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Growth Options, Macroeconomic Conditions, and the Cross-Section of
Credit RiskI,II

Marc Arnold1, Alexander F. Wagner1,2, Ramona Westermann3

Abstract

This paper develops a structural equilibrium model with intertemporal macroeconomic risk, incor-

porating the fact that firms are heterogeneous in their asset composition. Compared to firms that

are mainly composed of invested assets, firms with growth options have higher costs of debt because

they are more volatile and have a greater tendency to default during recession when marginal utility

is high and recovery rates are low. Our model matches empirical facts regarding credit spreads,

default probabilities, leverage ratios, equity premiums, and investment clustering. Importantly, it

also makes predictions about the cross-section of all these features.

Keywords: Asset composition, capital structure, credit spread puzzle, equity premium, growth

options, macroeconomic risk, value premium
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1. Introduction

This paper examines the impact of corporate growth options on credit spreads, equity premiums,

firm value, and financial policy choices in the presence of time-varying macroeconomic conditions.

The motivation for our study derives from the empirical fact that credit risk, leverage, and equity

risk premiums exhibit important cross-sectional variation. First, Davydenko and Strebulaev (2007)

show that, controlling for standard credit risk factors, proxies of growth options are all positively

and significantly related to credit spreads. Similarly, Molina (2005) finds that firms with a higher

ratio of fixed assets to total assets have lower bond yield spreads and higher ratings. Second, firms

with more growth options typically have lower leverage (see, e.g., Smith and Watts, 1992; Fama and

French, 2002; Frank and Goyal, 2009). Third, value firms earn higher equity returns than growth

firms (see, e.g., Fama and French, 1992). Strikingly, none of these cross-sectional properties can be

explained by existing structural models of default. The reason is that these models consider firms

with only invested assets, but ignore the facts that growth opportunities constitute an essential

element of asset values and that firms are heterogeneous in their asset composition.4

We provide a model that matches these cross-sectional properties of credit risk, leverage, and

equity risk premiums. In particular, we explicitly incorporate expansion options of firms into a

structural model of default with macroeconomic risk. We show that heterogeneity in the compo-

sition of assets helps explain cross-sectional variation of credit spreads and leverage. Moreover,

allowing firms to be heterogeneous with respect to the importance of growth options in the values

of their assets explains the aggregate credit spread puzzle, not only qualitatively, but also quanti-

tatively. Importantly, the puzzle is solved while fitting historically reported asset volatilities and

default rates for realistic debt maturities. At the same time, the model matches the average equity

premium and explains a significant portion of the cross-section of equity risk (the value premium).

4Recent research focuses on the credit spread puzzle, i.e., the fact that standard structural models of default
significantly underestimate credit spreads for corporate debt (see, e.g., Elton, Gruber, Agrawal and Mann, 2001;
Huang and Huang, 2003). Several papers present significant progress in solving this puzzle (see, e.g., Bhamra, Kuehn
and Strebulaev, 2010a; Bhamra, Kuehn and Strebulaev, 2010b; Bhamra, Kuehn and Strebulaev, 2010c; Chen, 2010;
Chen, Collin-Dufresne and Goldstein, 2009; Gomes and Schmid, 2011). However, none of these papers addresses the
cross-section of credit risk.
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It also generates a counter-cyclical value premium, as observed in the data. Finally, our model is

consistent with aggregate and cross-sectional features of default clustering, investment spikes and

busts, and recovery rates.

For our analysis, we develop a structural-equilibrium framework in the spirit of Bhamra, Kuehn

and Strebulaev (2010a). Thus, we embed a pure structural model of financial decisions into a

consumption-based asset pricing model with a representative agent. Our model simultaneously

incorporates both intertemporal macroeconomic risk (building on work by Hackbarth, Miao and

Morellec, 2006; Bhamra, Kuehn and Strebulaev, 2010b; Chen, 2010), which has been shown to be

important for explaining credit spreads and leverage, as well as expansion options. Macroeconomic

shocks to the growth rate and volatility of earnings as well as to the growth rate and volatility of

consumption arise due to switches between two states of the economy, boom and recession. The

changes in the state of the economy are modeled via a Markov chain, a standard tool to model

regime switches. The representative agent has the continuous time analog of Epstein-Zin-Weil

preferences (Epstein and Zin, 1989; Weil, 1990; Duffie and Epstein, 1992b). Therefore, how he

prices claims depends on both his risk aversion and his elasticity of intertemporal substitution.

Via the market price of consumption determined by the agent’s preferences, we are able to link

unobservable risk-neutral probabilities used in the structural model to historical probabilities. This

modeling approach allows us to study endogenously the effect of macroeconomic risk on credit

spreads and optimal financing decisions.

We allow firms to have expansion options. These options are converted into invested assets

when the underlying earnings process exceeds the investment boundary. We pinpoint the isolated

effect of a firm’s asset composition on credit risk and leverage by assuming, in the main analysis,

that the exercise price of the growth option is financed through the sale of some assets in place,

i.e., without additional funds being injected into the company. We also study equity-financing later

in the paper. Default occurs when earnings are below the default threshold in a given regime.

Shareholders maximize the value of equity by simultaneously choosing the optimal default and

expansion option exercise policies. The capital structure is determined by trading off tax benefits

of debt against default costs to maximize the ex-ante value of equity, i.e., the value of the firm.
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The first result the model yields is that, like in other macroeconomic models, default boundaries

are counter-cyclical, i.e., shareholders default earlier in recession than in boom. Thus, default is

more likely during recession which, together with counter-cyclical marginal utilities and default

costs, raises the costs of debt for all firms compared to a benchmark model without business cycle

risk.

The central new feature of our model is that the asset composition alone matters significantly for

the costs of debt. Two forces lead to the cross-sectional prediction that debt is particularly costly

for firms with a high portion of expansion options in their assets’ values. First, because options

represent levered claims, firms with valuable growth options are more sensitive to the underlying

earnings process than firms that consist of only invested assets. The volatility of the underlying

earnings process would, consequently, underestimate the true default risk of growth firms. While

the literature discusses this basic idea within equity-financed firms (Berk, Green and Naik, 1999;

Carlson, Fisher and Giammarino, 2006), little is known about its impact on debt prices. Our

structural model allows us to jointly analyze a firm’s expansion policy and financial leverage. We

show that the combination of these factors is critical for a full exploration of the quantitative

implications of the riskiness of growth options on credit spreads.

The second driving force is that option values are more sensitive to macroeconomic regime

changes than are assets in place. This higher sensitivity is, to some extent, another consequence

of the idea that options represent levered claims. Importantly, an additional effect derives from

the fact that the optimal exercise boundary of growth options increases in recession and decreases

in boom. Intuitively, it is optimal to defer the exercise of an expansion option when the economy

switches to recession, i.e., to wait for better times. Because the moneyness of growth options is

regime-dependent, and because options represent levered claims, the continuation value of expansion

options is more exposed to the macroeconomic state than the one of invested assets. Moreover, the

changing moneyness causes expansion options to be less sensitive to the underlying development of

the earnings process in recession than in boom, which reduces the value of the shareholders’ option

to defer default during bad times. Together, these effects amplify the counter-cyclicality of default

thresholds for firms with a high portion of growth options. As marginal utility is high during bad
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times, the higher tendency to default in recession causes larger credit spreads under risk-neutral

pricing for firms with expansion options than for those with only invested assets.

We then investigate the quantitative performance of the model in explaining empirically ob-

served data. The literature suggests that an average BBB-rated firm has a ten year credit spread

in the range of 74 − 95 basis points (bps). (This range is obtained by starting from the average

bond yields reported in Davydenko and Strebulaev (2007) and Duffee (1998), and taking into ac-

count that around 35% of bond yields are due to non-default components.) With our main set of

parameters, a model without business cycle risk produces a mere 29 bps spread for an average firm.

A standard macroeconomic model with optimal default thresholds in the spirit of Bhamra, Kuehn

and Strebulaev (2010b) or Chen (2010) implies a spread of 56 bps for average firms at issue that

consist of only invested assets. Our estimate for the average BBB-rated US firm’s asset composition

is that total firm value is about 60% higher than the value of invested assets, which corresponds

(approximately) to a Tobin’s Q of 1.6.5 For such a firm, we obtain a credit spread of about 66 bps

when using optimal default thresholds, optimal expansion boundaries, and an earnings volatility

such that the average asset volatility matches the one observed for BBB-rated firms. This spread is

remarkably higher than the 39 bps our model implies for a firm with only invested assets. Note that

the large difference arises even though leverage is kept constant; we only vary the characteristics

of the assets themselves.

As the economy consists of a mix of firms, the result that growth firms have higher credit spreads

than firms with only invested assets suggests that our model can also explain the aggregate credit

spread puzzle. To evaluate this conjecture, note that when relating the implications of capital

structure models for average credit spreads to empirical studies, it is crucial to take into account

that such studies use aggregate data over cross-sections of firms, rather than average individual

firm level data (Strebulaev, 2007). Following this line of reasoning, Bhamra, Kuehn and Strebulaev

(2010b) investigate how the time evolution of the cross-sectional distribution of firms with different

leverage ratios affects credit spreads and default probabilities. Building on their approach, we

5Market values can be higher than book values also because of off-balance sheet assets, so there is a range for the
asset composition of the “typical” firm.
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characterize the aggregate dynamics by simulating over time a cross-section of individual firms

that is structurally similar to the empirical distribution of BBB-rated firms not only with respect

to average leverage ratios but also with respect to asset composition ratios. The average ten and

20 year credit spreads of 81 and 100 basis points, respectively, from simulating this “true” cross-

section in our model reflect their target credit spreads quite well. To solve the aggregate credit

spread puzzle, a model needs to explain observed costs of debt while still matching historical default

losses (given by the historical default probabilities and recovery rates), and asset volatilities. We

consequently proceed by showing that the model-implied default rates and asset volatilities of

BBB-rated firms are similar to the ones historically reported for realistic debt maturities.

The nature of assets, thus, has a powerful impact on costs of debt. Not surprisingly, it also

affects the observed features of leverage. At initiation, we find that a firm with an average growth

option optimally holds about 4−5% lower leverage than one with only invested assets. Additionally,

we obtain pro-cyclical optimal leverage decisions of firms, in line with Covas and Den Haan (2006)

and Korteweg (2010). The reason is that the default risk is higher in recession than in boom. The

negative relationship between growth options and leverage also maintains when simulating over

time our model-implied true cross-section of BBB-rated firms. In this simulation, however, firms

deviate from their initially optimal leverage in a way such that the aggregate market leverage of the

whole sample becomes counter-cyclical, consistent with Korajczyk and Levy (2003) and Bhamra,

Kuehn and Strebulaev (2010b).

We derive additional testable predictions when studying the aggregate dynamics of our model

economy. Credit spreads and default rates are counter-cyclical, as reported in the literature. Next,

aggregate investment patterns are strongly pro-cyclical, with investment spikes often occurring

when the regime switches from recession to boom, reflecting the findings in the empirical investment

literature (Barro, 1990; Cooper, Haltiwanger and Power, 1999). Our model also makes specific

cross-sectional predictions. For example, realized recovery rates are lower for growth firms.

Finally, we show that the model’s intuition is consistent with the literature on the value premium

for equity. In the true cross-section, our model implies an annual value premium, i.e., a difference

between the average value-weighted equity premium of the firms in the lowest decile of the asset
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composition ratio and the premium of those in the highest decile, of 3.47%. Importantly, the model

also explains the empirically reported counter-cyclical pattern of the value premium.

Our paper contributes to several streams of previous research. First, the fact that growth options

are empirically strongly associated with observed leverage has, of course, also prompted other

explanations. The most prominent of these additional explanations, agency, comes in two primary

forms: A shareholder-bondholder conflict and a manager-shareholder conflict. Appealing to the

former, Smith and Watts (1992) and Rajan and Zingales (1995) suggest that debt costs associated

with shareholder-bondholder conflicts typically increase with the number of growth options available

to the firm due to underinvestment (Myers, 1977) and overinvestment by way of asset substitution

(Jensen, 1986; see also Sundaresan and Wang, 2007).6 According to Leland (1998), however,

optimal leverage even increases when firms can engage in asset substitution. Similarly, Parrino

and Weisbach (1999) conclude that stockholder-bondholder conflicts are too limited to explain the

cross-sectional variation in capital structure. Childs, Mauer and Ott (2005) show how short-term

debt reduces agency costs. Hackbarth and Mauer (2010) demonstrate that the joint choice of debt

priority structure and capital structure can virtually eliminate the suboptimal investment incentives

of equityholders. Neither of the papers incorporates macroeconomic risk.

As for manager-shareholder conflicts, Morellec (2004) shows that agency costs of free cash flow

can explain the low debt levels observed in practice, and the negative relationship between debt

levels and the number of growth options; see also Barclay, Smith and Morellec (2006). Morellec,

Nikolov and Schürhoff (2012) conclude that even small costs of control challenges are sufficient to

explain the low-leverage puzzle. It is still a matter of debate to what extent conflicts of interest

between managers and stockholders cause the empirically observed patterns. Graham (2000), for

example, tests a wide set of managerial entrenchment variables and finds only “weak evidence that

managerial entrenchment permits debt conservatism” (p. 1931). In any case, our model is not

inconsistent with either of these views. It offers a quantitatively important reason for the cross-

6See Lyandres and Zhdanov (2010) for an explanation for accelerated investment that does not rely on agency.
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sectional variation in leverage and credit spreads that derives solely from the nature of assets of

firms.7

Second, at the core of our model is the notion that macroeconomic (business cycle) risk matters

in powerful ways for the costs of corporate debt and financial decisions, because firms are more likely

to default when doing so is costly (see, e.g., Demchuk and Gibson, 2006; Almeida and Philippon,

2007; Bhamra, Kuehn and Strebulaev, 2010b; Chen, 2010). What we add to this literature is the

idea that the impact of business cycle risk depends on the asset base of a firm.

In contemporaneous and independent work, Chen and Manso (2010) set up a model similar to

ours with expansion options. Their focus, however, is on the debt overhang problem, and not on

explaining cross-sectional features or the credit spread puzzle – the central tasks of this paper.

Finally, our structural-equilibrium framework draws on insights from consumption-based asset

pricing models (Lucas, 1978; Bansal and Yaron, 2004).

The paper proceeds as follows. In Section 2, we set up our valuation framework. We solve

the model in Section 3. Section 4 discusses our parameter and firm sample choices, as well as the

optimal default and expansion policies. Section 5 outlines qualitative properties of our model for

the aggregate economy. We turn to the quantitative implications for BBB-rated firms in Section 6.

The predictions of our model for the value premium of equity are discussed in Section 7. Section 8

concludes.

2. The model

We build a structural model with intertemporal macroeconomic risk, embedded inside a rep-

resentative agent consumption-based asset pricing framework. The structural model is based on

a standard continuous time model of capital structure decisions in the spirit of Mello and Par-

sons (1992), as extended by Hackbarth, Miao and Morellec (2006) for business cycle fluctuations.

7An alternative explanation for why low leverage could be optimal in the high-tech sectors is offered in Miao
(2005). In his model, when a sector experiences technological growth, more competitors enter, leading to falling
prices and possibly to a greater probability of default. Yet other explanations appeal to the fact that firms have the
option to issue additional debt (Collin-Dufresne and Goldstein, 2001).
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Additionally, we explicitly model growth opportunities. Following Bhamra, Kuehn and Strebulaev

(2010b) and Chen (2010), embedding the model of capital structure into a consumption-based asset

pricing model allows the valuation of corporate securities using the risk-neutral measure implied

by the preferences of the representative agent.

The economy consists ofN infinitely-lived firms with assets in place and possibly growth options,

a large number of identical infinitely-lived households, and a government serving as a tax authority.

We assume that there are two different macroeconomic states, namely boom (B) and recession (R).

Formally, we define a time-homogeneous Markov chain It≥0 with state space {B,R} and generator

Q :=

−λB λB

λR −λR

 , in which λi ∈ (0, 1) denotes the rate of leaving state i. In the main analysis,

we consider λB < λR, as in Hackbarth, Miao and Morellec (2006).

The following properties hold: First, the probability that the chain stays in state i longer than

some time t ≥ 0 is given by e−λit. Second, the probability that the regime shifts from i to j during

an infinitesimal time interval ∆t is given by λi∆t. Third, the expected duration of regime i is 1
λi
,

and the expected fraction of time spent in that regime is
λj

λi+λj
.

Aggregate output Ct follows a regime-switching geometric Brownian motion:

dCt

Ct
= θidt+ σC

i dW
C
t , i = B,R, (1)

in which WC
t is a Brownian motion independent of the Markov chain, and θi, σ

C
i are the regime-

dependent growth-rates and volatilities of the aggregate output. In equilibrium, aggregate con-

sumption equals aggregate output. Hence, the above specification gives rise to uncertainty about

the future moments of consumption growth.

To incorporate the impact of the intertemporal distribution of consumption risk on the represen-

tative household’s utility, we assume the continuous-time analog of Epstein-Zin-Weil preferences

(Epstein and Zin, 1989; Weil, 1990), which are of stochastic differential utility type (Duffie and

Epstein, 1992a,b). Specifically, the utility index Ut over a consumption process Cs solves

Ut = EP

[∫ ∞

t

ρ

1− δ

C1−δ
s − ((1− γ)Us)

1−δ
1−γ

((1− γ)Us)
1−δ
1−γ − 1

ds |Ft

]
, (2)
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in which ρ is the rate of time preference, γ determines the coefficient of relative risk aversion for

a timeless gamble, and Ψ := 1
δ is the elasticity of intertemporal substitution for deterministic

consumption paths.

As shown by Bhamra, Kuehn and Strebulaev (2010b) and Chen (2010), the stochastic discount

factor mt then follows the dynamics

dmt

mt
= −ridt− ηidW

C
t + (eκi − 1) dMt, (3)

with Mt being the compensated process associated with the Markov chain, and

ri = r̄i + λi

[
γ − δ

γ − 1

(
w

− γ−1
γ−δ − 1

)
−
(
w−1 − 1

)]
, (4)

ηi = γσC
i , (5)

κi = (δ − γ) log

(
hj
hi

)
. (6)

hB, hR solve a non-linear system of equations given in the Appendix A.1, Eq. (A-1). ri are the

regime-dependent real risk-free interest rates, composed of the interest rate if the economy stayed

in regime i forever, r̄i, and the adjustment for possible regime switches as shown by the second

term. ηi are the risk prices for systematic Brownian shocks affecting aggregate output, and κi is the

relative jump size of the discount factor when the Markov chain leaves state i (and, consequently,

κj =
1
κi
). The no-jump part of the interest rate, r̄i, is given by

r̄i = ρ+ δθi −
1

2
γ (1 + δ)

(
σC
i

)2
, (7)

and

w := eκR = e−κB (8)

measures the size of the jump in the real-state price density when the economy shifts from recession

to boom (see Bhamra, Kuehn and Strebulaev, 2010b, Proposition 1).
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Credit spreads are based on nominal yields and taxes are collected on nominal earnings. To link

nominal to real values such as the real interest rate introduced in the previous section, we specify

a stochastic price index as

dPt

Pt
= πdt+ σP,CdWC

t + σP,iddWP
t , (9)

with WP
t being a Brownian motion describing the idiosyncratic price index shock, independent of

the consumption shock Brownian WC
t and the Markov chain. π denotes the expected inflation

rate, and σP,C < 0, σP,id > 0 are the volatilities of the stochastic price index associated with the

consumption shock and the idiosyncratic price index shock, respectively. The nominal interest rate

rni is then given by

rni = ri + π − σ2
P − σP,Cηi, (10)

with σP :=

√
(σP,C)2 + (σP,id)

2
being the total volatility of the stochastic price index.

At any point in time, the real after-tax earnings process of a firm follows

dXt,real

Xt,real
= µi,realdt+ σX,C

i,realdW
C
t + σX,iddWX

t , i = B,R, (11)

in which WX
t is a standard Brownian motion describing an idiosyncratic shock, independent of the

aggregate output shock WC
t , the consumption price index shock WP

t , and the Markov chain. µi,real

are the real regime-dependent drifts, σX,C
i,real > 0 the real firm-specific regime-dependent volatilities

associated with the aggregate output process, and σX,id > 0 the firm-specific volatility associated

with the idiosyncratic Brownian shock.

The nominal after-tax earnings process can now be written as

dXt

Xt
= µidt+ σX,C

i dWC
t + σP,iddWP

t + σX,iddWX
t , i = B,R, (12)

in which µi = µi,real+π+σP,CσX,C
i,real are the nominal regime-dependent drifts, and σX,C

i = σX,C
i,real+

σP,C > 0 the nominal firm-specific regime-dependent volatilities associated with the aggregate

output process. As suggested by the literature, we posit that σX,C
B < σX,C

R (Ang and Bekaert,

2004).
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Denote the risk-neutral measure by Q. Note that the expected growth rates of the firm’s nominal

after-tax earnings under the risk-neutral measure, µ̃i, are given by

µ̃i := µi − σX,C
i

(
ηi + σP,C

)
−
(
σP,id

)2
, (13)

and let λ̃i denote the risk-neutral transition intensities, determined as

λ̃i = eκiλi. (14)

Following Chen (2010) and Bhamra, Kuehn and Strebulaev (2010b), the unlevered after-tax

asset value can be written as

Vt = Xtyi for It = i, (15)

with yi being the price-earnings ratio in state i determined by

y−1
i = rni − µ̃i +

(
rnj − µ̃j

)
− (rni − µ̃i)

rnj − µ̃j + p̃
p̃f̃j . (16)

p̃ := λ̃i + λ̃j is the risk-neutral rate of news arrival, and
(
f̃B, f̃R

)
=
(
λR
p̃ , λB

p̃

)
is the long-run

risk-neutral distribution. y−1 can be interpreted as a discount rate, in which the first two terms

constitute the standard expression if the economy stayed in regime i forever, and the last term

accounts for future time spent in regime j. As in Bhamra, Kuehn and Strebulaev (2010b), the

price-earnings ratio in the main analysis is higher in boom than in recession, i.e., yB > yR.

Finally, note that the volatility of the earnings process in regime i is

σ̃i =

√(
σX,C
i

)2
+ (σP,id)

2
+ (σX,id)

2
. (17)

The expansion option of the firm is modeled as an American call option on the earnings.

Specifically, at any time t̄, the firm can pay exercise costs K to achieve additional future after-tax

earnings of sXt for all t ≥ t̄ for some factor s > 0. We assume that if a firm exercises its expansion

option, the option is converted into assets in place, such that the firm consists of only invested

assets. The exercise of the growth option is assumed to be irreversible. At default, bondholders
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recover not only a fraction of the assets in place, but also a fraction of the option’s value. Intuitively,

the option can be exercised independently of the considered firm.

For the financing of investment, we present two variants. In the main analysis, we wish to

abstract away from the effect of fund injections by debt- or equityholders to pay the exercise price,

and instead to isolate the effect of growth options in the value of firms’ assets on corporate securities.

Therefore, we first assume that, at exercise, the firm pays the exercise costs K of the option by

selling a part of its assets in place.8 In detail, while exercising the option at time t̄ entitles the

firm to total future after-tax earnings of (s+1)Xt for all t ≥ t̄, financing the exercise costs requires

to sell a fraction K
Xt̄yī

of these earnings, in which ī is the realized state of the economy at the

time of exercise. Hence, the total after-tax earnings of the firm at any point in time after exercise

correspond to
(
(s+ 1)− K

Xt̄yī

)
Xt. Second, we also consider equity financing of the exercise costs

K.

The critical measure to capture the relative importance of a firm’s expansion option in the value

of its assets is the asset composition ratio. We define it as the value of the firm, divided by the

value of invested assets. Certainly, the value of the firm does not only contain the value of the

invested assets and the expansion option, but also the value of the tax shield and bankruptcy costs.

Nevertheless, we use this measure because the direct empirical analog of the asset composition

ratio is Tobin’s Q. Furthermore, the impact of the tax shield and bankruptcy costs on the ratio is

relatively small.

Corporate taxes are paid at a constant rate τ , and full offsets of corporate losses are allowed. In

our framework, firms are leveraged because debt allows it to shield part of its income from taxation.

Once debt has been issued, a firm pays a total coupon c at each moment in time. Following the

standard in the literature, we assume that firms finance coupons by injecting funds. At any point in

time, shareholders have the option to default on their debt obligations, as well as the possibility to

exercise an expansion option. Default is triggered when shareholders are no longer willing to inject

8Indirect financing by selling assets often occurs, e.g., when acquirers divest part of target companies’ assets
following takeovers (Bhagat, Shleifer and Vishny, 1990; Kaplan and Weisbach, 1992). Of course, the model simplifies
in that in reality, firms have different types of assets.
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additional equity capital to meet net debt service requirements (Leland, 1998). If default occurs,

the firm is immediately liquidated and bondholders receive the unlevered asset value less default

costs, reflecting the absolute priority of debt claims. The default costs in regime i are assumed

to be a fraction 1 − αi of the unlevered asset value at default, with αi ∈ (0, 1]. We suppose that

recovery rates are lower in recession, i.e., αR < αB (Frye, 2000). The incentive to issue debt is

limited due to the possibility of costly financial distress.

Equityholders face the following decisions: First, once debt has been issued, they select the

default and expansion policies that maximize equity value. Hence, both expansion and default

are chosen endogenously. Second, they determine the optimal capital structure by choosing the

coupon level that maximizes the value of the firm. The model does not allow restructuring of debt

neither when the option is exercised nor at endogenous restructuring points. The main reason is

that expansion opportunities preclude a scaling feature of the model solution.9

The main text presents the model and its solution for infinite debt maturity. We also solve and

use the case of finite debt maturity, in which we consider the stationary environment of Leland

(1998): The firm issues debt with a constant principal p and a constant total coupon c paid at each

moment in time. A fraction m of the total debt is continuously rolled over. In particular, the firm

continuously retires outstanding debt principal at rate mp and replaces it with new debt vintages

of identical coupon and principal. Finite maturity debt is, therefore, characterized by the tuple

(c,m, p). This setup leads to a time-homogeneous setting. Throughout the paper, it is assumed

that debt is issued at par.

3. Model solution

We solve the model by backward induction. First, the value of the growth option for given

expansion policies is derived. Then, for given corporate policies and capital structure, we proceed

9The scaling property states that, conditional on the current regime of the economy, the optimal coupon, the
optimal default thresholds, the investment boundaries, as well as the values of debt and equity at restructuring
points are all homogeneous of degree one in earnings. When assuming dynamic capital structure adjustments, the
absence of a scaling property impedes not only closed-form results, but also the application of numerical solution
methods with backward induction.
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with the valuation of corporate securities for a firm that consists not only of assets in place, but also

holds an expansion option. Finally, we obtain the expansion and default policies that simultaneously

maximize the value of equity, as well as the capital structure that maximizes the firm value.

As in Hackbarth, Miao and Morellec (2006), we assume that the optimal strategies are of regime-

dependent threshold type in X (for a formal proof in the case of expansion thresholds only, see Guo

and Zhang, 2004). Precisely, suppose that D̂i and Di are the default thresholds in regime i = B,R

of a firm with only invested assets, and of a firm with both invested assets and a growth option,

respectively. Xi denotes the exercise boundary of the growth option in regime i = B,R. In what

follows, we present the case in which DB < DR, XB < XR and D̂B < D̂R, i.e., the boundaries are

lower in boom for both expansion and default (before and after expansion).10 Finally, we presume

that max
{
DR, D̂R

}
< XB, i.e., we are interested in firms that exercise their expansion option with

a positive probability, and we exclude the possibility of immediate default after expansion. The

optimal default and expansion policies for relevant parameter regions satisfy this ordering.

3.1. The value of the growth option

Denote the value functions of the growth option in regime B and R by GB(X) and GR(X),

respectively. The following proposition states the value of a growth option subject to regime

switches.

Proposition 1. For any given pair of exercise boundaries [XB, XR], the value of the growth option
in regime i is given by

Gi(X) =


Āi3X

γ3 + Āi4X
γ4 X < XB, i = B,R

C̄1X
βR
1 + C̄2X

βR
2 + λ̃R

syBX

rnR−µ̃R+λ̃R
− λ̃R

K
rnR+λ̃R

XB ≤ X < XR, i = R

sXyi −K X ≥ Xi, i = B,R,

(18)

in which γk, k = 3, 4, are the positive roots of the quartic equation(
µ̃Rγ +

1

2
σ̃2
Rγ(γ − 1)− λ̃R − rnR

)(
µ̃Bγ +

1

2
σ̃2
Bγ(γ − 1)− λ̃B − rnB

)
= λ̃Rλ̃B, (19)

10Note that we can assume without loss of generality that DB < DR (if not, interchange the names of the regimes).
The case DB < DR, D̂B < D̂R, and XB > XR, (i.e., the exercise boundary in recession is lower than the one in
boom) can be solved by analogous techniques.
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and βR
k , k = 1, 2, are given by

βR
1,2 =

1

2
− µ̃R

σ̃2
R

±

√√√√(1

2
− µ̃R

σ̃2
R

)2

+
2
(
rnR + λ̃R

)
σ̃2
R

. (20)

ĀRk, k = 3, 4, is a multiple of ĀBk with the factor

l̄k :=
1

λ̃B

(rnB + λ̃B − µ̃Bγk −
1

2
σ̃2
Bγk(γk − 1)). (21)

[
ĀB3, ĀB4, C̄1, C̄2

]
solve a linear system given in Appendix A.2.

Proof. See Appendix A.2.

The functional form of the solution (18) is analogous to the one presented in Guo and Zhang

(2004). For each regime i, the option is exercised immediately whenever X ≥ Xi (option exercise

region); otherwise it is optimal to wait (option continuation region). We remark that, similar to

the occurrence of default, there are two possible ways of triggering the exercise of the expansion

option: Either when the idiosyncratic shock X reaches the exercise boundary Xi in a given regime,

or when the regime switches from recession to boom and X lies between XB and XR.

In the option continuation region, the solution (18) reflects the changes in value that occur

either when the idiosyncratic shock reaches a boundary, or when the regime switches. Proposition

1 shows that in the region X < XB, i.e., the case in which the option is in the continuation region

in both boom and recession, these value changes are captured by two terms. When the option is

in the continuation region in recession only, i.e., XB ≤ X < XR, the solution exhibits four terms.

These four terms reflect the value changes when leaving this region due to hitting a boundary, either

XR from below or XB from above, or due to a regime-switching induced exercise of the option. In

the option exercise region, X ≥ Xi, the firm obtains earnings of sX by investing K.

Proposition 1 determines the value of the growth option for any given pair of exercise boundaries

XB and XR. In the full model solution, we derive option values for optimal exercise boundaries

of equityholders in both levered and unlevered firms. In unlevered firms, the optimal exercise

boundaries are denoted Xunlev
B and Xunlev

R , respectively. They are determined by smooth pasting

conditions at the option exercise boundary. For ease of notation, we denote the unlevered value of
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the growth option by Gunlev
i , i.e., Gunlev

i (X) = Gi

(
X
∣∣Xunlev

B , Xunlev
R

)
. Appendix A.2 states the

complete set of boundary conditions for the unlevered option value and presents the solution.

3.2. Firms with invested assets and expansion options

In this section, we derive the value of corporate securities of a general firm, as well as the default

and expansion thresholds selected by shareholders.

After exercise, a firm consists of only invested assets, endowed with the initially determined

optimal coupon level. The post-exercise value of corporate securities influences their pre-exercise

value. As the default policy is an ex-post policy, the optimal default thresholds after exercise

correspond to the ones of a firm with only invested assets. That is, equityholders optimally adapt

their default policy upon expansion. Debtholders anticipate this change. Let d̂i(X) denote the

value of corporate debt of a firm with only invested assets, and di(X) the value of debt of a firm

with invested assets and an expansion option in regime i = B,R. The solution for d̂i (X) can be

found in Appendix A.3, the derivation being analogous to Hackbarth, Miao and Morellec (2006).

The following proposition states the value of infinite maturity debt of a firm with invested assets

and an expansion option.

Proposition 2. For any given set of default and exercise boundaries [DB, DR, XB, XR], the value
of infinite maturity debt in regime i is given by

di (X) =



αi

(
Xyi +Gunlev

i (X)
)

X ≤ Di, i = B,R,

C1X
βB
1 + C2X

βB
2 + C5X

γ3 + C6X
γ4

+λ̃B
αRyR

rnB−µ̃B+λ̃B
X + c

rnB+λ̃B

DB < X ≤ DR, i = B

Ai1X
γ1 +Ai2X

γ2 +Ai3X
γ3 +Ai4X

γ4 + c
rpi

DR < X ≤ XB, i = B,R

B1X
βR
1 +B2X

βR
2 + Z (X) + λ̃R

c
rPi (rnR+λ̃R)

+ c
rnR+λ̃R

XB < X ≤ XR, i = R

d̂i

(
s̄X − K

yi

)
X > Xi, i = B,R.

(22)
Gunlev

i denotes the unlevered option value in regime i (see Proposition 1), and

βi
1,2 =

1

2
− µ̃i

σ̃2
i

±

√√√√(1

2
− µ̃i

σ̃2
i

)2

+
2
(
rni + λ̃i

)
σ̃2
i

(23)

C5 = αR
l̄3
l3
Āunlev

B3 (24)

C6 = αR
l̄4
l4
Āunlev

B4 . (25)
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γk, k = 1, 2, 3, 4 are the roots of the quartic equation(
µ̃Rγ +

1

2
σ̃2
Rγ(γ − 1)− λ̃R − rnR

)(
µ̃Bγ +

1

2
σ̃2
Bγ(γ − 1)− λ̃B − rnB

)
= λ̃Rλ̃B. (26)

ARk, k = 1, 2, 3, 4, is a multiple of ABk with the factor

lk :=
1

λ̃B

(rnB + λ̃B − µ̃Bγk −
1

2
σ̃2
Bγk(γk − 1)), (27)

and rpi is the perpetual risk-free rate given by

rpi = ri +
rj − ri
p̃+ rj

p̃f̃j , (28)

in which p̃ = λ̃1+ λ̃2 is the risk-neutral rate of news arrival, and
(
f̃B, f̃R

)
=
(
λR
p̃ , λB

p̃

)
the long-run

risk-neutral distribution. The function Z (X) is given by

Z (X) = λ̃R

∑
i,k=1,2

2(−1)i+1s̄γkÂBk

σ̃2
R

(
βR
2 − βR

1

) (
γk − βR

i

)Xγk
2F1

(
−γk, β

R
i , β

R
i − γk + 1;− K

s̄XyB

)
, (29)

in which 2F1 is Gauss’ hyperbolic function. d̂i (·) denotes the value of debt of a firm with only
invested assets. [AB1, AB2, AB3, AB4, C1, C2, B1, B2] solve a linear system given in Appendix A.4.

Proof. See Appendix A.4.

In each regime, the firm faces three different regions depending on the value of X: Below the

default threshold, i.e., X ≤ Di, the firm is in the default region where it defaults immediately, and

debtholders receive a fraction αi of the total asset value. The firm is in the continuation region

if X is between the default threshold and the exercise boundary, i.e., Di < X ≤ Xi. Finally, the

exercise region is reached if X > Xi, i.e., X is above the exercise boundary.

In the continuation region, the value of corporate debt is determined by three components. The

first component is the value of a risk-free claim to the perpetual stream of coupon. The second and

third components reflect the changes in the value of debt that occur either due to the idiosyncratic

shock reaching a boundary, or due to a regime switch. Proposition 2 shows that for the region

DR < X ≤ XB, i.e., when the firm is in the continuation region in both boom and recession,

the solution consists of five terms. The value of the risk-free claim to the coupon is given by the

last term. The coupon is discounted by the perpetual risk-free rate rpi that takes into account
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the expected future time spent in each regime. The first four terms capture the changes in value

due to the idiosyncratic shock X hitting a region boundary, or due to a change of regime. When

DB < X ≤ DR, i.e., the firm is in the continuation region only in boom, the solution consists of six

terms. The last term is the value of the risk-free claim to the coupon. Here, the discount rate is

given by the nominal interest rate in boom, rnB, increased by λ̃B to reflect the possibility of a regime

switch to recession. The first five terms capture the changes in debt value that occur when the

idiosyncratic shock reaches a boundary, or when the regime switches to recession. For the region

XB < X ≤ XR, i.e., when the firm is in the continuation region only in recession, the solution

consists of five terms. The last term is the value of a risk-free perpetual claim to the coupon. To

account for a possible regime switch to boom, the discount rate is here given by the interest rate in

recession, rnR, increased by λ̃R. The remaining four terms capture the value changes due to reaching

a region boundary, either XB from above or XR from below, or due to a regime switch to boom

triggering immediate option exercise.11

The following remark shows how to express the value of finite maturity debt, tax benefits, and

bankruptcy costs using Proposition 2. Let ti (X) , bi (X) denote the value of the tax shield and

bankruptcy costs of a firm with both assets in place and an expansion option in regime i = B,R,

respectively, and t̂i (X) , b̂i (X) the corresponding value functions of a firm with only invested assets.

Remark 1. (i) The value of finite maturity debt with principal p and a fraction m of debt
continuously rolled over is given by (22) in Proposition 2, in which c and rni are replaced by
c +mp and rin +m, respectively, and d̂i is replaced by the value of finite maturity debt of a
firm with only invested assets.

(ii) The value of the tax shield is given by (22) in Proposition 2, in which c and αi are replaced
by cτ and 0, respectively, and d̂i in the last line of (22) is replaced by t̂.

(iii) The value of bankruptcy costs is given by (22) in Proposition 2, in which c and αi are replaced
by 0 and 1− αi, respectively, and d̂i in the last line of (22) is replaced by b̂.

Proof. See Appendix A.4.

11Since the exercise of the option is financed by selling assets in place, the debt value after exercise is not homoge-
neous in X. The function Z (X) captures this non-homogeneity after exercise, and can, therefore, not be simplified
to a finite sum.
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Next, the total firm value fi in regime i = B,R is given by the value of assets in place yiX,

plus the value of the expansion option Gi (X) and the value of tax benefits from debt ti(X), less

the value of default costs bi(X), i.e.,

fi(X) = yiX +Gi(X) + ti(X)− bi(X). (30)

As the total firm value equals the sum of debt and equity values, the equity value ei(X),

i = B,R, can, hence, be written as

ei (X) = fi (X)− di (X) = yiX +Gi (X) + ti (X)− bi (X)− di (X) . (31)

Equityholders select the default and investment policies that maximize the value of equity ex-

post. Denote these policies by D∗
i and X∗

i , respectively. Formally, the default policy that maximizes

the equity value is determined by postulating that the first derivative of the equity value has to

be zero at the default boundary in each regime. Simultaneously, optimality of the option exercise

boundaries is achieved by equating the first derivative of the equity value at the exercise boundary

with the first derivative of the equity value of a firm with only invested assets after expansion,

evaluated at the corresponding earnings in both regimes. These four optimality conditions are

smooth-pasting conditions for equity at the respective boundaries:

e′B(D
∗
B) = 0

e′R(D
∗
R) = 0

e′B(X
∗
B) = ê′B((s+ 1)X∗

B − K
yB

)

e′R(X
∗
R) = ê′R((s+ 1)X∗

R − K
yR

).

(32)

We solve this system numerically.

For each coupon level c, debtholders evaluate debt at issuance anticipating the ex-post optimal

default and expansion decisions of shareholders. As debt-issue proceeds accrue to shareholders, the

latter do not only care about the value of equity, but also about the value of debt. Hence, the

optimal capital structure is determined ex-ante by the coupon level c∗ that maximizes the value of

equity and debt, i.e., the value of the firm. Denote by f∗
i (X) the firm value given optimal ex-post
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default and expansion thresholds as determined by the System (32). The ex-ante optimal coupon

of this firm solves

c∗i := argmaxcf
∗
i (X). (33)

As indicated in Eq. (33), the optimal initial capital structure depends on the current regime.

4. Results

This section summarizes the model results for individual firms. Section 4.1 presents the param-

eter choice. We describe the firm sample in Section 4.2. Next, Section 4.3 discusses the properties

of the expansion option. Section 4.4, finally, analyzes the optimal default policies of individual

firms with different portions of the expansion options’ value in the overall value of assets.

4.1. Choice of parameters

Table 1 summarizes our parameter choice. Panel A shows the firm characteristics that are

selected to roughly reflect a typical BBB-rated S&P 500 firm.12 We start with an initial value of

the idiosyncratic after-tax earnings X of 10. While this value is arbitrary, neither credit spreads

nor optimal leverage ratios depend on this choice. As is standard in the literature, we set the

tax advantage of debt to τ = 0.15 (Hackbarth, Miao and Morellec, 2006). Bhamra, Kuehn and

Strebulaev (2010b) estimate growth rates and systematic volatilities of nominal earnings in a two

regime model. Their estimates are similar to those obtained by other authors who jointly estimate

consumption and dividends with a state-dependent drift and volatility (e.g., Bonomo and Garcia,

1996). Hence, the real earnings growth rates (µi,real) and volatilities (σX,C
i,real) are chosen such that

the nominal growth rates and systematic volatilities correspond to their empirical counterparts.

Note that the relation σX,C
B = 0.0834 < 0.1334 = σX,C

R captures the observation in Ang and

Bekaert (2004) that asset volatilities are lower in boom than in recession.

Following Acharya, Bharath and Srinivasan (2007), we assume that recovery rates fall during

recession. They report that recovery in a distressed state of the industry is lower than the recovery

12Our qualitative results do not depend on the ratings of firms.

20



in a healthy state of the industry by up to 20 cents on a dollar. The reason can be financial

constraints that industry peers of defaulted firms face as proposed by the fire-sales or the industry-

equilibrium theory of Shleifer and Vishny (1992), or time-varying market frictions such as adverse

selection. We choose recovery rates as αB = 0.7 and αR = 0.5, respectively, which matches the 20

cents on a dollar difference in Acharya, Bharath and Srinivasan (2007), and is close to the standard

of 0.6 used in the literature (Hackbarth, Miao and Morellec, 2006; Chen, 2010). Our qualitative

results are insensitive to the choice of αi as long as αB > αR.

Panel B shows the parameters we use to capture growth options. We select an exercise price

of K = 310. The choice of a relatively high K is motivated by our intention to investigate firms

that do not exercise their expansion option immediately. The scale parameter s for a typical firm

is calibrated such that the asset composition ratio at initiation given optimal financing equals the

average Tobin’s Q of 1.6 in our sample of BBB-rated firms. In particular, s is set to s = 1.89 for

firms initiated in boom, and to s = 2.05 for firms initiated in recession. To analyze growth firms

with a larger (smaller) portion of option values in the overall value of their assets, we will later use

higher (lower) scale parameters at initiation.

Panel C, finally, lists the variables describing the underlying economy. The rate of leaving

regime i (λi), the consumption growth rates (θi), and the consumption growth volatilities σC
i are

estimated in Bhamra, Kuehn and Strebulaev (2010b). We take the same values for comparability. In

the described economy, the expected duration of regime B (R) is 3.68 (2.03) years, and the average

fraction of time spent in regime B (R) is 64% (36%). The inflation parameters are estimated using

the price index for personal consumption expenditures from the Bureau of Economic Analysis

from 1947 to 2005. We obtain an expected inflation rate (π) of 0.0342, a volatility of the price

index of 0.0137, and a correlation between the price index and real non-durables plus service

consumption expenditures of −0.2575. These parameters imply a systematic price index volatility

of σP,C = −0.0035 and an idiosyncratic price index volatility of σP,id = 0.0132.

The annualized rate of time preference, ρ, is 0.015, the relative risk aversion, γ, is equal to 10

and the elasticity of intertemporal substitution, Ψ, is set to 1.5. This parameter choice is commonly

used in the literature (Bansal and Yaron, 2004; Chen, 2010).
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Our choice of parameters implies that real interest rates are rB = 0.0416 and rR = 0.0227 in

the baseline specification. The relative decline in the value of invested assets following a shift from

boom to recession is equal to 12.61%, which is similar to the one assumed in Hackbarth, Miao and

Morellec (2006).

INSERT TABLE 1 HERE

4.2. Firm sample

Balance sheet and ratings data are collected over the period from 1995 to 2008 from Compustat.

We use data for BBB-rated firms. We calculate the quasi-market leverage of a firm as the ratio

of book debt to the sum of book debt and market value of equity. Tobin’s Q is defined as total

assets plus the market value of equity minus the book value of equity divided by total assets.13 We

delete financial and utility firms from the sample. For each firm, we calculate the average of the

leverage ratios and Tobin’s Qs over the observation period. Next, we cut extreme values of both

average leverage and Tobin’s Q at 1% to avoid that our results are driven by outliers. Our sample

then consists of 717 distinct firms. Fig. 1 plots the resulting data points. For the entire sample of

BBB-rated firms, the mean leverage is 41.83%, and the mean Tobin’s Q (asset composition ratio)

is 1.59.

INSERT FIG. 1 HERE

4.3. Properties of the expansion option

To understand the implications of our model for credit spreads, it is instructive to first consider

some properties of the expansion option.

13In these definitions, we follow, e.g., Baker and Wurgler (2002), Fama and French (2002) and Daines, Gow and
Larcker (2010). Book debt is total assets (item 6, AT ) minus book equity. Book equity is total assets minus total
liabilities (item 181, LT ) minus preferred stock (item 10, PSTKL, replaced by item 56 when missing, PSTKRV )
plus deferred taxes (item 35, TXDITC) plus convertible debt (item 79, DCV T ). The market value of equity is given
by the closing price (item 24, PRCC F ) times the number of common shares outstanding (item 25, CSHO).
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Fig. 2 depicts the equity value maximizing exercise policy of the expansion option in a typical

firm initiated in boom. Recall that the expansion policy is simultaneously determined with the

default policy.

INSERT FIG. 2 HERE

The area above the dashed line is the exercise region in recession, and the area below the

dashed line corresponds to the continuation region. In boom, the regions are defined analogously

with respect to the solid line. The graph is drawn for optimal leverage. Exercising the option at

time t̄ entitles the firm to total future after-tax earnings of (s + 1)Xt for all t ≥ t̄. As expected,

the endogenous exercise boundaries decrease with s. For example, consider initiation in boom:

With a scale parameter of s = 1.89 (that induces an asset composition ratio of 1.6 at initiation),

the corresponding optimal option exercise boundaries are X∗
B = 18.26 and X∗

R = 19.55. Setting s

to 2.73 creates a growth firm with an asset composition ratio of 2.2, and optimal option exercise

boundaries of X∗
B = 12.88 and X∗

R = 13.90, respectively. Importantly, Fig. 2 also shows that

the expansion option is exercised at lower levels of the idiosyncratic earnings X in boom than in

recession. Intuitively, the main reason is that the value of the option of waiting is higher in recession

due to the potential switch to boom with a higher valuation of earnings.14 The same qualitative

option value properties also hold at non-optimal leverage levels.

Fig. 3 plots the value of the expansion option as a function of the after-tax earnings X, using

jointly optimal expansion and default policies.

INSERT FIG. 3 HERE

Obviously, the option’s value is affected by the current regime. When the asset value jumps due

to a regime switch, so does the value of the option. Critically, relative value changes of expansion

options are higher than relative value changes of assets in place when the regime switches. The

14The regime dependent volatilities and default thresholds also affect optimal exercise boundaries in boom and
recession. We find that the valuation of earnings is the dominating effect for reasonable parameter values.
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reasons are that options represent levered claims, and that the endogenous exercise boundary is

higher in recession than in boom, as shown in Fig. 2.15

Additionally, Fig. 3 shows that both option value functions are convex, but the value function in

boom is steeper than the one in recession. Therefore, the expansion option’s value is less sensitive to

the underlying earnings in recession than in boom. Intuitively, the exercise boundary increases and

the earnings’ drift decreases in recession, which drives options out-of-the money. As a consequence,

an expansion option represents a less levered claim in bad times. While in recession the volatility

of X is higher, the sensitivity of a growth option’s value to changes in the earnings is lower. As

discussed in the next section, this lower sensitivity attenuates the increase in the equityholder’s

default option due to a higher volatility of X during recession.

4.4. Optimal default policy

This section explains how the optimal default policy is affected by the presence of growth options

in the value of firms’ assets. To keep the intuition tractable, we do not comment on the (minor)

impact of the exercise boundaries on default thresholds, which arises due to the simultaneous

optimization of the expansion and default policy.

For all firms – those with and those without an expansion option – the optimal default policy

is determined by recognizing that, at any point, shareholders can either make coupon payments

and retain their claim together with the option to default, or forfeit the firm in exchange for the

waiver of debt obligations. When the economy shifts from boom to recession, the present value

of future after-tax earnings declines mainly because firm earnings have a lower drift, and because

they become both more volatile and more correlated with the market. This present value decline

reduces the continuation value (the expected value from keeping the firm alive) for equityholders,

inducing them to default earlier (at higher earnings levels) in recession. We refer to this effect as

the value effect. On the other hand, a high earnings volatility in recession makes the option to

default more valuable, which defers default in bad times. This is the volatility effect. As in the

15Relative value changes are determined in Appendix A.2. In untabulated results, we confirm numerically that the
relative value changes are indeed higher for expansion options than for the underlying assets in place for plausible
parameter values.
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models for invested assets of Bhamra, Kuehn and Strebulaev (2010b) and Chen (2010), the value

effect usually dominates the volatility effect, generating higher default thresholds in recession, i.e.,

leading to counter-cyclical default thresholds. Counter-cyclical default thresholds together with a

high volatility in bad times imply counter-cyclical default probabilities, consistent with empirical

evidence (Chava and Jarrow, 2004; Vassalou and Xing, 2004). Additionally, default losses are

empirically reported to be higher in recession because many firms experience poor performances

during such times. Combined with higher marginal utilities in bad times, these mechanisms raise

the present value of expected default losses for bondholders which leads to higher credit spreads

and lower optimal leverage ratios than in standard contingent claim models.

Fig. 4 draws the equity value maximizing default policy of levered firms initiated in boom. The

graph shows default thresholds for a range of asset composition ratios. Leverage is held constant

at 41.83%.16 The solid line shows the default threshold in boom, and the dashed line the one in

recession. For example, for a firm with only invested assets the optimal default thresholds are

D∗
B = 2.45 and D∗

R = 2.69. For an average firm with an asset composition ratio of 1.6 they are

D∗
B = 3.19 and D∗

R = 3.55, and for a growth firm with an asset composition ratio of 2.2 they are

D∗
B = 3.52 and D∗

R = 3.94. In the no-default region above the line corresponding to a given regime,

the continuation value for equityholders exceeds the default value and it is optimal for shareholders

to keep injecting funds into the firm.

INSERT FIG. 4 HERE

Two points from Fig. 4 are particularly noteworthy. First, the optimal default thresholds

increase as the asset composition ratio increases, inducing a higher default probability. This finding

evolves from the observation that growth options represent levered claims, which are relatively

more sensitive than invested assets to a given decrease in X. Second, while all firms are more

likely to default in recession than in boom, the increasing distance between D∗
B and D∗

R for larger

asset composition ratios indicates that the counter-cyclicality of default boundaries is particularly

16When the scale parameter is changed but the coupon is left constant, default thresholds are not directly compa-
rable. The reason is that the total asset value increases with s for every X. Considering constant leverage assures
that the considered coupon changes consistently with the increase in the total asset value when we alter s.
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pronounced for growth firms. The reason is that due to the higher relative value change of growth

options upon a regime switch, the value effect is stronger for a firm with a high asset composition

ratio. Additionally, because options represent less levered claims in recession than in boom, the

increase in the equityholders’ default option - due to the higher volatility of X when the regime

switches to recession - is attenuated for growth firms. In other words, the volatility effect, which

tends to decrease the distance between the default thresholds, is weaker for firms with larger

expansion options.

5. Aggregate dynamics of leverage, asset composition, investment and defaults

To validate our structural equilibrium framework with intertemporal macroeconomic risk and

investment, we analyze the dynamic properties of our model-implied economy. In this section,

we qualitatively compare the aggregate predictions for the entire economy to empirically reported

capital structure, investment, and default patterns.

5.1. Simulation

We generate a dynamic economy of average firms implied by our model. We consider 1,000

identical firms with infinite debt maturity. Initially, each firm’s after-tax earnings are X = 10,

and the option scale parameter is assumed to be s = 1.89 if the firm’s initial regime is boom, and

s = 2.05 otherwise. These choices of s imply an asset composition ratio of 1.6 in both states at

initiation, given optimal leverage. Firms receive the same macroeconomic and inflation shocks,

but experience different idiosyncratic shocks. Each firm observes its current earnings as well as

the current regime on a monthly basis and behaves optimally: If the current earnings are below

the corresponding regime-dependent default threshold, the firm defaults immediately; if the current

earnings are above the corresponding regime-depending option exercise boundary, the firm exercises

its expansion option; otherwise, the firm takes no action.

In our model, firms have a growth option, which can only be exercised once. To maintain a

balanced sample of firms, and to avoid that the average asset composition ratio is systematically

trending towards the one of a firm with only invested assets when we simulate the economy over
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time, we exogenously introduce new firms. In particular, we substitute each defaulted or exercised

firm by a new firm whose growth option is still intact. New firms have initial after-tax earnings of

X = 10, and an option scale parameter s according to the current regime as described above.

To ensure convergence to the long-run steady state, we first simulate the economy for 100 years.

The starting period for the reported results is the final period of the first 100 years of simulation.

Next, we simulate the model for 200 years and present the aggregate dynamics.

5.2. Results

We start by discussing the cyclicality of leverage. Hackbarth, Miao and Morellec (2006) generate

counter-cyclical optimal leverage ratios in their macroeconomic model. As in our framework, the

optimal coupon rate of debt initiated in boom exceeds the one in recession. At the same time, the

value of assets is greater in boom. The second effect dominates the first, generating the counter-

cyclicality in optimal leverage. We additionally incorporate the empirical fact that asset volatility

is regime-dependent. Because the latter decreases in boom and increases in recession, our optimal

coupon rate varies more than in Hackbarth, Miao and Morellec (2006) when the regime changes.

With this extension, the change in the value of optimal debt dominates the change in the value

of assets, generating pro-cyclical optimal leverage ratios for realistic parameter values, in line with

Covas and Den Haan (2006) and Korteweg (2010). Fig. 5 plots the simulated market leverage in

the economy. Shaded areas represent recessions. Even though our optimal initial leverage ratios

are pro-cyclical, the simulated time series shows that actual aggregated market leverage is counter-

cyclical. The reason is that when firms are stuck with the debt issued at initiation, the equity

value declines more than the debt value during recessions, which tends to increase leverage in bad

times. This prediction conforms to Korajczyk and Levy (2003) who show that unconstrained firms’

leverage ratios vary counter-cyclically.

INSERT FIG. 5 HERE

Fig. 6 shows the time series of the aggregate asset composition ratio in the simulated economy.

As expansion options are more sensitive to the underlying stochastic processes than invested assets,

the ratio behaves pro-cyclically, as reported in the literature.
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INSERT FIG. 6 HERE

We investigate aggregate default rates in Fig. 7. Simulated default rates are counter-cyclical,

consistent with the empirical fact that most defaults occur during economic recessions. Additionally,

the graph shows several spikes in default rates that occur right at the time when the economy enters

into a recession, consistent with the empirical evidence in Duffie, Saita and Wang (2007) and Das,

Duffie, Kapadia and Saita (2007) (see, e.g., around years 50 and 90). Recall that defaults can occur

because either the idiosyncratic earnings reach the default threshold in a given regime, or due to

a change of the macroeconomic regime from boom to recession. The clustered default waves occur

due to an increase in firms’ default thresholds upon such a regime change. All firms between the

two thresholds default simultaneously when the regime switches to recession, even though their

earnings do not exhibit instantaneous regime-induced changes. After such waves of default, the

default frequency tends to remain high during recessions.

As a refinement of this general result, we expect that the tendency to default during recession

should be particularly pronounced for firms with high expansion options. This prediction is sug-

gested by the fact that the degree of counter-cyclicality of default thresholds is positively related to

the initial asset composition ratio. We investigate the propensity to default during recession in a

dynamic, simulation-based setting by counting default rates of two separate aggregate economies.

The first one is designed as above, consisting of firms with both assets in place and growth op-

tions, such that the asset composition ratio at initiation is 1.6. The second setting consists of

firms with only invested assets. To construct a number of cross-sectional distributions of firms, we

first simulate 20 dynamic economies for ten years. Using each economy obtained at the end of the

first ten years, the default rates in both regimes are observed for 50 subsequent simulations of the

following 20 years, resulting in a total of 1,000 simulations. The average percentage of defaults

that occurs during recession is then calculated.17 We find that in the first economy, on average,

75.41%, 76.79%, and 77.66% of total defaults of firms with assets in place and growth opportunities

17The distance to default in the aggregate economy of firms with only invested assets is trending over time. The
reason is that firms that default are replaced, but there are no option exercises after which well performing firms
could be replaced. Consequently, we do not compare absolute default rates of the two economies, but rather the
fraction of defaults occurring in each regime.
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occur during recession over five, ten, and 20 years, respectively. In the economy in which firms only

have invested assets, the corresponding numbers are considerably smaller at 66.40%, 71.66%, and

73.71%, respectively.

This finding is also related to the observation that, on average, growth firms have lower recovery

rates than value firms (Cantor and Varma, 2005). The standard argument offered by Shleifer and

Vishny (1992) is that growth firms as potential buyers of growth assets have little cash relative to

the value of assets. Hence, they are likely to be themselves credit constrained when other growth

firms sell their assets upon default, which lowers recovery rates. Our model delivers an alternative

explanation: We show that growth options in the value of firms’ assets create a propensity to

default during recession, when recovery rates are low.

INSERT FIG. 7 HERE

A significant literature suggests that business cycle shocks common to all firms play a crucial

role in explaining aggregate investment. In particular, there is evidence that aggregate investment

is characterized by both episodes of very intense investment activity and periods of very low in-

vestment activity (Doms and Dunne, 1998; Oivind and Schiantarelli, 2003). Moreover, aggregate

investment and the probability of investment spikes are strongly pro-cyclical (Barro, 1990; Cooper,

Haltiwanger and Power, 1999). Our model reflects these features. First, when the regime switches

from recession to boom, firms in the region between the two investment boundaries exercise their

expansion option simultaneously by investing K. Fig. 8 shows that investment spikes often occur

upon such regime switches (see for example around year 35, or year 60). After these spikes, simu-

lated investment rates tend to remain high during boom due to the positive drift of the earnings.

Hence, we observe pro-cyclical investment spikes followed by higher investment activity during

booms. At the other end, investment activity often dries out when the economy switches from

boom to recession, because the optimal exercise boundary jumps up and the expected earnings’

drift turns negative. Our model also predicts that observed investment waves should be mainly

driven by firms with high expansion options.

INSERT FIG. 8 HERE
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Finally, we plot simulated average credit spreads in Fig. 9. Credit spreads are calculated as

(c/di(X)) − rpi , in which rpi is the perpetual risk-free rate defined in (28). Consistent with the

empirical literature (Fama and French, 1989), we find counter-cyclical credit spreads. When the

economy stays in boom, credit spreads tend to decline as distances to default increase due to the

positive expected drift of the earnings and the lower default threshold. Conversely, in recession,

credit spreads rise as distances to default tend to decline and the volatility increases.

INSERT FIG. 9 HERE

6. Quantitative implications and empirical predictions

In this section, we discuss the quantitative implications and empirical predictions of our model.

The attention is restricted to BBB-rated firms since it has been argued that the pricing of very high-

grade investment firms is dominated by factors other than credit risk such as liquidity risk or a tax

component (Longstaff, Mithal and Neis, 2005; De Jong and Joost, 2006). We start by determining

target observed average credit spreads. Duffee (1998) estimates an average yield spread in the

industrial sector between BBB-rated bonds and Treasury yields of 198, 148, and 149 bps for bonds

with a mean maturity of 21 years (long), 8.9 years (medium), and 4.7 years (short), respectively.

Davydenko and Strebulaev (2007) report somewhat lower spreads of 143 bps for bonds with 15−30

years (long), 115 bps for 7−15 years (medium), and 115 bps for 1−7 years maturity, respectively.18

From these spreads, we subtract 35.5% to reflect the results in Longstaff, Mithal and Neis (2005)

and Han and Zhou (2011) who find non-default components in BBB bond yields of 29% and 42%,

respectively. We arrive at a plausible target range of around 92 to 128 bps for long maturities,

74 to 95 bps for medium maturities, and 74 to 96 bps for short maturities.19 Panel A in Table 2

tabulates these target credit spread ranges. In Panel B, we also report empirical default rates of

BBB-rated debt over five, ten, and 20 years from Moody’s (2010).

18The estimates of short and medium maturities in Huang and Huang (2003) are higher because of the embedded
call options in the corporate bond sample and the inclusion of two recessions with high spreads.

19We recalculate target ranges by subtracting the absolute non-default component for BBB firms of 61.8 bps
reported in Han and Zhou (2011), or by subtracting the 29% reported in Longstaff, Mithal and Neis (2005) for an
earlier sample period. Our model’s performance does not depend on the exact definition of targets.
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INSERT TABLE 2 HERE

We discuss the implications of our model for credit spreads and leverage along two dimensions.

First, we follow the traditional way of investigating a typical individual firm. Second, we implement

an approach similar to the one proposed by Bhamra, Kuehn and Strebulaev (2010b) in which credit

spreads and leverage ratios are calculated as cross-sectional averages based on a simulation of the

empirical distribution of BBB-rated individual firms.

6.1. Credit spreads

6.1.1. Typical firm with endogenous default boundary

Credit spreads for various models on newly issued corporate debt are calculated in Table 3

for five (short), ten (medium), and 20 (long) years maturity.20 We follow the standard approach

in structural models by calibrating the idiosyncratic earnings volatility such that the total asset

volatility is approximately 25% in each model, the average asset volatility of firms with outstanding

rated corporate debt (Schaefer and Strebulaev, 2008). Additionally, we fix leverage at the average

ratio of 41.83% in our BBB-firm sample.

Importantly, the default boundaries and expansion thresholds are assumed to be chosen op-

timally by equityholders, as we are interested in whether our model can generate both realistic

prices of corporate claims and realistic endogenous default and expansion rates. Specifying default

boundaries exogenously such that a model’s actual default probabilities match the data (as done

in Chen, Collin-Dufresne and Goldstein (2009) or Huang and Huang (2003)) not only substantially

dilutes the value of the option to default, but also distorts the value of the expansion option because

the latter depends on the default policy.

It is well-known that structural models of default typically generate credit spreads that are too

low compared to their empirical counterpart. To illustrate this point, we first analyze the model

without business cycle risk in Panel A of Table 3. The expected drifts and systematic volatilities

of earnings and consumption are set equal to their unconditional means. Panel A shows credit

20The value of a finite maturity risk-free bond is given in Appendix A.4, Formula (A-74), in which c is replaced by
c+mp and rni is replaced by rni +m.
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spreads for different maturities of the standard structural model of Leland (1998). The empirical

target credit spreads in Table 2 are about five times larger for the short maturity, and about three

times larger for the medium and long term than those predicted by the structural model.

INSERT TABLE 3 HERE

Bhamra, Kuehn and Strebulaev (2010b) and Chen (2010) derive structural multi-regime models

for typical firms that consist of only invested assets. We closely replicate their approach for an

average firm within a two-regime model. To match the asset volatility of 25%, the idiosyncratic

earnings volatility is set to σX,id = 0.21. Panel B reports unconditional credit spreads, calculated

as a weighted average of the state-dependent credit spreads, in which the weights correspond to

the long-run distribution of the Markov chain. For comparability to our setting with expansion

options, the results without debt restructuring are presented. While the credit spreads for typical

firms of 35, 56, and 78 bps for five, ten, and 20 years maturity, respectively, are clearly higher than

in the one regime model, they are still considerably below their targets.21

Next, we investigate our model with expansion options for a typical BBB-rated firm. Note

that for a given idiosyncratic earnings volatility, firms with different asset composition ratios have

different total asset volatilities due the inherent leverage of their expansion option. Moreover, a

firm’s asset volatility is not constant over time, as its option’s moneyness changes when X moves

towards or away from the exercise boundary. To obtain the average volatility for a certain rating

class, the standard approach in the literature is to average the calculated asset volatilities over all

firms with the same rating (Vassalou and Xing, 2004; Duan, 1994; Schaefer and Strebulaev, 2008).

We calibrate the idiosyncratic volatility σX,id to the empirically reported average asset volatility

of 0.25: Given an idiosyncratic volatility σX,id, we simulate model-implied samples of BBB-rated

firms over ten years, and calculate the resulting average asset volatility. (Details on the simulation

can be found in Appendix A.5.1.) The calibration yields σX,id = 0.168, which ensures that the

21Bhamra, Kuehn and Strebulaev (2010b) use higher recovery rates, lower leverage and do not model the impact
of principal repayments on default thresholds, which results in marginally lower credit spreads in their static case.
Chen (2010) obtains larger ten year credit spreads in a model with nine states and a dynamic capital structure, but
uses higher leverage, and a cash flow volatility that induces a much higher asset volatility than empirically observed.
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average asset volatility of our simulated BBB-rated firms with expansion options corresponds to

its empirical counterpart.22

Panel C of Table 3 shows the resulting credit spreads for typical firms. Several aspects are

noteworthy about these results. Our model increases the unconditional credit spreads of an average

firm for five, ten, and 20 years from 18 bps to 45 bps (+150%), from 29 bps to 66 bps (+128%),

and from 41 bps to 84 bps (+105%), respectively, compared to the one regime model in Panel

A. To understand this large effect, recall first that macroeconomic models generate larger credit

spreads than one regime models because recessions are times of high marginal utility, so that default

losses that occur during these times will affect investors more. An important economic implication

is that the average duration of bad times in the risk-neutral world is longer than in the actual

world. Since the representative agent uses risk-neutral and not actual probabilities to account for

risk and to compute prices, credit spreads are larger and the agent behaves more conservatively

than historical default losses imply. Second, if firms have a higher tendency to default in recession,

this discrepancy will increase due to the higher risk premium. Our model shows that because

of the strong sensitivity of option values to regime switches, and because they are less sensitive

to the underlying earnings during recession, the counter-cyclicality of default thresholds is more

pronounced for firms with larger growth options. The resulting stronger counter-cyclicality of the

default probability of growth firms thus drives up their credit spreads. As can be seen in row 2

of Panel C, the credit spreads for an average firm, consisting of both invested assets and growth

options, are 45 bps, 66 bps, and 84 bps for debt maturities of five, ten, and 20 years, respectively.

This is, respectively, 29%, 18%, and 8% higher than the credit spreads of an average firm in the

standard macroeconomic model with only invested assets.23

22We also repeat this exercise with different specifications, such as alternative simulation length and debt maturity.
The resulting idiosyncratic volatilities are fairly insensitive to these variations. An alternative approach is to calibrate
the idiosyncratic volatility to the cumulative default probability of BBB-rated firms (Chen, 2010). This procedure,
however, usually leads to asset volatilities that are higher than the ones empirically observed.

23We cannot directly compare the results for invested assets in Panel C to the ones for average firms in Panel B,
even though the latter consist of only invested assets. The reason is that in our model, the idiosyncratic volatility is
calibrated such that the asset volatility of the entire sample of BBB-rated firms matches 0.25, whereas in Panel B,
σX,id is chosen such that firms with only invested assets have an asset volatility of 0.25.
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Besides the fact that they generate too low credit spreads, another problem of existing struc-

tural models is that the implied term structure of credit spreads at initiation is much steeper than

its empirical counterpart for a typical firm. The reason is that the implied spreads are particularly

low at the short end. Most existing studies with macroeconomic models use the default thresholds

of infinite maturity debt (that is, debt without principal repayments) to numerically calculate the

risk-neutral default probability for each maturity. As the credit risk literature identifies firms’ debt

maturity as an important determinant of credit risk (Gopalan, Song and Yerramilli, 2010; He and

Xiong, 2011), we endogenously derive optimal default thresholds also for finite debt maturity fol-

lowing the approach of Leland (1998). Due to the continuous principal repayments, these thresholds

are considerably higher for short maturities than for infinite debt, resulting in larger credit spreads

at the short end. The resulting term structure of credit spreads for an average firm in Panel A, B,

and C is consequently flatter and, hence, closer to the shape observed in target spreads than when

using default thresholds of infinite maturity debt.24

The rows in Panel C of Table 3 identify the cross-sectional relationship between the asset

composition ratio and credit risk. To tease out the effect of growth options on credit spreads, we

vary the asset composition ratio by altering s. As raising s increases the value of the expansion

option, we simultaneously adapt the coupon to maintain a constant leverage of 41.83%.25 This

exercise shows that the asset base of the firm is an important driver of credit risk, implying a

positive relationship between the portion of growth options in the value of a firm’s assets and the

costs of debt. In particular, altering the asset composition ratio of a firm from 1 to 2.2 increases

credit spreads by about 56% to 96%, depending on the debt maturity. This effect is remarkable

given that we solely vary the assets’ characteristics. It arises for two reasons in our model. First,

because options are levered, and due to the endogenous investment boundary, expansion options are

24We use default boundaries for the appropriate debt maturities in both Panels B and C to highlight the pure effect
of expansion options on credit spreads.

25Alternatively, changing both s and K to alter the asset composition qualitatively retains the aggregate and
cross-sectional predictions. Holding s constant while only varying K implies large decreases in the option exercise
boundaries for relatively small increases of the asset composition ratio. In the extreme, a firm with a very low K will
exercise its expansion option almost immediately; in essence, credit spreads then virtually mirror those of a firm with
only invested assets, diluting the model’s cross-sectional predictions. Note also that any variation in K changes the
costs of investment. By only varying s, we instead avoid that our results are driven by different sizes of the expected
financing in case of equity-financed investment costs.
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more sensitive to the underlying uncertainty, and, hence, more volatile. This higher volatility drives

up the default probability of growth firms. Second, a higher portion of the expansion option’s value

in the overall asset value of a firm induces a higher counter-cyclicality of the default probability,

which raises expected default costs. The higher default probability and larger default costs both

increase the costs of debt for growth firms.

Note that while firms with growth options generally have a higher credit spread than firms with

only invested assets (ceteris paribus), credit risk is concave in the asset composition ratio. This

concavity occurs because firms with a larger asset composition ratio are closer to their exercise

boundary, where credit spreads also reflect that the asset volatility and the counter-cyclicality of

the default thresholds will decrease when a firm exercises its expansion option.

Our model rationalizes empirical properties of the cross-section of credit risk. For example,

Davydenko and Strebulaev (2007) find that market-to-book asset values, the ratio of research and

development expenses to total investment expenditure, and one minus the ratio of net property,

plant, and equipment to total assets are all significantly and positively related to credit spreads

(Table VI on p. 2652). Similarly, Molina (2005) shows that firms with a higher ratio of fixed assets

to total assets have lower bond yield spreads and higher ratings (Table II on p. 1438). This evidence

implies that, empirically, even after controlling for most factors relevant to credit risk in standard

structural models, credit spreads are higher for growth firms. Hence, while an average firm with

valuable growth options exhibits, for example, a different tax advantage of debt or payout ratio than

a firm that only consists of invested assets, simple variation of such input parameters would not

explain these findings. What is needed to address the aggregate puzzle and the mentioned cross-

sectional evidence is a model that generates higher explained credit risk than standard models for

a given level of input parameters. Our model delivers this result.

6.1.2. True cross-section

The previous section calculates credit spreads of a typical individual firm, which is consistent

with the historically observed average input parameters of firms in the same rating class of which

the individual firm is representative.
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In this section, inspired by the work of Bhamra, Kuehn and Strebulaev (2010b), we employ a

simulation approach to capture the dynamics of the cross-sectional distribution of firm character-

istics. The central insight of our approach is that BBB-rated firms are very different with respect

to both leverage and asset composition ratios, and that credit spreads and default rates are highly

non-linear in these characteristics. Moreover, the previous section considers credit spreads solely

at debt issuance points, when the principal corresponds to the market value of debt. The majority

of empirically reported spreads are, however, based on observations made at times when debt is

not being issued. To capture the impact of these issues, it is important to calculate credit spreads

and default rates for a simulated sample of firms that matches the observed empirical distribution,

i.e., the true observed cross-section of BBB-rated companies. The resulting average of simulated

credit spreads can then be compared to the empirical average credit spread. Simultaneously, the

approach allows us to verify whether the default probabilities implied by our model correspond to

the reported historical default probabilities of BBB-rated firms.

To obtain the implications of the true cross-section of BBB-rated firms, we start by generating

a distribution of firms implied by the model. In particular, we set up a grid of optimally leveraged

firms with scale parameters s ranging from zero up to the largest possible value such that the option

is not exercised immediately. The step size is 0.05, and 50 identical firms are considered for each

value of the option scale parameter. Earnings paths of all firms are then simulated forward over ten

years, resulting in a model-implied economy populated by more than 3, 000 firms. This economy

has a broad range of leverage ratios and asset composition ratios.

In a second step, we match our historical distribution of BBB-rated firms with its model-

implied counterpart. For each observation in the average empirical cross-section, we select the firm

in our model-implied economy with the minimum distance regarding the percentage deviation from

the target average market leverage and asset composition ratio. The matching is generally very

accurate. Considering a debt maturity of ten years yields an average Euclidean distance of 0.0648,

with the 85%-quantile being 0.0865.26 That is, on average, only 15% of the firms are matched

26Other debt maturities yield virtually identical results for the matching accuracy.
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with the root of the sum of the squared percentage deviations being larger than 8.65%.27 Note

that while our initial model-implied economy potentially contains firms with different ratings, the

described matching procedure allows us to construct a cross-sectional distribution of model-implied

firms that closely reflects its empirical BBB-rated counterpart.

Next, earnings paths of the 717 matched BBB-model-firms are simulated forward for 20 years

on a monthly basis. This simulation is repeated 50 times.

The outcome of both the matching and the forward simulation of the matched sample also

depends on the particular realizations of the idiosyncratic shocks and the states of the economy in

the first simulation step. Hence, to explore the distributional properties of our results, the entire

procedure is conducted 20 times, which results in a total of 1, 000 simulations. Details on the

simulation are given in Appendix A.5.2.

Panel D of Table 3 summarizes the results. The average credit spreads, calculated during five

years after the matching, are 57 bps for five years, 81 bps for ten years, and 100 bps for 20 years.28

Hence, our model closely matches the historical levels reported in Table 2 for ten and 20 years.

Five year credit spreads are somewhat lower than their target. We also measure the cyclicality of

credit spreads. Average ten year credit spreads, for example, are 59 basis points during boom, and

115 during recession. As expected, they are strongly counter-cyclical.

Importantly, average credit spreads for the simulated true cross-section are considerably higher

than the ones of a typical firm at initiation. There are two reasons for this result. First, some

firms will be near default, and credit spreads are convex in the distance to default. Second, the

market value of debt corresponds to the principal at initiation. In practice, however, firms are not

at initiation most of the time. The actual market value of debt will, therefore, often underestimate

27The market leverage is matched with an average distance of 0.0248. The average percentage distance of the asset
composition ratio of 0.0549 is larger. This number is driven by a few firms with unusually high asset composition
ratios. As they would optimally exercise their expansion option immediately in our model, these firms are matched
with model firms with a somewhat lower asset composition ratio. We expect a minor impact of this limitation on our
results, because firms with unusually high asset composition ratios also have very low leverages, and, hence, are not
driving our average credit spreads.

28We follow Bhamra, Kuehn and Strebulaev (2010b) in measuring average credit spreads over a five year period.
During longer periods, many firms could deviate substantially from the initial average distribution, and would,
therefore, not be BBB-rated anymore.
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the burden from the principal repayments, and especially so for firms approaching their default

boundary. The reason is that the market value can hardly go beyond the principal as it is bounded

above by the value of risk-free debt, but can easily reach values below the principal when earnings

deteriorate. Our simulation of the true cross-section captures these asymmetric deviations over

time, resulting in higher average credit spreads than those of firms observed at initiation. Compared

to Bhamra, Kuehn and Strebulaev (2010b), the additional credit spreads generated from simulating

the true cross-section are lower, because we do not incorporate debt restructuring.

To verify whether our model generates default rates corresponding to the empirically reported

default frequencies for realistic debt maturities, we also count cumulative default rates in the

simulated true cross-section. The model-implied average and median cumulative default rates over

several years are reported in each Panel of Table 4. Panel A presents default rates over five, ten, and

20 years from simulations with firms issuing infinite maturity debt. Panels B, C, and D show default

rates from simulations with firms issuing finite maturity debt. Due to the principal repayments,

default thresholds of firms with finite maturity debt are considerably higher than those of firms with

infinite maturity debt. Note that simulated credit spreads are consistent with a range of realized

ex-post default rates, as observed default rates vary depending on a particular realization of good

and bad states. Therefore, we also report the 25% and 75% percentiles of the distribution.

Empirically, Datta, Iskandar-Datta and Patel (2000) report a mean maturity of IPO bonds of

12 years, Guedes and Opler (1996) obtain an average maturity of 12.2 years for seasoned debt

offers, and Davydenko and Strebulaev (2007) measure a mean time to maturity of BBB-bonds in

the industrial sector of 9.51 years. Panel C of Table 4 shows that when assuming that firms have

a debt maturity of ten years, our model-implied median default rates over five, ten, and 20 years

are very close to the historical default probabilities observed from 1920 to 2009 reported in Table

2. Hence, for a realistic debt maturity, our median economy is consistent with historical default

frequencies of BBB-rated firms. The average default rates are somewhat larger than their targets

due to a few realizations with long sojourn times in recession, resulting in high default rates.29

29The standard deviation of the sojourn times generated by Markov chains is quite large. In our model, long
sojourn times in recession cause high default rates for some sample paths. As default rates are non-linear in the
distance to default, long sojourn times in boom do not counterbalance the high rates in recession.
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Panels A and D show that while the generated rates tend to be too low in Panel A, but too large

in Panel D, historical default frequencies still fall within the 25% to 75% range of model-implied

median default rates for most years.

The large difference between Panel A and D in both average and median default rates illustrates

that debt maturities and the associated default thresholds have an important effect on model-

implied default rates. It is, therefore, important to incorporate a realistic debt maturity when

calibrating models with endogenous default thresholds.

INSERT TABLE 4 HERE

In sum, our results demonstrate that the average credit spreads implied by our model for the

true cross-section are simultaneously consistent with historically observed average asset volatilities,

and, especially for typical debt maturities, with default rates reported for BBB-rated firms.

6.2. Leverage

This section analyzes the features of leverage ratios resulting from our model. We first inves-

tigate how growth options affect the initial choice of optimal leverage in our model. At initiation,

a firm consisting of only invested assets has an optimal leverage that is between four and five per-

centage points higher than the one of a typical firm with an asset composition ratio of 1.6 for all

debt maturities.30 The reason is that a higher asset composition ratio increases the default prob-

ability, particularly so in recessions in which default losses are larger and harder to bear. Due to

the resulting higher costs of debt, firms with growth options optimally select lower initial leverage.

As argued by Bhamra, Kuehn and Strebulaev (2010a), however, it can be misleading to make

quantitative statements simply based on optimal leverage at issue. Hence, we investigate the

leverage ratios of our true cross-section of BBB-rated firms simulated over five years after matching.

For the main analysis, the debt maturity is assumed to be ten years.

30The difference depends on the initial regime and the debt maturity. For example, with infinite debt maturity, the
difference in optimal initial leverage between a firm with only invested assets and a firm with an asset composition
ratio of 1.6 is 4% if the firms are initiated in boom. (The optimal leverage ratios in this case are 45.4% and 41.4%,
respectively.) For firms initiated in recession, the difference is 4.4% (= 44.2% minus 39.8%).

39



INSERT TABLE 5 HERE

Panel A in Table 5 shows that the average leverage is 40.89%, which is, naturally, close to the

average of 41.83% of our BBB-rated firm sample used for the matching. (The average leverage is

40.57%, 40.93%, and 41.45% for five years, 20 years, and infinite debt maturity, respectively.)

In Panel B, we compare leverage ratios in boom and recession. While optimal leverage is pro-

cyclical at initiation, it is counter-cyclical over time for the true cross-section of BBB-rated firms.

In particular, the average leverage is 36.94% in boom, and 46.20% in recession. The reason is that

the market value of equity is more sensitive to regime switches than the market value of debt,

making leverage counter-cyclical. This mechanism dominates the optimally pro-cyclical leverage

choice at initiation for our typical firms. The result mirrors the property we previously established

for the aggregate economy, and confirms that it holds also when matching to real empirical samples.

Finally, Panel C investigates the relationship between growth options and market leverage.

Regressing the average leverage of each firm on its average asset composition ratio in our empirical

BBB-rated firm sample yields a coefficient of −0.165. We conduct the same regressions with the

averages of asset composition ratios and leverage ratios from each of the 1, 000 simulations of the

true cross-section. The average coefficient from this regression is −0.184, close to its empirical

counterpart. Hence, the observed magnitude of the negative relationship between growth options

and market leverage is preserved during the simulation.

Our qualitative finding for the cross-sectional relationship between growth options and leverage

is widely accepted (Bradley, Jarrell and Kim, 1984; Barclay, Smith and Morellec, 2006; Johnson,

2003; Rajan and Zingales, 1995). Consistent with the literature, the coefficient is robustly negative.

Moreover, its quantitative size, implied by the 25% and 75% quantiles, is comparable to the one

in empirical studies. Fama and French (2002), for example, obtain a coefficient of −0.096 in their

regression of market leverage on a similar ratio of asset composition and standard controls, and

Johnson (2003) finds that increasing the asset composition ratio by one decreases leverage by around

7.8 percentage points in a pooled regression.
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6.3. Robustness

In this section, we discuss the robustness of the results to variations in the critical input param-

eters. Additionally, we also show how our predictions are affected if we assume that the expansion

is financed by issuing equity instead of selling assets.

To analyze the impact of preferences on our results, we show ten year credit spreads and the

simulated average leverage for γ = 7.5 in the second column of Table 6, a value which is also

sometimes used in the literature (Bansal and Yaron, 2004; Chen, 2010). All other parameters are

kept constant at their baseline levels from Table 1. The debt maturity is assumed to be ten years.

INSERT TABLE 6 HERE

Lower risk aversion induces a smaller demand for precautionary savings, which increases the

real risk-free rate. At the same time, it raises the risk-neutral earnings drift, because risk prices for

systematic Brownian shocks (ηi) decrease. Both mechanisms reduce the default probability, leading

to the lower credit spreads and slightly lower leverage.

In column 3 of Table 6, we investigate the impact of the exercise costs on credit spreads and

leverage. As we are mainly interested in firms with intact expansion options, we present the

results for K equal to 350, i.e., a higher K than in the baseline case. (Lowering K induces many

growth firms to exercise their expansion option almost immediately.) Generally, credit spreads

and the average leverage are very similar to the ones of our baseline specification. For high asset

composition ratios, such as 2.2, credit spreads at initiation slightly increase because a higher K

induces a larger distance to the optimal exercise boundary compared to the baseline specification.

This increase in credit spreads from the larger distance arises because close to the exercise boundary,

credit spreads also reflect the fact that the firm will imminently be converted into a firm with only

invested assets, and, hence, with lower credit risk. When simulating the true cross section, the

impact of increasing K from 310 to 350 on the average credit spread is below one basis point.

Finally, we also analyze in column 4 of Table 6 the case in which the exercise price of the

expansion option (K) is financed by issuing additional equity instead of selling assets. Appendix
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A.6 presents the solution for the value of corporate debt. New equity decreases the leverage after

exercise and, hence, lowers credit risk. As firms with a high asset composition ratio are close to

the endogenous exercise boundary where new equity-financing occurs, credit spreads are strongly

reduced for typical growth firms compared to the benchmark model. In the simulation of the true

cross-section, however, the effect is relatively small because most firms have a large distance to the

exercise boundary. Especially those firms that contribute the most to the average credit spread,

i.e., distressed firms, are particularly far away from the exercise boundary. Additionally, Panel B

shows that the average leverage is only marginally affected.

The result for typical growth firms in column 4 shows that close to firms’ exercise boundaries,

credit spreads are driven by the expected new financing upon investment, and do not primarily

reflect the nature of assets. This insight validates our focus on asset-financing rather than on

equity-financing of growth option exercises to analyze the isolated impact of the asset composition

on credit risk and corporate policy choices.

We conclude that while alternative specifications and settings can have an impact on the quan-

titative results, our qualitative aggregate and cross-sectional predictions are robust.

7. Equity value premium

In this section, we investigate the value premium for equity implied by our model, i.e., the

difference in the equity risk premium between value and growth firms. As in the analysis of credit

spreads, we show that considering the true cross-section is crucial when exploring the quantitative

implications of our model.

The following proposition presents the instantaneous equity risk premium, defined as the ex-

pected difference between the instantaneous yield on corporate equity and the yield on the corre-

sponding risk-free security.

Proposition 3. The nominal instantaneous equity risk premium epi (X) of a firm is given by

epi (X) =
e′i(X)X

ei(X)
γσX,C

i σC
i +

e′i(X)X

ei(X)
(σX,C

i σP,C + (σP,id)2)− λi(
ej(X)

ei(X)
− 1)(eκi − 1). (34)

Proof. See Appendix A.7.
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The first term of the equity risk premium comes from the compensation for the systematic

volatility of stock returns caused by Brownian shocks. The second term accounts for the fact that

the equity premium is calculated in nominal terms. The last term is the jump risk premium, in

which (
ej(X)
ei(X) − 1) is the volatility of stock returns that is caused by Poisson shocks.

In Panel A of Table 7, we investigate the initial, instantaneous value premium for our cross-

section of matched BBB-rated firms. We report yearly equity premiums. At matching, firms

are sorted into ten portfolios based on their asset composition ratio.31 Portfolio one contains all

firms in the lowest asset composition ratio decile (value firms), and portfolio ten the ones in the

highest decile (growth firms).32 The average equity premium for each portfolio is calculated as

the equity value-weighted average of the instantaneous equity premiums of the matched firms in

the corresponding portfolio. The panel reports average equity premiums of 20 matchings after

the corresponding pre-matching simulations. The pattern across the portfolios at matching is in

accordance with the positive relationship between the book-to-market ratio and the equity returns

reported in the literature.

INSERT TABLE 7 HERE

Because growth options are levered claims, growth firms are more volatile, which induces a

larger equity risk premium than for value firms. At the same time, however, growth firms hold

lower levels of debt. The average leverage in portfolio one, for example, is 61.99%, and the one

in portfolio ten is 28.82%. Consistent with the empirical literature (e.g., Bhandari (1988), Fama

and French (1992), and Gomes and Schmid (2010)), financial leverage increases the equity risk

premium in our model. The effect of leverage dominates the impact of the volatility such that

value firms have a higher equity risk premium than growth firms. The yearly premiums in the

lowest and highest asset composition ratio deciles are 6.79% and 5.65%, respectively. The value

premium calculated as the difference between these two premiums is 1.14%.

31We do not sort based on the market-to-book equity ratio for two reasons. First, the asset composition ratio
unambiguously identifies value and growth firms in our model. Second, using the market-to-book equity ratio requires
to define model-implied book asset values, and book values of debt. There is, however, no unique definition of book
values in our model, and different definitions influence the sorting.

32The average asset composition ratio in the value portfolio is 0.99, and 2.08 in the growth portfolio.
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Panel B analyzes the impact of the dynamics of the true cross-section of firms on the value

premium. To this end, we simulate future earnings paths for each firm in our initial cross-section of

matched firms over five years. The procedure is analogous to the one in the simulation approach for

credit spreads and leverages. However, we do not consider firms that have already exercised their

growth option. The reason is that, as our model does not incorporate new debt financing, the equity

premium of exercised firms is very small due to the low leverage after option exercise. Additionally,

exercised firms have very large equity values. Hence, including them causes a heavy downward

bias of the equity premium when applying equity-weighting in the calculation of the average equity

premium.33 The average value-weighted equity premium in our entire simulated true cross-section

of BBB-rated firms is 5.69% per year, consistent with the average equity premium reported in the

literature (Campbell, Lo and MacKinley, 1997; Gomes and Schmid, 2010). Following the sorting

procedure proposed in Fama and French (1992), simulated firms are then sorted into ten different

portfolios at the beginning of each simulated year. We measure the average value-weighted equity

premium of each portfolio during the subsequent year. The first line in Panel B shows that the

resulting value premium of 3.47%, given by the equity premium of portfolio one minus the equity

premium of portfolio ten, is much larger than in Panel A. The value premium calculated as the

difference between the top and bottom portfolio quintiles is 1.45%. The second and third lines of

Panel B report the average leverage and asset composition ratios of each portfolio in the simulated

true cross-section.

Empirically, the yearly value premium is between 6.29% and 12.55% when comparing the top

and bottom book-to-market deciles (Fama and French, 2002; Patton and Timmermann, 2010; Ang

and Kristensen, 2011). Gomes and Schmid (2010) report 7.19% based on portfolio quintiles. Hence,

the results in Panel B show that our model explains about 28% to 55% of the value premium for

deciles. For quintiles, about 20% are explained.

The value premium is higher in Panel B than in Panel A because the equity risk premium is

an increasing and convex function of the leverage ratio. Hence, whenever the economy switches to

33The average ten year credit spread when omitting exercised firms is 98 bps, which is even higher than the model
predicted credit spread in the main case (see Panel D of Table 3).
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recession in the dynamic simulation, the equity risk premium of value firms with an initially larger

leverage increases, on average, more than the one of growth firms with an initially lower leverage.

Empirically, Choi (2010) confirms that a further leverage increase of already highly leveraged value

firms during times with large risk premiums contributes to higher value premiums. Consistent with

our simulation results, he argues that the joint dynamics of asset values and leverage drive, at least

partially, the value premium.34

A direct consequence of this dynamic source of the value premium is that it is strongly counter-

cyclical. In the simulation of the true cross-section of matched firms over five years, the yearly

value premium based on portfolios sorted by asset composition ratio deciles is, on average, 8.74%

in recession, and 0.78% in boom. Based on quintiles, the value premium is 3.52% in recession,

and 0.41% in boom. Our result is consistent with the growing body of literature that shows that

value firms are particularly risky in bad times. For example, Petkova and Zhang (2005) and Chen,

Petkova and Zhang (2008) find that the value effect is empirically much stronger in bad times than

in good periods.

In sum, our analysis shows that by simply exploring the cross-sectional dynamics of firms with

endogenous default and investment decisions a significant portion of the value premium and its

counter-cyclical pattern can be explained.

8. Conclusion

It is now well-accepted that macroeconomic risk is central for understanding credit risk and

capital structure choices. Specifically, defaults are more likely during recession, when they are

particularly costly and harder to bear. This counter-cyclicality increases the costs of debt for all

firms. But to explain the cross-sectional variation in apparently excessive costs of debt, we need

variation inside the firm. This paper formalizes the role of one particularly important aspect of

this heterogeneity, the asset composition of firms. It is not surprising that in principle the asset

34The finding that value stocks have higher returns than growth stocks has prompted many other explanations.
For example, Choi (2010) shows that fixed operating costs can generate a value premium. Similarly, Zhang (2005)
argues that asymmetric adjustment costs change the underlying business risk of value firms.
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composition can be important for optimal capital structure. After all, economists have devoted

much effort to understanding the difference between value and growth firms in terms of their

financial structure, starting with Myers (1977) and Jensen (1986). Little was known, however,

about the quantitative importance of this factor and its relation with macroeconomic risk.

The present structural equilibrium model allows us to jointly analyze a firm’s expansion policy

and financial leverage in the presence of macroeconomic risk. We demonstrate that incorporating

the combination of these factors goes a long way towards explaining the empirically observed cross-

sectional variation in costs of debt, leverage, and equity risk premiums. Our model implies that

companies with a high portion of expansion options tend to be riskier in general, and, at the

same time, particularly sensitive to macroeconomic risk. They are not only more volatile (because

growth options represent levered claims), but also have a higher propensity to default in bad times

than firms with a low portion of expansion options. Thus, the default probability and its counter-

cyclicality are higher the greater the ratio of expansion options to total assets. Together with

higher marginal utility of the representative agent in recession, this relation (exacerbated by costly

liquidation in recession) implies higher costs of debt and more important endogenous shadow costs

of leverage for firms with growth options than for those with only invested assets. Thus, our

findings explain why the credit spread puzzle is empirically more pronounced for growth firms, and

why growth firms hold less debt even after controlling for standard determinants of credit risk.

Moreover, because the economy is made up of a cross-sectional mix of firms, the model accounts,

in quantitatively fairly accurate ways, for the average credit spread puzzle. The model also yields

a counter-cyclical value premium for equity, consistent with the data.

We have studied one type of real options of firms, namely, growth options. However, firms have

a wide and varying range of options, including abandonment and shut-down options. A model

incorporating these options could, therefore, yield further cross-sectional predictions.

While recent research has made important progress in enhancing our understanding of average

credit risk, the cross-section of credit risk has not received sufficient attention. Analyzing it empir-

ically is, fortunately, quite feasible. Liquid credit default swap quotes are now widely available on

a firm-by-firm basis, allowing researchers to investigate specific relationships between firm-specific
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characteristics such as growth options and credit spreads. Our paper also provides a theoretical

basis that can guide empirical research in this direction.
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9. Figures
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Figure 1. Cross-Section of BBB-Rated Firms. This scatterplot shows the average leverage and
Tobin’s Q for each observed BBB-rated firm over the period from 1995 to 2008.

1.4 1.6 1.8 2 2.2 2.4 2.6
12

14

16

18

20

22

24

26

S

X

.

Figure 2. Optimal Exercise Boundary. The solid line shows the optimal exercise boundary in
boom for a range of scale parameters s. The dashed line represents the corresponding exercise
boundary in recession. The graph is drawn for optimal leverage with infinite debt maturity. The
baseline parameter specification from Table 1 is used.
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Figure 3. Option Values. The solid line represents the value of the expansion option in boom for
a range of starting earnings between 0 and 10. The dashed line shows the corresponding values of
the same option in recession. The graph is drawn for optimal leverage with infinite debt maturity.
The baseline parameter specification from Table 1 is used.
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Figure 4. Default Policy and Asset Composition. The solid line represents the default threshold
in boom for a range of asset composition ratios. The dashed line shows the default threshold in
recession. The graph is drawn for constant leverage (41.83%) at each point. Debt maturity is
assumed to be infinite. The baseline parameter specification from Table 1 is used, with s being
varied to generate the desired asset composition ratio.
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Figure 5. Time Series of Market Leverage. The solid line shows the aggregate market leverage of
the simulated economy. The shaded areas represent times of recession. Standard parameters from
Table 1 are used. Debt maturity is assumed to be infinite.

Figure 6. Time Series of ACR. The solid line shows the aggregate asset composition ratio of
the simulated economy. The shaded areas represent times of recession. Standard parameters from
Table 1 are used. Debt maturity is assumed to be infinite.
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Figure 7. Monthly Default Rates. The solid line shows the percentage of firms that default during
a given month in the simulated economy. The shaded areas represent times of recession. Standard
parameters from Table 1 are used. Debt maturity is assumed to be infinite.

Figure 8. Monthly Expansion Rates. The solid line shows the percentage of firms that exercise
their expansion options during a given month in the simulated economy. The shaded areas represent
times of recession. Standard parameters from Table 1 are used. Debt maturity is assumed to be
infinite.
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Figure 9. Time Series of Credit Spread. The solid line shows the average credit spread of the
simulated economy. The shaded areas represent times of recession. Standard parameters from
Table 1 are used. Debt maturity is assumed to be infinite.

52



10. Tables

Table 1

Baseline Parameter Choice

This table describes our baseline scenario. Panel A contains the annualized parameters of a typical BBB-rated S&P

500 firm. Panels B and C show our parameter choice for the expansion option and the macro economy, respectively.

The asset composition ratio (ACR) is the value of the firm, divided by the value of the invested assets.

Parameter Boom Recession

Panel A. Firm Characteristics

Initial Value of After-Tax Earnings (X) 10 10

Tax Advantage of Debt (τ) 0.15 0.15

Nominal Earnings Growth Rate (µi) 0.0782 −0.0401

Systematic Earnings Volatility (σX,C
i ) 0.0834 0.1334

Recovery Rate (αi) 0.7 0.5

Panel B. Expansion Option Parameters of a Typical Firm (ACR=1.6)

Exercise Price (K) 310 310

Scale Parameter if Initiated in Boom (s) 1.89

Scale parameter if Initiated in Recession (s) 2.05

Panel C. Economy

Rate of Leaving Regime i (λi) 0.2718 0.4928

Consumption Growth Rate (θi) 0.042 0.0141

Consumption Growth Volatility (σC
i ) 0.0094 0.0114

Expected Inflation Rate (π) 0.0342 0.0342

Systematic Price Index Volatility (σP,C) −0.0035 −0.0035

Idiosyncratic Price Index Volatility (σP,id) 0.0132 0.0132

Rate of time preference (ρ) 0.015 0.015

Relative Risk Aversion (γ) 10 10

Elasticity of Intertemporal Substitution (Ψ) 1.5 1.5
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Table 2

Target Credit Spreads and Default Probabilities

This table lists our target credit spreads and default probabilities. Panel A reports annualized target average credit

spreads for various debt maturities. They are calculated as the BBB-rated bond minus treasury yields of Davydenko

and Strebulaev (2007) and Duffee (1998), net of a 35.5% non-default component. Credit spreads are quoted in basis

points. Panel B reports average cumulative issuer-weighted default rates in percent for BBB-debt over five, ten, and

20 years for US firms (Moody’s, 2010).

Panel A: Target Credit Spreads (in basis points)

Debt Maturity Short Medium Long

Davydenko and Strebulaev (2007) 74 74 92

Duffee (1998) 96 95 128

Panel B: Historical BBB Default Probabilities (in percent)

Years 5 10 20

1920-2009 3.136 7.213 13.684

1970-2009 1.926 4.851 12.327
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Table 3

Implications for Credit Spreads

This table demonstrates the implications of our model for credit spreads of BBB-rated firms. The asset composition

ratio (ACR) is defined as firm value, divided by the value of the invested assets. Parameters are taken from Table 1,

and the leverage is set equal to 41.83%. In the one regime model, parameters are chosen to match their unconditional

mean. The standard two regime model is adapted from Bhamra, Kuehn and Strebulaev (2010b). Annualized credit

spreads for various debt maturities are calculated as the coupon divided by the debt value, minus the yield on an

otherwise identical riskfree bond. They are quoted in basis points. Credit spreads of typical firms in Panels B and

C are obtained by weighting the credit spreads in boom and recession by the average expected time spent in each

regime, respectively. Panel D contains the average credit spreads of our simulated true cross-section of BBB-rated

firms.

Debt Maturity (Years) 5 10 20

Panel A: One Regime Model

Average Firm 18 29 41

Panel B: Standard Two Regime Model

With Only Invested Assets

Average Firm 35 56 78

Panel C: Two Regime Model

With Expansion Option

Invested Assets (ACR=1) 24 39 55

Average Firm (ACR=1.6) 45 66 84

Growth Firm (ACR=2.2) 47 69 86

Panel D: Two Regime Model

With True Cross-Section

Average Credit Spread 57 81 100
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Table 4

Implications for Default Rates

This table shows the simulated cumulative default rates in percent of our true cross-section of BBB-rated firms.

Panels A to D vary the underlying debt maturity used to calculate the default thresholds in our model.

Years 5 10 20

Panel A: Infinite Debt Maturity

Average Default Rates 2.24 6.54 13.76

Median Default Rates 0.84 3.07 9.34

25% Quantile of Default Rates 0.42 1.12 3.35

75% Quantile of Default Rates 2.37 9.07 19.80

Panel B: 20 Years Debt Maturity

Average Default Rates 4.39 10.72 18.67

Median Default Rates 1.81 6.00 13.81

25% Quantile of Default Rates 0.70 2.23 5.44

75% Quantile of Default Rates 4.88 14.92 26.57

Panel C: 10 Years Debt Maturity

Average Default Rates 6.30 13.61 21.92

Median Default Rates 2.79 8.09 16.95

25% Quantile of Default Rates 1.12 3.49 7.11

75% Quantile of Default Rates 7.39 19.39 32.50

Panel D: 5 Years Debt Maturity

Average Default Rates 8.05 16.32 25.09

Median Default Rates 4.04 10.60 20.22

25% Quantile of Default Rates 1.67 4.60 9.34

75% Quantile of Default Rates 10.32 23.36 36.75
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Table 5

Implications for Leverage

This table demonstrates the implications of our model for the leverage features of the true cross-section of BBB-rated

firms. Leverage ratios (given in percent) are calculated as the market value of debt divided by the market value of

the firm. The asset composition ratio (ACR) is defined as firm value, divided by the value of the invested assets.

Parameters are taken from Table 1. The debt maturity is assumed to be ten years.

Panel A: Unconditional Leverage

Average Leverage 40.89

Panel B: Conditional Leverage

Regime Boom Recession

Average Leverage 36.94 46.20

Median Leverage 34.36 44.19

25% Quantile 22.49 29.88

75% Quantile 48.51 60.39

Panel C: Regression of Leverage on ACR

Average Coefficient -0.184

Median Coefficient -0.184

25% Quantile -0.268

75% Quantile -0.096
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Table 6

Credit Spreads and Leverage for Alternative Specifications

This table shows annualized ten year credit spreads and simulated average leverage ratios (given in percent) of

BBB-rated firms for alternative specifications of our basic model. The asset composition ratio (ACR) is defined as

firm value, divided by the value of the invested assets. Credit spreads are calculated as the coupon divided by the

debt value, minus the yield on an otherwise identical risk-free bond. They are quoted in basis points. The altered

parameter is indicated in the first line, all other parameters are taken from Table 1. Credit spreads in the first three

lines of Panel A for typical firms at issue are obtained by weighting the credit spreads in boom and recession by

the expected times spent in each regime, respectively. The leverage is set equal to 41.83% to generate the credit

spreads of typical firms. The last row in Panel A contains average credit spreads of our simulated true cross-section

of BBB-rated firms. Panel B shows simulated average leverage ratios for BBB-rated firms. The debt maturity is

assumed to be ten years.

Specification γ = 7.5 K = 350 Equity Financing

Panel A: 10 Year Credit Spreads

Invested Assets (ACR=1) 33 39 39

Average Firm (ACR=1.6) 53 67 65

Growth Firm (ACR=2.2) 56 72 58

True Cross-Section 68 81 77

Panel B: Unconditional Leverage

Average Leverage 41.10 41.22 41.14
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Table 7

Equity Premiums of Portfolios Formed on the Asset Composition Ratio

This table shows the yearly equity premiums for the ten different portfolios based on the deciles of the asset compo-

sition ratio (ACR). The equity premium for each portfolio is calculated as the equity value-weighted average of the

premiums of all firms within the corresponding portfolio. It is reported as the average yearly premium expressed in

percent. The leverage for each portfolio (given in percent) is obtained by averaging over firms’ individual leverage in

the corresponding portfolio, in which the individual leverage is calculated as the ratio of the market value of debt to

total firm value. The asset composition ratio (ACR) is defined as the portfolio average of the firm values divided by

the values of the invested assets. The debt maturity is assumed to be ten years.

Portfolio 1 2 3 4 5 6 7 8 9 10

Panel A: Initial Cross-Section

Equity Premium 6.79 6.07 6.29 5.73 5.71 5.37 5.37 5.36 5.25 5.65

Panel B: Simulated True Cross-Section

Equity Premium 9.48 6.74 6.36 5.95 5.83 5.94 5.71 5.72 5.73 6.01

Leverage 65.70 56.05 52.17 47.83 44.63 41.50 38.83 36.30 33.78 33.85

ACR 0.96 1.07 1.15 1.22 1.30 1.38 1.48 1.58 1.71 1.92
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A. Appendix

A.1. The stochastic discount factor

Solving the Bellman equation associated with the consumption problem of the representative agent, it
can be shown that the stochastic discount factor mt follows the dynamics (3) (see Bhamra, Kuehn and
Strebulaev, 2010b; Chen, 2010). The parameters hB , hR solve

0 = ρ
1− γ

1− δ
hδ−γ
i +

(
(1− γ) θi −

1

2
γ (1− γ)

(
σC
i

)2 − ρ
1− γ

1− δ

)
h1−γ
i + λi

(
h1−γ
j − h1−γ

i

)
. (A-1)

One-regime model. To isolate the effect of business cycle risk, we also consider the model with only one
economic regime. The dynamics of the stochastic discount factor then read

dmt

mt
= −rdt− ηdWC

t . (A-2)

The real interest rate r and the risk price η are given by

r = r̄ = ρ+ δθ − 1

2
γ (1 + δ)

(
σC
i

)2
, (A-3)

η = γσC . (A-4)

The nominal interest rate is calculated as

rn = r + π − σ2
P − σP,Cη, (A-5)

and the expected growth rate is given by

µ̃ = µ− σX,C
(
η + σP,C

)
−
(
σP,id

)2
. (A-6)

The earnings-price ratio simplifies to
y−1 = rn − µ̃, (A-7)

and the total earnings volatility is

σ̃ =

√
(σX,C)

2
+ (σP,id)

2
+ (σX,id)

2
. (A-8)

A.2. The value of the growth option

Proof of Proposition 1. For each regime i, the option is exercised immediately whenever X ≥ Xi (option
exercise region); otherwise it is optimal to wait (option continuation region). This structure results in the
following system of ODEs for the value function:

For 0 ≤ X < XB :{
rnBGB(X) = µ̃BXG′

B(X) + 1
2 σ̃

2
BX

2G′′
B(X) + λ̃B (GR(X)−GB(X))

rnRGR(X) = µ̃RXG′
R(X) + 1

2 σ̃
2
RX

2G′′
R(X) + λ̃R (GB(X)−GR(X)) .

(A-9)

For XB ≤ X < XR :{
GB(X) = sXyB −K

rnRGR(X) = µ̃RXG′
R(X) + 1

2 σ̃
2
RX

2G′′
R(X) + λ̃R (sXyB −K −GR(X)) .

(A-10)
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For X ≥ XR : {
GB(X) = sXyB −K
GR(X) = sXyR −K.

(A-11)

Whenever the process X is in the option continuation region, which corresponds to System (A-9) and the
second equation of (A-10), the required rate of return rni (left-hand side) must be equal to the realized rate
of return (right-hand side). The latter is obtained by Ito’s lemma for regime switches. Here, the last term
accounts for a possible jump in the value of the growth option due to a regime switch. It is calculated as
the instantaneous probability of a regime shift, λ̃B or λ̃R, times the associated change in the value of the
option. The first equation of (A-10) and the System (A-11) state the payoff of the option at exercise, since
the process is in the option exercise region in these cases. The boundary conditions are given by:

lim
X↘0

Gi (X) = 0, i = B,R (A-12)

lim
X↘XB

GR(X) = lim
X↗XB

GR(X) (A-13)

lim
X↘XB

G′
R(X) = lim

X↗XB

G′
R(X) (A-14)

lim
X↗XR

GR (X) = sXRyR −K (A-15)

lim
X↗XB

GB (X) = sXByB −K. (A-16)

Condition (A-12) ensures that the option value goes to zero as earnings approach zero. Conditions (A-13)
and (A-14) are the value-matching and smooth-pasting conditions of the value function in recession at the
exercise boundary in boom. The remaining conditions (A-15)-(A-16) are the value-matching conditions at
the exercise boundaries in boom and recession, respectively.

The functional form of the solution is given by

Gi(X) =


Āi3X

γ3 + Āi4X
γ4 0 ≤ X < XB, i = B,R

C̄1X
βR
1 + C̄2X

βR
2 + C̄3X + C̄4 XB ≤ X < XR, i = R

sXyi −K X ≥ Xi i = B,R,

(A-17)

in which ĀB3, ĀB4, ĀR1, ĀR2, C̄1, C̄2, C̄3, C̄4, γ3, γ4, β
R
1 , and βR

2 are real-valued parameters to be determined.

We first consider the region 0 ≤ X < XB, and plug the functional form Gi(X) = Āi3X
γ3 + Āi4X

γ4 into
both equations of (A-9). Comparison of coefficients yields that ĀBk is a multiple of ĀRk, k = 3, 4, with the
factor l̄k := 1

λ̃B
(rnB + λ̃B − µ̃Bγk − 1

2 σ̃
2
Bγk(γk − 1)), i.e., ĀRk = l̄kĀBk. Using this relation and comparing

coefficients, we find that γ3 and γ4 correspond to the positive roots of the quartic equation(
µ̃Rγ +

1

2
σ̃2
Rγ(γ − 1)− λ̃R − rnR

)(
µ̃Bγ +

1

2
σ̃2
Bγ(γ − 1)− λ̃B − rnB

)
= λ̃Rλ̃B. (A-18)

The reason for taking the positive roots is given by boundary condition (A-12).

Next, we consider the region XB ≤ X < XR. Plugging the functional form GR(X) = C̄1X
β1 + C̄2X

β2 +
C̄3X + C̄4 into the second equation of (A-10), we find by comparison of coefficients that

βR
1,2 =

1

2
− µ̃R

σ̃2
R

±

√√√√(1

2
− µ̃R

σ̃2
R

)2

+
2
(
rnR + λ̃R

)
σ̃2
R

C̄3 = λ̃R
syB

rnR − µ̃R + λ̃R

(A-19)

C̄4 = −λ̃R
K

rnR + λ̃R

.
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The remaining unknown parameters are ĀB3, ĀB4, C̄1 and C̄2. Plugging the functional form (A-17) into
conditions (A-13)-(A-16) yields

C̄1X
βR
1

B + C̄2X
βR
2

B + C̄3XB + C̄4 = l̄3ĀB3X
γ3

B + l̄4ĀB4X
γ4

B (A-20)

C̄1β
R
1 X

βR
1

B + C̄2β
R
2 X

βR
2

B + C̄3XB = l̄3ĀB3γ3X
γ3

B + l̄4γ4ĀB4X
γ4

B (A-21)

C̄1X
βR
1

R + C̄2X
βR
2

R + C̄3XR + C̄4 = syRXR −K (A-22)

ĀB3X
γ3

B + ĀB4X
γ4

B = syBXB −K. (A-23)

This four-dimensional system is linear in its four unknowns ĀB3, ĀB4, C̄1 and C̄2. We define the matrices

M̄ :=


l̄3X

γ3

B l̄4X
γ4

B −X
βR
1

B −X
βR
2

B

l̄3γ3X
γ3

B l̄4γ4X
γ4

B −βR
1 X

βR
1

B −βR
2 X

βR
2

B

0 0 X
βR
1

R X
βR
2

R

Xγ3

B Xγ4

B 0 0



b̄ :=


C̄3XB + C̄4

C̄3XB

−C̄3XR − C̄4 + syRXR −K
syBXB −K

 ,

such that M̄
[
ĀB3 ĀB4 C̄1 C̄2

]T
= b̄. Hence, the solution to the remaining unknowns is given by[
ĀB3 ĀB4 C̄1 C̄2

]T
= M̄−1b̄. (A-24)

Relative price change sensitivity. The relative price change sensitivity is

G′
i (X)

Gi (X)
=


γ3Āi3X

γ3−1+Āi4γ4X
γ4−1

Āi3Xγ3+Āi4Xγ4
X < XB, i = B,R

C̄1β1X
β1−1+C̄2β2X

β2−1+C̄3

C̄1Xβ1+C̄2Xβ2+C̄3X+C̄4
XB ≤ X < XR, i = R

syi

syiX−K X ≥ Xi i = B,R.

(A-25)

The unlevered value of the growth option. The unlevered value of the growth option can be calculated
by imposing the smooth-pasting boundary conditions at option exercise:

lim
X↗Xunlev

R

Gunlev′

R (X) = syR (A-26)

lim
X↗Xunlev

B

Gunlev′

B (X) = syB . (A-27)

The solution method is analogous to the one for the levered option value up to and including (A-19).
Then, System (A-20)-(A-23) is augmented by the two equations corresponding to the additional boundary
conditions:

C̄unlev
1 βR

1

(
Xunlev

R

)βR
1 −1

+ C̄unlev
2 βR

2

(
Xunlev

R

)βR
2 −1

+ C̄3 = syR (A-28)

Āunlev
B3 γ3

(
Xunlev

B

)γ3−1
+ Āunlev

B4 γ4
(
Xunlev

B

)γ4−1
= syB. (A-29)

The full system is six-dimensional with the six unknowns Āunlev
B3 , Āunlev

B4 , C̄unlev
1 , C̄unlev

2 Xunlev
B , and Xunlev

R ,
linear in the first four unknowns, and non-linear in the last two unknowns. It is solved numerically.
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One-regime model. Denote the investment boundary by X1. The system to solve is given by:

rnG (X) = µ̃XG′ (X) + σ̃2

2 X2G′′ (X) X < X1

G (X) = sXy −K X ≥ X1.
(A-30)

The boundary conditions are given by a value matching condition and the fact that the option must become
worthless when the earnings approach zero:

lim
X↘0

G (X) = 0 (A-31)

lim
X↗X1

G (X) = syX1 −K (A-32)

The functional form of the solution is

G (X) =

{
ĀXβ1 X < X1

sXy −K X ≥ X1,
(A-33)

in which Ā and β1 are real-valued parameters to be determined. It is straightforward to show that

β1 =
1

2
− µ̃

σ̃2
+

√(
1

2
− µ̃

σ̃2

)2

+
2rn

σ̃2
(A-34)

Ā = (syX1 −K)X−β1

1 . (A-35)

The relative price change sensitivity of the option is

G′ (X)

G (X)
=

{ β1

X X < X1
sy

syX−K X ≥ X1.
(A-36)

The unlevered value of the option satisfies the additional smooth-pasting condition

lim
X↗Xunlev

1

Gunlev′
(X) = sy. (A-37)

A.3. Firms with only invested assets

The solution for the values of corporate securities is based on Hackbarth, Miao and Morellec (2006).

The valuation of corporate debt. Without loss of generality, we consider the case in which the default
boundary in boom is lower than in recession, i.e., D̂B < D̂R. An investor holding corporate debt requires an
instantaneous return equal to the risk-free rate rni . Once the firm defaults, debtholders receive a fraction αi

of the asset value Xyi. The required rate of return on debt must be equal to the realized rate of return plus
the coupon proceeds from debt. Therefore, an application of Ito’s lemma with regime switches shows that
debt satisfies the following system of ODEs:
For 0 ≤ X ≤ D̂B : {

d̂B(X) = αBXyB
d̂R(X) = αRXyR.

(A-38)

For D̂B < X ≤ D̂R :{
rnB d̂B(X) = c+ µ̃BXd̂′B(X) + 1

2 σ̃
2
BX

2d̂′′B(X) + λ̃B

(
αRXyR − d̂B(X)

)
d̂R(X) = αRXyR.

(A-39)
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For X > D̂R :  rnB d̂B(X) = c+ µ̃BXd̂′B(X) + 1
2 σ̃

2
BX

2d̂′′B(X) + λ̃B

(
d̂R(X)− d̂B(X)

)
rnRd̂R(X) = c+ µ̃RXd̂′R(X) + 1

2 σ̃
2
RX

2d̂′′R(X) + λ̃R

(
d̂B(X)− d̂R(X)

)
.

(A-40)

The boundary conditions read

lim
X→∞

d̂i (X)

X
< ∞, i = B,R (A-41)

lim
X↘D̂R

d̂B(X) = lim
X↗D̂R

d̂B(X) (A-42)

lim
X↘D̂R

d̂′B(X) = lim
X↗D̂R

d̂′B(X) (A-43)

lim
X↘D̂B

d̂B (X) = αBDByB (A-44)

lim
X↘D̂B

d̂R (X) = αRDRyR. (A-45)

Condition (A-41) is the no-bubbles condition. The remaining boundary conditions are the value-matching
conditions (A-42), (A-44), and (A-45), and the smooth-pasting condition at the higher default threshold

D̂R for the debt function in boom d̂B(·), Eq. (A-43). As debtholders do not choose the optimal default
thresholds, there are no smooth-pasting conditions at default to be considered. The functional form of the
solution is

d̂i(X) =


αiXyi X ≤ D̂i i = B,R

Ĉ1X
βB
1 + Ĉ2X

βB
2 + C3X + C4 D̂B < X ≤ D̂R, i = B

Âi1X
γ1 + Âi2X

γ2 +Ai5 X > D̂R, i = B,R,

(A-46)

in which ÂB1, ÂB2, ÂR1, ÂR2, AB5, AR5, Ĉ1, Ĉ2, C3, C4, γ1, γ2, β
B
1 , and βB

2 are real-valued parameters to be
determined.

We first consider the region X > D̂R, and use the standard approach of plugging the functional form
d̂i(X) = Âi1X

γ1 + Âi2X
γ2 + Ai5 into both equations of (A-40). Comparing coefficients and solving the

resulting two-dimensional system of equations for Ai5, we find that

Ai5 =
c
(
rnj + λ̃i + λ̃j

)
rni r

n
j + rnj λ̃i + rni λ̃j

=
c

rpi
, (A-47)

and that ÂBk is always a multiple of ÂRk, k = 1, 2, with the factor lk := 1
λ̃B

(rnB+λ̃B−µ̃Bγk− 1
2 σ̃

2
Bγk(γk−1)),

i.e., ÂRk = lkÂBk. Using these results and comparing coefficients again, we obtain that γ1 and γ2 are the
negative roots of the quartic equation(

µ̃Rγ +
1

2
σ̃2
Rγ(γ − 1)− λ̃R − rnR

)(
µ̃Bγ +

1

2
σ̃2
Bγ(γ − 1)− λ̃B − rnB

)
= λ̃Rλ̃B. (A-48)

The reason for taking the negative roots is the no-bubbles condition for debt stated in (A-41).
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Next, we consider the region D̂B ≤ X ≤ D̂R. Plugging the functional form dB(X) = Ĉ1X
βB
1 + Ĉ2X

βB
2 +

C3X + C4 into the first equation of (A-39), we find by comparison of coefficients that

βB
1,2 =

1

2
− µ̃B

σ̃2
B

±

√√√√(1

2
− µ̃B

σ̃2
B

)2

+
2
(
rnB + λ̃B

)
σ̃2
B

C3 =
λ̃BαRyR

rnB + λ̃B − µ̃B

(A-49)

C4 =
c

rnB + λ̃B

.

The remaining unknown parameters are ÂB1, ÂB2, Ĉ1 and Ĉ2. We plug the functional form (A-46) into
conditions (A-42)-(A-45), and obtain a four-dimensional linear system in the four unknowns ÂB1, ÂB2, Ĉ1

and Ĉ2 :

ÂB1D̂
γ1

R + ÂB2D̂
γ2

R +AB5 = Ĉ1D̂
βB
1

R + Ĉ2D̂
βB
2

R + C3D̂R + C4

ÂB1γ1D̂
γ1

R + ÂB2γ2D̂
γ2

R = Ĉ1β
B
1 D̂

βB
1

R + Ĉ2β
B
2 D̂

βB
2

R + C3D̂R

αBD̂ByB = Ĉ1D̂
βB
1

R + Ĉ2D̂
βB
2

R + C3D̂R + C4

l1ÂB1D̂
γ1

R + l2ÂB2D̂
γ2

R +AR5 = αRD̂RyR.

(A-50)

We define the matrices

M̂ :=


D̂γ1

R D̂γ2

R −D̂
βB
1

R −D̂
βB
2

R

γ1D̂
γ1

R γ2D̂
γ2

R −βB
1 D̂

βB
1

R −βB
2 D̂

βB
2

R

0 0 D̂
βB
1

R D̂
βB
2

R

l1D̂
γ1

R l2D̂
γ2

R 0 0



b̂ :=


C3D̂R + C4 −AB5

C3D̂R

αBD̂ByB − C3D̂R − C4

αRD̂RyR −AR5

 ,

such that M̂
[
ÂB1 ÂB2 Ĉ1 Ĉ2

]T
= b̂. Hence, the solution of the unknowns is given by[
ÂB1 ÂB2 Ĉ1 Ĉ2

]T
= M̂−1b̂. (A-51)

Default policy. The value of equity is calculated as firm value minus the value of debt. The firm value
consists of the value of assets in place plus the value of the option and the tax shield minus default costs.
Once debt has been issued, managers select the ex-post default policy that maximizes the value of equity.
Formally, the default policy is determined by equating the first derivative of the equity value to zero at the
corresponding default boundary: {

ê′B(D̂
∗
B) = 0

ê′R(D̂
∗
R) = 0.

(A-52)

We solve this problem numerically.

Capital structure. Denote by f̂∗
i (X) the firm value of a firm with only invested assets, given optimal

ex-post default thresholds. The ex-ante optimal coupon of a firm solves

ĉ∗ := argmaxĉf̂
∗
i (X). (A-53)
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One-regime model. Let D̂1 be the default threshold. Note that for a risk-neutral agent, the model
corresponds to the one of Leland (1994). Equations (A-5)-(A-8) provide the parameters used in the setup
and solution of the one-regime model. Postulating that the required return must be equal to the expected
realized return plus the proceeds from debt, we find the following system:

rnd̂(X) = c+ µ̃Xd̂′(X) + σ̃2

2 X2d̂′′(X) X > D̂

d̂(X) = αXy X ≤ D̂.
(A-54)

The boundary conditions are the no-bubbles condition, as well as value-matching at default:

lim
X→∞

d̂(X)

X
< ∞

lim
X↘D̂

d̂ (X) = αyD̂. (A-55)

The functional form of the solution is

d̂(X) =

{
αyX X < D̂

B̂Xβ2 +A5 X ≥ D̂,
(A-56)

in which B̂ and β2 are real-valued parameters. It is straightforward to show that

A5 =
c

r
(A-57)

β2 =
1

2
− µ̃

σ̃2
−

√(
1

2
− µ̃

σ̃2

)2

+
2rn

σ̃2
(A-58)

B̂ =
(
αyD̂ − c

rn

)
D̂−β2 . (A-59)

The default policy and capital structure can be determined analogously to the two-regime model.

A.4. Firms with invested assets and an expansion option

As in the main text, we consider the caseDB < DR, D̂B < D̂R, andXR > XB . We present a constructive
proof for the valuation of corporate debt.

Proof of Proposition 2. For brevity of notation, define s̄ := s + 1. An investor holding corporate debt
requires an instantaneous return equal to the nominal risk-free rate rni . Hence, an application of Ito’s lemma
with regime switches shows that debt satisfies the following system of ODEs:
For 0 ≤ X ≤ DB : {

dB (X) = αB

(
XyB +Gunlev

B (X)
)

dR (X) = αR

(
XyR +Gunlev

R (X)
)
.

(A-60)

For DB < X ≤ DR : 
rnBdB (X) = c+ µ̃BXd′B (X) + 1

2 σ̃
2
BX

2d′′B (X)

+λ̃B

(
αR

(
XyR +Gunlev

R (X)
)
− dB (X)

)
dR (X) = αR

(
XyR +Gunlev

R (X)
)
.

(A-61)

For DR < X < XB :{
rnBdB (X) = c+ µ̃BXd′B (X) + 1

2 σ̃
2
BX

2d′′B (X) + λ̃B (dR (X)− dB (X))

rnRdR (X) = c+ µ̃RXd′R (X) + 1
2 σ̃

2
RX

2d′′R (X) + λ̃R (dB (X)− dR (X)) .
(A-62)
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For XB ≤ X < XR : dB (X) = d̂B

(
s̄X − K

yB

)
rndR (X) = c+ µ̃RXd′R (X) + 1

2 σ̃
2
RX

2d′′R (X) + λ̃R

(
d̂B

(
s̄X − K

yB

)
− dR (X)

)
.

(A-63)

For X ≥ XR :  dB (X) = d̂B

(
s̄X − K

yB

)
dR (X) = d̂R

(
s̄X − K

yR

)
.

(A-64)

In System (A-60), the firm is in the default region in both boom and recession. In this region, debtholders
receive αi

(
Xyi +Gunlev

i (X)
)
at default. As the default boundary in boom is lower than the one in recession,

System (A-61) corresponds to the firm being in the continuation region in boom, and in the default region in
recession. For the continuation region in boom, the left-hand side of the first equation is the rate of return
required by investors for holding corporate debt for one unit of time. The right-hand side is the realized rate
of return, computed by Ito’s lemma as the expected change in the value of debt plus the coupon payment
c. The last term captures the possible jump in the value of debt in case of a regime switch, which triggers
immediate default. Similarly, equations (A-62) describe the case in which the firm is in the continuation
region in both boom and recession. The next system, (A-63), deals with the case in which the firm is in the
exercise region in boom, and in the continuation region in recession. After exercising the option, the firm
owns total assets in place with value Xyi + sXyi − K, reflecting the notion that the exercise costs of the
growth option are financed by selling assets. The value of debt must then be equal to the value of debt of a
firm with only invested assets, i.e., dB(X) = d̂B((s+ 1)X − K

yB
), which is the first equation in (A-63). The

second equation in this case is obtained by the same approach as in (A-62), in which the last term captures
the fact that a regime switch from recession to boom triggers immediate exercise of the expansion option.
Finally, equations (A-64) describe the case in which the firm is in the exercise region in both boom and
recession. The system is subject to the following boundary conditions:

lim
X↘DR

dB (X) = lim
X↗DR

dB (X) (A-65)

lim
X↘DR

d′B (X) = lim
X↗DR

d′B (X) (A-66)

lim
X↘DB

dB (X) = αB

(
DByB +Gunlev

B (DB)
)

(A-67)

lim
X↘DR

dR (X) = αR

(
DRyR +Gunlev

R (DR)
)

(A-68)

lim
X↘XB

dR (X) = lim
X↗XB

dR (X) (A-69)

lim
X↘XB

d′R (X) = lim
X↗XB

d′R (X) (A-70)

lim
X↗XB

dB (X) = d̂B

(
s̄XB − K

yB

)
(A-71)

lim
X↗XR

dR (XR) = d̂R

(
s̄XR − K

yR

)
. (A-72)

(A-65) and (A-66) are the value-matching and smooth-pasting conditions for the debt value in boom at
the default boundary in recession. Similarly, (A-69) and (A-70) are the corresponding conditions for the
debt value in recession at the option exercise boundary in boom. (A-67) and (A-68) are the value-matching
conditions at the default thresholds, and (A-71) and (A-72) are the value-matching conditions at the option
exercise boundaries. The default thresholds and option exercise boundaries are chosen by equityholders,
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and, hence, we do not have the corresponding smooth-pasting conditions for debt. To solve this system, we
start with the functional form of the solution:

di (X) =



αi

(
Xyi +Gunlev

i (X)
)

X ≤ Di i = B,R,

C1X
βB
1 + C2X

βB
2 + C3X + C4

+C5X
γ3 + C6X

γ4
DB < X ≤ DR, i = B

Ai1X
γ1 +Ai2X

γ2

+Ai3X
γ3 +Ai4X

γ4 +Ai5
DR < X ≤ XB, i = B,R

B1X
βR
1 +B2X

βR
2 + Z (X) +B4 XB < X ≤ XR, i = R

d̂i

(
s̄X − K

yi

)
X > Xi, i = B,R,

(A-73)

in which AB1, AB2, AR1, AR2, C1, C2, C3, C4, C5, C6, B1, B2, B4, β
B
1 , βB

2 , βR
1 , β

R
2 , γ1, γ2, γ3, and γ4 are real-

valued parameters to be determined (or to be confirmed). Z(X), as stated in the sixth line of (A-73),
can be expressed in closed form using Gauss’ hypergeometric function. It will be given explicitly in the
following calculations.

We first consider the region DR < X ≤ XB . Plugging the functional form di(X) = Ai1X
γ1 + Ai2X

γ2 +
Ai3X

γ3 +Ai4X
γ4 +Ai5 into both equations of (A-62) and comparing coefficients, we find that

Ai5 =
c
(
rnj + λ̃i + λ̃j

)
rni r

n
j + rnj λ̃i + rni λ̃j

=
c

rpi
. (A-74)

As before, ABk is always a multiple of ARk, k = 1, . . . , 4, with the factor lk := 1
λ̃B

(rnB + λ̃B − µ̃Bγk −
1
2 σ̃

2
Bγk(γk − 1)), i.e., ARk = lkABk. Using this relation and comparing coefficients, we find that γ1, γ2, γ3,

and γ4 correspond to the roots of the quartic Eq. (A-48), which is given by(
µ̃Rγ +

1

2
σ̃2
Rγ(γ − 1)− λ̃R − rnR

)(
µ̃Bγ +

1

2
σ̃2
Bγ(γ − 1)− λ̃B − rnB

)
= λ̃Rλ̃B. (A-75)

By arguments of Guo (2001), this quartic equation always has four distinct real roots, two of them being
negative, and two positive. The value of debt in both regimes will be subject to boundary conditions from
both below (default) and above (exercise of expansion option). To meet all boundary conditions, we need
four terms with the corresponding factors Aik as well as exponents γk, which requires usage of all four roots
of (A-75). The no-bubbles condition is already implemented in the value function d̂i of a firm with only
invested assets and, hence, does not need to be imposed again. The unknown parameters for this region are
ABk, k = 1, . . . , 4.

Next, we consider the region DB ≤ X ≤ DR. Plugging the functional form dB(X) = C1X
βB
1 +C2X

βB
2 +

C3X + C4 + C5X
γ3 + C6X

γ4 into the second equation of (A-61), we find by comparison of coefficients that

βB
1,2 =

1

2
− µ̃B

σ̃2
B

±

√√√√(1

2
− µ̃B

σ̃2
B

)2

+
2
(
rnB + λ̃B

)
σ̃2
B

(A-76)

C3 = λ̃B
αRyR

rnB + λ̃B − µ̃B

(A-77)

C4 =
c

rnB + λ̃B

(A-78)

C5 = αR
l̄3
l3
Āunlev

B3 (A-79)

C6 = αR
l̄4
l4
Āunlev

B4 . (A-80)
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The unknown parameters left for this region are C1 and C2.

Finally, consider the region XB < X ≤ XR. The corresponding differential equation for i = R is (see
(A-63)): (

rnR + λ̃R

)
dR(X) = c+ µ̃RXd′R(X) +

1

2
σ̃2
RX

2d′′R(X) + λ̃Rd̂B(s̄X − K

yB
). (A-81)

To solve this inhomogeneous differential equation, we use a standard approach by first finding a fundamen-
tal system of solutions of the homogeneous differential equation, and then calculating the solution of the
inhomogeneous equation as the sum of the solutions of the homogeneous equation and a particular solution
of the inhomogeneous equation (Polyanin and Zaitsev, 2003, pages 21-23).

(A-81) is equivalent to

X2d′′R(X) +
2µ̃R

σ̃2
R

Xd′R(X)−
2
(
rnR + λ̃R

)
σ̃2
R

dR(X) = − 2c

σ̃2
R

− 2λ̃R

σ̃2
R

d̂B(s̄X − K

yB
). (A-82)

Therefore, the corresponding homogeneous differential equation is

X2d′′R(X) +
2µ̃R

σ̃2
R

Xd′R(X)−
2
(
rnR + λ̃R

)
σ̃2
R

dR(X) = 0. (A-83)

A fundamental system of solutions is given by {z1, z2} , with

z1 := XβR
1 ,

z2 := XβR
2 ,

and

βR
1,2 =

1

2
− µ̃R

σ̃2
R

±

√√√√(1

2
− µ̃R

σ̃2
R

)2

+
2
(
rnR + λ̃R

)
σ̃2
R

. (A-84)

These solutions can be calculated by plugging the functional form into the homogeneous ODE (A-83), and
solving for βR

1,2.

For notational convenience, we now define f2 := X2, f1 := 2µ̃R

σ̃2
R
X, f0 := − 2(rnR+λ̃R)

σ̃2
R

, and

g (X) := − 2c

σ̃2
R

− 2λ̃R

σ̃2
R

d̂B(s̄X − K

yB
). (A-85)

These notations allow to write the ODE (A-82) as

f2d
′′
R(X) + f1d

′
R(X) + f0dR(X) = g(X). (A-86)

The general solution of this inhomogeneous ODE is given by

dR (X) = B1z1 +B2z2 + z2

∫
z1

g

f2

dX

W︸ ︷︷ ︸
=:I1(X)

−z1

∫
z2

g

f2

dX

W︸ ︷︷ ︸
=:I2(X)

, (A-87)

in which W = z1z
′
2 − z2z

′
1 is the Wronskian determinant, and B1 and B2 are coefficients (see e.g. Polyanin

and Zaitsev (2003), page 22, (7)). The first two terms of Eq. A-87 are a linear combination of the solutions
of the homogeneous ODE, and the last two terms are a particular solution of the inhomogeneous ODE.
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We start by calculating the Wronskian determinant

W = z1z
′
2 − z2z

′
1

= βR
2 X

βR
1 XβR

2 −1 − βR
1 X

βR
1 −1XβR

2

=
(
βR
2 − βR

1

)
XβR

1 +βR
2 −1. (A-88)

Hence, the integral I1 (X) is given by

I1 (X) =

∫
z1

g

f2

dX

W

=

∫
XβR

1 X−2 1

βR
2 − βR

1

X1−βR
1 −βR

2 g(X)dX

=
1

βR
2 − βR

1

∫
X−1−βR

2 g(X)dX (A-89)

=
1

βR
2 − βR

1

∫
X−1−βR

2

(
− 2c

σ̃2
R

− 2λ̃R

σ̃2
R

d̂B

(
s̄X − K

yB

))
dX

=
1

βR
2 − βR

1

∫
X−1−βR

2

(
− 2c

σ̃2
R

−2λ̃R

σ̃2
R

{
ÂB1

(
s̄X − K

yB

)γ1

+ ÂB2

(
s̄X − K

yB

)γ2

+AB5

})
dX

= − 2λ̃RÂB1(
βR
2 − βR

1

)
σ̃2
R

∫
X−1−βR

2

(
s̄X − K

yB

)γ1

dX︸ ︷︷ ︸
=:I11(X)

− 2λ̃RÂB2(
βR
2 − βR

1

)
σ̃2
R

∫
X−1−βR

2

(
s̄X − K

yB

)γ2

dX︸ ︷︷ ︸
=:I12(X)

(A-90)

+
2AB5

(
λ̃R + rnR

)
(
βR
2 − βR

1

)
βR
2 σ̃

2
R

X−βR
2 .

We use the definition of the function g (X), see (A-85), and the solution of the debt value of a firm with only

invested assets d̂R (·), see (A-46).

The integrals I11(X) and I12(X) can be evaluated immediately with standard computer algebra packages.
Alternatively, using the integral representation of Gauss’ hypergeometric function 2F1 (·, ·, ·; ·) , we can write
the closed-form solution of the integrals as

I11(X) =
1

γ1 − βR
2

s̄γ1Xγ1−βR
2
2F1

(
−γ1, β

R
2 − γ1, β

R
2 − γ1 + 1;− K

s̄XyB

)
, (A-91)

I12(X) =
1

γ2 − βR
2

s̄γ2Xγ2−βR
2
2F1

(
−γ2, β

R
2 − γ2, β

R
2 − γ2 + 1;− K

s̄XyB

)
. (A-92)
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Plugging the solutions (A-91) and (A-92) into the expression for the integral I1, (A-90) yields

I1 (X) = − 2λ̃RÂB1(
βR
2 − βR

1

)
σ̃2
R

1

γ1 − βR
2

s̄γ1Xγ1−βR
2
2F1

(
−γ1, β

R
2 − γ1, β

R
2 − γ1 + 1;− K

s̄XyB

)
− 2λ̃RÂB2(

βR
2 − βR

1

)
σ̃2
R

1

γ2 − βR
2

s̄γ2Xγ2−βR
2
2F1

(
−γ2, β

R
2 − γ2, β

R
2 − γ2 + 1;− K

s̄XyB

)
(A-93)

+
2AB5

(
λ̃R + rnR

)
(
βR
2 − βR

1

)
βR
2 σ̃

2
R

X−βR
2 .

Similarly, we find for the second integral I2(X):

I2 (X) = − 2λ̃RÂB1(
βR
2 − βR

1

)
σ̃2
R

1

γ1 − βR
1

s̄γ1Xγ1−βR
1
2F1

(
−γ1, β

R
1 − γ1, β

R
2 − γ1 + 1;− K

s̄XyB

)
− 2λ̃RÂB2(

βR
2 − βR

1

)
σ̃2
R

1

γ2 − βR
1

s̄γ2Xγ2−βR
1
2F1

(
−γ2, β

R
1 − γ2, β

R
2 − γ2 + 1;− K

s̄XyB

)
(A-94)

+
2AB5

(
λ̃R + rnR

)
(
βR
2 − βR

1

)
βR
1 σ̃

2
R

X−βR
1 .

Plugging (A-93) and (A-94) into (A-87) and simplifying, we finally obtain the solution

dR (X) = B1X
βR
1 +B2X

βR
2 + Z(X) +B4, (A-95)

with

Z(X) =
∑

i,k=1,2

2(−1)i+1λ̃Rs̄
γkÂBk

σ̃2
R

(
βR
2 − βR

1

) (
γk − βR

i

)Xγk
2F1

(
−γk, β

R
i , β

R
i − γk + 1;− K

s̄XyB

)
(A-96)

B4 = λ̃R
c

rpi

(
rnR + λ̃R

) +
c

rnR + λ̃R

, (A-97)

for some parameters B1 and B2 determined by the boundary conditions. The first derivative Z ′ (X) can be
calculated as follows:

Z ′(X) =
d

dX
Z(X)

=
d

dX

(
XβR

2 I1 (X)−XβR
2 I2 (X)

)
= βR

2 X
βR
2 −1I1 (X) +

1

βR
2 − βR

1

XβR
2 −1X−1−βR

1 g (X)

−βR
1 X

βR
1 I2 (X)− 1

βR
2 − βR

1

XβR
1 X−1−βR

1 g (X)

= βR
2 X

βR
2 −1I1 (X)− βR

1 X
βR
1 −1I2 (X)

=
∑

i,k=1,2

2(−1)i+1λ̃Rs̄
γkÂBkβ

R
i

σ̃2
R

(
βR
2 − βR

1

) (
γk − βR

i

)Xγk−1
2F1

(
−γk, β

R
i , β

R
i − γk + 1;− K

s̄XyB

)
. (A-98)
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To solve for the unknown parameters AB1, AB2, AB3, AB4, C1, C2, B1 and B2, we plug the functional form
(A-73) into the system of boundary conditions (A-65) - (A-72):

4∑
k=1

ABkD
γk

R +AB5 = C1D
βB
1

R + C2D
βB
2

R + C3X + C4 + C5X
γ3 + C6X

γ4

4∑
k=1

ABkγkD
γk

R = C1β
B
1 D

βB
1

R + C2β
B
2 D

βB
2

R + C3X + C5γ3X
γ3 + C6γ4X

γ4

αB

(
DByB +Gunlev

B (DB)
)

= C1D
βB
1

B + C2D
βB
2

B + C3DB + C4 + C5D
γ3

B + C6D
γ4

B

4∑
k=1

lkABkD
γk

R +AR5 = αR

(
DRyR +Gunlev

R (DR)
)

4∑
k=1

lkABkX
γk

B +AR5 = B1X
βR
1

B +B2X
βR
2

B + Z(XB) +B4 (A-99)

4∑
k=1

lkABkγkX
γk

B = B1β
R
1 X

βR
1

B +B2β
R
2 X

βR
2

B +XBZ
′(XB)

4∑
k=1

ABkX
γk

B +AB5 = d̂B

(
s̄XB − K

yB

)
B1X

βR
1

R +B2X
βR
2

R + Z(XR) +B4 = d̂R

(
s̄XR − K

yR

)
.

Using matrix notation, we write

M :=



Dγ1

R Dγ2

R Dγ3

R Dγ4

R −D
βB
1

R −D
βB
2

R 0 0

γ1D
γ1

R γ2D
γ2

R γ3D
γ3

R γ4D
γ4

R −βB
1 D

βB
1

R −βB
2 D

βB
2

R 0 0

0 0 0 0 D
βB
1

B D
βB
2

B 0 0
l1D

γ1

R l2D
γ2

R l3D
γ3

R l4D
γ4

R 0 0 0 0

l1X
γ1

B l2X
γ2

B l3X
γ3

B l4X
γ4

B 0 0 −X
βR
1

B −X
βR
2

B

l1γ1X
γ1

B l2γ2X
γ2

B l3γ3X
γ3

B l4γ4X
γ4

B 0 0 −βR
1 X

βR
1

B −βR
2 X

βR
2

B

Xγ1

B Xγ2

B Xγ3

B Xγ4

B 0 0 0 0

0 0 0 0 0 0 X
βR
1

R X
βR
2

R



b :=



−AB5 + C3DR + C4 + C5D
γ1

R + C6D
γ2

R

C3DR + γ1C5D
γ1

R + γ2C6D
γ2

R

−C3DB − C4 − C5D
γ3

B − C6D
γ4

B + αB

(
DByB +Gunlev

B (DB)
)

−AR5 + αR

(
DRyR +Gunlev

R (DR)
)

−AR5 + Z (XB) +B4

XBZ
′ (XB)

−AB5 + d̂B

(
s̄XB − K

yB

)
−Z (XR) +B4 + d̂R

(
s̄XR − K

yR

)


.

Thus, the solution to the remaining unknowns is given by[
AB1 AB2 AB3 AB4 C1 C2 B1 B2

]T
= M−1b. (A-100)

Proof of Remark 1.
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(i) In our framework, debt characteristics (c,m, p) are chosen and fixed at initiation. This setting allows
us to calculate closed-form solutions for the values of corporate securities of firms with both invested
assets and growth options, even with finite maturity debt. For given debt characteristics (c,m, p) , the
value of finite maturity debt satisfies the following system of ODEs:

For 0 ≤ X ≤ DB : {
dB (X) = αB

(
XyB +Gunlev

B (X)
)

dR (X) = αR

(
XyR +Gunlev

R (X)
)
.

(A-101)

For DB < X ≤ DR :
(rnB +m) dB (X) = c+mp+ µ̃BXd′B (X) + 1

2 σ̃
2
BX

2d′′B (X)

+λ̃B

(
αR

(
XyR +Gunlev

R (X)
)
− dB (X)

)
dR (X) = αR

(
XyR +Gunlev

R (X)
)
.

(A-102)

For DR < X < XB :
(rnB +m) dB (X) = c+mp+ µ̃BXd′B (X) + 1

2 σ̃
2
BX

2d′′B (X)

+λ̃B (dR (X)− dB (X))
(rnR +m) dR (X) = c+mp+ µ̃RXd′R (X) + 1

2 σ̃
2
RX

2d′′R (X)

+λ̃R (dB (X)− dR (X)) .

(A-103)

For XB ≤ X < XR :
dB (X) = d̂B

(
s̄X − K

yB

)
(rnR +m) dR (X) = c+mp+ µ̃RXd′R (X) + 1

2 σ̃
2
RX

2d′′R (X)

+λ̃R

(
d̂B

(
s̄X − K

yB

)
− dR (X)

)
.

(A-104)

For X ≥ XR :  dB (X) = d̂B

(
s̄X − K

yB

)
dR (X) = d̂R

(
s̄X − K

yR

)
.

(A-105)

d̂i (·) denotes the value of debt of a firm with only invested assets with the same principal, coupon,

and debt maturity. The solution of d̂i is given in Hackbarth, Miao and Morellec (2006). It corresponds
to the value of infinite maturity debt of a firm with only invested assets with a coupon c + mp and
interest rates rni +m. The boundary conditions for System (A-101)-(A-105) are the same as in the case
of infinite maturity debt, see (A-65). Comparing this System (A-101)-(A-105) for finite maturity debt
to the corresponding System (A-60)-(A-64) for infinite maturity debt, we conclude that for given debt
characteristics (c,m, p) , the value of finite maturity debt corresponds to the value of infinite maturity
debt with a coupon c+mp and nominal interest rates rni +m. Hence, the value of finite maturity debt
is given by the corresponding Formula (22) in Proposition 2.

(ii) The value of the tax shield satisfies the following system of ODEs:
For 0 ≤ X ≤ DB : {

tB (X) = 0
tR (X) = 0.

(A-106)

For DB < X ≤ DR :{
rnBtB (X) = cτ + µ̃BXt′B (X) + 1

2 σ̃
2
BX

2t′′B (X) + λ̃B (0− tB (X))
tR (X) = 0.

(A-107)
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For DR < X < XB :{
rnBtB (X) = cτ + µ̃BXt′B (X) + 1

2 σ̃
2
BX

2t′′B (X) + λ̃B (tR (X)− tB (X))

rnRtR (X) = cτ + µ̃RXt′R (X) + 1
2 σ̃

2
RX

2t′′R (X) + λ̃R (tB (X)− tR (X)) .
(A-108)

For XB ≤ X < XR : 
tB (X) = t̂B

(
s̄X − K

yB

)
rnRtR (X) = cτ + µ̃RXt′R (X) + 1

2 σ̃
2
RX

2t′′R (X)

+λ̃R

(
t̂B

(
s̄X − K

yB

)
− tR (X)

)
.

(A-109)

For X ≥ XR :  tB (X) = t̂B

(
s̄X − K

yB

)
tR (X) = t̂R

(
s̄X − K

yR

)
.

(A-110)

The boundary conditions write:

lim
X↘DR

tB (X) = lim
X↗DR

tB (X)

lim
X↘DR

t′B (X) = lim
X↗DR

t′B (X)

lim
X↘DB

tB (X) = 0

lim
X↘DR

tR (X) = 0

lim
X↘XB

tR (X) = lim
X↗XB

tR (X) (A-111)

lim
X↘XB

t′R (X) = lim
X↗XB

t′R (X)

lim
X↗XB

tB (X) = t̂B

(
s̄XB − K

yB

)
lim

X↗XR

tR (XR) = t̂R

(
s̄XR − K

yR

)
.

Comparing this System (A-106)-(A-110) and its boundary conditions (A-111) to the system for in-
finite maturity debt, (A-60)-(A-64), and its boundary conditions (A-65) yields that the tax shield
corresponds to the value of debt with a coupon of cτ and default costs of zero. The solution for the
value of the tax shield is, therefore, given by the corresponding Eq. (22) in Proposition 2.

(iii) The system for bankruptcy costs is given by:
For 0 ≤ X ≤ DB : {

bB (X) = (1− αB)
(
XyB +Gunlev

B (X)
)

bR (X) = (1− αR)
(
XyR +Gunlev

R (X)
)
.

(A-112)

For DB < X ≤ DR :
rnBbB (X) = µ̃BXb′B (X) + 1

2 σ̃
2
BX

2b′′B (X)

+λ̃B

(
(1− αR)

(
XyR +Gunlev

R (X)
)
− bB (X)

)
bR (X) = (1− αR)

(
XyR +Gunlev

R (X)
)
.

(A-113)

For DR < X < XB :{
rnBbB (X) = µ̃BXb′B (X) + 1

2 σ̃
2
BX

2b′′B (X) + λ̃B (bR (X)− bB (X))

rnRbR (X) = µ̃RXb′R (X) + 1
2 σ̃

2
RX

2b′′R (X) + λ̃R (bB (X)− bR (X)) .
(A-114)
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For XB ≤ X < XR : bB (X) = b̂B

(
s̄X − K

yB

)
rnRbR (X) = µ̃RXb′R (X) + 1

2 σ̃
2
RX

2b′′R (X) + λ̃R

(
b̂B

(
s̄X − K

yB

)
− bR (X)

)
.

(A-115)

For X ≥ XR :  bB (X) = b̂B

(
s̄X − K

yB

)
bR (X) = b̂R

(
s̄X − K

yR

)
.

(A-116)

The system is subject to the following boundary conditions:

lim
X↘DR

bB (X) = lim
X↗DR

bB (X)

lim
X↘DR

b′B (X) = lim
X↗DR

b′B (X)

lim
X↘DB

bB (X) = (1− αB)
(
DByB +Gunlev

B (DB)
)

lim
X↘DR

bR (X) = (1− αR)
(
DRyR +Gunlev

R (DR)
)

lim
X↘XB

bR (X) = lim
X↗XB

bR (X) (A-117)

lim
X↘XB

b′R (X) = lim
X↗XB

b′R (X)

lim
X↗XB

bB (X) = b̂B

(
s̄XB − K

yB

)
lim

X↗XR

bR (XR) = b̂R

(
s̄XR − K

yR

)
.

This System (A-112)-(A-116) and its boundary conditions (A-117) correspond to the system for infinite
maturity debt, (A-60)-(A-64), and its boundary conditions (A-65), with a coupon of zero and a recovery
rate of 1− αi. The solution for bankruptcy costs is, therefore, given by the corresponding Eq. (22) in
Proposition 2.

One-regime model. Denote the default boundary by D1, the firm’s investment boundary by X1, and the
default boundary of a firm with only invested assets by D̂1. The system to solve is:

d (X) = α
(
yX +Gunlev (X)

)
X ≤ D1

rnd (X) = c+ µ̃Xd′(X) + σ̃2

2 X2d′′(X) D1 < X < X1

d (X) = d̂
(
s̄X − K

y

)
X ≥ X1.

(A-118)

This system is analogous to the one of the two regime model, (A-60)-(A-64). Similarly, the boundary
conditions are the value-matching conditions at default and exercise:

lim
X↘D1

d (X) = α
(
yD1 +Gunlev (D1)

)
(A-119)

lim
X↗X1

d (X) = d̂

(
s̄X1 −

K

y

)
. (A-120)
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The functional form of the solution is

d(X) =


α
(
yX +Gunlev (X)

)
X ≤ D1

E3X
β1 + E4X

β2 +A5 D1 < X < X1

d̂
(
s̄X − K

y

)
X ≥ X1,

(A-121)

in which E3, E4, A5, β1, and β2 are real-valued parameters to be determined (or to be confirmed). We need
to solve for the region D1 < X < X1. By plugging the functional form (A-121) into the differential equation
(A-118) and comparing coefficients, we find that

A5 =
c

r
(A-122)

β1,2 =
1

2
− µ̃

σ̃2
−

√(
1

2
− µ̃

σ̃2

)2

+
2r

σ̃2
. (A-123)

B3 and B4 are determined by the following two-dimensional linear system defined by the corresponding
boundary conditions:

E3D
β1

1 + E4D
β2

1 +
c

r
= α

(
yD1 +Gunlev (D1)

)
(A-124)

E3X
β1

1 + E4X
β2

1 +
c

r
= d̂

(
s̄X1 −

K

y

)
. (A-125)

Using matrix notation and defining

M1 :=

[
Dβ1

1 Dβ2

1

Xβ1

1 Xβ2

1

]
b1 :=

[
α
(
yD1 +Gunlev (D1)

)
− c

r

d̂
(
s̄X1 − K

y

)
− c

r

]
,

we find that[
E3 E4

]T
= M−1

1 b1 (A-126)

=
1

Dβ1

1 Xβ2

1 −Dβ2

1 Xβ1

1

[
Xβ2

1 −Dβ2

1

−Xβ1

1 Dβ1

1

] [
α
(
yD1 +Gunlev (D1)

)
− c

r

d̂
(
s̄X1 − K

y

)
− c

r

]
, (A-127)

which completes the calculation of the solution.

The values of finite maturity debt, the tax shield, and bankruptcy costs can be found analogously to the
two-regime model (cf. Remark 1).

A.5. Details on the simulations

A.5.1. Calibration of the idiosyncratic volatility

We calibrate the firm-level idiosyncratic volatility of our BBB sample to the empirically observed total
asset volatility of 0.25. The procedure starts by simulating a model-implied economy for ten years (pre-
matching simulation). Next, we match the model-implied distribution after ten years with the empirical
cross-section of BBB-rated firms, and finally simulate the obtained matched sample for another ten years
(post-matching simulation). The average asset volatility of the post-matching simulation is then calculated.
The details of this procedure are outlined in the following paragraphs.
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We consider infinite maturity debt in the pre-matching simulation for all debt maturities in the post-
matching simulation. We do so to abstract away from the impact of different initial principals on the results,
allowing us to analyze the pure effect of debt maturities on credit spreads in the post-matching simulation.
Additionally, starting with infinite maturity debt yields initial leverage ratios (principals) close to the ones
empirically reported.35 The model-implied economy is generated as follows: Starting with a value firm
(s = 0), we generate a range of firms by increasing the option scale parameter s by steps of 0.05, up to
the largest possible value of s such that the option is not exercised immediately. At initiation, the capital
structure is chosen optimally for all firms. For each option scale parameter s, 50 firms are considered,
resulting in an initial sample of more than 3,000 firms. During the ten year pre-matching simulation of this
initial sample, firms default and expand optimally. Defaulted firms are not replaced, and exercised firms
continue as firms with only invested assets. At the end of the pre-matching simulation, we calculate the
model-implied leverage and asset composition ratio for each firm, using the assumed debt maturity and the
corresponding optimal boundaries. We obtain a model-implied economy of firms covering a broad range of
both asset composition ratios and leverage ratios.

In the second step, we match our average historical distribution of BBB-rated firms with its model-
implied counterpart. For each observation in the average historical distribution, we select the firm in our
model-implied economy at the final period of the pre-matching simulation that exhibits the minimum distance
regarding the percentage deviation from the target market leverage and asset composition ratio. That is,
the empirical observation of a firm with leverage levemp and asset composition ratio acremp is matched
with the model-implied firm with leverage levmi and asset composition ratio acrmi if - given the set of all
model-implied firms - it minimizes the Euclidean distance√(

levemp − levmi

levemp

)2

+

(
acremp − acrmi

acremp

)2

. (A-128)

The final step conducts a post-matching simulation with the obtained sample of model-implied BBB-firms
over ten years. For each simulation, we obtain the realized asset volatility for each firm, and calculate the
resulting average asset volatility over firms. When measuring and averaging asset volatilities, we incorporate
the entire initially matched BBB-sample, including the evolution of the assets of firms that default during the
ten year post-matching simulation. This approach avoids a weighting bias when averaging over simulations
towards firms with lower leverage and asset volatility, which have a smaller tendency to default during the
post-matching simulation.

The pre-matching simulation and the subsequent matching are conducted 20 times. The initial regime
is chosen according to the stationary distribution of the states. This approach also guarantees convergence
to the steady-state distribution of regimes at the time of matching. For each matched sample of firms,
the post-matching simulation is run 50 times. These numbers result in a total of 1,000 simulations. The
procedure is conducted for different post-matching debt maturities.

A.5.2. Simulation of the true cross-section

To ensure consistency, the simulation of the true cross-section is implemented analogously to the one
performed to calibrate the idiosyncratic volatility: We first simulate a model-implied distribution of firms
for ten years (pre-matching simulation), and then match the model-implied distribution with the average
empirical cross-section (for details, see above). The final step consists of simulating the matched sample
for 20 years (post-matching simulation). We assume that firms default and exercise optimally. Defaulted

35An unreported robustness analysis confirms that starting with finite maturity debt in the pre-matching simulation
yields similar results for the post-matching simulation. Credit spreads are slightly lower as the initial principals are
smaller.
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firms are not recorded after default, whereas exercised firms are maintained in the sample, and continue as
firms with only invested assets. Credit spreads and leverage ratios are measured during five years after the
matching: For each firm in the sample, we calculate the actual credit spread and leverage every month, and
then report the average over all firms and all simulations. Default rates are observed for five, ten, and 20
years. To assess the impact of the realized regimes at initiation and at the time of matching, we present
quantiles of post-matching average rates. As in the calibration of the volatility, the initial state is chosen
according to the stationary distribution. The pre-matching simulation is run 20 times, and the post-matching
simulation is conducted 50 times, resulting in a total of 1,000 simulations.

A.6. Financing the exercise of the growth option by issuing additional equity

We consider the case in which the exercise price K of the growth option is financed by issuing additional
equity. The corresponding system of ODEs for corporate debt is:

For 0 ≤ X ≤ DB : {
dB (X) = αB

(
XyB +Gunlev

B (X)
)

dR (X) = αR

(
XyR +Gunlev

R (X)
)
.

(A-129)

For DB < X ≤ DR : 
rnBdB (X) = c+ µ̃BXd′B (X) + 1

2 σ̃
2
BX

2d′′B (X)

+λ̃B

(
αR

(
XyR +Gunlev

R (X)
)
− dB (X)

)
dR (X) = αR

(
XyR +Gunlev

R (X)
)
.

(A-130)

For DR < X < XB :{
rnBdB (X) = c+ µ̃BXd′B (X) + 1

2 σ̃
2
BX

2d′′B (X) + λ̃B (dR (X)− dB (X))

rnRdR (X) = c+ µ̃RXd′R (X) + 1
2 σ̃

2
RX

2d′′R (X) + λ̃R (dB (X)− dR (X)) .
(A-131)

For XB ≤ X < XR :{
dB (X) = d̂B (s̄X)

rnRdR (X) = c+ µ̃RXd′R (X) + 1
2 σ̃

2
RX

2d′′R (X) + λ̃R

(
d̂B (s̄X)− dR (X)

)
.

(A-132)

For X ≥ XR : {
dB (X) = d̂B (s̄X)

dR (X) = d̂R (s̄X) .
(A-133)

The boundary conditions read:

lim
X↘DR

dB (X) = lim
X↗DR

dB (X)

lim
X↘DR

d′B (X) = lim
X↗DR

d′B (X)

lim
X↘DB

dB (X) = αB

(
DByB +Gunlev

B (DB)
)

lim
X↘DR

dR (X) = αR

(
DRyR +Gunlev

R (DR)
)

lim
X↘XB

dR (X) = lim
X↗XB

dR (X) (A-134)

lim
X↘XB

d′R (X) = lim
X↗XB

d′R (X)

lim
X↗XB

dB (X) = d̂B (s̄XB)

lim
X↗XR

dR (XR) = d̂R (s̄XR) .
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Comparing this System (A-129)-(A-133) and its boundary conditions (A-134) to System (A-60)-(A-64) with
boundary conditions (A-65), we conclude that the value of debt given that the option exercise is financed
by issuing additional equity corresponds to the value of debt given that the option exercise is financed by
selling assets in place with an exercise price K of zero. Hence, the value of debt in case of equity financed
exercise costs can be calculated by the corresponding Formula (22) in Proposition 2. In particular, using
the properties of Gauss’ hyperbolic function 2F1 and the definition of βR

1,2 in (23), we find that the function
Z (X) as stated in line 5 of (22) in Proposition 2 simplifies to

Z (X) = λ̃RB5X
γ1 + λ̃RB6X

γ2 , (A-135)

with

B5 =
s̄γ1ÂB1

rnR − µ̃Rγ1 − 1
2 σ̃

2
Rγ1 (γ1 − 1) + λ̃R

, (A-136)

B6 =
s̄γ2ÂB2

rnR − µ̃Rγ2 − 1
2 σ̃

2
Rγ2 (γ2 − 1) + λ̃R

. (A-137)

A.7. The equity risk premium

Proof of Proposition 3. According to Bhamra, Kuehn and Strebulaev (2010a), the equity premium
epi (X) is given by

epi (X) = Et [dRt − rni dt] = −Et

[
dRt

dπnom
t

πnom
t

]
, (A-138)

with

Rt :=
dei (X) + (1− τ) (X − c) dt

ei− (X)
, (A-139)

and i− denotes the left limit of the Markov chain at time t. An application of Ito’s lemma shows that

dRt = µR,i− (X) dt+ σe,C
i− (X) dWC

t + σe,P
i− (X) dWP

t + σe,X
i− (X) dWX

t +

(
ei (X)

ei− (X)
− 1

)
dMt, (A-140)

with

µR,i (X) = µi−
e′i− (X)X

ei− (X)
+

1

2

((
σX,C
i−

)2
+
(
σP,id

)2
+
(
σX,id

)2) e′′i− (X)X2

ei− (X)

+
(1− τ) (X − c)

ei− (X)
, (A-141)

σe,C
i− (X) =

e′i− (X)X

ei− (X)
σX,C
i− , (A-142)

σP,C
i− (X) =

e′i− (X)X

ei− (X)
σP,id, (A-143)

σe,X
i− (X) =

e′i− (X)X

ei− (X)
σX,id. (A-144)
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Next, the nominal state price density is linked to the real state price density by πnom
t =

πreal
t

Pt
. Hence, using

Ito’s lemma, the dynamics of the nominal state price density can be written as

dπnom
t

πnom
t

= −
(
µπ
t + π −

(
σP,C

)2 − (σP,id
)2 − γσP,CσC

i

)
dt

−
(
γσC

i + σP,C
)
dWC

t − σP,iddWP
t + (eκi − 1) dMt. (A-145)

Plugging A-145 into (A-138) and taking the expectation yields the equity premium

epi (X) =
e′i (X)X

ei (X)
σX,C
i

(
γσC

i + σP,C
)
+

e′i (X)X

ei (X)

(
σP,id

)2 − λ

(
ej (X)

ei (X)
− 1

)
(eκi − 1) . (A-146)
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