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Abstract

The support vector machine (SVM) is a state-of-the-art method in supervised
classification. In this paper the Cluster Support Vector Machine (CLSVM) method-
ology is proposed with the aim to increase the sparsity of the SVM classifier in the
presence of categorical features, leading to a gain in interpretability. The CLSVM
methodology clusters categories and builds the SVM classifier in the clustered feature
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Competitividad, Spain, P11-FQM-7603 and FQM-329 of Junta de Andalucía, Spain.
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space. Four strategies for building the CLSVM classifier are presented based on solv-
ing: the SVM formulation in the original feature space, a quadratically constrained
quadratic programming formulation, and a mixed integer quadratic programming
formulation as well as its continuous relaxation. The computational study illus-
trates the performance of the CLSVM classifier using two clusters. In the tested
datasets our methodology achieves comparable accuracy to that of the SVM in the
original feature space, with a dramatic increase in sparsity.

Keywords: support vector machine, categorical features, classifier sparsity, clus-
tering, quadratically constrained programming, 0-1 programming

1 Introduction
In supervised classification, [2, 18, 37], we are given a set of objects Ω partitioned,
in its simplest setting, into two classes, and the aim is to classify new objects. Given
an object i ∈ Ω, it is represented by a vector (xi, x

′
i, yi). The feature vector xi is

associated with J categorical features, that can be binarized by splitting each feature
into a series of 0-1 dummy features, one for each category, and takes values on a
set X ⊆ {0, 1}

∑J
j=1Kj , where Kj is the number of categories of feature j. Thus,

xi = (xi,j,k), where xi,j,k is equal to 1 if the value of categorical feature j in object
i is equal to category k and 0 otherwise. The feature vector x′i is associated with J ′

continuous features and takes values on a set X ′ ⊆ RJ ′ . Finally, yi ∈ {−1,+1} is
the class membership of object i. Information about objects is only available in the
so-called training sample, with n objects.

In many applications of supervised classification datasets are composed by a
large number of features and/or objects [26], making it hard to both build the
classifier and interpret the results. In this case, it is desirable to obtain a sparser
classifier, which may make classification easier to handle and interpret, less prone
to overfitting and computationally cheaper when classifying new objects. The most
popular strategy proposed in the literature to achieve this goal is feature selection
[14, 15, 17, 35], which aims at selecting the subset of most relevant features for
classification while maintaining or improving accuracy and preventing the risk of
overfitting. Feature selection reduces the number of features by means of an all-or-
nothing procedure. For categorical features, binarized as explained above, it simply
ignores some categories of some features, and does not give valuable insight on the
relationship between feature categories. These issues may imply a significant loss of
information.

A state-of-the-art method in supervised classification is the support vector ma-
chine (SVM). The SVM aims at separating both classes by means of a classifier,
(ω)>x+ (ω′)>x′ + b = 0, (ω, ω′) being the so-called score vector, where ω is associ-
ated with the categorical features and ω′ is associated with the continuous features.
Given an object i, it is classified in the positive or the negative class, according
to the sign of the score function, sign((ω)>xi + (ω′)>x′i + b), while for the case
(ω)>xi + (ω′)>x′i + b = 0, the object is classified randomly. See [5, 11, 17, 24, 29]
for successful applications of the SVM and [10] for a recent review on Mathematical
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Optimization and the SVM.
In this paper, a methodology to increase the sparsity of the support vector ma-

chine (SVM) classifier for datasets composed by categorical features, sometimes
containing many categories, and eventually continuous features, is proposed. This
is done by clustering the different categories of each categorical feature into a given
number of clusters, and then obtaining an SVM-type classifier in the clustered fea-
ture space. We call this the Cluster Support Vector Machine (CLSVM) methodology
and we will refer to the CLSVM classifier. Note that we apply a clustering method-
ology to the feature space, while other papers in the literature such as [16] apply
clustering to the set of records.

Sparsity is used as a surrogate of interpretability, since in sparse classifiers only
the most valuable information is retained. As an illustration, let us consider the
well-known German credit dataset, german, which is one of the datasets from the
UCI repository, [4], used in our computational tests. This is a credit scoring dataset,
with good customers defining the positive class (y = +1) and bad customers defin-
ing the negative class (y = −1), and has been used in the context of supervised
classification, such as in [3]. In this dataset each object is composed by 20 features:
11 categorical features, binarized into 52 dummies, and 9 continuous features. For
this dataset, the SVM formulation in the original feature space, hereafter denoted
by SVMO, gives a classifier leading to a classification accuracy of 76.67% and whose
categorical score subvector ω has 50 relevant features, i.e., card({ωj 6= 0}) = 50.
However, using the CLSVM methodology described in this paper, where the cate-
gories of each categorical feature are grouped just into two clusters, the classification
accuracy is increased to 80.00% while the CLSVM classifier uses 2 × 11 = 22 rele-
vant dummies. In other words, the methodology proposed here allows one to obtain
a much simpler classifier without compromising accuracy (in this case, accuracy is
even higher than the original one). The clustering of categories for german is shown
in Figure 6, where we can see each categorical feature separated by a discontinuous
line and each category from each categorical feature represented by a circle. The two
clusters are distinguished by the coloring with dark grey and light grey circles. For
instance, the categorical feature "Property" originally had four categories, namely,
"real estate", "building society savings agreement/life insurance", "car or other" and
"unknown/no property". As we will see later, the three first categories, colored in
dark grey, are those indicating good customers, against the category indicating bad
customers, namely "unknown/no property". This is a further gain in interpretability
of the methodology proposed here when categories are grouped into two clusters, by
detecting which clusters point towards the positive class.

In this paper, four strategies to build the CLSVM classifier are proposed us-
ing different mathematical optimization formulations. The first strategy proposed
solves the SVMO as initial step. Then, categories are clustered using a partition of
the SVMO scores and the CLSVM classifier consists of building an SVM classifier
in the clustered feature space. For the second strategy a mixed integer nonlinear
programming (MINLP) formulation of the same type as the SVM formulation is pro-
posed, but in this case defining a score for each cluster of each categorical feature.
The second strategy is based on solving the continuous relaxation of this MINLP
formulation, a quadratically constrained quadratic programming (QCQP) formula-
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tion to find a clustering, and the CLSVM classifier consists of building again an
SVM classifier in the clustered feature space. The third and fourth strategies are
based on a mixed integer quadratic programming (MIQP) formulation derived from
the MINLP formulation using the big M modeling trick to reformulate the nonlinear
terms in the feasible region. The third strategy works similarly to the second one,
but solves the continuous relaxation of the MIQP. The fourth strategy solves the
MIQP formulation itself and obtains the clustering and the classifier at once.

In the computational results, the four strategies are compared against the SVMO

in twelve real-life datasets using two performance criteria, namely accuracy and spar-
sity of the classifier for the categorical features. We conclude from our experiments
that the CLSVM achieves a comparable or even better accuracy than the SVMO in
eleven of the twelve datasets tested. In addition, the CLSVM methodology shows
an outstanding performance in terms of sparsity of the classifier for the categorical
features, with SVMO using many more dummy features than each of the strategies
in ten of the twelve datasets.

The remainder of this paper is organized as follows. In Section 2, the CLSVM
methodology is introduced together with two mathematical optimization formula-
tions. Two theoretical results on relevance of features and interpretability are pre-
sented. In Section 3, the four CLSVM strategies are presented. Section 4 is devoted
to the computational experience, where the CLSVM classifier and the SVMO classi-
fier are compared using twelve datasets. Finally, Section 5 contains a brief summary,
conclusions and some lines for future research.

2 The CLSVM methodology
In this section the CLSVM methodology is introduced. An MINLP formulation is
presented for building the CLSVM classifier. Then, an MIQP formulation is derived
from the MINLP one, using the big M modeling trick to reformulate the nonlinear
terms in the feasible region. Two theoretical results on relevance of features and
interpretability are shown for both formulations.

First, we present the standard SVM formulation, [10, 12, 32, 33]. The SVM aims
at separating both classes by means of a hyperplane, found by minimizing the so-
called hinge loss and the squared l2-norm of the score vector, [10]. The SVM classifier
is obtained by solving the following quadratic programming (QP) formulation with
linear constraints:

min
ω,ω′,b,ξ

J∑
j=1

Kj∑
k=1

(ωj,k)
2

2
+

J ′∑
j′=1

(ω′j′)
2

2
+
C

n

n∑
i=1

ξi (1)
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s.t. (SVM)

yi(

J∑
j=1

Kj∑
k=1

ωj,k xi,j,k + (ω′)> x′i + b) ≥ 1− ξi ∀i = 1, . . . , n (2)

ξi ≥ 0 ∀i = 1, . . . , n (3)

ω ∈ R
∑J

j=1Kj (4)
ω′ ∈ RJ

′
(5)

b ∈ R, (6)

where (ξi) denotes the vector of deviation variables and the parameter denoted by
C is a nonnegative regularization parameter that calls for tuning, [7, 10]. We will
say that category k from categorical feature j is relevant to the classifier if ωj,k 6= 0.
Similarly, if ω′j′ 6= 0, then we will say that continuous feature j′ is relevant to the
classifier. Let us focus now on categorical features. If a category is relevant to the
classifier, we will say that category k from feature j points towards the positive class
if the score associated to the category is positive, i.e., if ωj,k > 0. Analogously, if
ωj,k < 0 we will say that category k from feature j points towards the negative class.
The fact that a category points towards the positive (or negative) class means that
it contributes to classify objects in the positive (or negative) class respectively, i.e.,
contributes to make sign((ω)>xi + (ω′)>x′i + b) equal to +1 (−1).

The CLSVM methodology is based on the SVM formulation, but takes into
account the way categorical features are handled in the SVM (and other linear
classifiers): splitting each feature into a series of 0-1 dummy features, the classifier
assigns one score to each dummy feature, and thus to each value of the categorical
feature. Instead, the CLSVM methodology clusters dummies and builds an SVM
classifier in the clustered feature space, which may reduce the number of relevant
features. The pseudocode of the CLSVM methodology can be found in Figure 1. We
denote by Lj the number of clusters in which the Kj dummies of categorical feature
j are clustered, and ω̄j,` the score for the `-th cluster of categorical feature j. In the
first step, the CLSVM finds a clustering for each categorical feature, defined by an
assignment vector z∗, where z∗j,k,` is equal to 1 if category k from feature j is assigned
to the `-th cluster and 0 otherwise, for j = 1, . . . , J, k = 1, . . . ,Kj , ` = 1, . . . , Lj . In
the second step, for i ∈ Ω, and using z∗, xi is transformed into x̄i. In the third step,
an SVM-type classifier, (ω̄)> x̄ + (ω′)> x′ + b = 0, is constructed in the clustered
feature space. To avoid symmetry between clustering solutions, the first category of
each categorical feature is always assigned to its first cluster.

Note that in this paper we illustrate the CLSVM methodology with the standard
SVM, but that ours is applicable to other SVM-type formulations, with loss functions
others than the hinge loss (such as the ramp loss [5, 8]) and regularization terms
others than the l2-norm (such as the the l1-norm [21, 23]).
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Given a dataset Ω:

Step 1. Find the assignment vector z∗ ∈ {0, 1}
∑J

j=1 LjKj, defining the clustering of
categories for the categorical features.

Step 2. For each object i ∈ Ω, cluster the categories according to z∗, i.e.,

• consider (xi, x
′
i, yi), xi ∈ {0, 1}

∑J
j=1Kj, x′i ∈ RJ′

,

• transform xi into x̄i, with x̄i ∈ {0, 1}
∑J

j=1 Lj and x̄i,j,` =

Kj∑
k=1

z∗j,k,`xi,j,k, and

• derive (x̄i, x
′
i, yi).

Step 3. Find the CLSVM classifier in the clustered feature space, (ω̄)> x̄+(ω′)> x′+ b =
0.

Figure 1: Pseudocode for the CLSVM methodology.

2.1 Formulations for the CLSVM
In this section two different mathematical optimization formulations are proposed
for the CLSVM methodology, an MINLP formulation and an MIQP one. The MIQP
formulation is derived from the MINLP formulation using the big M modeling trick
to reformulate the nonlinear terms in the feasible region.

First, we introduce the Cluster (CL) formulation, an MINLP formulation with
nonlinear constraints and 0-1 decision variables. This formulation aims at finding a
classifier, but at the same time clustering categorical feature j into Lj clusters, for
each j = 1, . . . , J . The CL is formulated as follows:

min
ω̄,ω′,b,ξ,z

J∑
j=1

Lj∑
`=1

(ω̄j,`)
2

2
+

J′∑
j′=1

(ω′j′)
2

2
+
C

n

n∑
i=1

ξi (7)

s.t. (CL)

yi

 J∑
j=1

Lj∑
`=1

ω̄j,`

Kj∑
k=1

zj,k,` xi,j,k + (ω′)> x′i + b

 ≥ 1− ξi ∀i = 1, . . . , n (8)

Lj∑
`=1

zj,k,` = 1 ∀j = 1, . . . , J ;∀k = 1, . . . ,Kj (9)

ξi ≥ 0 ∀i = 1, . . . , n (10)

z ∈ {0, 1}
∑J

j=1 Lj Kj (11)

ω̄ ∈ R
∑J

j=1 Lj (12)

ω′ ∈ RJ
′

(13)
b ∈ R. (14)

This formulation resembles the SVM formulation (1)-(6), and we will discuss their
main differences. Here we have a score associated with each categorical feature and
each cluster, ω̄j,`, as opposed to a score for each category, ωj,k. With respect to the
decision variables, we have

∑J
j=1 LjKj new 0-1 variables, the number of components
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of the assignment vector z, but the number of continuous features associated with
the score vector decreases from

∑J
j=1Kj to

∑J
j=1 Lj . Constraint (8) corresponds to

constraint (2). Constraint (9) ensures that, given a categorical feature, each category
is assigned to a unique cluster, which means that there are

∑J
j=1Kj additional

constraints to those in the SVM formulation.
The effective use of the clusters by the CL formulation is stated in the following

theoretical results.

Proposition 2.1 For any optimal solution of CL, given a categorical feature j∗, if
there exists `∗ such that zj∗,k,`∗ = 1 ∀k = 1, . . . ,Kj∗, then ω̄j∗,` = 0 ∀` = 1, . . . , Lj∗.

Proof: The proposition will be proved by contradiction. Let (ω̄, ω′, b, ξ, z) be an
optimal solution of CL for which the desired property does not hold. For the case
` = `∗, if ω̄j∗,`∗ 6= 0, then (ω̄∗, ω′∗, b∗, ξ∗, z∗) obtained by setting ω̄∗j∗,`∗ = 0 and
b∗ = b + ω̄j∗,`∗ is a feasible solution for (7)-(14) and has a smaller objective value,
which contradicts the fact that the solution (ω̄, ω′, b, ξ, z) is optimal.

Now we analyze the case ` 6= `∗. If ω̄j∗,` 6= 0, then (ω̄∗, ω′∗, b∗, ξ∗, z∗) obtained by
setting ω̄∗j∗,` = 0 is a feasible solution for (7)-(14) and has a smaller objective value,
which contradicts the fact that the solution (ω̄, ω′, b, ξ, z) is optimal. �

From this proposition, we obtain:

Corollary 2.1 Given a categorical feature, if all its categories belong to the same
cluster, then the feature is irrelevant to the CLSVM classifier.

The clustering given in the CL formulation for a categorical feature j with Lj = 2,
groups the categories into two clusters. It is easy to see that either the feature is
irrelevant or one of the clusters of the feature points towards the positive class while
the other points towards the negative one.

Proposition 2.2 If Lj = 2, for a given j, for any optimal solution of CL, it holds
that:

ω̄j,1 · ω̄j,2 ≤ 0. (15)

Proof: The proposition will be proved by contradiction. Let (ω̄, ω′, b, ξ, z) be an
optimal solution of CL for which the desired property does not hold, i.e., ω̄j,1 · ω̄j,2 >
0. Then (ω̄∗, ω′∗, b∗, ξ∗, z∗) obtained by setting ω̄∗j,1 =

ω̄j,1−ω̄j,2

2 , ω̄∗j,2 =
ω̄j,2−ω̄j,1

2

and b∗ = b +
ω̄j,1+ω̄j,2

2 satisfies (15), is a feasible solution for (7)-(14) and has a
smaller objective value, which contradicts the fact that the solution (ω̄, ω′, b, ξ, z) is
optimal. �

Figure 6 of dataset german, mentioned in Section 1, illustrates the applicability
of Proposition 2.2. We have assigned a dark gray coloring to clusters in which
ω̄j,` > 0 in the CLSVM classifier, and therefore, those clusters point towards good
customers; similarly, a light gray coloring is assigned to clusters in which ω̄j,` < 0
in the CLSVM classifier, and therefore, those clusters point towards bad customers.
For example, for the four categories of feature "Property", the two clusters are
given by {"real estate", "building society savings agreement/life insurance", "car
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or other"} and {"unknown/no property"}. The categories of the first cluster point
towards the positive class, i.e., they are likely to be associated with good customers,
while the category "unknown/no property" points towards the negative class, i.e.,
bad customers.

Nonconvex nonlinear constraints such as (8) are known to be computationally
difficult to deal with, e.g. [31]. Therefore, one may want to reformulate constraint
(8) from the MINLP formulation in order to obtain an MIQP formulation where

the nonlinear term of the product of variables ω̄j,`
Kj∑
k=1

zj,k,` xi,j,k in constraint (8) is

reformulated by introducing new big M constraints. This implies adding
∑J

j=1 LjKj

continuous variables, ω̃j,k,`, j = 1, . . . , J, k = 1, . . . ,Kj , ` = 1, . . . , Lj , yielding

min
ω̄,ω̃,ω′,b,ξ,z

J∑
j=1

Lj∑
`=1

(ω̄j,`)
2

2
+

J′∑
j′=1

(ω′j′)
2

2
+
C

n

n∑
i=1

ξi (16)

s.t. (CL-bigM)

yi

 J∑
j=1

Lj∑
`=1

ω̃j,k(i),` + (ω′)> x′i + b

 ≥ 1− ξi ∀i = 1, . . . , n (17)

Lj∑
`=1

zj,k,` = 1 ∀k = 1, . . . ,Kj , ∀j = 1, . . . , J (18)

ω̃j,k,` ≤ ω̄j,` +M(1− zj,k,`) ∀k = 1, . . . ,Kj , ∀` = 1, . . . , Lj , ∀j = 1, . . . , J (19)
ω̃j,k,` ≥ ω̄j,` −M(1− zj,k,`) ∀k = 1, . . . ,Kj , ∀` = 1, . . . , Lj , ∀j = 1, . . . , J (20)

ω̃j,k,` ≤M zj,k,` ∀k = 1, . . . ,Kj , ∀` = 1, . . . , Lj , ∀j = 1, . . . , J (21)
ω̃j,k,` ≥ −M zj,k,` ∀k = 1, . . . ,Kj , ∀` = 1, . . . , Lj , ∀j = 1, . . . , J (22)

ξi ≥ 0 ∀i = 1, . . . , n (23)

z ∈ {0, 1}
∑J

j=1 Lj Kj (24)

ω̄ ∈ R
∑J

j=1 Lj (25)

ω′ ∈ RJ
′

(26)

ω̃ ∈ R
∑J

j=1 Lj Kj (27)
b ∈ R. (28)

We now compare the CL-bigM and the CL formulations. Both objective functions
are exactly the same. The difference between the two formulations comes from the
constraints, and the addition of

∑J
j=1 LjKj new continuous variables. Constraint

(17) is as constraint (8). Here, the nonlinear term is replaced with the variable
ω̃j,k(i),`, where k(i) identifies the category in which object i falls for categorical
feature j. In order to reformulate constraint (8) as a collection of linear constraints,
it is a very well-known modeling trick to use a 0-1 variable to control if constraint (8)
is active or not, see [36]. Then, constraint (8) is reformulated as linear constraint
(17), and 4 ·

∑J
j=1 LjKj additional constraints are needed for the reformulation,

(19)-(22), the so-called big M constraints.
Note that Proposition 2.1, Proposition 2.2 and Corollary 2.1 also hold for the

CL-bigM formulation, as it is a valid reformulation of the CL formulation.
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3 Strategies for the CLSVM
In this section four different strategies are proposed to obtain the CLSVM classifier.
The first, and natural, way to define a CLSVM classifier is by clustering the cate-
gories using the scores of the SVM in the original feature space, the SVMO. This is
a cheap strategy but underperforming in some cases in terms of accuracy, as we will
see in the computational section. Three alternative strategies are proposed based
on the two mathematical optimization formulations introduced in Section 2, the CL
and the CL-bigM.

In the remainder of this section, when describing the strategies, we will explain
how to obtain the partial solution (ω̄, ω′, b), which determines the CLSVM classifier,
and the assignment vector z∗, defining the clustering for the categorical features and
thus the clustered feature space, as shown in Figure 1.

The first strategy, the centroid SVM (SVMC) Strategy, is based on the SVMO

scores. The strategy is as follows. The SVMO classifier is built, the categories of
feature j are clustered into Lj clusters finding a partition of the SVMO scores, for
each j, and the SVM classifier built in the clustered feature space is returned as the
CLSVM classifier. The pseudocode of this strategy can be found in Figure 2. There,
the partition of the SVMO scores is found by solving the minimum sum of squares
clustering (MSSC) problem, [19], which is polynomially solvable for one-dimensional
data when the number of clusters is fixed [1, 20, 30]. Given a categorical feature j,
the MSSC problem clusters all the categories into Lj clusters such that the sum of
the squared distance of the score of a category from the centroid of the cluster is
minimized. The SVMC Strategy can be implemented using other partitions of the
SVMO scores instead of the one given by MSSC. For instance, one can use natural
values to partition the scores, such as 0, placing the negative scores in the first
cluster, the zero ones in the second cluster, and the remaining ones in the third
cluster. Other natural values are the median score, yielding a partition into two
clusters, or, more generally, percentiles of the scores.

Phase 1: For each C

Step 1. Solve the SVMO and obtain the (partial) optimal solution ω.

Step 2. For each j, cluster the Kj categories of feature j into Lj clusters solving
the MSSC problem for ωj·, obtaining the components from the assignment vector
z∗j...

Step 3. Solve the SVM formulation in the clustered feature space defined by z∗, and
return this as the CLSVM classifier.

Phase 2: Choose the best C using the CLSVM classifiers in Phase 1.

Figure 2: Pseudocode for the SVMC Strategy.

The second strategy, the CL randomized rounding (CLRR) Strategy, performs
a randomized rounding, [27], to the fractional assignment vector returned by the
continuous relaxation of the CL formulation. This is a QCQP formulation, where
constraint (11) is relaxed to z ∈ [0, 1]

∑J
j=1 Lj Kj . The pseudocode of this reduction

9



strategy can be found in Figure 3, where rand(p) is a subroutine of random numbers
generation, returning the value 1 with probability p and 0 otherwise.

Phase 1: For each C

Step 1. (i) Solve the continuous relaxation of CL and obtain the (partial) optimal
solution z.

(ii) Set z∗j,k,` = 0 ∀k = 1, . . . ,Kj ,∀` = 1, . . . , Lj ,∀j = 1, . . . , J
For j = 1, . . . , J

For k = 1, . . . ,Kj

Set ` = 1
while (` < Lj)

Set z∗j,k,` = rand(zj,k,`)
If z∗j,k,` = 0, set ` = `+ 1
Else ` = Lj

end

Set z∗j,k,Lj
= 1−

Lj−1∑
`=1

z∗j,k,`

end
end

(iii) Return the assignment vector z∗.

Step 2. Solve the SVM formulation in the clustered feature space defined by z∗, and
return this as the CLSVM classifier.

Phase 2: Choose the best C using the CLSVM classifiers in Phase 1.

Figure 3: Pseudocode for the CLRR Strategy.

The third strategy, the CL-bigM randomized rounding (CLMRR) Strategy is
based on the randomized rounding of the partial solution of the continuous relax-
ation of the CL-bigM formulation. It is similar to the CLRR Strategy, but with the
difference that it solves the continuous relaxation of the CL-bigM formulation, where
constraint (24) is relaxed to z ∈ [0, 1]

∑J
j=1 Lj Kj . The pseudocode of this strategy

can be found in Figure 4.
The last strategy, the CLM Strategy, is based on the CL-bigM formulation.

Instead of solving the continuous relaxation, this strategy solves the CL-bigM for-
mulation. In this case we obtain the clustering and the classifier at once. The
pseudocode of this strategy can be found in Figure 5. This is the most computa-
tionally expensive strategy, as it involves solving an MIQP formulation with big M
constraints. However, the cost of the strategy is balanced with the computational
results, as shown in Section 4.

Other strategies are possible and natural, and some were tested. For instance,
we tried two strategies based on solving the CL formulation. We tested the strategy
for which the solution gave the clustering and the classifier at once. We also tested
another one for which the assignment vector z∗ of the solution was used to cluster
the dataset and an SVM was solved to find the classifier. These strategies are
however computationally expensive as they involve solving MINLP formulations.
The performance of these strategies is not reported in Section 4 since they were
systematically outperformed by the strategies above.
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Phase 1: For each C

Step 1. (i) Solve the continuous relaxation of CL-bigM and obtain the (partial)
optimal solution z.

(ii) Set z∗j,k,` = 0 ∀k = 1, . . . ,Kj ,∀` = 1, . . . , Lj ,∀j = 1, . . . , J
For j = 1, . . . , J

For k = 1, . . . ,Kj

Set ` = 1
while (` < Lj)

Set z∗j,k,` = rand(zj,k,`)
If z∗j,k,` = 0, set ` = `+ 1
Else ` = Lj

end

Set z∗j,k,Lj
= 1−

Lj−1∑
`=1

z∗j,k,`

end
end

(iii) Return the assignment vector z∗.

Step 2. Solve the SVM formulation in the clustered feature space defined by z∗, and
return this as the CLSVM classifier.

Phase 2: Choose the best C using the CLSVM classifiers in Phase 1.

Figure 4: Pseudocode for the CLMRR Strategy.

Phase 1: For each C

Solve the CL-bigM and obtain the (partial) solution (ω̄, ω′, b, z), the
assignment vector and the classifier at once, and return this as the CLSVM
classifier.

Phase 2: Choose the best C using the CLSVM classifiers in Phase 1.
Figure 5: Pseudocode for the CLM Strategy.

4 Computational results
In this section we illustrate the performance of the CLSVM methodology compared
to the benchmark procedure, the SVMO, in terms of classification accuracy and
sparsity of the classifier for the categorical features. We have chosen Lj = 2, for all
j = 1, . . . , J , and therefore the dimension of the clustered categorical feature space
is equal to

∑J
j=1 Lj = 2J .

The classification accuracy of a classifier on a given dataset is defined as the
percentage of objects correctly classified by the classifier on such dataset. The
second criterion is sparsity with respect to the original categorical feature space.
The sparsity of the SVMO classifier is given by

card({ωj,k = 0})∑J
j=1Kj

· 100%,

which quantifies (in percentage) the fraction of irrelevant dummies of the score vector
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associated with the categorical features. The sparsity of the CLSVM classifier rela-
tive to the original categorical feature space is the summation of two terms. First,
we have the theoretical sparsity, i.e., the one gained by clustering Kj categories into
Lj ones. Second, we have the sparsity gained by the zero scores in the clustered
feature space. Thus, the sparsity of the CLSVM classifier can be written as

(1−
∑J

j=1 Lj∑J
j=1Kj

) · 100% +
card({ω̄j,` = 0})∑J

j=1Kj

· 100%. (29)

We will show that the CLSVM classifier is competitive against the SVMO classifier
in terms of classification accuracy and outperforms the SVMO classifier in terms of
sparsity.

Our experiments have been conducted on a PC with an Intel R© CoreTM i7 pro-
cessor with 16 Gb of RAM for all strategies except for the CLRR Strategy, where
the Neos Server is used, [13]. We use the optimization engine CPLEX, [22], for solv-
ing the SVM formulation, the CL-bigM formulation and its continuous relaxation,
and Ipopt, [34, 13], for the continuous relaxation of CL. We have fixed M=1000
on the CL-bigM formulation. Although most optimization problems are solved to
optimality in a few seconds, for the CL-bigM formulation the time limit is set to 300
seconds, and thus the incumbent solution after such time limit is used instead.

As customary in supervised classification, building the SVM and the CLSVM
classifiers calls for tuning the tradeoff parameter C, see Figures 2-5. As usually
done in the literature, the tuning procedure works as follows, e.g. [7, 10]. The
dataset is split into three sets, the so-called training, testing and validation sets. For
each value of C, the optimization problem is solved on the training set. The different
classifiers built in this way are compared according to their classification accuracy
on the testing set. The parameter C with the highest classification accuracy on the
testing set is chosen, and its classification accuracy on the validation set is reported.
Following the usual approach, the parameter C is tuned by inspecting a grid of the
form C

n ∈ {10−6, . . . , 106}, see [10].
To obtain sharp estimates for the classification accuracy and the sparsity, re-

peated random subsampling is used, where ten instances are run for each dataset.
The ten instances differ in the seed used to reshuffle the dataset in order to obtain
different training, testing and validation sets.

The remainder of this section is structured as follows. The datasets used to
compare the CLSVM classifier are described in Section 4.1, and the computational
results are presented in Section 4.2.

4.1 Datasets
The performance in terms of classification accuracy and sparsity of the CLSVM
methodology is illustrated using twelve real-life datasets from the UCI repository,
[4]. Regression datasets are transformed into 2-class classification datasets using
the median (abalone), and multi-class datasets are transformed into 2-class ones,
treating the largest class as the positive class and the remaining ones as the negative
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class (nursery, covertype, molecular, careval, solar-c). Recall that categorical
features have been transformed by splitting the categories into 0-1 dummy features.

A description of these datasets can be found in Table 1, whose first two columns
report the dataset name and total size of the dataset (|Ω|). The size of the training
set (n) is set as the closest 102 multiple to 2

3 |Ω| setting 5000 as the maximum in
order to have running times below reasonable values, see third column of Table 1.
The remaining records in the dataset are equally split between the testing and vali-
dation sets. The fourth column reports the class split in the training set. The next
three columns show the number of categorical and continuous features, respectively,
and the number of categories per feature. Finally, the last two columns report the
total number of categories, i.e., the size of the original feature space related to the
categorical variables,

∑J
j=1Kj , and the theoretical sparsity of the CLSVM classifier,

the first term in (29).

4.2 Results
In this section we compare the performance of the four strategies proposed to build
the CLSVM classifier against that of the SVMO classifier in terms of classification
accuracy and sparsity of the classifier. When, for a given criterion, the difference
in performance of two classifiers is below 1 percentage point (p.p.), we will say that
both classifiers are comparable under such criterion.

Tables 2 and 3 report the results for the benchmark procedure, SVMO, and
for the strategies proposed in this paper. Table 2 reports the mean accuracy in
the validation set as well as the standard deviation across the ten reshuffles, and
similar information is reported in Table 3 for the sparsity. For each dataset and each
criterion, we underline the best results across all the strategies and the benchmark
procedure. The following conclusions can be drawn from our computational results
for the mean values.

We start with the accuracy, see Figure 7. For nine of the twelve benchmark
datasets (census income, nursery, covertype, mushrooms, coil 2000, abalone,
molecular, solar-c, german), at least one of the strategies is comparable to the
SVMO. For two datasets the SVMO is outperformed, by two strategies in adult
and by one strategy in australian. In adult, the SVMC Strategy and the CLMRR

Strategy outperform the SVMO by 3.65 p.p. and 4.18 p.p. respectively. This improve-
ment suggests that SVMO, i.e., the SVM in the original feature space, is overfitting.
In australian, the CLM Strategy outperforms the SVMO in 1.26 p.p. For one
dataset, careval, the SVMO achieves the best accuracy, where the difference with
the CLSVM classifier is between 2.57 p.p., with the CLM Strategy, and 13.94 p.p.,
with the SVMC Strategy.

We now focus on the second criterion, namely, sparsity of the classifier with
respect to the categorical features, see Figure 8. The strategies show an outstanding
performance in terms of sparsity. All the strategies and the SVMO achieve the
same sparsity for the coil 2000 dataset, namely, 98.70%. All except for the SVMC

Strategy outperform the SVMO for the nursery dataset. All except for the SVMC

Strategy outperform the SVMO for the covertype dataset in 65 p.p., while the
SVMC Strategy outperforms the SVMO in 15 p.p. For the remaining nine datasets,
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all the strategies outperform the SVMO by at least 30 p.p.
In summary, the four strategies proposed for the CLSVM methodology are com-

petitive against the SVMO in terms of accuracy, and clearly dominate in terms of
sparsity of the classifier. The SVMC and CLMRR strategies have a computational
cost comparable to that of the benchmark procedure, SVMO, as they only involve
solving QP formulations. Solving QCQP formulations, thus, incurring a small in-
crease in the computational cost, one can obtain the CLRR Strategy. Although the
CLM Strategy is the most computationally expensive strategy, as it involves solv-
ing difficult MIQP formulations with big M constraints, its cost is balanced with
the computational results, as it is the strategy performing best accuracy results in
six datasets (nursery, mushrooms, coil 2000, careval, german, australian) and
best sparsity results in seven datasets (census income, adult, nursery, mushrooms,
coil 2000, abalone, molecular).

As shown in Table 2, the performance of the CLM Strategy suggests it could
be improved for datasets with a large number of categories, such as molecular.
Recall that to obtain running times below reasonable values, the time limit for
this strategy is set to 300 seconds. Increasing the time limit to 3600 seconds for
molecular, changes the mean accuracy from 51.92% to 93.70%, which makes the
CLM comparable to the SVMO in terms of accuracy for molecular. Therefore,
increasing the running time may be an alternative for the CLM Strategy when
dealing with a large number of features.

5 Conclusions
In this paper the CLSVM methodology is proposed, based on the SVM with the
linear kernel and performing a clustering for categorical features and building an
SVM classifier in the clustered feature space. Four strategies are presented to build
the CLSVM classifier by means of QCQP, MIQP and QP formulations. When using
two clusters, the CLSVM classifier has a comparable classification accuracy to the
SVMO classifier, in nine of the twelve benchmark datasets. In the remaining three
datasets, the CLSVM classifier outperforms the SVMO classifier in two datasets, and
is outperformed in the other one. In terms of sparsity of the classifier with respect to
the categorical features, the CLSVM methodology shows a dramatic improvement
over the SVMO.

Knowledge domain [9, 25] can easily be incorporated into the methodology by
adding new constraints to the formulations. For instance, must link constraints [19],
i.e., constraints implying that two categories must belong to the same cluster, or
fixing the maximum (or minimum) number of categories that compose a cluster, can
be easily added. The former may be desirable, e.g., if categories represent countries,
where one may want to impose that some countries are in the same cluster based
on their geographic location. The latter may be desirable to balance the size of the
clusters.

There are several interesting directions to extend the CLSVM methodology.
First, a sequential methodology could be designed to handle datasets containing

a large number of categorical features. This can be done by running a CLSVM model
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for each feature, fixing a clustering for the feature, and then iteratively repeating the
process for the remaining features. Different ways of choosing the order of features
for the iterative process require extra analysis; for instance, one can choose the
feature for which the CLSVM classifier has the best classification accuracy.

Second, the simplified feature space, with fewer categories, generated by our
CLSVM methodology can be seen used as input for other classifiers, such as the
SVM with nonlinear kernels or classification trees. Alternatively, one can directly
model the problem of clustering categories with general kernels, yielding, however,
very difficult nonconvex mixed integer optimization problems. Strategies to build
this nonlinear classifier deserves further study.

Third, the CLSVM methodology can be extended to handle continuous features
as well. As the CLSVM aims at increasing the sparsity of the classifier in the
presence of categorical features, we have focused on benchmark datasets composed by
categorical features and eventually continuous features. However, for any dataset, a
combined methodology could be performed in order to transform continuous features
into categorical ones, by applying the techniques from [6, 28], either binarizing or
discretizing continuous features and then applying the CLSVM methodology. This
extension deserves further study and testing.

Fourth, our CLSVM methodology can be combined with the strategy in [16] to
deal not only with categorical features, but also with datasets with a large number of
records, in order to reduce the computational burden of building the CLSVM classi-
fier. Indeed, the goal in [16] is to reduce the computational effort when building SVM
classifiers without harming classification accuracy. The records are clustered and an
SVM classifier is built for each cluster, where the number of records in each cluster
is much smaller than in the original dataset, yielding the desired computational sav-
ings, finally the different classifiers are combined into a single one. Merging the two
methodologies (feature clustering and record clustering) in a sequential manner or
developing a joint approach deserves a thorough testing, which is out of the scope
of this paper.
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Figure 6: The CLSVM methodology for one instance of the german dataset.

Table 1: Datasets.

Name |Ω| n Class J J ′ Kj
∑J

j=1Kj Theoretical
split sparsity

census income 95130 5000 94/6 31 9 9,52,47,17,3,7,24,15,5,10,3,6,8,6,6, 491 83.37
50,38,8,9,8,9,3,3,5,42,42,42,5,3,3,3

adult 30956 5000 24/76 11 3 5,8,5,16,5,7,14,6,5,5,41 117 81.20
nursery 12960 5000 67/33 8 0 3,5,4,4,3,2,3,3 27 40.74
covertype 11340 5000 57/43 2 10 4, 40 44 90.91
mushrooms 8124 5000 48/52 17 4 6,4,10,9,4,3,12,4,4,9,9,4,3,8,9,6,7 111 69.37
coil 2000 5822 3900 94/6 5 80 41,6,10,10,10 77 87.01
abalone 4177 2800 50/50 1 7 3 3 33.33
molecular 3190 2200 52/48 60 0 8,8,8,. . . 480 75.00
careval 1728 1200 30/70 6 0 4,4,4,3,3,3 21 42.86
solar-c 1066 800 83/17 5 5 7,6,4,3,3 23 56.52
german 1000 700 30/70 11 9 4,5,11,5,5,5,3,4,3,3,4 52 57.69
australian 690 500 56/44 4 10 3,14,9,3 29 72.41
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Table 2: Accuracy for the original SVM (SVMO) and the CLSVM strategies.
Name SVMO SVMC CLRR CLMRR CLM

mean std mean std mean std mean std mean std
census income 94.90 0.00 94.85 0.00 94.84 0.04 94.40 0.04 94.37 0.00
adult 84.57 0.22 88.22 2.44 83.44 0.37 88.75 2.96 85.35 3.16
nursery 100.00 0.00 67.98 4.56 96.67 10.00 100.00 0.00 100.00 0.00
covertype 74.42 0.74 73.53 0.99 72.79 1.17 74.48 0.74 74.47 0.74
mushrooms 100.00 0.00 100.00 0.00 100.00 0.00 98.58 0.77 100.00 0.00
coil 2000 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
abalone 79.87 1.18 79.90 1.05 79.86 1.02 79.87 0.96 79.65 1.25
molecular 94.22 0.80 93.94 0.73 93.40 1.28 88.04 1.68 51.92 0.00
careval 96.74 1.34 82.80 5.15 92.23 1.28 83.94 4.91 94.17 2.84
solar-c 83.53 1.23 83.61 1.38 83.83 1.08 83.76 1.02 83.61 1.38
german 74.60 2.71 74.80 2.36 74.60 3.12 72.53 3.77 75.60 3.01
australian 84.11 3.17 84.42 3.32 84.53 3.12 84.53 3.05 85.37 3.28

Table 3: Sparsity for the original SVM (SVMO) and the CLSVM strategies.
Name SVMO SVMC CLRR CLMRR CLM

mean std mean std mean std mean std mean std
census income 36.86 0.00 89.82 0.00 91.69 0.33 91.45 1.62 100.00 0.00
adult 16.07 3.26 86.24 2.21 83.42 1.34 89.83 4.36 90.77 3.64
nursery 88.89 0.00 43.12 18.21 91.85 2.22 92.59 0.00 92.59 0.00
covertype 24.81 1.48 43.57 34.17 91.82 1.82 90.91 0.00 90.91 0.00
mushrooms 28.83 0.00 76.58 0.00 80.72 4.56 78.29 5.87 85.23 1.57
coil 2000 98.70 0.00 98.70 0.00 98.70 0.00 98.70 0.00 98.70 0.00
abalone 0.00 0.00 33.33 0.00 33.33 0.00 33.33 0.00 33.33 0.00
molecular 42.96 3.12 100.00 0.00 75.13 0.19 77.29 0.90 100.00 0.00
careval 0.95 2.86 55.24 8.57 58.10 12.20 70.48 10.82 50.48 3.81
solar-c 47.83 34.51 87.83 10.43 94.78 11.14 99.13 2.61 88.69 7.83
german 5.38 1.88 57.69 0.00 61.73 4.59 63.08 4.28 57.69 0.00
australian 13.10 4.83 80.69 9.66 84.83 11.03 94.48 2.76 76.55 5.52
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Figure 7: Visualizing the accuracy in the validation set for the original SVM (SVMO) and
the CLSVM strategies.
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Figure 8: Visualizing the sparsity in the validation set for the original SVM (SVMO) and
the CLSVM strategies.
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