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Forecasting macroeconomic labour market flows:

What can we learn from micro level analysis?∗

Ralf A. Wilke†

October 2017

Abstract

Forecasting labour market flows is important for budgeting and decision making in

government departments and public administration. Macroeconomic forecasts are nor-

mally obtained from time series data. In this paper we follow another approach that uses

individual level statistical analysis to predict the number of exits out of unemployment

insurance claims. We present a comparative study of econometric, actuarial and statis-

tical methodologies that base on different data structures. The results with records of

the German unemployment insurance suggest that prediction based on individual level

statistical duration analysis constitutes an interesting alternative to aggregate data based

forecasting. In particular forecasts of up to 6 months ahead are surprisingly precise and

are found to be more precise than considered time series forecasts.
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1 Introduction

Labour market analysis on the individual level normally uses individual level data and macro

level analysis bases on aggregate data (see for example Barnichon and Nekarda, 2012). Until

recently such a separation was natural due to restrictions on data availability and comput-

ing performance. Although, surveys, such as the labour force survey, are frequently used to

validate or construct macroeconomic figures such as the unemployment rate or labour market

flows (see for example Elsby et al., 2015, Hutter and Weber, 2015), econometric forecasting

of macroeconomic figures is typically based on aggregate data. Examples include Brown and

Moshiri (2004), Sermpinis et al. (2014) and Hutter and Weber (2017). The increased availabil-

ity of large linked administrative individual data opens up new opportunities for micro level

statistical analysis as information on individual level is becoming available for the population.

While these data have become the industry standard for applied analysis on individual level,

little efforts have been devoted to link the statistical analysis on individual level with forecasts

for the macro level.

Economic literature on linking microeconometric analysis with macro models is sparse. Partly

this is done in microsimulation models. However, these models are less a statistical approach but

more a computational tool in applied economics. Their core is simulating parts of the economy

using models based on economic theory. More related to the goals of this study, new research in

actuarial sciences has developed forecasts for aggregate figures on the grounds of micro data level

analysis (compare Antonio and Plat, 2014). This approach has also been shown to be useful in

estimating outstanding claim liabilities in the disability insurance (Spierdijk and Koning, 2014)

and forecasting mesothelioma mortality (Mart́ınez-Miranda et al., 2015). This paper adopts
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the idea of using individual level data to construct forecasts for macroeconomic figures. The

considered models exploit the richness of the data and avoid parametric restrictions on the micro

level as much as possible. An empirical study is presented which compares forecasts obtained

by different approaches including a classical time series forecast. Extensive unemployment

insurance claim records from Germany are used to predict the number of unemployment benefits

leavers. Within this application it is shown how macroeconomic labour market forecasts are

obtained from estimated individual level transition probabilities. The latter are estimated

using data about individual employment biographies in past periods. By focussing on exits

out of the unemployment insurance, we consider a standard problem in actuarial sciences, the

so-called reserving problem. There the insurer uses data on past claims and contract signing

dates to produce a forecast for future insurance claims or outstanding liabilities. Using a simple

data structure in form of a triangle, these so-called Chain Ladder Method (CLM) (compare

Weindorfer, 2012) are used by most if not all insurers to estimate outstanding liabilities. Thus,

these estimates are very important for the decision about the adequate size of financial reserves.

The statistical properties of these actuarial methods are well developed (Kuang et al., 2009,

Pigeon et al., 2013). Structured density forecasting is adopted in this study as it uses individual

level data to construct in-sample forecasts for the aggregate. In contrast to time series models

these forecasts do not simply extrapolate an aggregate figure but use as much as possible

individual level information at the edge of the observation period to construct the forecast.

As third contender, statistical duration models are used to construct macro level forecasts.

The idea here is to estimate individual level probabilities for existing unemployment insurance

claims. Thus, this work puts an interdisciplinary method mix to data to analyse the same

problem and to explore how estimation results compare. A rather non-technical presentation

of the material is chosen to make the material attractive for practitioners.
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The paper is structured as follows. Section 2 briefly presents the economic and institutional

framework for the empirical analysis. Section 3 provides details about the administrative data

used in the analysis. Section 4 describes the methodologies and Section 5 presents the fore-

casting results. Section 6 summarises the main findings and outlines trajectories for further

improvements.

2 Unemployment insurance in Germany

Precise prediction of the number of unemployment benefit leavers is not only important for pol-

icy makers to be able to build reliable expectations about state of the labour market but also for

financial planning units within the unemployment insurance. In Germany, the unemployment

insurance is administered by the Federal Employment Agency (FEA), located at Nuremberg.

Unemployed have an entitlement for contribution based unemployment benefits if they were

previously employed and paid contributions to the national social insurance, of which the unem-

ployment insurance is a part. The length of the entitlement for unemployment benefits depends

mainly on how long the unemployed has previously paid in, on their age and to some extent

on the business sector and the calendar year. Maximum entitlement lengths are 12 months for

younger individuals, while maximum entitlement length for older unemployed have been up to

32 months for most of the observation period of this study. Once unemployment benefits are

exhausted, the unemployed may be entitled to means tested unemployment assistance. Thus,

each unemployed claiming unemployment benefits will exit from these benefits at the latest

when the entitlements are exhausted. For more details about the German unemployment com-

pensation system in the relevant period see Plaßmann (2002). The main analysis period of

this paper is 2002-2005 to construct a forecast for 2006. It is worth mentioning that the en-
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titlement length for unemployment benefits (in particular maximum entitlement lengths) were

broadly unchanged during the period 2002-2005. But there were significant changes in entitle-

ment lengths before and after this period. One policy change in 1997, which became gradually

effective during the period 1999-2001, increased requirements for extended entitlement lengths

(>12 months). Another policy change led to a reduction in maximum entitlement lengths from

32 to 18 months from February 2006 and another change increased it back to 24 months from

January 2008. This study therefore focuses on period with stability in entitlements, although

many other labour market regulations were subject to change during this period.

Looking at outflows of unemployment benefit claimants is not the same as looking at outflows

of all unemployed but only the former are of interest for the unemployment insurance. The

FEA has confirmed that projections of benefit counts, inflows, and outflows are important for

their liquidity management and budgeting. In their current internal processes they construct

projections on the grounds of current year-to-year changes in aggregate figures. Therefore, a

comparison of various methods, as in this paper, is highly relevant to them and practitioners

in other unemployment insurances.

3 Data

The analysis of this paper is based on linked administrative individual data from Germany. In

particular it uses the Sample of Integrated Labour Market Biographies (SIAB, Scientific Use

File) of the Institute for Employment Research (IAB), the research institute of the FEA. See

vom Berge et al. (2014) for more details on these data. The SIAB is a 2% random sample of the

German population which is contributing to the national social insurance. It comprises of daily
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administrative records for the period 1975-2010. Among linked administrative records from

various sources, the data comprise claim periods of unemployment benefits. For the analysis,

these subsequent records for the same individual are linked to claim spells if the interruption

in the claim was less than 30 days and if there was no other administrative record pointing to

some other economic activity during this period. These short interruptions are therefore mainly

due to short periods of unavailability or benefit sanctions. After unemployment benefits claim

periods have been constructed, they are converted from days to months and all subsequent

analysis is conducted on monthly basis. Given that most individuals in the data do not have

a claim spell and others have more than one claim spell, the resulting number of claim spells

is much smaller than the number of individuals in the SIAB. From the SIAB it is also directly

possible to construct aggregate macro figures, such as the number of transitions into and out

of unemployment benefits by simply counting the transitions at specific time points.

The main analysis focuses on the period 2002-2006, which we denote as monthly periods

t = 1, ..., 60, where t = 1 corresponds to January 2002 and greater t to subsequent months.

Estimation uses data from 2002-2005, i.e. from periods t = 1, ..., 48, to construct monthly fore-

casts for the number of benefit leavers in 2006 (t > 48). We denote the number of claimants

stopping to claim in t as Ot for all t and any forecast as Oforecast
t . Ot is extracted for all t.

All individual benefit claim durations that commence in the period 2002-2005 are computed

which results in i = 1, ..., 364, 362 individual claim durations li ∈ {1, ..., L}. L is the maximum

claim duration, which is 32 months or possibly a couple of months longer in our application

due to the legal restriction on the maximum benefit entitlement lengths. If a duration is not

completed by the end of 2005 it is marked as censored. From these durations it is possible to

determine elapsed claim duration at each period t for those who are claiming benefits in t. This
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is denoted as li(t) for all i that claim benefits in t. The individual level analysis model also

requires information about inflows- this is individuals who start a claim duration- and this is

denoted by It and any forecast by Iforecastt , respectively. Thus, It is also extracted for all t.

The data preparation code is made available as supplementary material but access to the SIAB

requires a valid data use agreement with the Research data centre of the FEA (fdz.iab.de). Re-

searchers who are only interested in running and understanding the code may consider working

with the campus file version of these data. Access details are provided in the supplementary

material.

The analysis has been repeated for other periods to forecast the years 2002, 2003, 2004, 2005

and 2009 and these results are presented in the supplementary material to this paper. A

similar analysis could be also conducted to predict outflows out of registered unemployment.

This would, however, require a slightly different data preparation using job seeking records in

the individual level data instead of benefit claim periods.

4 Forecasting Benefit Outflows

The starting point is a simple time series regression with seasonality and trend using aggregate

data for 48 months (Jan 2002-Dec 2005). We consider the following models for benefit claim

outflows and inflows:

Ot = β0 +
12∑
m=2

θmdm + β1t+ β2t
2 + ut (1)

It = α0 +
12∑
m=2

ωmdm + α1t+ α2t
2 + vt, (2)
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for t = 1, ..., 48. dm are calendar month dummies, t is the trend (taking on the value of the

period) and ut and vt are the unobserved error terms. OLS is used for these models to estimate

the unknown βj, θj, αj and ωj. The Newey-West procedure (Newey and West, 1987) is used

to obtain autocorrelation robust standard errors. Other polynomial specifications of the trend

component in the time series models have been also used. Results were somehow sensitive to this

but the main result pattern were invariant. The use of autoregressive terms did not markedly

improve the model fit and for reasons of simplicity these results have not been reported. After

estimating these models, Ot and It are forecasted using future values of t and by choosing the

appropriate calender month dm. These forecasts are denoted as OTS
t and ITSt and are computed

for all calendar months in the year 2006. An intercept corrected forecast for Ot is also obtained

by adding the last in-sample residual to OTS
t . The resulting forecasts for Ot are then compared

with the observed data as well as several micro analysis based forecasts for the year 2006.

The general idea to forecast labour market flows based on micro level estimates is based on

what is known as reserving in actuarial sciences. Here insurance firms use individual claims data

about the date of the claim and the contract sign date to construct estimates for outstanding

liabilities in future periods (compare Pigeon et al., 2014). This involves estimating densities

for the intensity (distribution of new contract signing dates) and the density for the develop-

ment times (time between signing the new contract and the occurrence of the claim). In our

problem the latter corresponds to estimating the distribution of the length of unemployment

claim periods and the former to estimating the distribution of new entries into unemployment

benefits. Insurance firms normally organise data in form of a triangle and use the so called

chain ladder method (CLM) to estimate the distributions. For instance, see Weindorfer (2012)

for an informal introduction. These methods are popular because they rely on semi-aggregated

8



data with minimal requirements on the availability of individual level data. Compare Appendix

A.I for more details and a statistical representation of this approach to in-sample forecasting.

In statistics it is also referred to as structured density forecasting. There is a growing literature

in actuarial sciences suggesting various extensions or alternatives to the classical chain ladder

method. Kuang et al. (2011) propose an extended chain ladder model. Mammen et el. (2015)

and Hiabu et al. (2014) re-phrase the problem to a structured density forecasting framework.

Lee et al. (2015) incorporate an additional seasonality component. While these structure den-

sity forecasting models are nonparametric and involve Kernel smoothing, Pigeon et al. (2013)

and Pigeon et al. (2014) develop alternative approaches by parameterizing distributions and

employing maximum likelihood estimation. We follow here the spirit of nonparametric models

in order to avoid assumptions as much as possible. Similar to Antonio and Plat (2014) this

paper presents approaches to make use of micro level analysis as much as possible.

Estimation results for various models are compared. The discussion of the results is mainly

restricted to point estimates but exemplary confidence intervals and mean squared errors are

also reported.

The forecast for the total number of claim outflows is the sum of forecasts A and B:

(A) Forecasting the future outflows of those who are in stock today (i.e. those who are claiming

insurance benefits at the end of 2005).

(B) Forecasting future outflows of those who will start a claim period during the forecasting

period (i.e. those who start claiming insurance benefits sometime in 2006).
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Forecast A Four forecasts A are computed: The CLM is used along with three alternative

approaches that utilise estimated transition probabilities (obtained by CLM and conventional

duration models) and information about the stock of benefit claimants at the end of 2005.

These forecasts are directly comparable and reveal how different data and model restrictions

lead to different results. The first forecast is obtained by the classical CLM, which is described

in Appendix AI, and denoted as O
CLM(A)
t . This forecast is based on a data triangle, which

contains observed counts of benefit exits by calender month and by benefit duration. For more

details see Appendix AI, where the data triangle of this application is shown in Figure 4. The

CLM forecast uses fCL(l), the CLM estimate for the density of claim duration l which is given

in Equation (6) in the Appendix. The density representation of the CLM is presented in greater

detail in Mart́ınez-Miranda et al. (2013). The second forecast, O
CL(A)
t , is a hybrid of the CLM

and a duration model. It uses fCL(l) but instead of the estimated density of benefit inflows, it

uses data on the stock of claimants at the end of 2005 along with information about their length

of claim periods at the end of 2005. This information can be organised as a L× 1 vector. Let

i = 1, ..., Nt0 be the benefit claimants in t0=Dec 2005 (or t=48). The forecast is constructed

as follows:

O
CL(A)
t =

Nt0∑
i=1

cfCL(li(t)), (3)

where cfCL(li(t)) is the conditional density of exiting benefits in period t = 49, ..., 60 given that

the unemployed is claiming unemployment benefits in t0 and has a claim duration of li(t) in

period t. This is cfCL(l) = fCL(l)/
∫∞
l
fCL(u)du. The conditional density is used to make sure

that the sum of probabilities taken over future claim months is one. The difference between

O
CLM(A)
t and O

CL(A)
t is therefore that the former estimate only uses information about the

number of completed claim spells in the past to estimate the stock of current claimants, while

the latter uses the actual number of claimants at the end of 2005.
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The third forecast also uses the stock of claimants at the end of 2005 but different estimated

densities of claim duration. The classical chain ladder model makes the implicit assumption

that there is no seasonality in the distribution of claim duration. This is that the distribution

of duration is the same irrespective during which calendar month the claim spell has started.

This assumption is likely violated in our application because winter and summer unemployment

in the German labour market have different patterns. In order to relax this restriction, model

(3) is modified by allowing the density to vary with calender month of unemployment benefit

entry. This is achieved by adopting another idea from actuarial sciences (compare Spierdijk

and Koning, 2014). In particular, we use claim duration density estimates that are obtained

from a duration model. In order to allow for seasonality in claim durations the Kaplan-Meier

estimator (Kaplan and Meier, 1958) is applied to samples that are stratified by calendar month

of the claim’s start date. Thus, this estimator requires individual level benefit claim duration

data. For more details on this approach compare Appendix A.I. The resulting density estimate

is fKM(l, j), where l is again the claim duration and j = 1, ..., 12 is the calendar month of the

start date. The third forecast for A is then obtained by

O
KM(A)
t =

Nt0∑
i=1

cfKM(li(t), ji), (4)

where cfKM is again the conditional density and analogously defined as in model (3). Going

from O
CL(A)
t to O

KM(A)
t therefore corresponds to changing the estimator for the conditional

densities. While allowing for seasonality patterns in the distribution of the duration of claim

spells is a useful extension (this is also considered by Lee et al., 2015, in the context of structured

density forecasting), there is another restriction that is likely not to hold. So far the density

estimates do not vary in calendar time. This implies that beside seasonal effects, the densities

are not allowed to vary with business cycle or may not be driven by a trend. The fourth
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forecast relaxes this restriction. This is done by partly parameterizing the duration model. In

particular, the semiparametric Cox proportional hazard duration model (Cox, 1972) is used to

model the conditional densities. For more details on the Cox model compare Appendix A.I. A

linear trend component t is the parametric part. Adding a trend makes is possible for predicted

densities to be different from past densities, thus allowing for possible general behavioural or

macroeconomic changes over time. Estimation is also stratified by calendar month of the

claim start date as in the case of the Kaplan-Meier estimator. The resulting density is then

fCox(l, j, s), where l is the claim duration, j is the calendar month of the start date and s is

the year of the start date (with s = 1, ..., 4 correspond to 2002, ..., 2005, respectively). Thus,

the fourth forecast is obtained by

O
Cox(A)
t =

Nt0∑
i=1

cfCox(li(t), ji, si), (5)

where cfCox is analogously defined as in (3). The difference between O
KM(A)
t and O

Cox(A)
t is

therefore that the latter allows the underlying densities to have a trend in calendar time due

to for example the business cycle, while the former restricts them to be calendar time invariant

other than the seasonality effects.

Forecast B The next step is to create forecasts for the number of benefit claimants leaving

benefits in 2006 who have started their claim periods after Dec 2005. For this purpose ITSt is

used as a prediction for the number of benefit inflows in period t, where t = 49, ..., 60 (calendar

year 2006). The forecasted number of exits in period t + l of those entering benefits in period

t is then O
M(B)
t,t+l = ITSt ∗ fM(l, j, s), where M = {CL,KM,COX}, j is the calendar month

of entry, and s is the start year of entry (= 5 for 2006). The density estimates fM are the

same as in forecasts A. Since all these claimants enter benefits in 2006, the conditional density
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corresponds to the marginal density. fCox(l, j, 5) is an extrapolation using the estimated trend

pattern of the pervious years. Based on these forecasts, O
M(B)
t with M = {CL,KM,COX} is

obtained by

O
M(B)
t =

∑
r≤t

O
M(B)
r,t

for t = 49, ..., 60. We therefore obtain three forecasts for each month in 2006 which are due to

different models for the estimated density of claim duration.

The total number of forecasted outflows out of unemployment insurance is OM
t = O

M(A)
t +O

M(B)
t

with M = {CL,KM,COX}. The quality of the forecasts is assessed by considering absolute

prediction errors for each calendar month of 2006 and for the entire year 2006. Moreover,

bootstrap confidence intervals, mean squared error (MSE) and mean squared forecast error

(MSFE) for selected forecasts are reported. However, the MSE for forecast B is computed for

given ITSt , thus ignoring the uncertainty induced by the time series forecast for the inflows.

Stata code for the various analysis models, except for the Chain Ladder Model, is provided as

supplementary material. The results for the Chain Ladder model have been obtained with R

using sample code that will be released by L.Mart́ınez as a package ”Double Chain Ladder”.

Extracts of aggregated data such as the time series, the data triangle and resulting densities are

also made available in the supplementary material. They can be used to construct the various

forecasts without having access to the SIAB.

5 Empirical Results

This section presents estimation results when the methods of the previous section are applied

to German administrative labour market data as described in Section 3. Figure 1 presents
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Figure 1: Time-series of unemployment insurance out- and inflows with time series forecasts

and their 95% confidence intervals for 2006.
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the time series of unemployment insurance claim outflows and inflows for the period Jan2002-

Dec2006. It also shows the time series forecasts for the year 2006 obtained from models (1) and

(2) with their asymptotic 95% confidence intervals. It is apparent that these extrapolations

fit the observed data pretty well. For completeness full estimation results for the time series

forecasts with confidence intervals, MSE and MSFE are reported in Table 3 in the Appendix.

The remainder of this section compares the various micro analysis based forecasts discussed

in the previous section with the time series forecast of model (1). We begin with forecasts A,

followed by B and A+B. The first step is to apply the CLM. Resulting estimated densities

for the distribution of benefit inflows and benefit claim duration (compare Equation (6) in the

Appendix) are shown in Figure 2. The estimated density of inflows captures well the observed

inflow pattern (as presented in Figure 1) except for the last couple of months in 2005, where

the CLM density estimate continues to decline but the actual number of outflows increases

(compare Figures 1). This discrepancy could be due to that the data triangle for the CLM (as

shown in Figure 4) does not include information on seasonally unemployed during the winter

2005/06. These individuals start their winter unemployment at year end of 2005 and do not

return to employment before spring 2006. The estimated density for the distribution of the
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length of claim periods is generally declining with duration but has several spikes. These peaks

are located at 12, 22, 26 and 32 months and are also visible in the observed data triangle

in Figure 4. They correspond to the maximum benefit entitlement length for some groups

of unemployed that fully exploit their entitlements. Unemployed younger than age 45 had

a maximum entitlement length of 12 months while older unemployed were entitled to up to

32 months depending on their employment history. For comparison a pooled Kaplan-Meier

estimate for the same density is obtained. This estimate uses all claim durations starting

between 2002 and 2005 and censors them at the end of 2005. This estimate was found to

be very similar to the CLM estimate and is therefore not presented. Instead, Figure 3 shows

Kaplan-Meier estimates for the same period but stratified by calendar month. These are the

fKM that are used to construct OKM
t . It is apparent that the density of claim duration varies

with season. For example the densities for April (=4) and December (=12) look rather different.

We shall therefore expect that this additional flexibility in the model that is not captured by

CLM will contribute to an improvement of the forecast. In contrast, plots for the estimated

densities on the grounds of the Cox proportional hazard model are not presented because they

turned out to be of rather similar shape as the KM estimates in Figure 3.

We have now all ingredients together to construct the various forecasts A which are reported in

Table 1. For validation reasons the table also contains the actual data for 2006. It is apparent

from this table that the CLM forecast is systematically too low. The other three models (CL,

KM and Cox) produce forecasts which are much closer to the observed numbers. The poor

performance of CLM in this application is likely due to the inaccuracy of the estimated inflows

during the final months of 2005. The downward bias in the estimated density of entries causes

the downward bias in the forecasted outflows, in particular during spring 2016. Thus going
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Figure 2: Estimated densities: Chain Ladder Method.
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Figure 3: Densities of length of benefit claim duration stratified by month: Kaplan-Meier

estimator. Start of claiming benefits: 2002-2005.
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from the simple triangle data on outflows in past periods (to construct O
CLM(A)
t ) to using data

on the stock of benefit claimants at the end of 2005 (to construct O
CL(A)
t ) results in an improved

estimate (smaller forecast errors). It is also apparent that the forecast improves further when

using stratified nonparametric KM estimates (to obtain O
KM(A)
t ) instead of the pooled CL

density. But this improvement is only slight. Using the Cox model (to obtain O
Cox(A)
t ) strongly

improves the total forecast for the year 2006 but does not improve monthly forecasts on average.

The CM, KM and Cox forecasts have a rather small prediction error. For example the Cox

model based forecast is too low by only 270 units. This is a small number for around 27K

outflows to be predicted. Table 4 in the Appendix reports 95% bootstrap confidence intervals

for OCox
t (A). These intervals are narrow because the sample of durations consists of more

than 350K observations. Thus the large number of observation used for the estimation of the

individual level estimates leads to a high precision of the latter.

Table 1: Forecasts A: Outflows of those claiming unemployment insurance at the end of 2005.

period data O
CLM(A)
t error\ O

CL(A)
t error\ O

KM(A)
t error\ O

Cox(A)
t error\

jan-06 3546 3637 91 5070 1524 4253 707 3841 295

feb-06 4645 3073 1572 4320 325 4097 548 3713 932

mar-06 3846 2490 1356 3612 234 4082 236 3745 101

apr-06 3990 2052 1938 2930 1060 3447 543 3252 738

maj-06 2462 1793 669 2506 44 2642 180 2563 101

jun-06 2161 1557 604 2147 14 2238 77 2219 58

jul-06 1519 1308 211 1742 223 1781 262 1805 286

aug-06 1472 1129 343 1509 37 1528 56 1581 109

sep-06 1039 942 97 1271 232 1259 220 1323 284

okt-06 955 790 165 1081 126 991 36 1057 102

nov-06 810 635 175 1014 204 843 33 946 136

dec-06 687 402 285 742 55 712 25 817 130

average‡ 626 340 244 273

total 2006 27132 19808 7324 27944 812 27873 741 26862 270

\: Absolute value
‡: Average of absolute monthly errors
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Table 2 presents the forecasts B and A+B for the different models and the observed outflows in

2006. Two time series forecasts are presented. One resulting from Model (1), and an intercept

corrected forecast. The time series based forecasts for A+B have the smallest prediction error

among all contenders (if we exclude the last two columns which will be discussed below). This

is because they have both the smallest average monthly absolute error and the smallest absolute

yearly error. Among the micro data based models, the forecast based on the Cox proportional

hazard model performs best, followed by the stratified KM estimator based model and the CL

density based model. Thus, the increased flexibility in the micro based model by allowing for

seasonality in densities and trend extrapolation of the densities leads to a reduction in the

forecast error. Although, the time series forecasts have a slightly smaller errors than OCox
t , the

difference is small relative to the size of the total numbers to be forecasted. When looking in

more detail at the errors of the KM and the Cox based forecasts it becomes apparent that the

quality of these forecasts deteriorates the more distant the prediction is. In contrast, there is

no evidence for such a pattern in the time series forecast. For instance the average absolute

monthly error for the first six months of 2006 is 594 for the time series model (1) whereas it

is only 493 for the KM density based micro model and 317 for the Cox based density model.

Indeed, when we compare the forecasts in Table 1 with the forecasts of the total outflows in

Table 2, it also becomes evident that the latter have a considerably larger prediction error.

Although, the error of forecast B is not reported it is apparent that the errors of the total

(A+B) forecasts are at least twice as large as the errors of forecasts A (and sometimes much

larger than that). Thus, the micro based models perform rather poorly when they predict

future outflows of those who are yet to start a claim. In order to investigate this further, the

forecast for the Cox density based model is also constructed using the actual future inflows (It)

rather than the time series estimates (ITSt ). This forecast and the resulting error are reported
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in the last two columns of Table 2. A direct comparison of the resulting forecasts allows an

assessment how the error in ITSt affects OCox
t . The average monthly absolute error for the

model with It is 465, which is around 30% lower than the equivalent error for OCox
t (which is

656). A similar pattern is observed for the error of the total number of outflows in 2006 which

reduces from 6596 to 3337. A decline of 50%. Thus, the increase in the size of the error in

OCox
t in the distance of the forecast period is to a larger extent due to the error in ITSt . This

is despite that the latter does not even seem to be too bad (compare Figure 1). Finally, we

look at some alternative measures for the quality of the forecasts OTS
t and OCox

t which also

take higher moments into account. In particular, Tables 3 and 4 in the Appendix report the

MSE and MSFE for OTS
t and OCox

t respectively. The MSE and MSFE for the Cox model based

forecast are considerably smaller for the first half of the year. For instance for February 2006

the time series forecast error is 100 lower but the associated MSE is 11% greater. This reflects

the observation that the confidence intervals for the micro data based forecast have only a

width of around 100 units, while the time series forecast’s confidence intervals are much wider

(more than 1000 units). This is due the individual level data model relies on more than 350K

observations while the time series model only uses 48 observations. The MSFE for the Cox

model based forecast for the first 6 months is smaller than the MSFE for the two time series

forecasts. However, for the second half of the year, the forecast errors for OCox
t becomes so

much larger that the time series forecasts are characterised by a smaller MSE and MSFE. In

addition to comparing the MSFE, an associated statistical test, the Diebold-Mariano test, has

been conducted to asses whether forecast quality differs statistically. For the entire year 2006

it is found that the intercept corrected time series forecast performs statistically better than

the non corrected time series forecast, while there is no statistical difference between these two

forecasts and the Cox model based forecast. When only considering the first six months of
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2006 it is found that the statistical difference between the two time series forecasts persists but

the Cox model based forecast is significantly better than the intercept corrected time series

forecast. Whether the Diebold-Mariano or related tests are indeed applicable to evaluate the

performance of the different forecasts is unclear. This is because the asymptotic distribution

of the test statistics is obtained by comparing different time series estimates and by letting the

number of periods going to infinity.

Robustness checks and policy changes As mentioned at the start of this section, several

robustness checks with regard to the specification of the time series model have been conducted.

Overall, the reported results were found to be rather representative and for this reason they

have been chosen. The analysis has been also repeated to construct forecasts for several other

calendar years (2002,2003, 2005, 2009). Similar result patterns have been obtained for the

years 2003-2006 (compare supplementary material Tables S1.-S3). This is a period with stable

entitlement rules for unemployment benefits. As indicated in Section 3, several significant policy

changes have become effective in the late 1990s, 2006 and 2008 which altered entitlement lengths

for unemployment benefits. As a consequence, there were considerable changes in benefit and

unemployment duration (compare Arntz et al., 2014 and Lo et al., 2017). This can be also

seen in Figure S.1 (supplementary material). For those entering benefits in January 2016, the

maximum entitlement length is 32 months. For those entering between February and July,

there are hardly any benefit durations longer than 18 months. And from July the maximum

increases again to 24 months (as the maximum entitlements were subsequently increased from

18 to 24 months when the benefit reform in 2008 became effective). As a result, the estimation

of the claim durations would need to explicitly model these changes, which has not been done.

This is also of relevance for the analysis of the year 2006. In particular, forecast B utilises
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estimated claim durations of the pre 2006 system (based on data from the period 2002-2005)

but the new entrants from February 2006 possess entitlements according to the new system.

Given that the changes in entitlements mainly affected extended benefit durations >12 months,

the implied misspecification should not have a large effect on the forecasts because those who

enter benefits from February 2006 have a benefit duration of less than 12 months at the end of

the forecast period (December 2006). However, a bias in estimated claim durations is likely the

source of rather different results patterns that have been obtained for the years 2002 and 2009

(compare supplementary material Tables S.4 and S.5). In particular, the time series forecasts

are characterised by a lower forecast error and even the use of It instead of ITSt to construct

OCox
t does not lead to a systematic reduction in forecast errors. This highlights the importance

of correctly specifying the distribution of claim duration and that any not captured structural

changes in these distribution may severely affect the micro data based forecasts.

6 Summary and recommendations

This study presents several approaches to modelling macroeconomic forecasts on the basis

of individual level statistical estimates. By adopting ideas from actuarial sciences and new

developments in statistical theory for in-sample forecasting, it is shown that micro analysis

based macro forecasts constitute an interesting alternative to econometric forecasts based on

aggregate or time series data. The results for forecasting outflows from unemployment insurance

claims in Germany are encouraging. In particular, the forecast quality of the suggested models

is found to be better for forecasts of up to around 6 months. It is also found that the size of the

forecast error of the micro estimates based forecasts increases quickly for forecasts more than

6 months ahead. This is explained by the underlying estimates on micro level not being able
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to appropriately accommodate future labour market dynamics. It would be a useful extension

to incorporate additional micro based forecasts for other labour market transitions (such as

benefit inflows). Structured density forecasts for benefit inflows would then replace the time

series based forecast to obtain a more precise forecast for the number of future benefit claimants.

Despite that forecasts have only been presented for one year, the main result patterns have also

been found for other periods with stable unemployment benefit entitlement rules during the

2000s. It is, however, also found that the precision of the suggested forecasts tend to be worse

when important policy changes have been implemented which lead to significant changes in

entitlement lengths for benefits and therefore in benefit durations. In order to address this, one

would need to incorporate additional individual level covariates in the models for the structured

density forecasts. These additional factors such as individual benefit entitlement lengths would

contribute to a better fit and a bias reduction in estimated densities. This would, however,

not come without costs. Enhanced data requirements make it more complicated to implement

and run these models in real business operations as data on all variables needs to be available

promptly. Similar to Spierdijk and Koning (2014) another extension could be made by adopting

a duration model with frailty to allow for unobserved factors in the analysis.

References

[1] Antonio, K. and Plat, H. (2014). Micro-level stochastic loss reserving in general insurance,

Scandinavian Actuarial Journal, 7, 649–669.

[2] Arntz, M., Lo, S.M.S. and Wilke, R.A. (2014). Bounds Analysis of Competing Risks : A

Non-parametric Evaluation of the Effect of Unemployment Benefits on Migration, Empir-

ical Economics, 146, 199–228.

24



[3] Barnichon, R. and Nekarda, C.J. (2012). The Ins and Outs of Forecasting Unemployment:

Using Labor Force Flows to Forecast the Labor Market, Brookings Papers on Economic

Activity, Economic Studies Program, The Brookings Institution, 45(2 (Fall)), 83–131.

[4] Brown, L. and Moshiri, S. (2004). Unemployment variation over the business cycles: a

comparison of forecasting models, Journal of Forecasting, 23(7), 497–511.

[5] Cox, D.R. (1972). Regression models and life-tables (with discussion), Journal of the Royal

Statistical Society, Series B, 34, 187–220.

[6] Elsby, M., Hobijn, B. and Sahin, A. (2015). On the importance of the participation margin

for labor market fluctuations. Journal of Monetary Economics, 72, 64-82.

[7] Hiabu, M., Mart́ınez-Miranda, M.D., and Nielsen, J.P. (2014). In-sample forecasting with

local linear survival densities, Biometrika, under revision.

[8] Hutter, C. and Weber, E. (2015). Constructing a new leading indicator for unemployment

from a survey among German employment agencies, Applied Economics, 47, 3540–3558.

[9] Hutter, C. and Weber, E. (2017). Mismatch and the Forecasting Performance of Matching

Functions, Oxford Bulletin of Economics and Statistics, 79, 101–123.

[10] Kalbfleisch, J.D. and Prentice, R.L. (2002). The Statistical Analysis of Failure Time Data,

2nd ed., Wiley Series in Probability and Statistics, Wiley.

[11] Kaplan, E. L., and Meier, P. (1958). Nonparametric estimation from incomplete observa-

tions, Journal of the American Statistical Association, 53, 457–481.

[12] Kuang, D., Nielsen, B., and Nielsen J.P. (2009). Chain-Ladder as Maximum Likelihood

Revisited, Annals of Actuarial Science, 4, 105-121.

25



[13] Kuang, D., Nielsen, B., and Nielsen, J.P. (2011). Forecasting in an Extended Chain-Ladder-

Type Model, Journal of Risk and Insurance, 78(2), 345–359.

[14] Lee, Y.K., Mammen, E., Nielsen, J.P. and Park, B.U. (2015). Asymptotics for In-Sample

Density Forecasting, Annals of Statistics, 43(2), 620–651.

[15] Lo, S.M.S., Stephan, G. and Wilke, R.A. (2017). Competing Risks Copula Models for

Unemployment Duration: An Application to a German Hartz-Reform. Journal of Econo-

metric Methods, 6.

[16] Mammen, E., Mart́ınez-Miranda, M.D., and Nielsen, J.P. (2015). Structured Density Fore-

casting with Applications to Non-life Insurance and Mesothelioma Mortality, Insurance:

Mathematics and Economics, 61, 76–86.

[17] Mart́ınez-Miranda, M.D., Nielsen, B., and Nielsen, J.P., (2015) Inference and forecasting

in the ageperiodcohort model with unknown exposure with an application to mesothelioma

mortality, Journal of the Royal Statistical Society, Series A, 178(1), 29–55.

[18] Mart́ınez-Miranda, M.D., Nielsen, J.P., Sperlich, S., and Verrall, R. (2013). Continuous

Chain Ladder: Reformulating and generalizing a classical insurance problem, Expert Sys-

tems with Applications, 40(14), 5588-5603.

[19] Newey, W.K. and West, K.D. (1987). A Simple, Positive Semi-definite, Heteroskedasticity

and Autocorrelation Consistent Covariance Matrix, Econometrica, 55(3), 703-708.

[20] Pigeon, M., Antonio, K., and Denuit, M. (2013). Individual loss reserving with the multi-

variate skew normal framework, Astin Bulletin, 43(3), 399 – 428.

26



[21] Pigeon, M., Antonio, K., and Denuit, M. (2014). Individual loss reserving using paid-

incurred data, Insurance: Mathematics and Economics, 58(C), 121–131.

[22] Plaßmann, G. (2002) Der Einfluss der Arbeitslosenversicherung auf die Arbeitslosigkeit
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Appendix

AI: Statistical Models

This appendix outlines the various analysis models: Chain Ladder Method and the duration

models (Kaplan-Meier, Cox proportional hazard). The data are unemployment benefit spell

records for a random sample of individuals and is available for periods t = 1, ..., T , which are 48

months in the application. From these data we can easily compute aggregated information such

as the number of individuals starting a benefit claim spell in t (It), and the number of benefit

leavers in period t (Ot). It is also straightforward to extract semi-aggregated information such

as the number of benefit leavers in t with claim duration l = 1, ..., T and t+ l − 1 ∈ {1, ..., T},

denoted by Otl. The latter are required for the chain ladder method.

Chain Ladder Method (CLM) A formal overview and presentation of the statistical model

can be for example found in Kuang et al. (2009). The CLM bases on semi-aggregated data

Otl that can be organised in a matrix O = {Otl,∀(t, l) ∈ I} where I = {(t, l) : t and l belong

to (1, ..., T )} with t + l − 1 ∈ {1, ..., T}. Period T is the edge of the observation period which

corresponds to t = 48 in the application. Thus, only a triangle of this matrix is observable,

which is illustrated in Figure 4 for the data that is used in the application in Section 5.

The number of benefit leavers in t, Ot, can be computed from this matrix by summing up

the Otl over the available l. It is worth mentioning that O does not include any information

on benefit recipients which have not ended their benefit claim spell by period T . The CLM

is a tool to obtain a forecast for the number of future exits out of benefits for those who are
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Figure 4: Observed data triangle: Otl
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claiming benefits in T . This is forecasting O
(A)
tl for all t and l such that t+ l−1 > T . Evidently,

O
(A)
tl = Otl for t, l ∈ I. In actuarial sciences this method is used to obtain a forecast of the

outstanding liabilities for those contracts which have been already signed. In what follows a

short presentation of the underlying stochastic model is provided. O
(A)
tl can be thought of as a

random variable with E(O
(A)
lt ) = κtτl for t, l = 1, ..., T . κt and τl are the unknown parameters of

this regression model. This is a simplified model of a more general overparametrised regression

problem which is only identified under restrictions on the parameters (compare Kuang et al.,

2009). For an intuitive discussion of the underlying regression problem see Martinez et al.

(2013). The goal is to estimate κt and τl. Estimation is by maximum likelihood using the

following model:

log{E(O
(A)
tl )} = µtl = γt + δl

with γt =logκt, δl =logτl and let η = (γ1, ..., γT , δ1, ..., δT ) ∈ IR2T. By assuming that O
(A)
tl are

independent for t, l ∈ I and that O
(A)
lt is a Poisson distributed count variable with

P (O
(A)
tl = y) =

exp(µtly)

y!
exp{−exp(µtl), }

the log-likelihood function of the model is

L(η) =
∑
t,l∈I

{µtl(η)Otl − exp(µtl(η))− log(Otl!)}.

The maximum likelihood estimator for η is obtained by maximising L. The CLM can be

therefore seen as a maximum likelihood estimator that is consistent under the usual restrictions.

From the estimated coefficients it is straightforward to compute estimated O
(A)
tl , denoted as

O
CLM(A)
tl , and O

CLM(A)
t . The resulting O

CLM(A)
tl for the data from Section 5 are displayed in

Figure 5 for illustration.

The densities for the entry into claiming benefits and the density of claim duration can be easily
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Figure 5: CLM forecasts O
CLM(A)
tl
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determined from the estimated η by normalisation. For example the density of claim duration

is obtained by

fCL(l) = δl/

T∑
j=1

δj (6)

for l = 1, ..., T . The estimated densities in the application are shown in Figure 2.

Duration Models These models use individual level duration data and not (semi)-aggregated

data. Suppose there are N individuals in the ”raw” data that generate in total i = 1, ..., J ben-

efit claim spells. J is smaller than N in the application because most individuals do not have

a claim spell, although some individuals will have multiple claim spells due to repeated unem-

ployment. If a spell is not fully observable, i.e. not finished at period T (December 2005 in

the application), it is marked as right censored. The only reason for censoring is the end of

the observation period. Duration models are commonly used to estimate the survival function

S(l) = P (L ≥ l), where l is here the benefit claim duration. There exists a wealth of duration

models which impose different restrictions on S(l). In the analysis of Section 5 two flexible

models are employed: one nonparametric and one semi-parametric model.

The Kaplan-Meier estimator (Kaplan-Meier, 1958) is a widely used nonparametric estimator.

Suppose l1, ..., lq are discrete failure times with q < J . The estimator is

SKM(l) = Πs|ls<l
rl − dl
rl

with rl is the number of spells at risk at duration l and dl is the number of spells that end

at duration l. This estimator is consistent in presence of independent right censoring as in

the application. The density of claim duration is obtained by f(l) = −[S(l + 1) − S(l)]. The

resulting estimated densities in the application are shown in Figure 3. While being very flexible

due to its nonparametric nature, a disadvantage is that it cannot control for covariates such as
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calendar time variables to account for business cycle and seasonality effects. In order to add this

feature a semiparametric model, the Cox-proportional hazard model (Cox, 1972), is applied.

This model assumes an additive structure for the hazard function given some covariates x:

λ(l|x) = λ0(l)φ(x),

where λ0 is a nonparametric function and φ(x) = exp(xν) with ν are unknown parameters. In

this model we have

S(l|x) = exp(−
∫ l

0

φ(x)λ0(s)ds)

= exp(−φ(x)

∫ l

0

λ0(s)ds)

= [exp−
∫ l

0

λ0(s)ds]
φ(x)

= [S0(l)]
φ(x)

with S0(l) is the survival function related to λ0(l). The density of claim duration is

f(l|x) = −φ(x)[S0(l)]
φ(x)−1f0(l)

with f0(l) is the density related to λ0(l). The estimated fCox are easily obtained once λ0(l)

and φ(x) have been estimated by partial likelihood. For a full presentation of the likelihood

function and estimation by partial likelihood compare for example Chapter 4 in Kalbfleisch and

Prentice (2002).
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AII: Tables

Table 3: Summary table of time series forecast for benefit outflows in 2006.

data forecast error lower 95% CI\ upper 95% CI\ MSE‡

jan-06 4725 4210 -515 3833 4586 302,193.4

feb-06 4706 4385 -321 3760 5009 204,506.7

mar-06 6131 6710 579 5588 7831 662,613.2

apr-06 6255 4986 -1269 4285 5686 1,738,139.0

maj-06 5015 4282 -733 3790 4773 600,190.5

jun-06 3974 3830 -144 3330 4329 85,694.2

jul-06 4116 3522 -594 3014 4029 419,987.0

aug-06 4086 4135 49 3450 4819 124,396.9

sep-06 3861 4027 166 3294 4759 167,056.8

okt-06 3573 2824 -749 2211 3436 658,798.0

nov-06 2892 2232 -660 1553 2910 555,433.8

dec-06 2776 1967 -809 1279 2654 777,501.2

MSFE† for year 2016: 408,816.0

MSFE† for January-June 2016: 478,648.8

MSFE† (intercept corrected) for year 2016: 267,843.3

MSFE† (intercept corrected) for January-June 2016: 345,308.8

\: Asymptotic confidence interval derived from OLS regression with robust standard errors.
‡: Mean squared error of forecast for month t; defined as (Ot −Oforecast

t )2 + var(Oforecast
t ).

†: Mean squared forecast error for year 2006; defined as (1/12)
∑12

t=1(O48+t −Oforecast
48+t )2.
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Table 4: Confidence intervals, MSE and MSFE for OCox
t for the year 2006.

95% CI\ for...

O
Cox(A)
t O

Cox(B)
t OCox

t MSE‡ for OCox
t

lower upper lower upper lower upper

jan-06 3788 3892 425 454 4224 4335 198,987.5

feb-06 3662 3766 1389 1451 5070 5195 183,310.1

mar-06 3690 3801 2351 2426 6070 6190 1,076.2

apr-06 3208 3299 2771 2843 6004 6118 38,555.8

maj-06 2519 2598 2484 2554 5030 5132 5,136.7

jun-06 2186 2254 2494 2568 4695 4800 593,682.3

jul-06 1773 1834 2777 2849 4571 4665 248,665.1

aug-06 1548 1611 3138 3219 4709 4809 452,323.3

sep-06 1292 1352 3742 3830 5060 5164 1,555,745.0

okt-06 1032 1079 3569 3652 4619 4715 1,197,436.0

nov-06 920 972 3101 3174 4042 4130 1,421,420.0

dec-06 790 845 3186 3264 3999 4081 1,605,818.0

MSFE† for year 2016: 624,403.0

MSFE† for January-June 2016: 169,208.3
\: Bootstrap confidence interval.
‡: Mean squared error of forecast for month t; defined as (Ot −Oforecast

t )2 + var(Oforecast
t ).

†: Mean squared forecast error for year 2006; defined as (1/12)
∑12

t=1(O48+t −Oforecast
48+t )2.

Note: Bootstrap statistics CI and MSE are derived from random variation in cfCox for given ITSt .
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