilibrium price of the risky asset is

p1(y) = σ21
[
hεy + σ2mh − rZ/I

]
.
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Inserting in the above expression for the certainty equivalent yields

CEi2 (xi0, γi0, xi1(y))

= γi0 + xi0σ
2
1

[
hεy + hmh − rZ/I

]
+ 1

2
ρhi1

(
[ωiy + (1− ωi)mi]− σ21

[
hεy + hmh − rZ/I

])2
= γi0 + xi0σ

2
1

[
hεy + hmh − rZ/I

]
+ 1

2
ρhi1

(
σ2i1 [hεy + himi]− σ21

[
hεy + hmh − rZ/I

])2
= γi0 + xi0σ

2
1hεy + xi0σ

2
1

[
hmh − rZ/I

]
+ 1

2
ρhi1

([
σ2i1 − σ21

]
hεy + σ2i1himi − σ21

[
hmh − rZ/I

])2
.

For notational simplicity, let

E1i ≡
[
σ2i1 − σ21

]
hε,

E2i ≡ σ21hε,

E3i ≡ σ21
[
hmh − rZ/I

]
,

E4i ≡ σ2i1himi − E3i,

and substituting into the certainty equivalent yields

CEi2 (xi0, γi0, xi1(y))

= γi0 + xi0E2iy + xi0E3i + +1
2
ρhi1 (E1iy + E4i)

2

= γi0 + xi0E3i + 1
2
ρhi1E

2
4i + [xi0E2i + ρhi1E1iE4i] y + 1

2
ρhi1E

2
1iy

2.

Note that CEi2 (xi0, γi0, xi1(y)) is a quadratic function of y, and from the perspective of

investor i, y ∼ N(mi, σ
2
i + σ2ε). Hence, we can apply the following lemma (see Christensen

and Feltham 2003, Appendix 3A, for proof) to calculate investor i’s certainty equivalent.

Lemma 2 Let w be a normally distributed variable with distribution w ∼ N(q, s) and pre-

cision d = s−1, and let a quadratic function of w be given by Q(w) = a+ bw + 1
2
cw2, where

c > 0. The certainty equivalent CEQ(w) of the quadratic function as defined by

− exp
[
−rCEQ(w)

]
= E[− exp[−rQ(w)]],

is given by

CEQ(w) = a+ 1
2
ρdq2 − 1

2
ρ

[rb− dq]2

rc+ d
+ 1

2
ρ[ln[rc+ d]− ln[d]].
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In our model,

w = y, q = mi, d =
(
σ2i + σ2ε

)−1
,

a = γi0 + xi0E3i + 1
2
ρhi1E

2
4i,

b = xi0E2i + ρhi1E1iE4i,

c = ρhi1E
2
1i.

Hence, investor i’s t = 0 certainty equivalent of t = 2 consumption can be expressed as

CEi2 (xi0, γi0) = γi0 + xi0E3i + 1
2
ρhi1E

2
4i + 1

2

ρm2
i

σ2i + σ2ε

− 1
2
ρ

[rxi0E2i + hi1E1iE4i − mi

σ2i+σ
2
ε
]2

hi1E21i + hi

+ 1
2
ρ[ln[hi1E

2
1i +

1

σ2i + σ2ε
] + ln[σ2i + σ2ε]]

= γi0 + 1
2
ρ ln[1 + hi1E

2
1i[σ

2
i + σ2ε]] + 1

2
ρhi1E

2
4i + 1

2
ρ

m2
i

σ2i + σ2ε

+ xi0E3i − 1
2
ρ

(σ2i + σ2ε) [rxi0E2i + hi1E1iE4i − mi

σ2i+σ
2
ε
]2

1 + hi1E21i (σ
2
i + σ2ε)

.

Collecting terms yields that

CEi2 = γi0 + Ui1 + Ui2 +Mixi0 − 1
2
rVix

2
i0,

where

Ui1 ≡ 1
2
ρ ln[1 + hi1E

2
1i[σ

2
i + σ2ε]],

Ui2 ≡ 1
2
ρhi1E

2
4i + 1

2
ρ

m2
i

σ2i + σ2ε
− 1

2
ρ

(σ2i + σ2ε)
(
hi1E1iE4i − mi

σ2i+σ
2
ε

)2
1 + hi1E21i (σ

2
i + σ2ε)

,

Mi ≡ E3i −
(σ2i + σ2ε)E2i

(
hi1E1iE4i − mi

σ2i+σ
2
ε

)
1 + hi1E21i (σ

2
i + σ2ε)

,

Vi ≡
(σ2i + σ2ε)E

2
2i

1 + hi1E21i (σ
2
i + σ2ε)

.

Using the definition of E1i = [σ2i1 − σ21]hε, we get

E1i =

[
1

hi + hε
− 1

h+ hε

]
hε = hε

h− hi
(hε + hi)

(
h+ hε

) .
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This implies that

Ai ≡ 1 + hi1E
2
1i[σ

2
i + σ2ε]

= 1 + [hε + hi]h
2
ε

[
h− hi

(hε + hi)
(
hε + h

)]2 [ 1

hi
+

1

hε

]

= 1 +
1

hε + hi
h2ε

[
h− hi
hε + h

]2
hε + hi
hεhi

= 1 +

(
h− hi

)2
hi

hε(
h+ hε

)2
and, thus,

Ui1 = 1
2
ρ ln

[
1 +

(
h− hi

)2
hi

hε(
h+ hε

)2
]
,

which establishes (7a).

Turning to Vi and using the definitions of E2i = σ21hε and of Ai = 1 + hi1E
2
1i[σ

2
i + σ2ε], we

get that

Vi =
(σ2i + σ2ε) (σ21hε)

2

Ai
=

(
1
hi

+ 1
hε

)(
hε

h+hε

)2
1 +

(h−hi)
2

hi

hε

(h+hε)
2

=
(hε + hi)hε

hi
(
h+ hε

)2
+
(
h− hi

)2
hε

=
hε

h
2

+ hεhi
,

which establishes (7d).

Turning to Mi and using the definition of Vi, we can express Mi as

Mi = E3i −
(σ2i + σ2ε)E2i

(
hi1E1iE4i − mi

σ2i+σ
2
ε

)
1 + hi1E21i (σ

2
i + σ2ε)

= E3i −
hi1E1iE4i − mi

σ2i+σ
2
ε

E2i
Vi

= Vi

[
E3i
Vi
− hi1

E1iE4i
E2i

+
mihihε

E2i (hε + hi)

]
.
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Inserting the expressions for Eji, j = 1, 2, 3, 4, and simplifying yield

Mi = Vi

[
σ21
[
hmh − rZ/I

]
Vi

− hi1
E1i
(
σ2i1himi − σ21

[
hmh − rZ/I

])
σ21hε

+
mihihε

σ21hε (hε + hi)

]

= Vi

σ21 [hmh − rZ/I
]

Vi
−
hε

h−hi
(hε+hi)(h+hε)

(
himi − hi1σ21

[
hmh − rZ/I

])
hε

h+hε

+
mihihε

hε
h+hε

(hε + hi)


= Vi

[
σ21
[
hmh − rZ/I

]
Vi

− h− hi
hε + hi

(
himi − hi1σ21

[
hmh − rZ/I

])
+
mihi

(
h+ hε

)
hε + hi

]

= Vi

[
σ21
[
hmh − rZ/I

]
Vi

+ himi +
(
h− hi

)
σ21
[
hmh − rZ/I

]]

= Vi

[
himi +

[
1

Vi
+
(
h− hi

)]
σ21
[
hmh − rZ/I

]]
.

Substituting the expression for Vi back in yields

Mi =
hε

[
himi +

[
h
2
+hεhi
hε

+
(
h− hi

)]
σ21
[
hmh − rZ/I

]]
h
2

+ hεhi

=
hε

[
himi +

[
h
2

hε
+ h
]

1
h+hε

[
hmh − rZ/I

]]
h
2

+ hεhi

=
hεhimi + h

[
hmh − rZ/I

]
h
2

+ hεhi
=
hεhimi + h

2
mh − rhZ/I

h
2

+ hεhi
,

which establishes (7c).

Finally, turning to Ui2 we get

2rUi2 = hi1E
2
4i +

m2
i

σ2i + σ2ε
−

(σ2i + σ2ε)
(
hi1E1iE4i − mi

σ2i+σ
2
ε

)2
1 + hi1E21i (σ

2
i + σ2ε)

= hi1E
2
4i + 1

2

m2
i

σ2i + σ2ε
− 1

2

h2i1E
2
1iE

2
4i (σ

2
i + σ2ε) +

m2
i

σ2i+σ
2
ε
− 2hi1E1iE4imi

1 + hi1E21i (σ
2
i + σ2ε)

=
hi1E

2
4i +

m2
i

σ2i+σ
2
ε

(1 + hi1E
2
1i (σ

2
i + σ2ε))

1 + hi1E21i (σ
2
i + σ2ε)

−
m2
i

σ2i+σ
2
ε
− 2hi1E1iE4imi

1 + hi1E21i (σ
2
i + σ2ε)

=
hi1E

2
4i +

m2
i

σ2i+σ
2
ε

+m2
ihi1E

2
1i −

m2
i

σ2i+σ
2
ε

+ 2hi1E1iE4imi

1 + hi1E21i (σ
2
i + σ2ε)

= hi1
E24i +m2

iE
2
1i + 2E1iE4imi

1 + hi1E21i (σ
2
i + σ2ε)

= hi1
(E4i +miE1i)

2

1 + hi1E21i (σ
2
i + σ2ε)

.
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Substituting the expressions for E1i and E4i in, we obtain

2rUi2 = (hε + hi)

(
1

hi+hε
himi − σ21

[
hmh − rZ/I

]
+mi [σ

2
i1 − σ21]hε

)2
1 + [hε + hi] [[σ2i1 − σ21]hε]

2
(σ2i + σ2ε)

=

(
1

hi+hε
himi − 1

h+hε

[
hmh − rZ/I

]
+mi

h−hi
(hε+hi)(h+hε)

hε

)2
1

hε+hi
+

[
h−hi

(hε+hi)(h+hε)
hε

]2
(σ2i + σ2ε)

=

1

(hε+hi)
2(hε+h)

2

1

(hε+hi)
2(hε+h)

2

(
himi

(
hε + h

)
+mihε

(
h− hi

)
−
[
hmh − rZ/I

]
[hε + hi]

)2
h2ε
(
h− hi

)2
(σ2i + σ2ε) + (hε + hi)

(
hε + h

)2
=

(
himi

(
hε + h

)
+mihε

(
h− hi

)
−
[
hmh − rZ/I

]
[hε + hi]

)2
h2ε
(
h− hi

)2
(σ2i + σ2ε) + (hε + hi)

(
hε + h

)2
=

(
(hi + hε)mih−

[
hmh − rZ/I

]
[hε + hi]

)2
h2ε
(
h− hi

)2
(σ2i + σ2ε) + (hε + hi)

(
hε + h

)2
=
hi (hi + hε)

[
mih− hmh + rZ/I

]2
hε
(
h− hi

)2
+ hi

(
hε + h

)2 =
hi
[
mih− hmh + rZ/I

]2
h
2

+ hihε
.

Hence, we have that

Ui2 =
ρ

2

hi
[
mih− hmh + rZ/I

]2
h
2

+ hihε
,

which establishes (7b).

Proof of Proposition 1: First we calculate

υ ≡ 1

I

I∑
i=1

υi =
1

I

I∑
i=1

h
2

+ hεhi
hε

=
h
2

hε
+ h,

and

M
υ ≡ 1

I

I∑
i=1

υi
υ
Mi =

1

I

1

h
2

hε
+ h

I∑
i=1

h
2

+ hεhi
hε

hεhimi + h
[
hmh − rZ/I

]
h
2

+ hεhi

=
1

I

hε

h
2

+ hεh

I∑
i=1

1

hε

[
hεhimi + h

[
hmh − rZ/I

]]
=

1

I

1

h
2

+ hεh

(
Ihεhm

h + Ih
2
mh − hrZ

)
=
hεhm

h + h
2
mh − hrZ/I

h
2

+ hεh
.
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Hence, the risk-adjusted expected dividend is

EQ[ d ] ≡M
υ − rV Z/I =

hεhm
h + hhmh − hrZ/I
h
2

+ hεh
− r hε

h
2

+ hεh
Z/I

=
hεhm

h + hhmh − hrZ/I − hεrZ/I
h
2

+ hεh

=

(
hε + h

)
hmh −

(
h+ hε

)
rZ/I(

h+ hε
)
h

= mh − rσ2Z/I,

which shows the claim in the proposition that the risk-adjusted expected dividend is inde-

pendent of the signal precision.

Proof of Remark 2: Substituting the expressions for Mi and Vi, i.e., (7c) and (7d), into

(13) and simplifying yield

x∗i0 = ρ

hεhimi+h[hmh−rZ/I]
h
2
+hεhi

− EQ[ d ]

hε

h
2
+hεhi

= ρ
1

hε

[
hεhimi + h

[
hmh − rZ/I

]
−
(
h
2

+ hεhi

)
EQ[ d ]

]
.

Using the expression for EQ[ d ], i.e., (12), yields

x∗i0 = ρ
1

hε

[
hεhimi + h

2
EQ[ d ]−

(
h
2

+ hεhi

)
EQ[ d ]

]
= ρhi

{
mi − EQ [d]

}
.

Proof of Proposition 2: Summing (16) across investors and using the market clearing

conditions yield

ι = δ + r
1

I

I∑
i=1

(CE∗i2 − CE∗i0)

= δ + r
1

I

I∑
i=1

U1i + r
1

I

I∑
i=1

(
U2i +Mix

∗
i0 − 1

2
rVi (x

∗
i0)

2)− rd0Z/I.
From (7a) we get

r
1

I

I∑
i=1

U1i = 1
2

1

I

I∑
i=1

ln

[
1 +

(
h− hi

)2
hi

hε(
h+ hε

)2
]
.
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Substituting (14) yields

U2i +Mix
∗
i0 − 1

2
rVi (x

∗
i0)

2 = U2i +Miρ
Mi − EQ[ d ]

Vi
− 1

2
rVi

(
ρ
Mi − EQ[ d ]

Vi

)2
= U2i + ρ

M2
i −MiE

Q[ d ]

Vi
− 1

2
ρ
M2

i +
(
EQ[ d ]

)2 − 2MiE
Q[ d ]

Vi

= U2i + 1
2
ρ
M2

i −
(
EQ[ d ]

)2
Vi

.

Substituting in U2i,Mi and Vi yields

2r

[
U2i + 1

2
ρ
M2

i −
(
EQ[ d ]

)2
Vi

]

=
hi
[
mih− hmh + rZ/I

]2
h
2

+ hihε
+

[
hεhimi+h[hmh−rZ/I]

h
2
+hεhi

]2
−
(
EQ [d]

)2
hε

h
2
+hεhi

.

Let B ≡ hmh − rZ/I such that

2r

[
U2i + 1

2
ρ
M2

i −
(
EQ[ d ]

)2
Vi

]

=
hi
[
mih−B

]2
h
2

+ hihε
+

[
hεhimi + hB

]2
hε

(
h
2

+ hεhi

) − h
2

+ hεhi

hεh
2 B2

=
hεhi

[
mih−B

]2
hε

(
h
2

+ hihε

) +

[
hεhimi + hB

]2
hε

(
h
2

+ hεhi

) −
(

1 + hε
hi

h
2

)(
h
2

+ hεhi

)
hε

(
h
2

+ hεhi

) B2

=
1

hε

(
h
2

+ hihε

) [hεhi [mih−B
]2

+
[
hεhimi + hB

]2 − 1

h
2

(
h
2

+ hεhi

)(
h
2

+ hεhi

)
B2

]

=
hεhi

hε

(
h
2

+ hihε

) [m2
ih
2 −B2 + hεhim

2
i −

1

h
2hεhiB

2

]

=
hεhi

hε

(
h
2

+ hihε

) [m2
i

[
h
2

+ hεhi

]
−B2h

2
+ hεhi

h
2

]

= hi

[
m2
i −

B2

h
2

]
.
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Thus, we obtain that

U2i + 1
2
ρ
M2

i −
(
EQ[ d ]

)2
Vi

= 1
2
ρhi

[
m2
i −

[
hmh − rZ/I

]2
h
2

]
= 1

2
ρhi

[
m2
i −

(
EQ [d]

)2]
.

Hence,

ι = δ + r
1

I

I∑
i=1

U1i + r
1

I

I∑
i=1

(
U2i +Mix

∗
i0 − 1

2
rVi (x

∗
i0)

2)− rd0Z/I
= δ + 1

2

1

I

I∑
i=1

ln

[
1 +

(
h− hi

)2
hi

hε(
h+ hε

)2
]

+ Φ
({
mi, σ

2
i

}
i=1,...,I

)
,

where

Φ
({
mi, σ

2
i

}
i=1,...,I

)
≡ 1

2

1

I

I∑
i=1

hi

[
m2
i −

(
EQ[ d ]

)2]− rd0Z/I.
Inserting the expression for EQ[ d ] in (12) yields

Φ
({
mi, σ

2
i

}
i=1,...,I

)
= 1

2

1

I

I∑
i=1

hi

[
m2
i −

(
mh − rσ2Z/I

)2]− rd0Z/I
= 1

2

1

I

I∑
i=1

him
2
i − 1

2

(
mh − rσ2Z/I

)2
h− rd0Z/I

= r
[
mh − d0

]
Z/I − 1

2
r2σ2 (Z/I)2 + 1

2

1

I

I∑
i=1

him
2
i − 1

2

(
mh
)2
h.

If the investors have homogeneous prior dividend means, i.e., mi = m, then

Φ
({
m,σ2i

}
i=1,...,I

)
= r [m− d0]Z/I − 1

2
r2σ2 (Z/I)2 + 1

2

1

I

I∑
i=1

him
2
i − 1

2

(
1

I

I∑
i=1

hi

h
mi

)2
1

h

= r [m− d0]Z/I − 1
2
r2σ2 (Z/I)2 + 1

2
m2h− 1

2
m2h

2 1

h

= r [m− d0]Z/I − 1
2
r2σ2 (Z/I)2 .

If the investors have homogeneous prior dividend precisions, i.e., hi = h, then

ι = δ + Φ
({
mi, σ

2
}
i=1,...,I

)
.

Hence, the equilibrium interest rate is independent of the signal precision, since the function

Φ (·) only depends on the prior beliefs.
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Proof of Proposition 3: With identical prior dividend precisions, let hi = h, for i =

1, ..., I. Hence,

h = h, mh =
1

I

I∑
i=1

mi,

and

mi1 =
hε

h+ hε
y +

(
h

h+ hε

)
mi =

1

h+ hε
(hεy + hmi) .

This implies that

x∗i1(y) = ρhi1
(
mi1 −

[
mh
1 − rσ21Z/I

])
= ρ [hε + h]

(
mi1 −

1

ρ [hε + h] I

(
I∑
i=1

ρ [hε + h]mi1 − Z
))

= ρ (hεy + hmi)−
1

I

(
I∑
i=1

ρ [hε + h]
1

h+ hε
(hεy + hmi)− Z

)

= ρ (hεy + hmi)−
1

I

(
I∑
i=1

ρ (hεy + hmi)− Z
)

= ρhmi − ρhmh + Z/I = ρh
{
mi −

[
mh − σ2Z/I

]}
.

Using the expression for EQ[ d ], i.e., (12), we have that

EQ[ d ] = mh − σ2Z/I,

and Remark 2 yields that

x∗i1(y) = ρh
{
mi − EQ[ d ]

}
= x∗i0.

Therefore, the demand for riskless asset is also time- and signal-invariant due to

γ∗i1 = γ∗i0 + p1(y)x∗i0 − p1(y)x∗i1(y) = γ∗i0.

Proof of Proposition 4: By Proposition 2 the equilibrium interest rate attains its maxi-

mum value when the logarithmic term in (17),

1
2

1

I

I∑
i=1

ln

[
1 +

(
h− hi

)2
hi

hε(
h+ hε

)2
]
,
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is maximized with respect to hε. This term is maximized whenever the common term for all

investors hε/
(
h+ hε

)2
is maximized. The first-order condition is

(
h+ hε

)2 − 2hε
(
h+ hε

)(
h+ hε

)4 = 0⇔ h
2

+ h2ε + 2hhε − 2hεh− 2h2ε = 0⇔

h
2 − h2ε = 0⇔

(
h− hε

) (
h+ hε

)
= 0⇔ h = hε,

where the last equation follows from the fact that h + hε > 0. Similarly, hε/
(
h+ hε

)2
is

minimized (and is equal to zero) for hε = 0 and hε →∞.
Note the second derivative of the equilibrium interest rate with respect to the signal

precision is

−4
(
h+ hε

)−3
+ 6hε

(
h+ hε

)−4
= 2

(
h+ hε

)−3 (−2 + 3hε
(
h+ hε

)−1)
.

Hence, the equilibrium interest rate has only one inflection point with respect to the

signal precision, i.e., hip = 2h. Since
(
h+ hε

)−3
> 0, thus, when hε ≥ hip (hε ≤ hip) ,

the second derivative of the equilibrium interest rate with respect to the signal precision is

positive (negative), thus, the equilibrium interest rate is convex (concave) with respect to

the signal precision.

Proof of Remark 3: Using that (see the proof of Remark 1)

mh
1 = σ21

[
hεy + hmh

]
=

1

h+ hε

[
hεy + hmh

]
,

(4) can be re-written as

x∗i1(y) = ρhi1
(
mi1 −

[
mh
1 − rσ21Z/I

])
= ρhi1

(
ωiy + (1− ωi)mi −

[
1

h+ hε

[
hεy + hmh

]
− r 1

h+ hε
Z/I

])
= ρ

(
hεy + himi −

hi + hε

h+ hε

[
hεy + hmh − rZ/I

])
= ρ

(
hε
(
h− hi

)
h+ hε

y + himi −
h (hi + hε)

h+ hε

[
mh − rσ2Z/I

])

= ρ

(
hε
(
h− hi

)
h+ hε

y + himi −
h (hi + hε)

h+ hε
EQ[ d ]

)
.
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It then follows from (14) that

τ ∗i (y) = ρ

(
hε
(
h− hi

)
h+ hε

y + himi −
h (hi + hε)

h+ hε
EQ[ d ]

)
− ρhi

[
mi − EQ[ d ]

]
= ρ

(
hε
(
h− hi

)
h+ hε

y −
[
h (hi + hε)

h+ hε
− hi

]
EQ[ d ]

)

= ρ

(
hε
(
h− hi

)
h+ hε

y −
[
hhε − hihε
h+ hε

]
EQ[ d ]

)
= ρ

hε
(
h− hi

)
h+ hε

(
y − EQ[ d ]

)
.

The risk-adjusted expected equilibrium net-trade is

EQ[ τ ∗i (y) ] = ρ
hε
(
h− hi

)
h+ hε

(
EQ[ y ]− EQ[ d ]

)
= ρ

hε
(
h− hi

)
h+ hε

(
EQ[ d+ ε) ]− EQ[ d ]

)
= ρ

hε
(
h− hi

)
h+ hε

EQ[ ε) ] = 0.

Proof of Proposition 5: Using that the expected value of the absolute value of a zero-

mean normally distributed variable X is

E [| X |] =
√

2/π
√

Var[X],

the expected abnormal trading volume is

E [T ∗ ] = 1
2

1

I

I∑
i=1

E [| aτ ∗i (y) |] = 1
2

1

I

I∑
i=1

√
2/π
√

Var[aτ ∗i (y)]

=
1√
2π

1

I

I∑
i=1

√√√√ρ2
h2ε
(
h− hi

)2(
h+ hε

)2 σ2ε =

√
hε

h+ hε

ρ√
2π

1

I

I∑
i=1

| h− hi | .

As a function of the signal precision, the expected abnormal trading volume can be expressed

as

E [T ∗ ] = a

√
hε(

h+ hε
)2

with a being a positive constant. The comparative statics stated in the proposition then

follows from the proof of Proposition 4, and the fact that the square-root function is a

strictly increasing function.

Proof of Lemma 1: Using (8), the equilibrium expected utility of investor i can be
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expressed as

EU∗0 = − exp (−rCE∗i0) [1 + exp (−δ) exp (−r {CE∗i2 − CE∗i0})]
= − exp (−rCE∗i0) [1 + exp (−δ) exp (− [ι− δ])] = − exp (−rCE∗i0) [1 + β0] .

Hence,

∂

∂hε
EU∗0 = r exp (−rCE∗i0) [1 + β0]

∂

∂hε
CE∗i0 − exp (−rCE∗i0)

∂

∂hε
β0

= r exp (−rCE∗i0)

{
[1 + β0]

∂

∂hε
CE∗i0 − ρ

∂

∂hε
β0

}
.

Investor i’s t = 0 certainty equivalent is given by

CE∗i0 = H(β0)− β0γ∗i0,

where

H(β0) ≡ [p0(η) + d0] z̄i + β0γi + κi − p0(η)x∗i0

is the value of the endowments minus the investment in the risky asset. The equilibrium

investment in the zero-coupon bond is given by its first-order condition (8), i.e.,

ι = δ + r
(
γ∗i0 + U1i + U2i +Mix

∗
i0 − 1

2
rVi (x

∗
i0)

2 −H(β0) + β0γ
∗
i0

)
.

Solving for γ∗i0 and using Proposition 2 yield that

γ∗i0 =
ρ (ι− δ)−

(
U1i + U2i +Mix

∗
i0 − 1

2
rVi (x

∗
i0)

2 −H(β0)
)

1 + β0

=
U1 − U1i + ρf

(
{mi, σ

2
i }i=1,...,I

)
−
(
U2i +Mix

∗
i0 − 1

2
rVi (x

∗
i0)

2)+H(β0)

1 + β0
.

Note by the proof of Proposition 2 that all except for the first two and the last term in the

numerator are independent of the signal precision. Hence,

∂γ∗i0
∂hε

=

[
∂
∂hε
U1 − ∂

∂hε
U1i +H ′(β0)

∂
∂hε
β0

]
(1 + β0)− γ∗i0 (1 + β0)

∂
∂hε
β0

(1 + β0)
2

=
∂
∂hε
U1 − ∂

∂hε
U1i + [H ′(β0)− γ∗i0] ∂

∂hε
β0

1 + β0
.
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This implies that

[1 + β0]
∂

∂hε
CE∗i0 = [1 + β0]

∂

∂hε
[H(β0)− β0γ∗i0]

= [1 + β0]

[
[H ′(β0)− γ∗i0]

∂

∂hε
β0 − β0

∂γ∗i0
∂hε

]
= [1 + β0] [H ′(β0)− γ∗i0]

∂

∂hε
β0 − β0

[
∂

∂hε
U1 −

∂

∂hε
U1i + [H ′(β0)− γ∗i0]

∂

∂hε
β0

]
= [H ′(β0)− γ∗i0]

∂

∂hε
β0 − β0

[
∂

∂hε
U1 −

∂

∂hε
U1i

]
.

Furthermore, it follows from (8) and Proposition 2 that

∂

∂hε
β0 =

∂

∂hε
exp (− (δ + r (CE∗i2 − CE∗i0)))

= −r exp (− (δ + r (CE∗i2 − CE∗i0)))
∂

∂hε
[CE∗i2 − CE∗i0]

= −r exp (− (δ + r (CE∗i2 − CE∗i0)))
∂

∂hε
U1 = −rβ0

∂

∂hε
U1.

Hence,

∂

∂hε
EU∗0 = r exp (−rCE∗i0)

{
[1 + β0]

∂

∂hε
CE∗i0 − ρ

∂

∂hε
β0

}
= r exp (−rCE∗i0)

{
[H ′(β0)− γ∗i0]

∂

∂hε
β0 − β0

[
∂

∂hε
U1 −

∂

∂hε
U1i

]
+ β0

∂

∂hε
U1

}
= r exp (−rCE∗i0)

{
β0

∂

∂hε
U1i + [γ∗i0 −H ′(β0)]

∂

∂hε
β0

}
= r exp (−rCE∗i0) β0

{
∂

∂hε
U1i + r [γ∗i0 −H ′(β0)]

∂

∂hε
U1

}
.

Using the fact that the risk-adjusted expected dividend of the risky asset is independent of

hε, it follows that

H ′(β0) = EQ[ d ] [z̄i − x∗i0] + γi.

Hence,

∂

∂hε
EU∗0 = r exp (−rCE∗i0)

{
β0

∂

∂hε
U1i +

[
(γ∗i0 − γi) + EQ[ d ] (x∗i0 − z̄i)

] ∂

∂hε
β0

}
.
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Furthermore, it follows from (8) and Proposition 2 that

∂

∂hε
β0 =

∂

∂hε
exp (− (δ + r (CE∗i2 − CE∗i0)))

= −r exp (− (δ + r (CE∗i2 − CE∗i0)))
∂

∂hε
[CE∗i2 − CE∗i0]

= −r exp (− (δ + r (CE∗i2 − CE∗i0)))
∂

∂hε
U1 = −rβ0

∂

∂hε
U1.

Since both U1i and U1 have a unique maximum for hε = h, all investors’expected utilities

have a stationary point for hε = h.

Proof of Proposition 7: (a) Inserting (31b) into the expression for the equilibrium

interest rate and using the market clearing conditions yield

ι = δ + r
1

I

I∑
i=1

[
CE†i2 − CE†i0

]
= δ + r

1

I

I∑
i=1

[
CE∗i2 +

(
γ†i − γ∗i

)
+ 1

2
ρ
(
EQ [d]

)2 (
hi − h

)
+ Υi − U1i − CE∗i0

]
= δ + r

1

I

I∑
i=1

[CE∗i2 + Υi − U1i − CE∗i0]

= δ + rΥ− rU1 + r
1

I

I∑
i=1

[CE∗i2 − CE∗i0] = δ + rΥ− rU1 + r [CE∗i2 − CE∗i0] ,

where the second equality follows from the fact that
∑

i CE†i0 =
∑

i CE∗i0 = d0. It then

follows from (16) and (17) that

ι = δ + rΥ− rU1 + rU1 + Φ
({
mi, σ

2
i

}
i=1,...,I

)
= δ + rΥ + Φ

({
mi, σ

2
i

}
i=1,...,I

)
.

(b) follows from the fact that both Υ and Φ (·) only depend on the prior dividend beliefs.
(c) Comparing (17) and (32), we must show that Υ > U1 for any signal precision hε. Note

that

max
hε

U1i = max
hε

1
2
ρ ln

[
1 +

(
h− hi

)2
hi

hε(
h+ hε

)2
]

= 1
2
ρ ln

[
1 +

(
h− hi

)2
4hhi

]
= 1

2
ρ ln

[
h
2

+ h2i + 2hhi

4hhi

]
.
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Hence, for investors i with hi 6= h

Υi − U1i = 1
2
ρ

{
ln

[
h

hi

]
− ln

[
1 +

(
h− hi

)2
hi

hε(
h+ hε

)2
]}

> 1
2
ρ

{
ln

[
h

hi

]
− ln

[
h
2

+ h2i + 2hhi

4hhi

]}
= 1

2
ρ ln

[
h

hi

4hhi

h
2

+ h2i + 2hhi

]

= 1
2
ρ ln

[
4

h
2(

h+ hi
)2
]

= ρ ln

[
2h

h+ hi

]
.

This implies that in settings with heterogeneous prior dividend precisions

Υ− U1 >
1

I

I∑
i=1

ln

[
2h

h+ hi

]
=

1

I

I∑
i=1

[
ln
[
2h
]
− ln

[
h+ hi

]]
= ln

[
2h
]
− 1

I

I∑
i=1

ln
[
h+ hi

]
> ln

[
2h
]
− ln

[
1

I

I∑
i=1

[
h+ hi

]]
= ln

[
2h
]
− ln

[
2h
]

= 0,

where the second inequality follows from Jensen’s inequality and the fact that ln[·] is a
concave function. This establishes (c).
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