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ABSTRACT

In energy markets, the use of quanto options has increased significantly in recent
years. The payoff from such options are typically written on an underlying energy
index and a measure of temperature. They are suited to managing the joint price and
volume risk in energy markets. Using a Heath–Jarrow–Morton approach, we derive a
closed-form option pricing formula for energy quanto options under the assumption
that the underlying assets are lognormally distributed. Our approach encompasses
several interesting cases, such as geometric Brownian motions and multifactor spot
models. We also derive Delta and Gamma expressions for hedging. Further, we illus-
trate the use of our model by an empirical pricing exercise using New York Mercan-
tile Exchange-traded natural gas futures and Chicago Mercantile Exchange-traded
heating degree days futures for New York.
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2 F. E. Benth et al

1 INTRODUCTION

Many industries are exposed to the variability of the weather. Take, as an example, a
gas distribution company that operates in an open wholesale market. Their planned
sales volumes per day and the market price are the two main factors to which they
are exposed. If, for example, one of the winter months turns out to be warmer than
usual, the demand for gas would drop. This decline in demand would probably also
affect the market price for gas, leading to a drop in gas price. The firm would make a
loss compared with their planned revenue, which is equal to the shortfall in demand
multiplied by the difference between the retail price at which they would have sold
had their customers bought the gas, and the market price at which they must now
sell their excess gas. So, they face not only a direct weather effect, eg, the lower
demand, but also an indirect effect through the drop in market prices. The above
example clearly illustrates that the adverse movements in market price and demand
due to higher temperatures represent a kind of correlation risk, which is difficult
to properly hedge against, as it leads to a heavier tailed profit-and-loss distribution.
Using standard weather derivatives as offered by the Chicago Mercantile Exchange
(CME) would most likely represent an imperfect and rather expensive hedging strat-
egy, as it accounts only for the direct earnings effect from the change in demand,
and not the indirect earnings effect from price changes. If standardized weather prod-
ucts are insufficient as hedging tools, the companies must turn to over-the-counter
(OTC) markets for weather derivatives. Davis (2010) and Pérez-González and Yun
(2013) refer to surveys conducted by the Weather Risk Management Association
(WRMA) and reports from the CME about market sizes and expected development:1

the market for standardized weather derivatives peaked in 2007 with a total volume of
trades close to 930 000 and a corresponding notional value of US$17.9 billion. Since
2008, the market for standardized contracts has experienced severe retrenchment.
In 2009, the total volume of trades dipped below 500 000, amounting to a notional
value of around US$5.3 billion. A big part of this sharp decline is attributed to the
substantial increase, eg, 30% from 2010 to 2011, in the market for tailor-made con-
tracts, especially the quantity-adjusting weather contracts (“quantos”). Contracts of
this type worth US$100 million have been reported. Market participants indicate that
the demand for quanto contracts is international, with transactions being executed in
the United States, Europe,Australia and SouthAmerica. In 2010, the WRMA believed
that the developing market in India alone had a potential value of US$2.35 billion.

1 Although the reported numbers are small compared with other markets, weather-exposed utilities
can use weather derivatives to reduce extreme losses from weather incidents and increase the
valuation of the company (see Pérez-González and Yun (2013) for an extensive study of the effect
of weather derivatives on firm value, investments and leverage).
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Pricing and hedging quanto options in energy markets 3

The label “quanto options” has traditionally been assigned to a class of derivatives
in financial markets where the investor wishes to be exposed to price movements in the
foreign asset without the corresponding exchange rate risk. The pricing of currency
quanto options has been extensively researched and dates back to the original work of
Garman and Kohlhagen (1983). Although the same term is used for the specific type
of energy options that we study in this paper, these two types of derivatives contracts
are different: a typical currency quanto option has a regular call–put payoff structure,
whereas the energy quanto options we study have a payoff structure similar to a product
of call–put options, and energy quanto options are therefore mainly used to hedge
exposure to the joint price and volume risk.2 In comparison with studies of currency
quantos, research related to the pricing of quanto options in energy markets is scarce.
One exception is Caporin et al (2012), who propose a bivariate time-series model to
capture the joint dynamics of energy prices and temperature. In particular, they model
the energy price and the average temperature using a sophisticated parameter-intensive
econometric model. Since they aim to capture features such as seasonality in means
and variances, long memory, autoregressive patterns and dynamic correlations, the
complexity of their model leaves no other option than simulation-based procedures to
calculate prices. Moreover, they leave the issue of how we should hedge such options
unanswered.

In order for quanto contracts to provide a superior risk management tool compared
with standardized futures contracts, it is crucial that there is a significant correlation
between the two underlying assets. In energy markets, the payoff of a quanto option
is determined by the level of both the energy price and an index related to weather.
This correlation has been studied by, for example, Engle et al (1992), who documents
that temperature is important in forecasting electricity prices, and Timmer and Lamb
(2007), who document a strong relationship between natural gas prices and heating
degree days (HDD).

In this paper, we also study the pricing of energy quanto options. However, unlike
Caporin et al (2012), we derive analytical solutions to the option pricing problem. Such
closed-form solutions are easy to implement, fast to calculate and, most importantly,
they give a clear answer as to how the energy quanto option should be properly
hedged. We convert the pricing problem by using traded futures contracts on energy
and a temperature index as underlying assets, rather than energy spot prices and
temperature. We are able to do this because the typical energy quanto options have a
payoff that can be represented as an “Asian” structure on the energy spot price and
the temperature index. The markets for energy and weather organize futures with
delivery periods, which will coincide with the aggregate or average spot price and

2 This double-call structure was also studied by Jørgensen (2007) for the case of interest rates and
stock prices.
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4 F. E. Benth et al

temperature index at the end of the delivery period. Hence, any “Asian payoff” on
the spot and temperature for a quanto option can be viewed as a “European payoff”
on the corresponding futures contracts. This insight is the key to our solution and
the main contribution of this paper. The analytical solution also gives the desirable
feature that we can hedge the quanto option in terms of traded instruments, namely
the underlying futures contracts that – unlike temperature and spot power/gas – can
be easily bought and held.

Using a Heath–Jarrow–Morton (HJM) approach, we derive options prices under the
assumption that futures dynamics are lognormally distributed with a possibly time-
varying volatility. Furthermore, we explicitly derive Delta-hedging and cross-Gamma
hedging parameters. Our approach encompasses several models for the underlying
futures prices, such as the standard bivariate geometric Brownian motion (GBM)
and the two-factor model proposed in papers such as Schwartz and Smith (2000),
Sørensen (2002) and Lucia and Schwartz (2002). The latter class of models allows
for time-varying volatility, which is a stylized fact for many commodities. We include
an extensive empirical example to illustrate our findings. Using futures contracts
on natural gas and the HDD temperature index, we estimate relevant parameters in
the seasonal two-factor model of Sørensen (2002) based on data collected from the
New York Mercantile Exchange (NYMEX) and the CME. We compute prices for
various energy quanto options and benchmark these against products of plain-vanilla
European options on gas and HDD futures. The latter can be priced by the classical
Black (1976) option pricing formula and corresponds to the case of the energy quanto
option for independent gas and temperature futures. In Section 2, we discuss the
structure of energy quanto options and introduce the pricing problem. In Section 3,
we derive the pricing and hedging formulas and show how the model of futures price
dynamics in Sørensen (2002) is a special case of our general framework. Section 4
presents the empirical case study, and Section 5 concludes.

2 THE CONTRACT STRUCTURE AND PRICING OF ENERGY
QUANTO OPTIONS

In this section, we first discuss typical examples of energy quanto options. We then
argue that the pricing problem can be simplified using standardized futures contracts
as underlying assets.

2.1 Contract structure

Most energy quanto contracts have payoffs that are triggered by two underlying
“assets”, temperature and energy price. Since these contracts are tailor made, rather
than standardized, the contract design varies. In its simplest form, a quanto contract

Journal of Energy Markets www.risk.net/journal



Pricing and hedging quanto options in energy markets 5

TABLE 1 A specification of a typical energy quanto option.

Nov Dec Jan Feb Mar

(a) High strike (HDD) K
11
I K

12
I K

1
I K

2
I K

3
I

(b) Low strike (HDD) K11
I K12

I K1
I K2

I K3
I

(a) High strike (price/mmBtu) K
11
E K

12
E K

1
E K

2
E K

3
E

(b) Low strike (price/mmBtu) K11
E K12

E K1
E K2

E K3
E

Volume (mmBtu) 200 300 500 400 250

The underlying process triggering payoffs to the option holder is the accumulated number of HDD I and the monthly
index gas price E . As an example, the payoff for November will be (a) in cold periods, max.I �KI ;0/�max.E �
KE ;0/ � volume, and (b) in warm periods, max.KI � I;0/ �max.KE �E;0/ � volume. We see that the option
pays out if both the underlying temperature and price variables exceed (dip below) the high strikes (low strikes).

has a payoff function S :

S D .Tvar � Tfix/ � .Evar �Efix/: (2.1)

Payoff is determined by the difference between some variable temperature measure
(Tvar) and some fixed temperature measure (Tfix) multiplied by the difference between
variable and fixed energy price (Evar andEfix). Note that the payoff might be negative,
indicating that the buyer of the contract pays the required amount to the seller.

Entering into a quanto contract of this type might be risky, since the downside may
potentially become large. For hedging purposes, it seems more reasonable to buy a
quanto structure with optionality, thereby eliminating all downside risk. In Table 1, we
show a typical example of how a quanto option might be structured (see also Caporin
et al (2012) for a discussion of the design of the energy quanto option). The example
contract has a payoff that is triggered by an average gas price denotedE (defined as the
average of daily prices for the last month). It also offers an exposure to temperature
through the accumulated number of HDD in the corresponding month. The HDD
index is commonly used as the underlying variable for temperature derivatives and is
defined as how much the average temperature over a day has dropped below a preset
level. We denote the accumulated number of HDD over interval Œ�1; �2� by IŒ�1;�2�:

IŒ�1;�2� D

�2X
tD�1

HDDt D

�2X
tD�1

max.c � Tt ; 0/; (2.2)

where c is some prespecified temperature threshold (65 ıF or 18 ıC) and Tt is the
mean temperature on day t . If the number of HDD I and the average gas price E
are above the high strikes (KI andKE , respectively), the owner of the option would
receive a payment equal to the prespecified volume multiplied by the actual number
of HDD minus the strikeKI multiplied by the difference between the average energy
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6 F. E. Benth et al

price minus the strike price KE if E > KE . On the other hand, if it is warmer than
usual and the number of HDD dips below the lower strike ofKI , and the energy price
at the same time is lower than KE , the owner receives a payout equal to the volume
multiplied by KI minus the actual number of HDD multiplied by the difference
between the strike price KE and the average energy price. Note that the volume
adjustment varies between months, reflecting the fact that “unusual” temperature
changes might have a stronger impact on the option holder’s revenue in the coldest
months, such as December and January. Also note that the price strikes may vary
between months.

This example illustrates why quanto options might be a good alternative to more
standardized derivatives. The structure of the contracts takes into account the fact
that extreme temperature variations might affect both demand and prices, and it com-
pensates the owner of the option by making payoffs contingent on both prices and
temperatures. The great possibility of tailoring these contracts provides potential
customers with a powerful and efficient hedging instrument.

2.2 Pricing using terminal value of futures

As described above, energy quanto options have a payoff that is a function of two
underlying assets, temperature and price. We focus on a class of energy quanto options
that has a payoff function f .E; I /, where E is an index of the energy price and I is
an index of temperature. To be more specific, we assume that the energy index E is
given as the average spot price over some measurement period Œ�1; �2�, �1 < �2,

E D
1

�2 � �1

�2X
uD�1

Su;

where Su denotes the energy spot price. Further, we assume that the temperature
index is defined as

I D

�2X
uD�1

g.Tu/

for Tu the temperature at time u and g some function. For example, if we want to
consider a quanto option involving the HDD index, we chooseg.x/ D max.x�18; 0/.
The quanto option is exercised at time �2, and its arbitrage-free priceCt at time t 6 �2
is defined by the following expression:

Ct D e�r.�2�t/EQ
t

�
f

�
1

�2 � �1

�2X
uD�1

Su;

�2X
uD�1

g.Tu/

��
: (2.3)

Here, r > 0 denotes the risk-free interest rate, which, for simplicity, we assume is
constant. The pricing measure is denoted Q, and E

Q
t Œ�� is the expectation operator with

respect to Q, conditioned on the market information at time t given by the filtration Ft .

Journal of Energy Markets www.risk.net/journal



Pricing and hedging quanto options in energy markets 7

We now argue how to relate the price of the quanto option to futures contracts on
the energy and temperature indexes E and I . Observe that the price at time t 6 �2 of
a futures contract written on some energy price (eg, natural gas) with delivery period
Œ�1; �2� is given by

FEt .�1; �2/ D E
Q
t

�
1

�2 � �1

�2X
uD�1

Su

�
:

At time t D �2, we find from the conditional expectation that

FE�2 .�1; �2/ D
1

�2 � �1

�2X
uD�1

Su;

ie, the futures price is exactly equal to what is being delivered. Applying the same
argument to a futures contract written on the temperature index, with price dynamics
denotedF It .�1; �2/, we immediately see that the following must be true for the quanto
option price:

Ct D e�r.�2�t/EQ
t

�
f

�
1

�2 � �1

�2X
uD�1

Su;

�2X
uD�1

g.Tu/

��

D e�r.�2�t/EQ
t Œf .F

E
�2
.�1; �2/; F

I
�2
.�1; �2//�: (2.4)

Equation (2.4) shows that the price of a quanto option with payoff being a function
of the energy index E and temperature index I must be the same as if the payoff was
a function of the terminal values of two futures contracts written on the energy and
temperature indexes, and with the delivery period being equal to the contract period
specified by the quanto option. Hence, we view the quanto option as an option written
on the two futures contracts, rather than on the two indexes. This is advantageous
from the point of view that the futures are traded financial assets. We note in passing
that we may extend the above argument to quanto options where the measurement
periods of the energy and temperature indexes are not the same.

To compute the price in (2.4), we must have a model for the futures price dynamics
FEt .�1; �2/ and F It .�1; �2/. The dynamics must account for the dependency between
the two futures, as well as their marginal behavior. The pricing of the energy quanto
option has thus been transferred from modeling the joint spot energy and temperature
dynamics, followed by computing the Q expectation of an index of these, to modeling
the joint futures dynamics and pricing a European-type option on these. The former
approach is similar to pricing an Asian option, which for most relevant models and
cases is a highly difficult task. We remark also that, by modeling and estimating the
futures dynamics to market data, we can easily obtain the market-implied pricing

www.risk.net/journal Journal of Energy Markets



8 F. E. Benth et al

measure Q. We will see this in practice in Section 4, where we analyze the case of
gas and HDD futures. If we choose to model the underlying energy spot prices and
temperature dynamics, we obtain a dynamics under the market probability P, rather
than under the pricing measure Q. Additional hypotheses must be made in the model
to obtain this. Moreover, for most interesting cases, the quanto option must be priced
by Monte Carlo or some other computationally demanding method (see Caporin et al
2012). Finally, but no less importantly, with the representation in (2.4) at hand we can
discuss the issue of hedging energy quanto options in terms of the underlying futures
contracts.

In many energy markets, futures contracts are not traded within their delivery
period. That means that we can only use the market for futures up to time �1. This
has a clear consequence for the possibility of hedging these contracts, as a hedging
strategy will inevitably be a continuously rebalanced portfolio of the futures up to the
exercise time �2. As this is possible to perform only up to time �1 in many markets,
we face an incomplete market situation where the quanto option cannot be hedged
perfectly. Moreover, it is to be expected that the dynamics of the futures price has
different characteristics within the delivery period than prior to the start of delivery,
if it can be traded for times t 2 .�1; �2�. The reason for this is that we have less
uncertainty as the remaining delivery period of the futures decreases. In this paper,
we will restrict our attention to the pricing of quanto options at times t 6 �1. The
entry time of such a contract most naturally takes place prior to the delivery period.
However, for marking-to-market purposes, we are also interested in the price Ct for
t 2 .�1; �2�. The issuer of the quanto option may be interested in hedging the exposure
and may therefore also be concerned with the behavior of prices within the delivery
period.

Before we start looking into the details of pricing quanto options, we will investigate
an options contract of the type described in Section 2.1 in more detail. This contract
covers a period of five months, from November through to March. Since this contract
is essentially a sum of one-period contracts, we focus our attention on an option
covering only one month in the delivery period Œ�1; �2�. Recall that the payoff in the
contract is a function of some average energy price and accumulated number of HDD.
From the discussion in the previous section, we know that, rather than using the spot
price and HDD as underlying assets, we can instead use the terminal value of futures
contracts written on price and HDD, respectively. The payoff function

p.FE�2 .�1; �2/; F
I
�2
.�1; �2/;KE ; KI ; KE ; KI / D p

of this quanto contract is defined as

p D �Œmax.FE�2 .�1; �2/ �KE ; 0/max.F I�2.�1; �2/ �KI ; 0/

Cmax.KE � F
E
�2
.�1; �2/; 0/max.KI � F

I
�2
.�1; �2/; 0/�; (2.5)

Journal of Energy Markets www.risk.net/journal



Pricing and hedging quanto options in energy markets 9

where � is the contractual volume adjustment factor. Note that the payoff function
in this contract consists of two parts, the first taking care of the situation in which
temperatures are colder (and prices higher) than usual, and the second taking care of
the situation in which temperatures are warmer (and prices lower) than usual. The
first part is the product of two call options, whereas the second part is the product
of two put options. To illustrate our pricing approach in the simplest way possible, it
suffices to look at the product call structure with the volume adjuster � normalized
to 1, ie, we want to price an option with the following payoff function:

Op.FE�2 .�1; �2/; F
I
�2
.�1; �2/;KE ; KI /

D max.FE�2 .�1; �2/ �KE ; 0/max.F I�2.�1; �2/ �KI ; 0/: (2.6)

In the remainder of this paper, we will focus on this particular choice of payoff
function for the energy quanto option. It corresponds to choosing the function f as
f .E; I / D max.E �KE ; 0/max.I �KI ; 0/ in (2.4). Other combinations of put–
call mixes, as well as different delivery periods for the energy and temperature futures,
can easily be studied by a simple modification of what follows.

3 ASSET PRICE DYNAMICS AND OPTION PRICES

Suppose that the two futures price dynamics under the pricing measure Q can be
expressed as

FET .�1; �2/ D F
E
t .�1; �2/ exp.�E CX/; (3.1)

F IT .�1; �2/ D F
I
t .�1; �2/ exp.�I C Y /; (3.2)

where t 6 T 6 �2, andX , Y are two random variables independent of Ft but depen-
dent on t; T , �1 and �2. We suppose that .X; Y / is a bivariate normally distributed
random variable with mean zero and covariance structure dependent on t; T and �2.
We define

�2X D var.X/; �2Y D var.Y / and �X;Y D corr.X; Y /:

Obviously, �X ; �Y and �X;Y are dependent on t; T; �1 and �2. Moreover, as the futures
price is naturally a martingale under the pricing measure Q, we have �E D ��2X=2
and �I D ��2Y =2.

Our general representation of the futures price dynamics (3.1) and (3.2) encom-
passes many interesting models. For example, a bivariate GBM looks like

FET .�1; �2/ D F
E
t .�1; �2/ exp.�1

2
�2E .T � t /C �E .WT �Wt //;

F IT .�1; �2/ D F
I
t .�1; �2/ exp.�1

2
�2I .T � t /C �I .BT � Bt //;

www.risk.net/journal Journal of Energy Markets



10 F. E. Benth et al

with two Brownian motions W and B being correlated. We can easily associate this
GBM to the general setup above by setting

�E D �
1
2
�2E .T � t /; �I D �

�2I .T � t /

2
;

�X D �E
p
T � t ; �Y D �I

p
T � t ;

with �X;Y being the correlation between the two Brownian motions. In Section 3.2,
we show that the two-factor model by Schwartz and Smith (2000) and the extension
by Sørensen (2002) also fit this framework.

3.1 A general solution for the quanto option price and hedge

The price of the quanto option at time t is

Ct D e�r.�2�t/EQ
t Œ Op.F

E
�2
.�1; �2/; F

I
�2
.�1; �2/;KE ; KI /�; (3.3)

where the notation EQ denotes that the expectation is taken under the pricing measure
Q. Given these assumptions, Proposition 3.1 states the closed-form solution of the
energy quanto option.

Proposition 3.1 For two assets following the dynamics given by (3.1) and (3.2),
the time t market price of a European energy quanto option with exercise at time �2
and payoff described by (2.6) is given by

Ct D e�r.�2�t/.FEt .�1; �2/F
I
t .�1; �2/e

�X;Y �X�YM.y���1 ; y���2 I �X;Y /

� FEt .�1; �2/KIM.y
��
1 ; y

��
2 I �X;Y /

� F It .�1; �2/KEM.y
�
1 ; y

�
2 I �X;Y /CKEKIM.y1; y2I �X;Y //;

(3.4)

where

y1 D
log.FEt .�1; �2// � log.KE / � �2X=2

�X
;

y2 D
log.F It .�1; �2// � log.KI / � �2Y =2

�Y
;

y�1 D y1 C �X;Y �Y ; y�2 D y2 C �Y ;

y��1 D y1 C �X ; y��2 D y2 C �X;Y �X ;

y���1 D y1 C �X;Y �Y C �X ; y���2 D y2 C �X;Y �X C �Y :

Here, M.x; yI �/ denotes the standard bivariate normal cumulative distribution
function with correlation �.

Journal of Energy Markets www.risk.net/journal



Pricing and hedging quanto options in energy markets 11

Proof Observe that the payoff function in (2.6) can be rewritten in the following
way:

Op.FE ; F I ; KE ; KI /

D max.FE �KE ; 0/max.F I �KI ; 0/

D .FE �KE /.F
I �KI /1fFE>KEg1fF I>KI g

D FEF I1fFE>KEg1fF I>KI g � F
EKI1fFE>KEg1fF I>KI g

� F IKE1fFE>KEg1fF I>KI g CKEKI1fFE>KEg1fF I>KI g:

The problem of finding the market price of the European quanto option is thus equiv-
alent to the problem of calculating the expectations under the pricing measure Q of
the four terms above. The four expectations are derived in detail in Appendix A. �

Based on (3.4), we derive the Delta and cross-Gamma hedging parameters, which
can be straightforwardly calculated by partial differentiation of the price Ct with
respect to the futures prices. All hedging parameters are given by the current futures
price of the two underlying contracts and are therefore simple to implement in practice.
The Delta hedge with respect to the energy futures is given by

@Ct

@FEt .�1; �2/
D F It .�1; �2/ exp.�r.�2 � t /C �X;Y �X�Y /

�

�
M.y���1 ; y���2 I �X;Y /C B.y

���
1 /N.y���2 � �X;Y /

1

�X

�

�KI e�r.�2�t/
�
M.y��1 ; y

��
2 I �X;Y /C B.y

��
1 /N.y

��
2 � �X;Y /

1

�X

�

�
F It .�1; �2/KE

FEt .�1; �2/�X
e�r.�2�t/B.y�1 /N.y

�
2 � �X;Y /

C
KEKI

FEt .�1; �2/�X
e�r.�2�t/B.y1/N.y2 � �X;Y /; (3.5)

where N.�/ denotes the standard normal cumulative distribution function, and

B.x/ D
e.x

2��2
X;Y

/

4�2.1 � �2X;Y /
:

The Delta hedge with respect to the temperature index futures is of course analo-
gous to the energy Delta hedge, only with the substitutionsFEt .�1; �2/ D F

I
t .�1; �2/,

y���1 D y���2 , y��1 D y
��
2 , y�1 D y

�
2 , y1 D y2, �Y D �X and �X D �Y . The cross-
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Gamma hedge is given by

@C 2t

@FEt .�1; �2/@F
I
t .�1; �2/

D exp.�r.�2 � t /C �X;Y �X�Y /

�

�
M.y���1 ; y���2 I �X;Y /C B.y

���
2 /N.y���1 � �X;Y /

1

�Y

�
C exp.�r.�2 � t /C �X;Y �X�Y /

� B.y���1 /

�
N.y���2 � �X;Y /

1

�X
C n.y���2 � �X;Y /

1

�Y

�

�
KI

F It .�1; �2/�Y
e�r.�2�t/

�

�
B.y��2 /N.y

��
1 � �X;Y /C B.y

��
1 /n.y

��
2 � �X;Y /

1

�X

�

�
KE

FEt .�1; �2/�X
e�r.�2�t/B.y�1 /

�
N.y�2 � �X;Y /C n.y

�
2 � �X;Y /

1

�Y

�

C
KEKI

FEt .�1; �2/F
I
t .�1; �2/.�X C �Y /

e�r.�2�t/B.y1/n.y2 � �X;Y /; (3.6)

where n.�/ denotes the standard normal probability density function (pdf). In our
model, it is possible to hedge the quanto option perfectly, with positions described
above by the three Delta and Gamma parameters. In practice, however, this would
be difficult due to low liquidity in, for example, the temperature market. Further, as
discussed in Section 2.2, we cannot trade futures in all markets within the delivery
period, which puts additional restrictions on the suitability of the hedge. In such cases,
the parameters above will guide in a partial hedging of the option.

3.2 Two-dimensional Schwartz–Smith model with seasonality

The popular commodity price model proposed by Schwartz and Smith (2000) is a
natural starting point for deriving dynamics of energy futures. In this model, the log-
spot price is the sum of two processes, one representing the long-term dynamics of the
commodity prices in the form of an arithmetic Brownian motion and one representing
the short-term deviations from the long-run dynamics in the form of an Ornstein–
Uhlenbeck process, with a mean reversion level of zero. Other papers such as Lucia
and Schwartz (2002) and Sørensen (2002) use the same two driving factors and extend
the model to include seasonality. We choose the seasonality parameterization of the
latter and further extend to a two-asset framework by linking the driving Brownian
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motions. The dynamics under P is given by

logSt D 	.t/CXt CZt ;

dXt D .� � 1
2
�2/ dt C � d QWt ;

dZt D �
Zt dt C � d QBt :

Here, QB and QW are correlated Brownian motions and�, � , 
 and � are constants. The
deterministic function 	.t/ describes the seasonality of the log-spot prices. In order
to price a futures contract written on an underlying asset with the above dynamics, a
measure change from P to an equivalent probability Q is made:

dXt D .˛ � 1
2
�2/ dt C � dWt ;

dZt D �.
Z C 
Zt / dt C � dB it :

Here, ˛ D ��
X , and 
X and 
Z are constant market prices of risk associated with
Xt andZt for asset i , respectively. This corresponds to a Girsanov transformation of
QB and QW by a constant drift, so that B and W become two correlated Q-Brownian

motions. As is well-known for the Girsanov transformation, the correlation between
B andW is the same under Q as that for QB and QW under P (see Karatzas and Shreve
2000). Following Sørensen (2002), the futures price Ft .�/ at time t > 0 of a contract
with delivery at time � > t has the following form on a log scale (note that it is the
Schwartz–Smith futures price scaled by a seasonality function):

logFt .�/ D 	.�/C A.� � t /CXt CZte
��.��t/; (3.7)

where

A.�/ D ˛� �

Z � ���



.1 � e��� /C

�2

4

.1 � e�2�� /:

The log futures prices are affine in the two factors X and Z driving the spot price
and scaled by functions of time to delivery � � t and by functions of time of delivery
� . Sørensen (2002) chooses to parameterize the seasonality function 	 by a linear
combination of cosine and sine functions:

	.t/ D

KX
kD1

.�k cos.2�kt/C ��k sin.2�kt//: (3.8)

In this paper, we have highlighted the fact that the payoff of energy quanto options
can be expressed in terms of the futures prices of energy and temperature indexes. We
may use the above procedure to derive futures price dynamics from a model of the spot.
However, we may also directly state a futures price dynamics in the fashion of Heath,
Jarrow and Morton, using the above model as inspiration for the specification of the
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model. The HJM approach was proposed to model energy futures by Clewlow and
Strickland (2000), and it was later investigated in detail by Benth and Koekebakker
(2008) (see also Benth et al 2008; Miltersen and Schwartz 1998). We follow this
approach here, proposing a joint model for the energy and temperature index futures
price based on the seasonal Schwartz–Smith model.

In stating such a model, we must account for the fact that the futures in question
are delivering over a period Œ�1; �2�, and not at a fixed delivery time � . An attractive
alternative to the additive approach by Lucia and Schwartz (2002) is to let Ft .�1; �2/
itself follow a dynamics of the form (3.7), with some appropriately chosen dependency
on �1 and �2. For example, we may choose � D �1 in (3.7), or � D .�1 C �2/=2, or
any other time within the delivery period Œ�1; �2�. In this way, we will account for
the delivery-time effect in the futures price dynamics, sometimes referred to as the
Samuelson effect. We remark that it is well-known that, for futures delivering over a
certain period, the volatility will not converge to that of the underlying spot as time to
delivery goes to zero (see Benth et al 2008). Through the above parameter choices,
we obtain such an effect.

In order to jointly model the energy and temperature futures prices, two futures
dynamics of the type in (3.7) are connected by allowing the Brownian motions to
be correlated across assets. We will have four Brownian motions W E , BE , W I

and BI in our two-asset, two-factor model. These are assumed to be correlated
as follows: �E D corr.W E

1 ; B
E
1 /, �I D corr.W I

1 ; B
I
1 /, �W D corr.W E

1 ; W
I
1 / and

�B D corr.BE1 ; B
I
1 /. Moreover, we have cross-correlations given by

�
W;B
I;E D corr.W I

1 ; B
E
1 /;

�
W;B
E;I D corr.W E

1 ; B
I
1 /:

In an HJM style, we assume that the joint dynamics of the futures price processes
FEt .�1; �2/ and F It .�1; �2/ under Q is given by

dF it .�1; �2/

F it .�1; �2/
D �i dW i

t C �i .t/ dB it (3.9)

for i D E; I , and with
�i .t/ D �ie

��i .�2�t/: (3.10)

Note that we suppose the futures price is a martingale with respect to the pricing
measure Q, which is natural from the point of view that we want an arbitrage-free
model. Moreover, we have made the explicit choice here that � D �2 in (3.7) when
modeling the delivery-time effect.

Note that

d logF it .�1; �2/ D �
1
2
.�2i C �i .t/

2 C 2�i�i�i .t// dt C �i d QW i
t C �i .t/ d QB it
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for i D E; I . Hence, we can make the representation

FET .�1; �2/ D F
E
t .�1; �2/ exp.��E CX/

by choosing

X � N

 
0;

Z T

t

.�2E C �E .s/
2 C 2�E�E�E .s// ds„ ƒ‚ …
�2
X

!
; �E D �

1
2
�2X

and similarly for F IT .�1; �2/. These integrals can be computed analytically in the
above model, where �i .t/ D �ie��

i .�2�t/. We can also compute the correlation �X;Y
analytically, since

�X;Y D
cov.X; Y /

�X�Y
and

cov.X; Y / D �W

Z T

t

�E�I ds C �W;BE;I

Z T

t

�E�I .s/ ds

C �
W;B
I;E

Z T

t

�E .s/�I ds C �B

Z T

t

�E .s/�I .s/ ds:

A closed-form expression of this covariance can be computed. In the special case of
zero cross-correlations, this simplifies to

cov.X; Y / D �W

Z T

t

�E�I ds C �B

Z T

t

�E .s/�I .s/ ds:

The exact expressions for �X , �Y and cov.X; Y / in the two-dimensional Schwartz–
Smith model with seasonality are presented in Appendix B.

This bivariate futures price model has a form that can be immediately used for
pricing energy quanto options by inferring the result in Proposition 3.1. We shall
come back to this model in the empirical case study in Section 4. The general setup
in Section 3 includes the implied forward dynamics from general multifactor spot
models, with stationary and nonstationary terms. Hence, this is a very general pricing
mechanism, where the essential problem is to identify the overall volatilities �X and
�Y and the cross-correlation �X;Y .As a final remark, we note that our pricing approach
only looks at futures dynamics up to the start of the delivery period �1. As briefly
discussed in Section 3.2, it is reasonable to expect that the dynamics of a futures
contract should be different within the delivery period Œ�1; �2�. For times t within
Œ�1; �2�, we will, in the case of the energy futures, have

Ft .�1; �2/ D
1

�2 � �1

tX
uD�1

Su C E
Q
t

�
1

�2 � �1

�2X
uDtC1

Su

�
:
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FIGURE 1 The evolution of the gas futures curve as a function of maturity �2.
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For each day t , the observed futures curve Ft .�2 � �; �2/ with � D 1 month is plotted as a function of �2. We
observe up to twelve maturities at each observation point t . From t D January 1, 2007 to December 31, 2010 one
observed futures curve per week is plotted.

Thus, the futures price must consist of two parts, the first simply the tracked observed
energy spot up to time t , and the second the current futures price of a contract with
delivery period Œt; �2�. This latter part will have a volatility that must go to zero as t
tends toward �2.

4 EMPIRICAL ANALYSIS

In this section, we present an empirical study of energy quanto options written on
NYMEX natural gas futures and the HDD temperature index. We present the futures
price data, which constitutes the basis of our analysis, and estimate the parameters in
the joint futures price model (3.9). We then discuss the impact of correlation on the
valuation of the option to be priced.

4.1 Data

Futures contracts for the delivery of gas are traded on NYMEX monthly for ten years.
The underlying is the delivery of gas throughout a month and the price is per unit.
The contract trades until a couple of days before the delivery month. Many contracts
are closed prior to the last trading day, and we choose the first twelve contracts for
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FIGURE 2 The evolution of the New York HDD futures curve as a function of maturity �2.
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For each day t , the observed futures curve Ft .�2 � �; �2/ with � D 1 month is plotted as a function of �2. We
observe up to seven maturities at each observation point t . From t D January 1, 2007 to December 31, 2010 one
observed futures curve per week is plotted. The number of curves is the same as in Figure 1 on the facing page,
but, because of low liquidity, HDD futures prices do not fluctuate much from day to day, except for the first contracts.
Therefore, many of the curves are superimposed.

delivery at least one month later, ie, for January 2, we use March 2007–February
2008 contracts. We denote the time t futures price for a contract delivering one month
.D �/ until �2 by FEt .Œ�2 ��; �2�/ and let the price follow a process of the type
(3.7) discussed in Section 3.2. When investigating data, there is a seasonality pattern
over the year, where prices are, in general, lowest in late spring and early fall, slightly
higher in between these periods and highest in the winter. These two “peaks” during
the year are modeled by setting K D 2 in (3.8) similar to the seasonal pattern of
the commodities studied in Sørensen (2002). They are supported by the statistical
significance of the parameter estimates and standard errors for the �s. The evolution
of the futures gas curves is shown in Figure 1 on the facing page.

Futures contracts on accumulated HDD are traded on the CME for several cities
for October, November, December, January, February, March and April, a couple of
years out. The contract value is US$20 for the number of HDD accumulated over
the month for a specific location, ie, a day with temperature 60 ıF adds 5 to the
index and thereby US$100 to the final settlement, whereas a day with temperature
70 ıF does not add to or subtract from the index. The contract trades until the begin-
ning of the concurrent month. The futures price is denoted by F It .�2 ��; �2/ and
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settled on the accumulated index,
P

HDDu. Liquidity is basically nonexistent after
the first year, so for every day we choose the first seven contracts where the index
period has not yet started, ie, for January 2, 2007 we use the February 2007, March
2007, April 2007, October 2007, November 2007, December 2007 and January 2008
contracts.

Again, we let the futures price follow a price process of the type (3.7). The station-
ary part represents the short-term random fluctuations in the underlying temperature
deviation. Over a long time, we might argue that temperature and thereby a month of
accumulated HDD has a long-term drift, but, during the time period our data covers,
the effect of long-term environmental changes is negligible. The short time period
covered justifies leaving out the nonstationary part, X . However, estimation of the
full model led to significant parameter estimates for �I (see Section 4.2 for estimation
results), so we choose to keep the long-term component in for the temperature index
as well.

Inspection of the data makes it clear that there is a deterministic level for each
month, which does not change much until we get close to the index period and the
weather reports start to add information and affect prices. An obvious choice for
modeling this deterministic seasonal component can be found in Lucia and Schwartz
(2002), where the seasonality is modeled by a dummy for each month. With seven
observed contracts, this would give us four additional parameters to estimate. Due to
this, and to keep the two models symmetrical, we choose to keep the same structure
as for the gas, but with K D 1 in (3.8). The chosen locations are New York and
Chicago, due to their being areas with fairly large gas consumption. The development
in the term structure of HDD futures prices for New York is shown in Figure 2 on
the preceding page, where the daily observed futures curves are plotted as a function
of �2.

4.2 Estimation results

We estimate the parameters using maximum likelihood estimation via the Kalman
filter technique (see Appendix D), as in Sørensen (2002). The resulting parameter
estimates are reported in Table 2 on the facing page for the joint modeling of gas
futures and New York HDD futures and in Table 3 on page 28 for the joint modeling
of gas futures and Chicago HDD futures, with standard errors based on the Hessian
of the loglikelihood function given in parentheses.

Both under the physical and the risk-neutral measure, the drift of the long-term
component for gas is negative. This matches the decrease in gas prices over time. The
volatility parameters correspond to a term structure of volatility that for gas starts at
around 50%. For the HDD futures, the annualized volatility starts at a very high level
of more than 100% for the closest contract and then quickly drops. For both types of
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TABLE 2 Parameter estimates for the two-dimensional, two-factor model with seasonality
when New York HDD futures and NYMEX gas futures are modeled jointly.

HDD (NY) Gas

� 0.0063 �0.0850
(0.0247) (0.0989)


 16.5654 0.6116
(1.1023) (0.0320)

� 0.0494 0.2342
(0.0059) (0.0200)

� 3.6517 0.6531
(0.6197) (0.0332)

� �0.6066 �0.6803
(0.0801) (0.0656)

˛ 0.0027 �0.3366
(0.0049) (0.0246)


 �5.9581 �0.9191
(2.3059) (0.1968)

�� 0.0655 0.0199
(0.0006) (0.0001)

�1 0.9044 0.0500
(0.0023) (0.0003)

��1 0.8104 0.0406
(0.0018) (0.0003)

�2 N/A 0.0128
(0.0003)

��2 N/A 0.0270
(0.0003)

�W �0.2843
(0.0904)

�B 0.1817
(0.0678)

` 36198

contracts, we see a negative correlation between the long- and short-term factors. For
gas, this is obvious, because it creates a mean reversion effect that is characteristic
of commodities. The positive short-term correlation reflects the connection between
temperature and prices. If there is a short-term shock in temperature, this is reflected
in the closest HDD futures contract. At the same time, there is an increase in demand
for gas, which leads to a short-term increase in gas prices. The standard deviation of
the estimation error for the log prices is, on average, 2% for the gas contracts and a
bit higher (around 6%) for the HDD contracts. Figure 3 on the next page shows the
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FIGURE 3 Model prices (solid black line) and observed prices (dashed gray line) for the
closest maturity when prices of natural gas futures and NewYork HDD futures are modeled
jointly.
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(a) Closest HDD. (b) Closest gas futures. The error between model and observed prices has a standard deviation
of around 2%, respectively 6.5%. For the HDD futures contracts especially, the roll time of the futures contract is
identifiable by the jump in prices. For the period April–September, the closest HDD future is the October contract,
which can be seen in the figure as the longer, flatter lines.

model fit along with observed data and Figure 4 on the facing page and Figure 5 on
page 22 show the squared pricing errors.

4.3 A case study

To consider the impact of the connection between gas prices and temperature (and
thus gas and HDD futures), we compare the quanto option prices with prices obtained
under the assumption of independence, and thus priced using the model in Black
(1976) (see Appendix C). If the two futures were independent, we would get (C 0t
denotes the price under the zero-correlations assumption)

C 0t D e�r.�2�t/EQt Œmax.FE�2 .�1; �2/�KE ; 0/�E
Q
t Œmax.F I�2.�1; �2/�KI ; 0/�; (4.1)

which can be viewed as the product of the prices of two plain-vanilla call options on
the gas and HDD futures, respectively. In fact, we have the priceC 0t given in this case
as the product of two Black (1976) formulas using the interest rate r=2 in the two
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FIGURE 4 The time series of squared errors of the percentage differences between fitted
and actual New York HDD futures prices when modeled jointly with NYMEX natural gas
futures.
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(a) Closest. (b) Second closest. (c) Third closest. (d) Fourth closest. (e) Fifth closest. (f) Sixth closest. (g) Seventh
closest. The pricing errors jump when the contracts roll.

respective prices. From Figure 6 on page 23 and Figure 7 on page 23, it is clear that
the correlation between the gas and HDD futures significantly impacts the quanto
option price. Part (a) of Figure 6 and part (a) of Figure 7 show the quanto option
price on December 31, 2010 for settlement months December 2011 and February
2011, respectively. Part (b) of both Figure 6 and Figure 7 shows the relative pricing
error between the quanto option price with and without correlation across assets. The
ratio of the change in quanto option price to the product of the marginal options, ie,
.Ct�C

0
t /=Ct , is plotted. For a short time to maturity, we see a relative pricing error of

more than 75% for the high strikes. The fact that the observed correlation increases the
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FIGURE 5 The time series of squared errors of the percentage differences between fitted
and actual natural gas futures prices when modeled jointly with New York HDD futures.
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(a) Closest. (b) Second closest. (c) Thirrd closest. (d) Fourth closest. (e) Fifth closest. (f) Sixth closest. (g) Seventh
closest. (h) Eighth closest. (i) Ninth closest. (j) Tenth closest. (k) Eleventh closest. (l) Twelfth closest. The pricing
errors are largest around the 2008 boom/bust in energy prices.

quanto option price compared with the product of the two marginal options indicates
that more probability mass lies in the quanto’s exercise region. For short times to
maturity especially, ignoring correlation can lead to significant underpricing of the
quanto option.

5 CONCLUDING REMARKS

In this paper, we presented a closed-form pricing formula for an energy quanto option
under the assumption that the underlying assets were lognormal. Taking advantage
of the fact that energy and temperature futures are designed with a delivery period,
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FIGURE 6 Quanto option prices for a one-year option and relative pricing error compared
with no correlation across assets.

%

0

10

8

30

40

4 6 8 10
2700

900
1100

Strike,
New York

HDD Strike,
gas

Strike,
New York

HDD

Strike,
gas

2
4

6
10 700

900
1100

20

0

200

400

600

(a) (b)

(a) The price of a quanto option as a function of the two strike values. The contract is priced on December 31, 2010
for settlement in December 2011. Quanto price, r D 0.02, �1 D December 1, 2011, �2 D December 31, 2011, t D
Dec 31, 2010. (b) The relative pricing error between the quanto option price calculated with and without correlation
across assets. The interest rate is set to 2%. Current futures prices are 5.0920 and 805, respectively. Depending on
the strikes, the relative price error is up to 40%.

FIGURE 7 Quanto option prices for a one-month option and relative pricing error compared
with no correlation across assets.
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(a) The price of a quanto option as a function of the two strike values. The contract is priced on December 31, 2010
for settlement in February 2011. (b) The relative pricing error between the quanto option price calculated with and
without correlation across assets. The interest rate is set to 2%. Current futures prices are 4.405, respectively 797.
Depending on the strikes, the relative price error can be more than 75%.
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FIGURE 8 The evolution of the Chicago HDD futures curve as a function of maturity �2.
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For each day t , the observed futures curve Ft .�2 � �; �2/ with � D 1 month is plotted as a function of �2. We
observe up to seven maturities at each observation point t . From t D January 1, 2007 to December 31, 2010 one
observed futures curve per week is plotted.The number of curves is the same as in Figure 1 on page 16, but because
of low liquidity HDD futures prices do not fluctuate much from day to day except for the first contracts.

we showed how quanto options can be priced using futures contracts as underlying
assets. Correspondingly, we adopted an HJM approach and modeled the dynamics
of the futures contracts directly. We showed that our approach encompasses relevant
cases, such as GBMs and multifactor spot models. Importantly, our approach enabled
us to derive hedging strategies and perform hedges with traded assets. We illustrated
the use of our pricing model by estimating a two-dimensional, two-factor model
with seasonality using NYMEX data on natural gas and CME data on temperature
HDD futures. We calculated quanto energy option prices and showed how correlation
between the two asset classes significantly impacts the prices.

APPENDIX A. PROOF OF PRICING FORMULA

In Section 3.1, we showed that the payoff function in (2.6) could be rewritten in the
following way:

Op.FET ; F
I
T ; KI ; KE /

D max.F IT �KI ; 0/max.FET �KE ; 0/
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FIGURE 9 The model prices (black solid line) and observed prices (dashed gray line)
when prices of natural gas futures and Chicago HDD futures are modeled jointly.
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(a) Closest HDD. (b) Closest gas futures. The error between model and observed prices has a standard deviation
of around 2%, respectively 5.5%.

D .FET �KE /.F
I
T �KI /1fFE

T
>KEg

1fF I
T
>KI g

D FET F
I
T 1fFE

T
>KEg

1fF I
T
>KI g

� FET KI1fFE
T
>KEg

1fF I
T
>KI g

� F ITKE1fFE
T
>KEg

1fF I
T
>KI g

CKEKI1fFE
T
>KEg

1fF I
T
>KI g

:

Now, let us calculate the expectation under Q of the payoff function, ie,

E
Q
t Œ Op.F

E
T ; F

I
T ; KI ; KE /�:

We have

E
Q
t Œ Op.F

E
T ; F

I
T ; KI ; KE /�

D E
Q
t Œmax.F IT �KI ; 0/max.FET �KE ; 0/�

D E
Q
t ŒF

E
T F

I
T 1fFE

T
>KEg

1fF I
T
>KI g

� � E
Q
t ŒF

E
T KI1fFE

T
>KEg

1fF I
T
>KI g

�

� E
Q
t ŒF

I
TKE1fFE

T
>KEg

1fF I
T
>KI g

�C E
Q
t ŒKEKI1fFE

T
>KEg

1f>KI g�:

(A.1)
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FIGURE 10 The time series of squared errors of the percentage differences between
fitted and actual Chicago HDD futures prices, when modeled jointly with NYMEX natural
gas futures.
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In order to calculate the four different expectation terms, we will use the same trick as
Zhang (1995), namely rewriting the pdf of the bivariate normal distribution in terms
of the marginal pdf of the first variable times the conditional pdf of the second variable
given the first variable. Remember that we assume FET and F IT to be lognormally
distributed under Q (ie, .X; Y / are bivariate normal):

FET D F
E
t e	ECX ; (A.2)

F IT D F
I
t e	ICY ; (A.3)
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FIGURE 11 The time series of squared errors of the percentage differences between fitted
and actual natural gas futures prices, when modeled jointly with Chicago HDD futures.
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where �2X denotes the variance of X , �2Y denotes the variance of Y , and they are
correlated by �X;Y . Consider the fourth expectation term first:

E
Q
t ŒKEKI1fFE

T
>KEg

1fF I
T
>KI g

�

D KEKIE
Q
t Œ1fFE

T
>KEg

1fF I
T
>KI g

�

D KEKIQt .fF
E
T > KE g \ fF

I
T > KI g/

D KEKIQt .fF
E
t e	ECX > KE g \ fF

I
t e	ICY > KI g/
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TABLE 3 Parameter estimates for the two-dimensional two-factor model with seasonality,
when Chicago HDD futures and NYMEX gas futures are modeled jointly.

Chicago Gas

� 0.0126 �0.0817
(0.0191) (0.0998)


 18.8812 0.6034
(1.3977) (0.0317)

� 0.0379 0.2402
(0.0051) (0.0209)

� 4.3980 0.6647
(0.8908) (0.0335)

� �0.5509 �0.7038
(0.0948) (0.0611)

˛ 0.0107 �0.3403
(0.0040) (0.0249)


 �5.8799 �0.9438
(2.9083) (0.1988)

�� 0.0554 0.0199
(0.0005) (0.0001)

�1 0.8705 0.0499
(0.0019) (0.0003)

��1 0.6391 0.0406
(0.0015) (0.0003)

�2 N/A 0.0128
(0.0003)

��2 N/A 0.0270
(0.0003)

�W �0.2707
(0.0909)

�B 0.1982
(0.0643)

` 37023

D KEKIQt

�

��
X > log

�
KE

FEt

�
� �E

�
\

�
Y > log

�
KI

F It

�
� �I

��
D KEKIQt

�

��
�X < log

�
FEt

KE

�
C �E

�
\

�
� Y < log

�
F It

KI

�
C �I

��
D KEKIM.y1; y2I �X;Y /;
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where .�1; �2/ are standard bivariate normal with correlation �X;Y and

y1 D
log.FEt =KE /C �E

�X
;

y2 D
log.F It =KI /C �I

�Y
:

Next, consider the third expectation term,

E
Q
t ŒF

I
TKE1fFE

T
>KEg

1fF I
T
>KI g

�

D F It KEe	IEŒeY 1fFE
T
>KEg

1fF I
T
>KI g

�

D F It KEe	IEŒe�Y �21f�1<y1g1f�2<y2g�

D F It KEe	I
Z y2

�1

Z y1

�1

e�Y �2f .�1; �2/ d�1 d�2

D F It KEe	I
Z y2

�1

Z y1

�1

e�Y �2f .�2/f .�1 j �2/ d�1 d�2

D F It KEe	I
Z y2

�1

Z y1

�1

e�Y �2
1
p
2�

exp.�1
2
�22/

�
1

p
2�
q
1 � �2X;Y

exp

�
�1

2.1 � �2X;Y /
.�1 � �X;Y �2/

2

�
d�1 d�2: (A.4)

Using the substitution

w D ��1 C ��1;�2�Y and z D ��2 C �Y ;

the exponent in the above expression becomes:

�Y �2 �
1
2
�22 �

1

2.1 � �2X;Y /
.�21 C �

2
X;Y �

2
2 � 2�X;Y �1�2/

D �
1

2.1 � �2X;Y /

� .�2�Y .1 � �
2
X;Y /�2 C .1 � �

2
X;Y /�

2
2 C �

2
1 C �

2
X;Y �

2
2 � 2�X;Y �1�2/

D �
1

2.1 � �2X;Y /
.�21 � 2�Y .1 � �

2
X;Y /�2 C �

2
2 � 2�X;Y �1�2/

D �
1

2.1 � �2X;Y /
.w2 C z2 � 2�X;Y zw � .1 � �

2
X;Y /�

2
Y /

D �
1

2.1 � �2X;Y /
.w2 C z2 � 2�X;Y zw/C

1
2
�2Y ;
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which enables us to rewrite (A.4) as

E
Q
t ŒF

I
TKE1fFE

T
>KEg

1fF I
T
>KI g

�

D F It KEe	IC.�
2
Y
=2/

�

Z y�
2

�1

Z y�
1

�1

1

2�
q
1 � �2X;Y

� exp

�
�

1

2.1 � �2X;Y /
.w2 C z2 � 2�X;Y zw/

�
dw dz

D F It KEe	IC.�
2
Y
=2/M.y�1 ; y

�
2 I �X;Y /;

where

y�1 D y1 C �X;Y �Y ; y�2 D y2 C �Y :

The second expectation term can be calculated in the same way as we calculated the
third term. The only difference is that we now use the substitution Nw D ��1 C �X
and Nz D ��2 C �X;Y �X so we can write

E
Q
t ŒF

E
T KI1fFE

T
>KEg

1fF I
T
>KI g

�

D FEt KI e	EC.�
2
X
=2/

�

Z y��
2

�1

Z y��
1

�1

1

2�
q
1 � �2X;Y

� exp

�
�

1

2.1 � �2X;Y /
.w2 C z2 � 2�X;Y zw/

�
dw dz

D FEt KI e	EC.�
2
X
=2/M.y��1 ; y

��
2 I �X;Y /;

where

y��1 D y1 C �X y��2 D y2 C �X;Y �X :

Finally, consider the first expectation term in (A.1),

E
Q
t ŒF

E
T F

I
T 1fFE

T
>KEg

1fF I
T
>KI g

�

D FEt F
I
t e	EC	IE

Q
t Œe

XCY 1fFE
T
>KEg

1fF I
T
>KI g

�

D FEt F
I
t e	EC	IE

Q
t Œexp.�X�1 C �Y �2/1f�1<y1g1f�2<y2g�

D FEt F
I
t e	EC	I

Z y1

�1

Z y2

�1

exp.�X�1 C �Y �2/f .�1; �2/ d�2 d�1: (A.5)
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Using the same trick as before with the substitution u D ��1 C �X;Y �Y C �X and
v D ��2 C �X;Y �X C �Y , (A.5) can be written

E
Q
t ŒF

E
T F

I
T 1fFE

T
>KEg

1fF I
T
>KI g

�

D FEt F
I
t exp.�E C �I C 1

2
.�2X C �

2
Y C 2�X;Y �X�Y //M.y

���
1 ; y���2 I �X;Y /;

where

y���1 D y1 C �X;Y �Y C �X ; y���2 D y2 C �X;Y �X C �Y :

Thus, the expectation of the payoff function is

E
Q
t Œ Op.F

E
T ; F

I
T ; KI ; KE /�

D FEt F
I
t exp.�E C �I C 1

2
.�2X C �

2
Y C 2�X;Y �X�Y //M.y

���
1 ; y���2 I �X;Y /

� FEt KI e	EC.�
2
X
=2/M.y��1 ; y

��
2 I �X;Y /

� F It KEe	IC.�
2
Y
=2/M.y�1 ; y

�
2 I �X;Y /

CKEKIM.y1; y2I �X;Y /:

Discounting the expected payoff gives us the price of the option.

APPENDIX B. CLOSED-FORM SOLUTIONS FOR � AND � IN THE
TWO-DIMENSIONAL SCHWARTZ–SMITH MODEL
WITH SEASONALITY

�2X D

Z T

t

.�2E C .�Ee��
E.��s//2 C 2�E�E .�Ee��

E.��s/// ds

D �2E .T � t /C �
2
E

Z T

t

e�2�
E.��s/ ds C 2�E�E�E

Z T

t

e��
E.��s/ ds

D �2E .T � t /C
�2E
2
E

e�2�
E� .e2�

ET � e2�
E t /

C 2
�E�E�E


E
e��

E� .e�
ET � e�

E t /I

cov.X; Y / D �W

Z T

t

�E�I ds C �B

Z T

t

.�Ee��
E.��s//.�I e��

I .��s// ds

D �W �E�I .T � t /C �B�E�I e�.�
EC�I /�

Z T

t

e.�
EC�I /s ds

D �W �E�I .T � t /C
�B�E�I


E C 
I
e�.�

EC�I /� .e.�
EC�I /T � e.�

EC�I /t /I

�X;Y D
cov.X; Y /

�X�Y
:
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When T D � , this simplifies to

�X D �
2
E .� � t /C

�2E
2
E

.1 � e�2�
E.��t//C 2

�E�E�E

�
E
.1 � e�

E.��t//;

�X;Y D
�W �E�I .� � t /C .�B�E�I=


E C 
I /.1 � e�.�
EC�I /.��t//

�X�Y
:

APPENDIX C. ONE-DIMENSIONAL OPTION PRICES

In this section, option prices on one underlying are presented. As for the joint case,
assume that the dynamics of a gas futures contract is given by:

FET .�1; �2/ D F
E
t .�1; �2/ exp.�E CX/:

Consider now a call option written on gas futures only. The price ct of this option is
then given by the Black (1976) formula, ie,

ct D e�r.T�t/ŒFN.d1/ �KN.d2/�;

where

d1 D
ln.FEt =KE / � �E

�X
; d2 D

ln.FEt =KE /C �E
�X

:

The same formula also applies to an option written only on temperature futures.

APPENDIX D. ESTIMATION USING KALMAN FILTER TECHNIQUES

Given a set of observed futures prices, it is possible to estimate the parameters using
Kalman filter techniques. Let

Yn D .f
I
tn
.T 1n /; : : : ; f

I
tn
.T

MI
n

n /; f Etn .T
1
n /; : : : ; f

E
tn
.T

ME
n

n //0

denote the set of log futures prices observed at time tn with maturities T 1n ; : : : ; T
MI
n

n

for the temperature contracts and maturities T 1n ; : : : ; T
ME
n

n for the gas contracts.
The measurement equation relates the observations to the unobserved state vector
Un D .Xtn ; Ztn/

0 by

Yn D dn C CnUn C �n;

where the � are measurement errors assumed to be independent and identically
distributed (iid) normal with zero mean and covariance matrix Hn. In the present
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framework, we have

dn D

0
BBBBBBBBBB@

	I .T 1n /C A
I .T 1n � tn/
:::

	I .T
MI
n

n /C AI .T
MI
n

n � tn/

	E .T 1n /C A
E .T 1n � tn/
:::

	E .T
ME
n

n /C AE .T
ME
n

n � tn/

1
CCCCCCCCCCA
; Cn D

0
BBBBBBBBBBB@

1 e��
I .T 1n�tn/

:::
:::

1 e��
I .T
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n

n �tn/

1 e��
E.T 1n�tn/

:::
:::

1 e��
E.T

ME
n

n �tn/

1
CCCCCCCCCCCA

and

Hn D

 
�2�;I IMI

n
0

0 �2�;EIME
n

!
:

The state vector evolves according to

Un D c C T Un C �n;

where � is iid normal with a zero-mean vector and covariance matrix Q, and where

c D

0
BBBB@
�I � 1

2
.�I /2

0

�E � 1
2
.�E /2

0

1
CCCCA�nC1; T D

0
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1 0 0 0

0 e��
I�nC1 0 0

0 0 1 0

0 0 0 e��
E�nC1

1
CCCA ;

Q D

0
BBBBBBBB@

.�I /2�nC1 0

0
.�I /2

2
I
.1 � e�2�

I�nC1/

�S�I�E�nC1 0

0
�L�I�E

.
I C 
E /
.1 � e�.�

IC�E/�nC1/

�S�I�E�nC1 0

0
�L�I�E

.
I C 
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:

www.risk.net/journal Journal of Energy Markets



34 F. E. Benth et al

DECLARATION OF INTEREST

Financial support from “ManagingWeather Risk in Electricity Markets” (MAWREM)
RENERGI/216096 funded by the Norwegian Research Council is gratefully acknow-
ledged, as is financial support from the NASDAQ OMX Nordic Foundation.

ACKNOWLEDGEMENTS

We thank participants from the Wolfgang Pauli Institute’s Conference on Energy
Finance 2012 in Vienna, the Energy Finance Conference 2012 in Trondheim, the
4th International Ruhr Energy Conference (INREC) 2013 in Essen and the Energy
Finance Christmas Workshop 2013 in Oslo for helpful feedback and suggestions.
Editorial processing of this paper was undertaken by Ruediger Kiesel.

REFERENCES

Benth, F. E., and Koekebakker, S. (2008). Stochastic modeling of financial electricity
contracts. Energy Economics 30(3), 1116–1157.

Benth, F. E., Benth, J. S., and Koekebakker, S. (2008). Stochastic Modelling of Electricity
and Related Markets. Advanced Series on Statistical Science and Applied Probability,
Vol. 11. World Scientific.

Black, F. (1976). The pricing of commodity contracts. Journal of Financial Economics 3(1–
2), 167–179.

Caporin, M., Prés, J., and Torró, H. (2012). Model based Monte Carlo pricing of energy and
temperature quanto options. Energy Economics 34(5), 1700–1712.

Clewlow, L., and Strickland, C. (2000). Energy Derivatives: Pricing and Risk Management.
Lacima Publications.

Considine, G. (2000). Introduction to weather derivatives. Working Paper, CME Group.
URL: www.cmegroup.com/trading/weather/files/WEA_intro_to_weather_der.pdf.

Davis, A. (2010). A new direction for weather derivatives. Energy Risk. URL: www.risk.net/
energy-risk/feature/1652654/a-direction-weather-derivatives.

Engle, R. F., Mustafa, C., and Rice, J. (1992). Modelling peak electricity demand. Journal
of Forecasting 11(3), 241–251.

Garman, M. B., and Kohlhagen, S. W. (1983). Foreign currency option values. Journal of
International Money and Finance 2(3), 231–237.

Jørgensen, P. L. (2007).Traffic light options. Journal of Banking and Finance 31(12), 3698–
3719.

Karatzas, I., and Shreve, S. E. (2000). Brownian Motion and Stochastic Calculus. Springer.

Lucia, J. J., and Schwartz, E. S. (2002). Electricity prices and power derivatives: evidence
from the Nordic power exchange. Review of Derivatives Research 5, 5–50.

Miltersen, K. R., and Schwartz, E. S. (1998). Pricing of options on commodity futures with
stochastic term structure of convenience yields and interest rates. Journal of Financial
and Quantitative Analysis 33(1), 33–59.

Journal of Energy Markets www.risk.net/journal



Pricing and hedging quanto options in energy markets 35

Myers, R.(2008).What every CFO needs to know about weather risk management.Working
Paper, Storm Exchange, Inc/CME Group. URL: www.cmegroup.com/trading/weather/
files/WeatherRisk_CEO.pdf.

Pérez-González, F., and Yun, H. (2013). Risk management and firm value: evidence from
weather derivatives. Journal of Finance 68(5), 2143–2176.

Schwartz, E. S., and Smith, J. E. (2000). Short-term variations and long-term dynamics
in commodity prices: implications for valuation and hedging. Management Science 46,
893–911.

Sørensen, C. (2002). Seasonality in agricultural commodity futures. Journal of Futures
Markets 22(5), 393–426.

Timmer, R. P., and Lamb, P. J. (2007). Relations between temperature and residential
natural gas consumption in the central and eastern United States. Journal of Applied
Meteorology and Climatology 46(11), 1993–2013.

Zhang, P. G. (1995). Correlation digital options. Journal of Financial Engineering 4(1),
75–96.

www.risk.net/journal Journal of Energy Markets




