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Abstract 

As digital technologies become prevalent and embedded in the environment, "smart" everyday objects 

like smart phone and smart homes have become part and parcel of the human enterprise. The ubiquity 

of smart objects that produce ever-growing streams of data presents both challenges and opportuni-

ties. In this paper, we argue that extending these data streams, referred to as "predictive analytics", 
provides a solid basis for the design and development of IS artefacts that can generate additional val-

ue. Subsequently, we introduce a model for Designing Information Systems with Predictive Analytics 

(DISPA), extending Design Science Research specifically towards predictive analytics. The model is 
evaluated based on a case study of MAN Diesel and Turbo, a leading designer of marine diesel en-

gines. The case illustrates that the framework provides useful guidelines for developing environment-

specific sensor based predictive models that can out-perform the traditional state of the art predictive 
methods especially in volatile and uncertain environments. 

 

Keywords: Predictive Analytics, Design Science Research, Forecasting, Sensors. 

 

1 Introduction 

As digital technologies become prevalent and embedded in the environment, it makes more and more 

everyday objects smart – smart phones, smart cars, smart homes, and even smart clothes have become 
part and parcel of the human enterprise. In this context, the adjective “smart” denotes that an object is 

able to collect, process, and often communicate data with regard to its functionality and operating en-

vironment (Cook, Das 2004). Subsequently, all smart objects must be equipped with sensors that can 

collect various kinds of data. Although there are many examples of the successful utilization of current 
snapshots of such data, the identification of patterns from historical sensor data in order to make pre-

dictions is only now entering everyday applications. For example, GPS data on phones can provide a 

current location, but it is not currently able to guess where one is going. The main players on the mo-
bile market, Google and Apple, are trying to close this gap, introducing services like Google Now and 

Apple frequent locations, collecting data with a similar functionality in mind, but usable applications 

based on predictions seem significantly more difficult to implement then those using a snapshot pic-

ture (Woollaston 2013). Forecasting an event upfront is especially important if there is a substantial 
cost associated with that event. With vast amounts of data collected for snapshot analysis and the main 

players clearly looking to extend it towards the future, it is apparent that more and more applications 

designed to benefit from predictive analysis of historical sensor data will be entering the market. 
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In this context, predictive analytics refers to empirical methods that are aimed at creating empirical 

predictions and assessing their quality (Shmueli, Koppius 2011 p. 554). Although the application of 

predictive analytics toolkits is not common in IS research (Shmueli, Koppius 2011), it is quite preva-
lent within the body of management science and in particular in Operations Research (OR), both as a 

method and as a topic, namely forecasting. Demand forecasting, one of the key processes in Supply 

Chain Management, offers generic forecasting algorithms that became a part of standard ERP systems 

implementations, making them easy to use in virtually any business. The growing interest in sensor 
technologies and their ramifications, like data volume and velocity or information processing capabili-

ties, moves the process of demand forecasting to the front burner of current IS research.  

In this paper, we introduce a framework that can be used to facilitate the process of rigorously design-
ing predictive information systems. The framework draws on Design Science (Hevner, March et al. 

2004) and the steps for building a predictive, empirical model (Shmueli, Koppius 2011), using a mixed 

method approach for design validation (Tashakkori, Teddlie 1998, Ågerfalk 2013). The framework is 

evaluated based on a case study of MAN Diesel and Turbo, a leading designer of marine diesel en-
gines. The case illustrates that the framework provides useful guidelines to developing environment-

specific sensor based predictive models that can out-perform the traditional state of the art predictive 

methods. The improvement of prediction quality will, however, come at the expense of a high level of 
coupling between the problem and the solution, making it financially feasible only in environments 

where the gain of forecast improvement overweighs the cost of solution implementation. This kind of 

environment would be characterized by, on one hand, a high level of volatility and uncertainty, and on 
the other, a high cost associated with forecasting error. 

2 Theoretical Foundations 

In this chapter we will review the state of the art literature in order to determine what kind of frame-

works have already been developed that could be used for designing predictive information systems, 

including aspects of design specific to sensor technologies. Our requirements towards the framework 
are that it should be generic enough to allow the design of predictive information systems in various 

contexts but, as well, specific enough to provide meaningful guidelines to designers in the given con-

text. The remaining part of this chapter will be two-fold: analysis of solutions proposed for predictive 
information systems in the case context, which is spare-part forecast, as well as a general investigation 

of the designing of predictive systems in IS. 

2.1 Traditional approach to forecasting spare part demand 

Given that predictive analytics had rarely been discussed in the IS discourse, either as a method or a 

subject (Shmueli, Koppius 2011), we looked in other management disciplines for similar problems. 

Our intention here is not to perform a systematic review of forecasting techniques in the management 
literature, but rather to provide a flavour of what constitutes a good forecasting method and how to 

determine which technique to use as a state of the art baseline. As within Operations Research fore-

casting has been studied thoroughly, multiple literature reviews are available, also for a specific appli-
cation like spare part demand. Selected methods from Callegaro (2010) and Bacchetti and Saccani 

(2012) are presented in Table 1 below. The purpose of presenting this list is to illustrate the main dif-

ference between our intended approach and current OR research: scholars in Operations develop com-

plex algorithms to predict next items in a (time) series based on the previous values. The main objec-
tive seems to be the transformation of historical data. Conceptually, it means predicting an output of 

the black-box only by analysing its previous outputs. Our general idea is that the prediction can be 

more informed, i.e. smarter, if it is based on an understanding of the activity within the black-box. An 
extended search of the literature shows that a limited number of contributions attempt to conceptually 

unwrap this black box (Ghodrati, Kumar 2005, Dolgui, Pashkevich 2008, Hellingrath, Cordes 2014), 

but their approaches are so problem-specific that we were not able to replicate them in our context as 
baseline. 
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Method 

name 
Inputs Description 

Model  

classification 
Important features 

Weighted 
moving  
average 

-Historical sales data 
-Weights (constants) 

Mean of past data points with 
weights (usually the older the 
sample the smaller the weight) 

Time series -arithmetic 
average 

-Stresses recent trends 
-Easy to compute 

Single  
exponential 
smoothing  

-Historical sales data 
-Smoothing constant 

Computes moving average of 
demand with smoothing constant 

Time series - average 
with exponential 
smoothing  

-Works with few  
samples 
-Easy to compute 

Additive 
Winter 

- Historical data  
- Smoothing constant  
- Trend constant  
- Periodicity constant  
- Width of periodicity 

Variation of single  
exponential smoothing with  
seasonality trend term 

Time series - average 
with exponential 
smoothing 

-Considers seasonality 

Croston’s 

method 

-Historical sales data 

-Smoothing constants 

Computes SES for both typical 
demand magnitude and typical 
periods between demand points 

Croston-based two 
average value with  
exponential smoothing 

-Intended for materials 
with intermittent  

demand (many periods 
without demand) 

Syntetos-
Boylan 
approx. 

-Historical sales data 

-Smoothing constants 

Extension of Croston removing 

the positive bias 

Croston-based two 
average value with  
exponential smoothing 

-Statistically proved 
bias reduction resulting 
in lower forecast error 

Box-Jenkins 
method 

-Historical data 
-Constants for aver-
age and regression 

It chooses between two models, 

moving average and  
autoregression, alternatively  
selected based on historical error 

Time series average, 

either moving or 
weighted average 

-Can capture complex 

trends and seasonality 
-Requires a lot of  
history to perform well 

Bootstrap 
method 

-Historical sales data 
-Limit for number for 
resampling 

Randomly chosen subset of  
historical samples (forecast for 
next 3 periods is 3 randomly  
chosen periods from the past) 

Stochastic -
probabilistic 

-Probabilistic approach 
-Needs few samples 

Neural net-
works (NN) 

-Historical sales data 
-Neural network  
layout 

It infers connection between input 
and output  from the training set 
and using it to estimate future 
values 

Stochastic - 
black box 

-Inspired by human 
brain 
-Tested in various areas 
as a predictor 

Grey predic-
tion model 

- Historical data  
Adaptive time series approach 
using least square estimate as 
feedback to correct for the error 

Time series average 

with least square feed-
back 

-It is designed to work 
under massive uncer-
tainty, was intended to 
predict hurricane 

occurrences 

Table 1 – Selected spare-part forecasting methods, model classification added by authors 

To generalize, the selected models can be broadly sorted into three classes: (1) models that are based 

on a computing forecast as a single-dimensional aggregation of previous observations were classified 

into a “time series” cluster; (2) models that are based on computing separately demand magnitude and 

interval demand points and later combining them into the prediction, were clustered as “Croston-
based”; and (3) models that are based on calculating a forecast value based on other properties of the 

previous value set, rather than the raw values, were grouped into a “stochastic” class. Our review 

shows that benchmarks of intermittent demand forecasting are inconclusive with regard to the relative 
performance of any of these models. Petropoulos et al. (2013) benchmark time series and Croston-

based methods and conclude that their relative performance depends heavily on parameters used in the 

implementation. On the other hand, Kourentzes (2013) presents a study where a stochastic solution, 

namely Neural Networks, outperforms both time-series and Croston based algorithms. Finally, in the 
study of Teunter and Duncan (2009), time-series methods perform significantly worse than the two 

other classes, while there is no significant difference between two Croston-based methods and boot-

strapping. In the absence of clear conclusions from scientific research, we looked at industry and dis-
covered that a de facto standard is the Croston method: it is the only method specific to intermittent 

demand in standard SAP R/3 (SAP most current version) and it is explicitly recommended by SAP for 

products with intermittent demand (SAP 2013 p. 12). Consequently, we selected the Croston method 
as a starting point and the state of the art benchmark for all our future predictive methods. 



Furtak et al. /Designing predictive analytics with sensors 

Twenty-Third European Conference on Information Systems (ECIS), Münster, Germany, 2015 4 

 

 

2.2 Designing predictive analytics in IS 

Shmueli and Koppius (2011) provide a model for the process of building a rigorous Predictive or Ex-

planatory Empirical Model in IS (PoEEIS). Figure 1 represents the 8 steps suggested for building an 
empirical model. Comparing this framework to Hevner’s Design Science Research (DSR) model re-

veals many similarities: the Evaluation, Validation step in PoEEIS matches almost exactly the Justi-

fy/Evaluate from the DSR, the 5 preceding steps of the PoEEIS model can be seen as a more detailed, 
application specific version of the Develop/Build of DSR. The original PoEEIS is not cyclic, as it con-

siders one iteration of the predictive design, however when we envision multiple iterations, we can 

imagine cyclic arrows pointing from the Data Collection box to Evaluation and back, which is similar 

to the logic of DSR. In summary, we notice that the PoEEIS model seems to be a more specific guide-
line for a single Develop/Build-Justify/Evaluate cycle of Hevner’s DSR model. This observation un-

derlines the foundation of a merging of the two models to structure a multi-iterator design of predic-

tive IS artefacts. For a more comprehensive review of the usage of predictive techniques in IS we rec-
ommend Shmueli and Koppius’s review. 

 

Figure 1 – Steps for building predictive empirical models (Shmueli, Koppius 2011) 

2.3 Combining DSR with PoEEIS: Designing Information Systems with Pre-
dictive Analytics (DISPA) 

In this section we will analyse how DSR (Hevner, March et al. 2004) and PoEEIS models can be uti-
lised to devise a framework structuring a rigorous design process of IS artefacts using predictive mod-

els using sensor data. Hevner’s DSR framework is intended to help design any IS artefacts while 

Shmueli’s framework was developed having in mind building predictive empirical models. As our 
overall goal, designing IS artefacts using predictive models includes the goals of both of the frame-

works, combining the two should fulfil our intentions, resulting in a more specific version of DSR to-

wards predictive analytics. 

 

Figure 2 - Combining Hevner's and Shmueli's frameworks 
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As a first step to combining Hevner’s and Shmueli’s frameworks let us analyse how exactly the steps 

suggested by Shmueli and Koppius match those suggested by Hevner. The initial step, goal definition, 

understood as defining a purpose of the design process and properties constituting a good design for 
that purpose, does not have an explicit match in Hevner’s framework. The following five steps, name-

ly Data Collection & Study Design (initial design choices for the model such as simulation vs experi-

ment study, data collection strategy, sample size), data preparation, exploratory data analysis and vari-

able selection, and choice of a predictive method, seem to be conceptually included in the devel-
op/build step. Nevertheless, in the particular context of IS artefacts using predictive models the output 

framework could potentially benefit from defining at least some of them more specifically as sub-

steps. Evaluation, validation and model selection from Shmueli’s model seem to correspond to He-
vner’s Justify/Evaluate. Finally, Model use matches Hevner’s Application in Appropriate Environment 

and Reporting corresponds to Addition to the Knowledge Base. The graphical matching of the two 

frameworks can be seen in Figure 2 above. 

Based on those observations we started to construct the model for designing IS artefacts using predic-
tive analytics. As a starting point we decided to explicitly include the previously missing goal defini-

tion step. In this context the designer needs to answer questions at this step such as what exactly needs 

to be designed (including what needs to be predicted) and what makes a design for that purpose good. 
The next step to follow is Hevner’s Develop/Build, but with sub-steps inspired by Shmueli’s model. 

We observed that four steps from Shmueli’s model (Data collection and study design, exploratory data 

analysis, choice of variables, choice of potential methods) are very tightly coupled, lacking the re-
quired flexibility in step ordering. To name some scenarios, the nature of available variables and 

methods impacts heavily on study design; or the choice of a method might change the choice of varia-

ble. To avoid this ordering struggle we suggest structuring the Develop\Build step in three sub-steps: 

Model definition, Data preparation and Model implementation. Specifically to sensor data, in the sec-
ond sub-step (Data preparation) an investigation of match between sensor-measured quantities and 

predicted values should be specifically discussed. 

 
Figure 3- The model for Designing Information Systems with Predictive Analytics (DISPA) 

Although both of the models specify the validation step as one of the keys to conducting a rigorous 

study we felt the need to further structure the validation process. We defined our intended validation 

process as an objective (and quantified) comparison of various models, but we also like it to extract 

1. Goal definition 

2. Develop\build 

2a. Model  
definition 

2b. Data  
preparation 

2c. Model  
implementation 

3. Justify\evaluate 

3a. Cost of  
prediction error 

evaluation 
(Quantitative) 

3b. Contextual 
systematic bias 
identification 
(Qualitative) 

3c. Evaluation  
of the bias with 
knowledge base 

4. Process evaluation and conclusions 

Relevance Rigor 
Environment IS Predictive Research 

Knowledge 

base 

People 
 Roles 

 Capabilities 

 Characteristics 

 

Organizations 
 Strategies 

 Structures  
& culture 

 Processes 

 
Technology 
 Infrastructure 

 Applications 

 Communications 
Architecture 

 Development  
capabilities 

Foundations 
 Theories 

 Frameworks 

 Instruments 

 Constructs 

 Models 
 Methods 

 Instantiations 

 

Methodologies 
 Data analysis 

techniques 

 Formalisms 

 Measures 

 Validation  
criteria 

 

Assess Refine 
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insights on why different methods produce better or worse quantitative results, hoping to identify sys-

tematic biases that can be corrected for later. The combination of quantitative and qualitative elements 

pointed us towards the mixed method approach (Tashakkori, Teddlie 1998, Ågerfalk 2013). According 
to Ågerfalk repeating after Creswell, four central parts of the design of a mixed method study are (1) 

the sequence, (2) the relative priority and the stage of the project (3) stage when qualitative and quanti-

tative components will be integrated, as well as the extent to which the components will be embedded 

in an overarching framework (4) (Creswell 2013, Ågerfalk 2013). With this guideline in mind we ini-
tially structured the validation as a quantitative and quantitative evaluation. Afterwards we decided to 

further specify the process: defining quantitative evaluation in terms of a single meaningful dimension, 

to facilitate comparisons and general understanding, and our choice was cost of prediction error. The 
purpose of the qualitative step is the analysis of the context of the study in order to identify and extract 

any systematic bias and to underline it the step was renamed accordingly. Additionally we discovered 

that in order to generalize the contextual findings of the qualitative step some validation with a general 

knowledge base might be necessary, which led to introducing the third sub-step. The framework is 
concluded with a Process evaluation and conclusion step. Specifically to sensor data, in this step an 

investigation clarifies if there is a more direct way to monitor predicted value. The final version of the 

framework is presented in Figure 3 above. 

3 Illustration: Designing predictive analytics with sensors 

3.1 Case overview 

MAN Diesel and Turbo is the world market leader for large diesel engines for use in ships and power 
stations, and is one of the three leading suppliers of turbo machines. The roots of the company go back 

to 1758. In the years 1893-1897 Rudolf Diesel and MAN engineers developed the first diesel engine 

and in 1904 the company constructed its first steam turbine. According to latest Shipbuilding outlook 

report (Maritime-Insight 2013) MAN has designed about 70% of engines for active goods-carrying 
vessels which together with almost 90% of seaborne trade share in world trade (IHS Global Services 

2009), which means that MAN engines propel more than half of world trade! Nowadays, MAN Diesel 

and Turbo does not build engines. The company’s strategy concentrates on engineering-intensive en-
gine design process and creating revenues from selling manufacturing licenses to third parties, as well 

as from the aftersales part of the engine business, namely offering spare parts and services. 

The focus on aftersales introduces challenges to MAN’s supply chain especially in the area of fore-
casting spare part and service demand. Aftersales-based business models usually involve a higher level 

of heterogeneity and product variation than initial sales environments, leading to higher levels of de-

mand uncertainty and making demand predictions relatively more difficult (Teunter, Syntetos et al. 

2011). Moreover in the marine business design changes introduced in manufacturing process are very 
common, typically due to local material availability or shipyards' manufacturing limitations, causing 

alterations in instantiations of the same design and additional variation of the installed base. Finally, 

the license-based business model implemented by MAN creates additional obstructions to aftersales 
activities, as it introduces the engine builder (MAN licensee) as an intermediary between MAN and 

the end customer (ship owner), that on the aftersales market is a MAN competitor. This setup limits 

information flow between customer and MAN, additionally hindering the forecasting. 

The emphasis on demand forecasting in the case context is also introduced by the aftersales-oriented 
business model. In the aftersales environment the customer purchases spare parts and services based 

on two main criteria: availability and price. Availability is merely dependent on accurate demand pre-

diction: if the demand is expected in advance, items or services can be ready at the time customer re-
quests them, increasing sales probability without the cost of excess inventory. Moreover, procuring 

parts in advance (engine spare parts or elements necessary for performing additional engine services, 

like retrofit installations) enables stable production pipelines that lower overall procurement costs by 
avoiding rush orders and expensive rush transportation, helping to keep the price on levels acceptable 

for customers. In an environment characterized by a high installed base heterogeneity and high num-
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ber of offered products and services, additionally underpinned by potentially incomplete information 

on product build and use, an effective forecasting process can be considered as difficult as it is im-

portant. 

3.2 Introduction to framework instantiation 

After having understood the case environment and the relevant knowledge base we are ready to instan-

tiate the model in this context. In the initial step, goal definition, a thorough evaluation of the envi-
ronment needs to be performed in order to determine what makes the predictive design suitable for the 

given context, and how to quantitatively measure the cost associated with prediction error. The follow-

ing two steps, design\build and justify\evaluate, are executed iteratively for multiple designs under 
evaluation. We suggest starting with a state-of-the-art solution from the knowledge base in order to 

provide a baseline and to ensure the necessary grounding in previous academic work. The evaluation 

step should then evaluate the previously developed cost function as well as identify variables that are 
not monitored, introducing systematic bias that can be removed in following design iteration. When 

iteration cycles provide satisfactory output the environment and the installed base can be fed back with 

the newly designed predictive model and the insides acquired during the design process. 

3.3 Designing spare part forecasting for marine heavy machinery industry 

3.3.1 Instantiation 1 – currently implementable solution 

Goal definition (including cost function) (1) 

The goal of the empirical part of this paper is to design, develop, evaluate and continuously improve a 

system to predict the frequency of sales of a selected product in the given case context. Initially a 
state-of-the-art solution will be selected from the literature as a benchmark. The process of evaluation 

requires additional explicit structure: quantitative analysis will be performed in an experimental set-

ting: data will be partitioned into learning and test-periods, predictions will be made for test periods 
based on parameters extracted from the learning sample and the prediction will be evaluated by an 

objective cost function. Two reliability tests will be repeated 3 times for 3 learning/test samples. Qual-

itative evaluation will follow, by collecting insights concerning systematic pros and cons of the chosen 

approach, as well as possibilities to improve it. Based on those suggestions, verified in existing litera-
ture, refinements leading to new designs will be made, that will then be finalized and implemented and 

will undergo the same systematic evaluation process. Linking qualitative feedback to quantitative re-

sults should enable evaluation not only of holistic solutions, but also their systematic properties.  

The key to a legitimate quantitative evaluation of a design is a meaningful cost function. There are 

many standard measures for a prediction error, but because of their generic properties they are not able 

to capture very context-specific factors, such as asymmetric error cost. In order to cater for this diver-

sity two separate cost functions, for over- and under-forecasting scenarios, are necessary. The actual 
cost associated with an under-forecasting situation occurs due to missed sales potential: as goods are 

not available when demand occurs some customers will decide to drop the order rather than wait for 

the items. The percentage of those customers can be determined by the difference in conversion ratio 
of quotes to orders (also referred to as hit rate) for in-stock quotes versus the stock-outs. In the case of 

an example component group, piston ring sales at MAN, in a scenario where goods are in-stock aver-

age hit rate will oscillate around 39 % but in the case of a stock-out only 30% of quotes would convert 
to orders, ceteris paribus, we would assume 9% of customers gave the purchase up due to lack of 

availability. In order to calculate lost profit, the average hit rate difference between in-stock quotes 

(HRis) and the stock-out hit rate factor (HRso) needs to be multiplied by under-forecasted volume Uvol 

(to compute sales volume missed due to stock-out) and, to convert sales turnover to EBIT profit, mul-
tiplied by average contribution margin CM. 

The cost associated with over-forecasting can be divided into two categories: opportunity cost, also 

known as the cost of frozen capital, as well as cost of potential depreciation and scrap, both propor-
tional to over-forecast volume (OFVOL). The opportunity cost is experienced since, for over-forecast, 
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the investment in inventory was unnecessary and the money could be invested differently, bringing 

certain profit to the company. Most of the firms have some baseline working capital ratio to be used 

for such calculations. For MAN, in 2014 this working capital ratio (OC%) was set to 10% (internal) 
per year. As in our context sales are expected every month, over-forecasting in one month will lead to 

lower replenishment cost in the following month, so that the frozen capital cost will always be calcu-

lated for a single month. In case of cost of deprecation and scrap factor (DF%), this reflects a possibil-

ity that unsold inventory will not move for a period of time, leading the inventory to be written-down 
by a certain depreciation factor, or even, if parts are no longer sellable, to be written down completely 

and scrapped. For MAN, depreciation and scrap factor for 2014 is set to 5%. Putting all the parameters 

together, the cost of forecast error, COSTFE, can be described as in formula 1 below: 
 

 𝐶𝑂𝑆𝑇𝐹𝐸 = (𝐻𝑅𝐼𝑆 −𝐻𝑅𝑆𝑂) ∙ 𝑈𝐹𝑉𝑂𝐿 ∙ 𝐶𝑀 + 𝑂𝐹𝑉𝑂𝐿 ∙ (𝑂𝐶%+ 𝐷𝐹%)  (1) 

Iteration 1 – state of the art solution (Croston) 

Develop\build: Method selection (2a) 

The initial method is selected based on the literature review (see section 2.1), where the Croston meth-
od was selected as the state of the art. It is a two-step approach, calculating a separately expected in-

terval between demand points and the quantity of demand for every piece of equipment that MAN has 

ever sold spare parts to. Additionally, if there has not been any demand for more than 3 times the ex-
pected interval between sales, we expected no more sales from that installation. According to the pre-

scription from the original solution (Croston 1972), the in-between sales interval and expected magni-

tude of the demand are set by calculating a simple exponential smoothing of the values registered in 

the past. More details about forecasting methods recommended for the case setup are described in the 
literature review section, as well as in the original paper (Croston 1972). 

Data preparation (2b) 

The only input data required by the Croston method is the historical demand for spare parts for a cus-
tomer and equipment. This data is available from the company's ERP system, SAP, and is extracted 

through the company's business data warehouse (DWH). As MAN maintains the complete set of his-

torical orders no missing data treatment was needed. Furthermore, during the loading of the data from 

the ERP to DWH system data is cleansed and “dummy orders”, used for internal purposes only, are 
excluded. The time span for available observations is from the beginning of 2008 to the end of 2014. 

Based on this period three data partitioning scenarios are defined to ensure result reliability, with test 

periods in years 2014, 2013 and 2012, and the learning period is to be, respectively, 2008-2013, 2008-
2012 and 2008-2011. 

Method implementation (2c) 

The design was implemented in MS Excel. The input data, historical sales data from the industrial 
partner, were extracted directly from the business data warehouse (DWH) to Excel, using dynamic 

data sources. Based on that data the expected interval between demand points, as well as demand 

quantity, were calculated for the training sample and extrapolated to the test sample, resulting in pre-

dictions. The procedure was performed for three sets of learning and test samples. 

Justify\evaluate: Cost of prediction error evaluation (3a) 

 2012 2013 2014 Sum 

Cost of over-forecast  €    86.726   €   140.729   €   135.505   €   362.961  

Cost of under-forecast  €           -     €     13.850   €       2.620   €     16.470  

Cost total  €    86.726   €   154.579   €   138.125   €   379.431  

Table 2 - Cost of prediction error for baseline Croston method 

Contextual systematic bias identification (3b) 
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The Croston method seems to provide a fairly good forecast, but it is very generic, so from the begin-

ning we started looking for case specific information that could inform the prediction. The first prom-

ising idea coming from Demand Planners included the lifecycle information, by monitoring the in-
stalled base (equipment in use) with phase out sensors. Moreover, in the case of absence of equipment 

phase-out sensors, as marine diesel engines need to be legally supervised by a third party (a classifica-

tion society), vessels and engines that are scrapped are regularly reported. This way all data regarding 

dead installations can be completely removed from both training and test sets. 

Evaluation of the bias with knowledge base (3c) 

Forecasting spare part demand using “installed base” (IB) information (knowledge on age and status 

of products and systems in use, and customer maintenance and replacement policies (Minner 2011)) 
has been a subject of recent academic research. The main stream of this research is concerned with 

optimizing inventory policies using detailed geographical information about customers and equipment 

(Jalil 2011, Ihde, Merkel et al. 1999, Song, Zipkin 1996). The academic efforts to develop a demand 

forecasting method exploring IB are limited: as Dekker et al point out: “scientific research on Installed 
base forecasting is limited and the term is pretty scarce in the operations literature” (Dekker, Pinçe et 

al. 2010 p. 2). The outline of the idea that demand forecast can be based on the installed base was 

drawn by Lapide (Lapide 2012), but the approach is so simplistic that it cannot be considered an appli-
cable method. An extremely interesting theoretical forecasting framework is presented by (Minner 

2011): the framework estimates the probability of spare-part sales for equipment of a certain age and 

based on age of equipment in the field, estimates total spare part demand. All those occurrences of IB 
use in the context of forecasting make it a promising candidate to include in the forecasting method. 

Iteration 2 – Croston with phase-out sensor 

Develop\build (2): Method selection (2a) 

Based on the insights regarding an installed base from the case and the knowledge base, an enhance-

ment for the Croston method will be developed, including a phase-out sensor output. For all pieces of 

equipment that are already not in use no forecast will be calculated. For all others, the same algorithm 
of Croston will be used. Notice that only data related to the phase-out of engines is used: although 

phase-in data is available, it is unusable for the Croston algorithm, as no historical sales are available.  

Data preparation (2b) 

The installed base information, namely the list of all the pieces of MAN equipment in operation, was 
also extracted from the business data warehouse (DWH) and it is regularly uploaded there from classi-

fication societies, legally supervising the use of engines in marine applications. Data is loaded by an 

external data provider to SAP every quarter and from there it is sourced to DWH. In this context there 
is a perfect match between the sensor data usage and the measured variable – the data describes 

scrapped installations and it is used to directly exclude them from predictions. 

Method implementation (2c) 

The implementation is very similar to a previous Croston method, the only difference being that for 
engines not in use the forecast will always be set to 0. In order to ensure consistency, the data related 

to currently dead installations are removed from the learning data sets as well. 

Justify\evaluate: Cost of prediction error evaluation (3a) 
 

 2012 2013 2014  Sum 

Cost of over-forecast  €    47.164   €   125.819   €   137.708   €   310.691  

Cost of under-forecast  €    31.929   €     20.700   €          599   €     53.228  

Cost total  €    79.094   €   146.519   €   138.307   €   363.919  

Table 3 – Cost of prediction error for the Croston method with IB phase-out component 
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Table 3 above shows the cost evaluation of the Croston method with IB phase-out component. It is 

important to note that compared with the baseline method the cost went down by more than 4%. The 

improvement is visible for 2 data partitioning scenarios (2012 and 2013) while for the last partition 
(2014) it remained practically constant. 

Contextual systematic bias identification (3b) 

Demand planners, service engineers and sales persons drew our attention towards a market diverse in 

the period of the study. As an effect of the lower demand on transportation services, being the result of 
the global financial crises, sailing patterns of most of the customers were said to be changed. Rather 

than travel with maximum frequency and speed the vessel management companies were said to con-

centrate on cost reductions, maximizing load per vessel and scarifying the time of a transport. Moreo-
ver, to optimize fuel consumption and a vessel’s wear, ships would travel with the most efficient, ra-

ther than maximum, speed. This phenomenon in shipping industry is often referred to as slow steam-

ing. As the global economy started to recover from the crises the situation started to go back towards 

the previous status quo. All those changes could potentially lead to a very significant change in de-
mand for spare parts. This means that for example, if ordinarily a ship owner would replace a given 

spare part every 5 months, under the slow steaming scenario, assuming a vessel activity reduction by 

20%, the matching period would be 6 months. In the context of the Croston method this suggests that 
data collected in the slow-steaming period has to be somehow “normalized” to be comparable to the 

previous observations. 

Evaluation of the bias with knowledge base (3c) 

Slow steaming has been widely recognized in recent shipping literature (Notteboom, Cariou 2013, 

Woo, Moon 2014, Yin, Fan et al. 2014). Three reasons for the popularity of slow steaming among ship 

managers are oversupply of shipping capacity, increase of fuel price and environmental pressure (Yin, 

Fan et al. 2014). According to Notteboom and Cariou, the strategy has been gradually implemented by 
the main liner shipping companies since 2008, very seriously affecting the dataset we are analysing. 

Those observations make apparent the potential of including activity sensor information, directly ob-

serving ship engine utilization patterns rather than inferring them from time intervals between re-
placements, into the predictive model. 

Iteration 3 - Activity sensor 

Develop\build: Method selection (2a) 

In order to compensate for the bias in data caused by a changing market pattern in the period of study 

(application of slow steaming) the way of normalizing data periods based on actual engine activity 

needs to be introduced. The simplistic idea behind this approach is that if in a given period an engine 
was used 20% less than in an ordinary period, the calculation of intervals between spare part replace-

ment would extend the expected  lifetime of spare parts in that engine by 20%. In order to achieve this 

goal the unit of interval between replacements will be changed, from time (in months) to engine run-

ning hours with equivalent maximum revolutions. Intuitively, an engine can accomplish 1 running 
hour with maximum equivalent revolutions by either running 1 hour at full speed or 2 hours at half of 

maximum speed, and so on. In order to measure running hours with maximum revolutions, engine ac-

tivity sensors were introduced. The prediction model will predict magnitude of sales the same way as 
the traditional Croston approach, but the interval between sales will now be predicted based on the 

engine's activity, rather than time. Conceptually, you can see this modification as a next step, after im-

plementing a phase-out sensor – phase out monitors engine activity in a binary fashion (“in use” vs. 
“not in use”), while the activity sensor creates a more continuous scale of engine activity. 

Data preparation (2b) 

Running hours full-speed resolution equivalent was estimated based on engine application. Due to cus-

tomer privacy protection policy MAN does not have access to all activity sensors actually mounted on 
the equipment (although they are installed on practically all engines). The values are estimated using 
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the average value expected for an engine application: typically, according to MAN service engineers, 

an engine in a stationary plant will run close to all the time at full speed (about 8600 hours of full-

speed resolution per year), the main engine on a ship around 6000 hours, while an auxiliary one will 
only run about 3000 hours. Furthermore, we introduced scaling factors, based on market behaviour 

according to the literature and MAN experts for a given year (slow steaming scenario popularity grew 

from 2008 and peaked in 2011 and from then engine average activity stabilized at levels slightly below 

norms from before 2008). Running hour values are also extrapolated to the future, using the same es-
timation logic. The values are extracted for the same periods as historic sales data, reaching back to 

2008. . Because of the estimation factor the match between sensor data usage and measured variable is 

not perfect– clearly, a more optimal way would be to use “real” running hours measured on every en-
gine. 

Method implementation (2c) 

The implementation is identical to the baseline Croston method for calculation of expected demand 

magnitude, but the expected interval before the next replacement is now calculated using the running 
hours readying: for every month with a replacement running hours output is looked up and this way 

the average running hours elapsing between replacements is obtained. The forecast is the extrapolation 

of that average, with the magnitude set using exponential smoothing, as in the original Croston. 

Justify\evaluate: Cost of prediction error evaluation (3a) 

 2012 2013 2014 Sum 

Cost of over-forecast  €    59.999   €   90.321   €    124.276   € 274.596  

Cost of under-forecast  €      6.438   €          -     €      20.475   €   26.914  

Cost total  €    66.437   €   90.321   €    144.752   € 301.510  

Table 4 –Cost of prediction error for the Croston method with activity sensor output (using running 

hours) 

Introducing activity sensor output has improved the baseline Croston cost by as much as 20% and the 
previously proposed Phase-out sensor implementation by 17%. The improvement is visible for 2 data 

partitioning scenarios (2012 and 2013) while for the last partition (2014) it remained practically con-

stant. 

Contextual systematic bias identification (3b) 

The overall impressive improvement is achieved even in spite of the assumption of a rather rough es-

timation leading to a potential data quality issue: although engine application seems to be a good esti-
mate of engine utilization, clearly there must be a variation within segments of the same engine appli-

cation, so that the full potential of this solution could be achieved if estimated values were replaced by 

the real observations from in-situ installations. Nevertheless, as on one hand the realized forecast qual-

ity improvement is significant, and on the other hand further model development will require signifi-
cant investment in infrastructure, at this point it is thus not feasible to run another design iteration. 

Evaluation of the bias with knowledge base (3c) 

As no new systematic bias is identified for implementation this step can be skipped. 

Process evaluation and conclusion (4) 

In summary, all the implemented sensor-based designs show prediction quality improvements when 

compared to the baseline Croston solution. Unfortunately, the quality comes at the price of complexity 
and specificity to a given environment. An initial Croston solution could be easily implemented for 

any data series. Sensor-based solutions require very specific additional information and the quality 

improvement they provide is gradually coupled more tightly with the application, and this tight cou-
pling and specificity increase together with the increased prediction quality. Furthermore, the addi-

tional information comes from sensor installation (or its simulation), that needs to be pre-installed and 
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this complexity introduces cost not present in the Croston scenario. Moreover, those observations sug-

gest that sensor-enabled forecasting solutions would be financially feasible in environments where 

gain of forecast improvement overweighs the cost of solution implementation: this kind of environ-
ment would be characterized by, on one hand, high level uncertainty, and on the other, have a high 

cost associated with forecasting error. 

 
Figure 4 - Qualitative result summary 

The qualitative output of four implemented designs is presented in Figure 4. Phase out sensor design 
improves the baseline prediction quality by 4%, while an activity sensor, on the other hand, beats the 

baseline by 20% and the Phase-out solution by 17%. This activity sensor example shows that together 

with including the additional dataset's data quality (DQ) problems can be faced, as the data might have 
been estimated or generated from a source that did not have that specific data usage in mind. In that 

case new data management routines should be implemented, leading to gradual DQ improvement. 

4 Implications and Contributions 

In this paper we introduced a framework facilitating the process of rigorously designing predictive 

information systems. The model was evaluated based on a case study that showed that the framework 
can provide useful guidelines to develop environment-specific sensor based predictive models that can 

out-perform, in a given environment, state of the art predictive methods,. Generalizing this observa-

tion, in the absence of a one-size-fits-all solution custom, context specific ways of predictive designs 
will be gaining popularity, especially when considering an inevitable growth of IOT and sensor tech-

nologies. For those approaches our model can provide both a structure and a rigorous guideline, as it 

has proved to do in the example case. 

This paper provides a contribution to Information Systems Research and in particular Design Science 
Research by introducing a model for Designing Information Systems with Predictive Analytics (DIS-

PA) that can serve as a method for developing IS artefacts. Additionally, the paper introduces and sys-

tematically evaluates a number of spare-part forecasting methods, which can be considered a contribu-
tion to Operations Research literature. Finally, as the model is detailed enough to be instantiated in a 

real-life setting in the same way that it was used in the case setup, the paper provides a contribution to 

industry and practice. 
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5 Conclusions 

Despite the increasing relevance of predictive analytics in IS research, the community has not devoted 

great attention to the issue until recently. In particular, little attention has been directed at issues relat-

ed to forecasting. Our study shows that paradigms used in IS research, in particular Design Science, 

can provide a useful lens for the analysis of environments characterized by a high degree of uncertain-
ty, and provide promising solutions for challenges embedded in such environments. We intend our 

work to be a step towards addressing this shortcoming and hope that it initiates more efforts both in 

the area of predictive analytics in general and demand forecasting in volatile and uncertain environ-
ments. 

Future work has to focus on validation of the model in new environments, by collecting data from fur-
ther case studies. More specifically, it would be interesting to see if in other settings contextual evalua-
tion of systematic biases (step 3b) can have the significant depth to provide insights as useful as in the 

case of MAN. Furthermore, to additionally structure the design process, written guidelines could be 

useful for the designer. Finally, as the designing process might turn out to be more expensive than the 

gain of forecast improvement, a framework to pre-asses an environment’s suitability for a sensor-
based predictive solution could be helpful for managers when deciding if similar projects should be 

undertaken. 
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