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How suboptimal are linear sharing rules?

Bjarne Astrup Jensen - Jgrgen Aase Nielsen

April 15, 2016

Abstract The objective of this paper is to analyze criteria for portfolio choice when two investors are forced
to invest in a common portfolio and share the proceeds by a linear sharing rule. A similar situation with many
investors is typical for defined contribution pension schemes. The restriction implies two sources of suboptimal
investment decisions as seen from each of the two investors individually. One is the suboptimal choice of portfo-
lio, the other is the forced linear sharing rule. We measure the combined consequence for each investor by their
respective loss in wealth equivalent. We show that significant losses can arise when investors are diverse in their
risk attitude. We also show that an investor with a low degree of risk aversion, like the logarithmic or the square
root investor, often applied in portfolio choice models, can either inflict or be subject to severe losses when being
forced to participate in such a common investment pool.

JEL Classification Code: G11
Key Words: Constrained portfolio choice, Pareto optimal sharing rules, suboptimal sharing rules, linear sharing
rules.

1 Introduction

A sharing rule is a commonly used term to describe how aggregate consumption is distributed among individuals
in a general equilibrium or how the total return on an investment made by multiple investors in common is
distributed among the individual investors.

Whenever investors leave the investment decision or some parts of it to an agent or engages in investment activities
in common with other investors there is a risk that the result becomes suboptimal, as seen from the viewpoint of a
well informed investor. Investors who lack complete information may find it worthwhile to encounter management
fees in order to compensate for lack of information in order to acquire, e.g., expertise in portfolio management.
However, there is also a risk that the investor encounters costs of suboptimal dynamic asset allocation due to
conflicting interests with the manager or other investors in a common pool.

There is a large literature analyzing various effects of constrained portfolio choice and incomplete information
on portfolio decisions, and a thorough literature survey is beyond the scope of this paper. We limit ourselves to
a few references that address these problems. Rogers (2001) analyzes two situations in a continuous time model
with suboptimal investment policies relative to the benchmark of complete information and continuous portfolio
revisions. One of the models imposes the restriction of only allowing discrete portfolio revisions, the other model
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imposes a priori uncertainty about the rate of return. The finding is that the degree of suboptimality due to
the restriction of discrete portfolio revisions is of minor importance, whereas the uncertainty about the rate of
return can be substantial. In recent papers, Larsen and Munk (2012) address the issue of incomplete information
and incomplete menu of assets in a rather general setting for a single investor with a focus on the importance
of the hedging term for a stochastically varying investment opportunity set; and Flor and Larsen (2014) address
the issue of ambiguity aversion when the investor does not know the true return distributions. We refer to the
rather elaborate list of references in these papers for a broad variety of contributions dealing with various issues
of time-varying risk premia and investment opportunity sets as well as incomplete information about return
distributions.

The problem which we want to analyze in this paper — although in a simple and highly stylized manner — has to
our knowledge not been addressed in the literature. We consider a model where we have multiple investors and
one agent, and we only consider consumption at the final date. The investors are forced to invest in a common
pool and the final wealth must be distributed to the investors in a linear fashion. An appropriate interpretation
of this scenario of a suboptimal investment environment is the situation faced by many pension savers in asset
backed, defined contribution pension schemes, where investors are forced by law or by labor market contracts
to invest in a common portfolio and to share the aggregate result according to a linear sharing rule. Whenever
investors differ in their attitude towards risk, this is different from what would have been the result if independent
investors were allowed to find an unconstrained individual solution to their consumption and investment problem.

The suboptimality comes from three sources. The requirement of a common investment portfolio is one source
of suboptimality; relatively more risk averse investors prefer a less risky portfolio than relatively less risk averse
investors. Another source of suboptimality is the requirement of a linear sharing rule, which is usually only optimal
in a situation where investors are up- or down-scaled copies of each other. In the terminology of financial economics
each of these restrictions cause the market for financial assets to appear incomplete for each individual investor,
even if the market is overall complete if investors were allowed to act in an unconstrained manner.

The third source of suboptimality is the fact that the manager, the investment officer in the pension fund, may
not have complete information about the risk attitudes of the individual pension savers. We do not take this
aspect into account in this paper, but assume that the manager is adequately informed about individual investor
preferences.

It is sometimes argued that investors can circumvent investment decisions made within the common pool by
adjusting their individual financial exposure. E.g., mandatory pension savers that disagree with their pension
fund about the magnitude of exposure to risky assets can adjust for this through financial decisions of their own.
However, this is not always possible. E.g., investors may find it difficult to short risky positions individually in
case they find the common portfolio in the pension fund too risky. They may also find themselves borrowing
restricted if the purpose of taking out additional loans is to increase their individual risky investments.

The agent in this paper is assumed to choose an investment strategy in accordance with criteria that do not
influence his own reward. The issues of incentive compatible contracting and payment to the agent are kept
outside our modeling framework.

Investors in an exchange economy are taking the market portfolio and the aggregate result as given. It means that
the distribution of the aggregate future consumption is known. The role of the capital market is only to trade
these future consumption opportunities across investors, whereas investments in production facilities that can
make the future consumption an endogenous variable are outside the scope of the investors’ opportunity set. In
this paper the aggregate result for which a sharing rule must be established is endogenous, although only viewed
upon in isolation without any considerations about general equilibrium properties.

It has been a longstanding tradition in financial economics to study the class of CRRA utility functions. Such
preferences facilitate analytical solutions to individual portfolio choice problems and allows for straightforward
aggregation properties in order to reach a Pareto optimal general equilibrium and the associated pricing kernel,
where sharing rules are linear and in accordance with the initial wealth distribution. We follow this path as far as
the individual preferences are concerned. In contrast to this, Pareto optimal sharing rules in a market equilibrium
where investors are heterogeneous with respect to their relative risk aversion parameter are less straightforward
to determine.

The seminal paper in this area is due to Dumas (1989), who established a modeling framework with two individuals,
one with a logarithmic utility function and another with a power utility function. The results in Dumas (1989)
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are based on numerical solution techniques. Other subsequent papers along these lines are Benninga and Mayshar
(2000), Cvitanié et al. (2012), Franke and Liiders (2010), Franke et al. (1998, 1999), Stapleton and Subrahmanyam
(1990), Wang (1996) and Weinbaum (2009). All of these papers are within a framework of either an exchange
economy or the CIR production economy model, cf. Cox et al. (1985), which assumes a production process that
is stochastically homogeneous of degree one.

There is little guidance in the literature on how to choose the investment in a situation where investors can shape
the risk profile of the aggregate consumption beyond a pure scale factor. The same is true for the situation where
the sharing does not take place in a general equilibrium exchange economy context, but may be limited to a
partial equilibrium where a particular group of investors for some reason are bound to invest in common. The
latter is the viewpoint of the present analysis. We derive the constrained Pareto optimal terminal wealth for two
investors from their individual preferences in a setting where the investors are forced to accept a linear sharing
rule. We do this parametrically in the weighting between their utility functions with their individual preferences
as boundary cases. We also derive how this terminal wealth varies with their relative risk aversion parameter to
study the effects of diversity and compare the constrained Pareto optimal solution to situations with some ad hoc
chosen investment criteria. The results of this paper necessarily rely on numerically calculated optimal solutions.
Analytical results only exist for a special combination of parameters to be discussed in the following section 2.

We measure the distance to a first best Pareto optimal sharing rule by calculating the wealth equivalents, i.e. the
fraction of initial wealth that in a first best solution gives the same level of expected utility as the initial wealth
invested in the constrained Pareto optimal manner. We find that for many cases with sufficient diversity among
the investors the loss due to the constraints can be substantial and in the order of 10-20% or even more; we also
find that for less pronounced diversity the forced common portfolio requirement and the linear sharing rule do
not appear as severe restrictions. Furthermore, the loss in wealth equivalents is to a large extent driven by the
extreme tails of the final wealth distribution.

The paper is organized as follows. Section 2 describes some relevant and both well known and less well known
results from the literature on heterogeneous agents. Section 3 describes the financial market. Section 4 derives the
unconstrained portfolio choice for an investor with a CRRA utility function (Theorem 1) and also the interrela-
tionship between two such investors and their relative position with respect to their aggregate wealth (Theorem 2).
Section 5 deals with aspects of the linear sharing requirement. Subsection 5.1 outlines an ad hoc decision rule, as a
suggestion for an easily implementable investment criterion for the agent in order to compromise between two het-
erogeneous investors, given the linear sharing rule restriction. It is the portfolio policy for a single CRRA investor
that imposes the same relative loss in both agents’ wealth equivalents. Subsection 5.2 derives the constrained
Pareto optimal investment behaviour numerically for a given utility weighting of the two investors. Subsection 5.3
extends the derivations in subsection 5.2 by letting the utility weighting be endogenously determined such that
the relative losses in wealth equivalents are equally distributed among the investors. Furthermore, the numerical
results are compared to the ad hoc criteria from subsection 5.1. In subsection 5.4 we show how the elasticity of
the optimal final wealth with respect to the utility weighting varies across the outcomes. Section 6 summarizes
and concludes the paper. Proofs and technical details are found in the Appendices.

2 Known models for exchange economies

The literature on Pareto optimal sharing rules in exchange economies with agents that are heterogeneous with
respect to their degree of relative risk aversion contains a few general results. It is well known, cf. Benninga and
Mayshar (2000), Dumas (1989) and Wang (1996), among others, that with two agents differing in their degree
of risk aversion, the sharing rules are far from being linear. Instead, they are characterized by the following two
properties:

— the (relatively) most risk averse investor receives a concave function of aggregate output, with a slope that
ranges from one when aggregate output shrinks to zero and decreases towards zero when aggregate output
goes to infinity

— the (relatively) least risk averse investor receives a convex function of aggregate output with a slope converging
to zero when aggregate output shrinks to zero and increases towards one when aggregate output goes to infinity

Hence, the relatively least risk averse investor positions himself as an investor “taking bets” on the right tail of the
distribution of aggregate consumption, whereas the relatively most risk averse investor protects himself relatively
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in the left tail of the distribution of aggregate consumption in return for leaving the bets on the right tail of the
distribution to the relatively least risk averse investor.

When the two investors have CRRA utility functions with risk aversion parameters differing by a factor two, the
sharing rules can be given in closed form. The same is possible for two investors or more when the risk aversion
parameters deviate by multiples of three and/or four. Technically, the closed form solution relies on the ability to
analytically solve for roots of polynomials up to the order four, as, e.g., demonstrated in Weinbaum (2009).

It has been shown that with more than two types of agents the ones “in between” receive an S-shaped function
of aggregate output which is first concave and then convex after a reflection point. See Hara (2006) and Hara
et al. (2007) for such results. These generalizations are still within the context of an exchange economy. To our
knowledge this modeling framework has not yet been applied in a more general equilibrium setting, where the
aggregate consumption and its risk profile is endogenously determined.

3 The financial market

The menu of financial assets used in this paper is a simple and standard one. Despite the simplicity, this setup is
sufficiently rich to illuminate the properties of the economic problem and the suboptimality of the solution; and
since the optimization problem we pose below must be solved by time-consuming numerical methods we find it
reasonable to use as simple a setup as possible.

Investors are assumed to be able to invest in a combination of

1. a bank account with a constant rate of return r
2. a risky asset with a lognormal price process and a constant market price of risk #:

dPt = (7‘ +770’) Ptdt—FO'PtdZt, (1)
where the price process in (1) is specified under the real world probability measure and Z; is a standard Brownian
motion.

The pricing kernel M; implied by the price process (1) is of the well-known log-normal type:

2
My = e "t a2t 2)

The inverse of the pricing kernel Mt_1 is known to be the value of the optimal growth portfolio chosen by an
investor with a logarithmic utility function, U(Wy) = log Wyp.!

Individual investors take the price processes and the associated pricing kernel as given. These investors are also
assumed to have common beliefs about the stochastic price process P:. We do this because the setup is well known
and renders simple analytical solutions for standard utility optimization problems for a single investor with these
utility preferences. Such analytical solutions are useful in order to perform sensitivity analyses and can also be
used to check the validity of the numerical calculations we are going to perform later on.

4 Pareto optimal sharing rules: Two investors

Consider an investor who solves the following expected utility problem with a CRRA utility function with relative
risk aversion parameter parameter ~y:

Eop {ﬁWT{_’Y} (for y#1)

(3)
Ep [log Wr] (for y=1)

Max Eo [U(Wr)] = {

s.t.

Eo [MpWrp]=Wo [N (4)

1 See Duffie (1996), chapter 6 or Merton (1992), chapter 6, among others for this standard result.
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The optimization problem in (3)-(4) is formulated in the standard way of the martingale method, which transforms
the dynamic optimization problem into a static optimization problem. The Lagrangian multiplier A associated
with the budget constraint in (4) is the shadow price of initial wealth.

The optimal portfolio choice is given in the following Theorem 1, which restates well-known results from the
literature. The basic portfolio optimization model goes back to Merton (1971). As for the formulation in terms
of the martingale method, the details are worked out in, e.g., Brennan and Torous (1999), Jensen and Sgrensen
(2001) and Balder and Mahayni (2010). We adopt the notation from the latter.

Theorem 1 (i) The optimal distribution of wealth at the horizon T for any investor with

— a CRRA utility function
— a relative risk aversion parameter ~y
— access to a complete market with the pricing kernel as given in (2)

is a log-normal distribution characterized in different ways in Equations (5)-(6) with 7 = 7% being the constant
fraction of wealth allocated to the risky asset:

2 2
WT _ Woe(r-i-ﬂ'ncf—%ﬂ' o )T+TFUZT (5)

Wy = Wo (PT/PO)W e(lfT{')(T‘F%TFJQ)T-{—ﬂ‘O'ZT. 6)
(#) The optimal level of expected utility can — for v # 1 — be written as

T

Jo(Wo; T',v) = Eo T

17
Wi (Woe(r+%”2)T) K
= —

For v=1 this becomes

Jo(Wo; T, 1) = log Wo + rT + %nQT- (8)

The unconstrained sharing rule for two investors is stated in the following Theorem 2. It is automatically a
Pareto-optimal sharing rule, since investors are trading in a complete and competitive market. The case with
multiple investors with CRRA utility functions and identical relative risk aversion parameters is a work horse
in the finance literature, because it allows aggregation from the individual level to the aggregate level in a
straightforward manner: Any individual investor demands his fair share of the value of the aggregate portfolio.

Remark 1 Although the portfolio weight has the volatility o as an explicit parameter, it disappears in the expres-
sion for terminal wealth in Equation (5), which only contain the market risk premium 7 (the “Sharpe ratio”) and
the relative risk aversion parameter +:

2 2
ro="1, nan:n—, 71202:77—2. (9)

Y v
This is so because the fundamental source of risk is the movement of the Brownian motion. The investor is inter-
ested in the trade off between the risk in the portfolio (7o) and the risk premium received (no) as compensation
for carrying this risk. The asset with price process P; is a specific carrier of this fundamental risk, but potentially

infinitely many other assets could be chosen to make the market complete.

Theorem 2 Consider two investors having CRRA wutility functions with relative risk aversion parameters y1 and
2, respectively, and facing a complete market with the pricing kernel as given in (2). Then the following is true:

(i) If the investors have identical values for vy;, the Pareto optimal sharing rule can be written in terms of the
aggregate portfolio:

Wio
W;m = — 10
T Wr, (10)
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where Wy = Wit + Wa ¢ is the value of the aggregate portfolio at time t.
(1) If the investors have different values for v;, the relative positioning of these two investors is given by:

(1122w
Wi,T = Wi10€TT62(1 Fi )"7 T+ Vi ZT7 1= 1, 2, (11)

where Fizl—%.

The distribution of the individual investors’ terminal wealth in terms of aggregate wealth becomes:

¢e%(F227F12)T]2T+(F2*F1)7IZT

Wir = w 12

v 1 7¢+¢€%(F§—F?)n2T+(Fz—F1)nZT T (12)
1-¢

Wy = w. 13

»T 1 _¢+¢e%(F22*F12)772T+(F2*F1)77ZT T ( )

Wio
= 14
¢ Wi+ Wayo (14)

Proof These relations are immediate consequences of relation (5) in Theorem 1.

Note that the distribution of aggregate wealth Wy for the case with identical values of v could be obtained as
the solution to one optimization problem with initial wealth equal to the sum of the two individual initial wealth
levels. The distribution among the agents is simple and linear in accordance with the initial wealth distribution.

In contrast to this, the aggregate wealth Wrp for the case with different values of ~, i.e. in (ii), is no longer the
result of one simple and immediately identifiable optimization problem. Rather, it is by definition equal to the sum
of the results from two optimization problems. However, given that the outcome is Pareto optimal it is possible to
identify such an optimization problem in terms of a representative investor that solves for the aggregate portfolio.
But if this optimization problem was identified, it still remains to identify the sharing rule.

Remark 2 Consider the portfolio policy in (11)-(14). Low values of Zp correspond to high values of the pricing
kernel and low values of the aggregate portfolio. Assume that investor 1 is the relatively most risk tolerant, i.e.
I>>1T1". Then investor 1 dominates the “high end” where Zp is diverging to co, whereas investor 2 dominates the
“low end” where Zp is diverging to —oo.

Remark 8 From the literature on heterogeneous agents2 it is well known that in an exchange economy context,
where the aggregate “market portfolio” is exogenously given and 72 = 271, the solution in (12)-(14) has the
property that WQQ,T is proportional to Wy 7. This is indeed also the case here; it is a straightforward calculation
to show that

2 , 2
W2y = Wj’geWw’l) )T] Wi (15)

However, the distribution between the two investors as well as the aggregate investment strategy is endogenously
derived in our setting and not the result of finding the sharing rule in an exchange economy. This is revealed, e.g.,
by looking at the behavior for “large” values of 71, and, hence, also for 2. There both investors prefer to invest
almost everything in the bank account and only include a small amount of risk in the aggregate portfolio. In an
exchange economy context investors are not able to affect aggregate risk; they are only able to find an allocation
of the exogenously given risk between the investors.

2 See Benninga and Mayshar (2000), Dumas (1989), Wang (1996) and Weinbaum (2009), among others.
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5 When linear sharing is required

Assume now that investors are forced to invest in the same portfolio and to share the final result in a linear
fashion. This leaves the manager of the pension fund with the problem of formulating criteria for the portfolio
choice. Despite the fact that each participant has an individual preference for the investment strategy, the pension
fund manager must make a common choice and distribute the proceeds in a linear fashion. This section describes
a simple ad hoc suggestion as to the implementation of this portfolio choice.

We measure the utility loss by means of the wealth equivalent, which is the amount of initial wealth that, given
the ability to invest optimally in an unconstrained way, gives the investor the same level of expected utility as one
unit of wealth invested in a constrained way; i.e. under the restrictions of a common portfolio and a mandatory
linear sharing rule. The benchmark for comparison is the result of an unconstrained expected utility maximization
of end-of-period wealth.

We restrict the analysis to the case of two investors. We believe that the basic insight is sufficiently well demon-
strated, and it allows us to depict the results graphically. Furthermore, the numerical solutions to be derived in
subsection 5.3 are already quite demanding with just two investors.

5.1 Choosing a compromise value of ~?

One way to reach a compromise solution is to choose a value 4 of the relative risk aversion parameter and
implement the common investment strategy in the same way as an individual investor with a CRRA utility
function with this risk aversion parameter would do. We have expressions for the portfolio choice in closed form;
and the negative effect on each of the individual investors of being forced to participate in this common scheme,
as expressed by the wealth equivalents, is known analytically as stated in Theorem 3.3

Theorem 3 The wealth equivalent /I/I70 for an investor

— with a CRRA wutility function with risk aversion parameter -y

— with initial wealth Wy and investment horizon T

— who is subject to a suboptimal investment strategy generated from a CRRA wutility function with risk aversion
parameter 7y

is given b
g Y - _L(l_l)z -
Wo = Woe 27 ¥ (16)

The wealth equivalent /Wo for a long term investor with relative risk aversion parameter v significantly different
from 7 can be markedly less than Wy. It is clear from (16) that the magnitude of n?T is essential — the effect of
choosing a wrong value of 7 is quite sensitive to the length of the investment horizon as well as to the level of the
risk premium 7.

We show some numerical results in Table 1 for two investment horizons, T'=5 years and T' =25 years, respectively,
and a risk premium n=0.3. Le. n*T=0.45 for T=>5 and n?T =2.25 for T=25. The value of 7 is in line with what
is normally assumed for this parameter. As is clear from Table 1, the degree of suboptimality increases as we move
away from the diagonal and decreases as we move down in the southeast direction. The degree of suboptimality
is modest for combinations like, e.g., (=05, y=10), whereas an investment in accordance with the logarithmic
investor’s growth optimal portfolio policy is devastating for a CRRA investor with a markedly higher relative risk
aversion parameter.

Insert Table 1 around here

3 The details of the proof have been worked out in Brennan and Torous (1999) and as Corollary 2 in Jensen and Sgrensen
(2001), as previously referred to. For completeness we derive this result independently in Appendix A. For an alternative
approach using loss rates, see Balder and Mahayni (2010).
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The obvious way to find a compromise value 4 in order to reach a “fair” solution — within the simple portfolio
policies derived from the CRRA utility framework — is to require that the percentage reduction in the wealth
equivalents are identical across the two investors. This leads to the geometric mean:

7= V2, (17)

which by construction is independent of the initial wealth distribution. To illustrate the interplay between two
CRRA investors in a common pool with this portfolio policy we show the effect of this choice of 4 graphically in
Figures 1 and 2 for the two cases of investment horizons.

Insert Figure 1 around here

Insert Figure 2 around here

We vary the individual relative risk aversion parameters on the two axes and show the common value of the
wealth equivalent relative to the initial wealth level. The wealth equivalent in relative terms is independent of the
initial distribution of wealth among the two investors. Since the relation is fully symmetric around the v1 =2
axis we only show that part of the graph where ;1 <~2. Along the “diagonal”, where 1 =2, the level is one as
the investors agree on the optimal policy. The grid used along both axes in both figures is a variation in « of 0.5.
The continuously drawn curves are interpolated between these points.

As shown in the graphs, the loss is rather small for small deviations in the risk aversion parameters (vy1,v2).
Furthermore, the higher their degrees of relative risk aversion is, the less sensitive is the loss in wealth equivalent
for these two investors. A few numerical examples: With v; =4 and 2 =7 the wealth equivalent is 99.67% for the
5 year time horizon and 98.34% for the 25 year time horizon. And with v3 =2 and 2 =8 the wealth equivalent
is 97.23% for the 5 year time horizon and 86.88% for the 25 year time horizon. If we pair v1 =3 with y2 = 10
the wealth equivalents are 98.48% and 92.62%, respectively. On the other hand, when the value of 71 is found
in the range around the logarithmic investor (41 =1) or even with a v1 value below unity, the effect can become
quite outspoken. Coupling the logarithmic investor with 5 = 10 leads to the wealth equivalents 90.01% and
59.10%, respectively. Coupling the logarithmic investor and the square root investor, i.e. (y1 =0.5, y2=1), which
is a popular case in the literature on heterogeneous agents, leads to wealth equivalents of 96.21% and 82.45%,
respectively. The most extreme combination (71 =0.5, v2=10) leads to 76.24% and 25.76%, respectively.

A first order effect in this analysis is that when ~ reaches a certain level, all investors tend to have little exposure to
the risky asset and tilt their portfolio towards the risk-free asset. Furthermore, their individually optimal portfolio
composition varies much less with the value of v for relatively high levels of v than for relatively low levels of ~.
This is due to the fact that the demand for risky assets varies proportional to the risk tolerance measure 1/7.
A first order effect in the opposite direction is that the investors have markedly different attitudes towards the
extreme outcomes. In the low (high) wealth states, the Arrow-Debreu prices become very high (low) and the
marginal utility for both investors tends to +o0o (zero). However, the speed of convergence in marginal utilities
is different for different investors; the higher the degree of risk aversion v, the faster (slower) the convergence to
400 (zero) in the low (high) end of the wealth distribution.

5.2 Constrained Pareto optimal portfolios

When a linear sharing rule is given a priori, all constrained Pareto optimal policies are characterized by solving
the following “central planner optimization problem”, where u € [0,1] is a parameter that governs the relative
importance of each of the investors in the pool:

max B |2 (owr) T 4 L (- o)
Wr -7 -2

s.t.
E[MpWyr] = Wi+ Wapo. [}
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The solution to the central planner’s optimization problem is a straightforward application of the martingale
method. The optimal distribution of wealth Wyr at the horizon T for a given p is characterized in terms of the
pricing kernel M as the solution to the following equation:

o'W+ (L= ) (1= 9) W =AMy, (18)
where ) is determined by the budget constraint:
E [MypWr] = Wi,0 + Way. (19)

Remark 4 The optimality condition (18) is the requirement that
poUL(¢Wr) + (1 = p)(1 = 9)U2((1 — §)Wr) = AMr. (20)

This is similar to the usual condition for a Pareto optimum. The only difference is that the sharing rule is required
to be linear, resulting in a constrained Pareto optimal solution.

Remark 5 In the case v2 =271, Equation (18) is a second order polynomial in W;%, cf. also the comments made
in section 2 and Equation (15) in remark 3:

(=m0 =] (W) + [we' ] W —anir = 0. (21)

Using the standard formula for the roots of a second-order polynomial, the relevant solution can be written in
closed form as:

VD _[20-pa-g-)
Wrt = 21— p)(1 = ¢)1—2m & Wr = |: VD — pgt—m (22)
D = 12?7 1 4(1 = p)(1 = ¢) 2 AMp. (23)

This is markedly different from the standard model in the literature on heterogeneous agents in two respects. First,
in an exchange economy context the aggregate output is given, but agents are allowed to enter into non-linear
contracts in order to reach the unconstrained Pareto optimum. In our model, only linear contracts are allowed.
Second, in our model the aggregate output for the two investors is not given a priori; rather, it is expressed in
terms of the pricing kernel M7 as a result of a constrained optimization problem.

Insert Figure 3 around here

Figure 3 shows the relation between two investors with markedly different levels of relative risk aversion, y1 =2
and 72 = 10, respectively. The parameter values are r =5%, n=0.3, T =5. The values on the x-axis represent
the aggregate wealth. The values on the y-axis represent the individual wealth levels in both the unconstrained
scenario, where the two investors have been able to choose their portfolio freely, and in the constrained Pareto
optimal scenario.

The investors have identical initial wealth Wy = 1, i.e. ¢ = 0.5. The curves “y = 2” and “y = 10” show the
constrained Pareto optimal portfolio choices for these two investors. In line with well known results from the
literature on heterogeneous agents, the unconstrained sharing rule is a convex (concave) function of aggregate
wealth for the investor with the lowest (highest) degree of relative risk aversion.

An example of the results from enforcing a linear sharing rule, the constrained Pareto optimal portfolio allocations,
are shown in the two remaining curves. They show the result from arbitrarily setting the weighting parameter p
to 0.95 and 0.99, respectively.* These curves are not straight lines. This is because they are plotted against the
unconstrained Pareto optimal solution on the first axis, illustrating the point that the optimal portfolio under
constraints is different from the optimal portfolio resulting from the unconstrained market solution.

The curves show a general feature of this constrained Pareto optimal investment policy. In “bad states of the
world” the investment policy is dominated by the investor with the highest degree of risk aversion, whereas in
“good states of the world ” it is dominated, or at least shaped, by the investor with the the lowest degree of risk
aversion. Furthermore, the absolute deviation from each of the individual investors’ first best investment portfolio
increases. Similar results, however not shown, are obtained with a time horizon 25 years.

4 Note that the two utility functions behave rather differently, so an uncritical interpretation of the numerical value p as
a parameter that weighs the two investors against each other is not possible.
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5.3 Fair distribution

We have solved nurnerically5 for the optimal constrained investment policy, given that p is chosen in such a
manner that the relative loss in wealth equivalent is the same for both investors. We consider this to be the
relevant interpretation of the concept “fair distribution” in this context. Hence, a numerical solution involves
finding jointly the correct values of u and A as functions of (y1,72) to fulfill this requirement.

Insert Table 2 around here

We consider two investors with identical initial wealth equal to one and show the results in terms of differences in
their wealth equivalents in Table 2 with three decimals precision. Due to the symmetry, Table 2 only shows half
the possible combinations and only for values of v2 < 3; beyond that all entries are zeros up to three decimals
precision. The solution should be better than the ad hoc rule analyzed in subsection 5.1. This is also the case. The
differences are outspoken where the values of the risk aversion parameters paired consist of an investor with a risk
aversion parameter below 1 and an investor with a relatively high risk aversion parameter. But the differences
are very small and negligible, whenever both investors have risk aversion parameters exceeding, say, two. There
is very little room for improvement as already seen in Figures 1 and 2; such combinations of investors tend to
have a very similar perception of what the optimal unconstrained investment strategy should be, and the linear
sharing rule is a minor restriction.

We illustrate the distribution of final wealth in Figures 4 through 6. As part of our numerical procedure we
have chosen a discretization of the sample spamce6 and, hence, the pricing kernel into 10,000 intervals of equal
probability 10™%. The very last of these intervals is the right tail of the distribution cut off at the point where the
tail probability is 10™%. The 2-axis in Figures 4 through 6 corresponds to this discretisation, where the pricing
kernel takes on the highest (lowest) values in the left (right) end of the graphs. Hence, the values on the z-axis
are ordered in terms of fractiles, whereas the corresponding outcomes of the wealth process are represented on
the y-axis.

The actual dynamic portfolio policy that implements the constrained Pareto optimal final wealth distribution is
in no way an easy one to determine. It is not a policy with constant portfolio weights or a similar analytically
convenient one. It can only be found by repeated intensive numerical calculations along the realisation with short
time intervals. We have therefore chosen to illustrate our numerical results with probability steps on the z-axis
to give a graphical view of the probabilities for small and large deviations, respectively. The closest we can get
to an analytically convenient portfolio policy is the geometric mean policy with 4 as described in subsection 5.1
and in Equation (17), for which the optimal portfolio policy has constant portfolio weights.

The dotted lines show the constrained Pareto optimal investment result for the two investors trading in a perfectly
competitive financial market. The full drawn line is the result from using our fair constrained Pareto optimality
criterion when linear sharing is required. It is clear from these figures that the deviations in the investment results
are found primarily in the tails of the distribution.

A horizontal line in this representation indicates a portfolio policy with 100% investment in the risk-free asset.
The more markedly S-shaped the curve is, the less risk averse the investor is. The figures show that the relatively
least risk averse investor “bet on the right tail” and behave “put option like” in the left tail of the distribution of
aggregate wealth, cf. also Figure 3.

The most extreme combination we present is 1 =0.5, 2 =10. This combination is shown in Figure 4. Investor 2,
the most risk averse, has a total variation in his consumption pattern going from 2.08 to 3.68, whereas investor 1
has a total variation going from 0.02 to 1508.73. In order not to compress Figure 4 as a result of this extraordinary
high level at the tail for investor 1, we have cut of the graph at a level of approximately 800.

Insert Figure 4 around here

5 There is no analytical solution available for this problem, even if the parameters are chosen in such a manner that the
true Pareto optimal solution is available in analytical form. Hence, we are forced to rely on a numerical solution technique.

6 We tested the approximation on problems with known analytical solutions to check the accuracy. We found that the
numerical solution and the analytical solution coincided with 4 decimals precision.
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The enforcement of the linear sharing rule clearly affects the level of wealth equivalents differently depending on
the pairing of the values for their respective risk aversion parameters. The deviances between the two investors
become less and less outspoken when the absolute level of risk aversion increases for both investors, despite that
the individual values may still be significantly different. This is due to the fact that both investors have an
increasing desire for an even wealth distribution, i.e., a preference for a large share of the riskless asset in the
portfolio. In other words, when investor 1 has a high level of risk aversion, and investor 2 an even higher level,
the loss due to the linear sharing rule is very limited; and a high level in this context is a value of 1, say, at or
above 5. In Figure 5, this situation is presented for the combination (y1,7v2)=(5, 10).

Insert Figure 5 around here

In the other end we see that if investor 1 has a value of, say, v1 = 1, the deviances can be significant, even for
investor 2 with, say, 72 = 2. The difference is substantial for rather small absolute differences in the v values
in this range. The combination (y1,7v2) = (0.5,1) was used in Dumas’ seminal paper (Dumas (1989)) and has
subsequently been repeated by others. Investors with such characteristics are suffering significant losses in their
wealth equivalents by being forced into a common pool with others and to share the final result linearly. Mixing an
investor 1 with a risk aversion parameter in the range around 1 with an investor 2 with a risk aversion parameter
in the range 5 or more can, indeed, lead to severe losses in wealth equivalents.

In Figure 6 this situation is presented for the combination (vy1,v2)=(1,5).
Insert Figure 6 around here

In all the Figures 4 through 6 the deviations are clearly concentrated in the upper and lower tails of the distribution.
In the middle of the probability distribution, the investors behave in rather similar manners and in such a way that
their first best optimal distribution of final wealth is close the fair solution. We show in Table 3 the probability mass
over which the first best solution deviate by more than 1%, 5% and 10%, respectively, from the fair distribution.
Furthermore, larger deviations in absolute terms are primarily concentrated in the right end of the graphs where
Arrow-Debreu prices as well as marginal utilities are low. In the left end of the graphs, where the Arow-Debreu
prices as well as the marginal utilities are high, the absolute deviations are much smaller.

Please insert Table 3 around here.

Hence, the restriction of a linear sharing rule does not affect the resulting asset allocation very much in this area.
And as shown, the simple geometric mean rule is, in turn, close to this compromise solution in terms of wealth
equivalents.

5.4 Sensitivity analysis

The optimal solution depends on the weighting of the preferences through the weighting parameter p. The results
shown in Figure 7 assume that v2 >~1, i.e. investor 2 is the relatively most risk averse investor. When the weight
u attached to investor 1, the least risk averse investor, is increased the chosen asset allocation will decrease the
outcomes in the “bad states”, whereas the asset allocation in the “good states” will increase. The details are
lengthy and, hence, we devote the derivations to Appendix B. Figure 7 illustrates this basic insight by showing
that the elasticity of aggregate wealth, W, with respect to the Weilghting parameter pu is negative in “bad states”
and positive in “good states” with an asymptotic limit equal to %;k This asymptotic limit is increasing in p
and decreasing in ;.

Insert Figure 7 around here

This is in accordance with the existing literature on heterogeneous agent models, except for the fact that the asset
allocation and the aggregate risk exposure is chosen by the investors in accordance with the stated joint objective
function instead of being given as in an exchange economy context.

Deviating from the fair constrained Pareto optimal solution, it is tempting to suggest that the fund manager
should choose a logarithmic utility function as he then will maximize the expected rate of return over any time
horizon. However, the results we have presented show that such a policy may be severely wrong and that a fund
manager with such a strategy can inflict serious utility losses on at least some investors.
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6 Concluding remarks

In this paper we have analyzed selection criteria for the situation where two investors are forced to invest in
a common portfolio and share the proceeds by a linear sharing rule. The investment strategy is chosen by a
manager in order to compromise between the two investors’ preferences. This imposes two restrictions. One is the
suboptimal investment strategy as seen from each of the investors’ point of view. The other is the required linear
sharing rule. A similar situation with many investors is typical for defined contribution pension schemes.

Both investors were assumed to possess a CRRA utility function; this choice of preferences made it possible to
use analytically known solutions as a benchmark to measure the loss in wealth equivalent.

We analyzed two settings. In one setting the manager was supposed to make investment decisions in accordance
with a CRRA utility function, where the risk aversion parameter was the geometric mean of the two individual
investors’ risk aversion parameters. This choice implied an easily implementable portfolio choice policy, namely a
constant share of wealth allocated to the risky asset, and it guarantees that the relative loss in wealth equivalent
is the same for both investors. We observe large losses in wealth equivalents if the risk aversion parameters were
very different and one of them quite small, say logarithmic (y=1) or less. On the other hand, when both investors
have relatively high risk aversion parameters the loss in their wealth equivalents is hardly observable.

In the other setting we searched numerically for the constrained Pareto optimal solution which produced the same
relative loss in wealth equivalent for each of the two investors. Compared to the former setting some gains were
observed, but — again — only in cases where the risk aversion parameters were very different and one of them quite
small.

One observation is worth mentioning. It is sometimes argued that a manager behaving like the logarithmic investor
(y=1) is a good choice for such a common investment problem, because he focuses on the expected long term rate
of return. Our results show that such a manager can impose severe losses on the individual investors whenever
they have a risk attitude more appropriately described by a relative risk aversion parameter somewhat higher, say
v > 3. There are also severe losses for investors on the other side like, e.g., the square root type with y=0.5. We
have observed that the individual optimal behavior of investors with such low degrees of risk aversion is almost
literally like the “tail wagging the dog”.
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Appendix

A Proof of Theorem 3

For any given constant proportional portfolio policy with portfolio weight 7 allocated to the risky asset, the terminal wealth
is, cf. Equation (5):
WT — WOe(r+7\"r]0—%7T2o2)T+7rUZT' (Al)

Routine calculations with expected values of log-normal distributions lead to:

W%—W — W()l—’ye(l—'y)(r+7rno'—%7‘—20—2)T+(1—'y)7ro'ZT (AQ)
E [W%—W] — W()l_'ye(l—’y)(T+7rnU—%7r202+%(1—’7)71‘20'2)T (A.3)
_ W(Jl—’Ye(l—'y)(r+7rna—%WZUZ)T. (A.4)

The optimal portfolio weight 7 for any given value of v is found by maximizing the expression nno — %7‘(20'2, which leads
to the classical result that m= ,Y%

If a suboptimal portfolio weight is imposed, arising from an “erroneous” choice of %4 instead of the “true” v, we can insert

T= ,Y% in Equation (A.4) and get the following closed form expression for the expected utility:

2 2
— _2n
l_fye(l "/)(T+ 5 2 ;/2)T.

E Wy =wy (A.5)
Compare this with an optimally invested inital wealth Wg:
—~1_ —~1_ (1—'\/)(r+ﬁ—%é)T
B[] =Wy e B (A.6)

The wealth equivalent is the magnitude of /V[70 that equates the expected utility in Equation (A.5) with the expected utility
in Equation (A.6). That is:

2R,

Wo _(
Wo

2 2 2 2 2
_an- _(nZ _xmn- =T ( =2y 4, 7%
2W2)T ( ,A,WQ)Ti6 o ( 2 +,2+1)76,

% (1-2) (A7)

B The derivations behind Figure 7

The Pareto optimal allocation is clearly affected by the choice of p as shown in Figure 3. The technical derivations behind
Figure 7 are given here. The starting point is the first order condition (18), which is subjected to a series of differentiations.
We denote the conglomerate utility function of the “representative investor” by U.

AMrp = p€' "MW 4 (1= p)(1 = 2W72 (=U'(W)) (A8)
A Mr = (a1 ()W (1= (1 - &) R (w2 2V
" 1
LMW (1 — gyl (: %ELW)) (A.9)
AT = [ ()W (= @) (1 - R (W] (= U W), (A.10)

Upon dividing (A.10) by (A.8) we arrive at the following expression for the relative risk aversion of the “representative
investor”

oMy W U W)W

ow Mr W) = P17 + P22 (= R(W)), (A.11)

where
pEl—yy—m

TR (1= (1 T

&, By =1— . (A.12)

Relation (A.11) shows that the representative investor has a relative risk aversion R(W) equal to an arithmetically weighted
average of the two -values with weights given by their contribution to the central planner’s marginal utility of wealth.”

7 In some papers on heterogeneous agent models, see e.g. Benninga and Mayshar (2000), it is claimed that the RRA
for the representative investor is a harmonic average of the two individual RRAs. In this representation the average is
arithmetic. Of course, for any harmonic average there is an equivalent arithmetic average, just with other weights.
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Furthermore, by dividing (A.9) by (A.8) and making use of the relations in (A.12) defining the weights #1 and $o=1— &,
we get the following relation:
ox1
oux

87Wi S p (A.13)
ouW 1—p 1—p '

EW m 1—p e

W1 & Dy o\
— @ _— =

-R(W) —R(W)

The variable X is the Lagrangian multiplier for the budget constraint; it depends on the weight u, but is clearly independent
of any particular realization W:

Wp A, n _ B

RW)— —_— = . A14
) opW opX 1—p 1—p ( )
|
constant across W
Let ¥(W) denote the elasticity of W with respect to the weighting parameter p:
ow
o) = 221 (A.15)
on W
and define k as: o
k=22HR L B (A.16)
oupXx 1—p
Then relation (A.14) turns into:
b
ROVFW) = - Lk (A.17)
— K

Assume without loss of generality that ;1 <~y2. Then it follows from (A.12) that &1 7 1 as W oo, i.e. the least risk
averse individual dominates the right hand tail. In the other end @1 \ 0 as W \ 0.

It can be ruled out that k can be negative. In that case ¥(W) must always be positive, which will violate the budget
constraint. Hence we can conclude that

— (< 0 for W — 0)
W)= 4, (A.18)
L=t (>0 for W — o0).
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T=5 T =25
"y | 05 1 2 5 10 0.5 1 2 5 10
0.5 1 0894 0.776 0.695 0.666 1 0570 0.282 0.162 0.131
1 [0799 1 0945 0.866 0833 0325 1 0755 0.487 0.402
2 0363 0894 1 0960 0.931 || 0.006 0570 1 0817 0.698
5 | 002 0487 0904 1 0989 || 0.000 0.027 0603 1 0945
10 | 0.000 0.161 0.697 0978 1 0.000 0.000 0.165 0.894 1

Table 1 Wealth equivalents for investors with CRRA preferences (v) subject to an investment policy based on a wrong

relative risk aversion (%)
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v /2 05 1 15 2 2.5 3
1.0 0.001
15 0005 0
2.0 0011 0001 0
25  0.016 0.001 0 0
3.0 0.022 0003 O 0 0
4.0  0.032 0.005 0.001 0 0 0
50  0.041 0.008 0.002 0001 0 0
6.0  0.049 0.011 0.004 0.001 0001 0
70  0.055 0.014 0.005 0.002 0.001 0
80  0.060 0.016 0.006 0.003 0.001 0.001
9.0  0.065 0.019 0.007 0.003 0.002 0.001
10 0.069 0.021 0.009 0.004 0.002 0.001

Table 2 Differences in wealth equivalents for investors with CRRA preferences (v1,72) between the constrained Pareto

optimal investment policy and an investment policy based on the square root rule (¥ = \/7172).
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10% 5% 1%
71 =0.5,72=10

Dy 6.99% 3.49% 0.69%

Pra 15.53%  7.11%  1.40%
m1n=172=>5

Dy, 18.73% 9.40% 1.90%

Drys 43.96%  22.26% 4.47%
y1="5,72=10

Dy, 99.75%  74.24%  16.04%

Drya 98.65% 84.65% 24.89%

Table 3 Probabilities for being less than 1%, 5% and 10%, respectively, away from the theoretically optimal distribution
of terminal wealth. The entry marked with italics only take place in the area where the pricing kernel has low values, i.e.

to the right in Figure 5.



O©CoO~NOOUTAWNER

How suboptimal are linear sharing rules? 19

o
O
o
L

Wealth equivalent
o
[0}
o

l'?'n
QN(.'Q

~

| nvestor

Figure 1 Wealth equivalent for investors participating in an investment pool with portfolio policies determined by equal
relative reduction. Time horizon 5 years.
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Investor 1

Figure 2 Wealth equivalent for investors participating in an investment pool with portfolio policies determined by equal
relative reduction. Time horizon 25 years.
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— Pareto optimal, y=2

==-Pareto optimal, y=10 /

——Constrained Pareto optimal (u=0.95)

-«Constrained Pareto optimal (n=0.99)

< el (9] w = W (=) | L o
0

Figure 3 The z-axis shows aggregate wealth for investors participating in an investment pool. The y-axis shows the
individual wealth levels for both the unconstrained scenario and the constrained Pareto optimal scenario determined by
different values of the weighting parameter p. Time horizon 5 years.



O©CoO~NOOUTAWNER

22 Bjarne Astrup Jensen, Jgrgen Aase Nielsen

600
I

400
I

200
I

I I I I I I
0 2000 4000 6000 8000 10000

Figure 4 Allocation patterns for investors with (y1,72)=(0.5,10). The z-axis is divided into equal probability steps. The
dotted lines show the unconstrained Pareto optimal final wealth for the two investors, whereas the solid curve shows the
constrained Pareto optimal solution.
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Figure 5 Allocation patterns for investors with (y1,72) = (5,10). The z-axis is divided into equal probability steps. The
dotted lines show the unconstrained Pareto optimal final wealth for the two investors, whereas the solid curve shows the

constrained Pareto optimal solution.
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Figure 6 Allocation patterns for investors with (v1,72) = (1,5). The z-axis is divided into equal probability steps. The
dotted lines show the unconstrained Pareto optimal final wealth for the two investors, whereas the solid curve shows the
constrained Pareto optimal solution.
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=

Figure 7 Sensitivity analysis: Variation in the elasticity ¥(W) of W with respect to the weighting parameter p as a
function of aggregate wealth.
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