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Abstract

Large data sets that originate from administrative or operational activity are in-

creasingly used for statistical analysis as they often contain very precise information

and a large number of observations. But there is evidence that some variables can be

subject to severe misclassification or contain missing values. Given the size of the data,

a flexible semiparametric misclassification model would be good choice but their use

in practise is scarce. To close this gap a semiparametric model for the probability of

observing labour market transitions is estimated using a sample of 20m observations

from Germany. It is shown that estimated marginal effects of a number of covariates

are sizeably affected by misclassification and missing values in the analysis data. The

proposed generalised partially linear regression extends existing models by allowing a

misclassified discrete covariate to be interacted with a nonparametric function of a con-

tinuous covariate.
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1 Introduction

The increased availability of large scale or big data opens new opportunities for the applica-

tion of flexible statistical models. These data are for instance generated by public institutions

through administrative processes and can comprise a country’s entire population of individ-

uals, households or firms. Other examples are internet data which are generated by user

activity, or internal firm data that are generated through operational processes. While there

has been tremendous progress in the development of non- and semiparametric models since

the 1980s (compare for example Ruppert et al., 2003), a gap has evolved between the fron-

tier of methodological research and what is commonly put to data in empirical research in

economics and social sciences. In particular, many analysis uses parametric mean regression

models or parametric logistic regression which are easy to obtain but do not exploit the

richness of the data.

Empirical studies also typically assume that administrative or operational data are pre-

cise, free of errors and not subject to misclassification. While these assumptions likely hold

for parts of the information they do not hold uniformly. Evidence for deficiencies in oper-

ational data has been found in financial transaction data (Chakravarty and Sarkar, 1999),

public health registers (Ladouceur et al., 2007), administrative labour market registers (Jo-

hansson and Skedinger, 2009, Fitzenberger et al., 2006) and likely more. As these studies

use data from different countries and continents (U.S., Sweden and Germany) and relate

to different subject areas (Finance, Biometrics and Economics), a wide range of statistical

applications is possibly affected by this. We claim that the existing evidence does not show

the full scale of the problem due to a lack of research and knowledge about these deficiencies.

Data should be error free if they are directly resulting from operations. This could be for
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example reported firm revenues or profits to tax registers or the amount of unemployment

benefits paid to the jobless. However, it can also contain considerable degree of misclas-

sification if additional information is collected and made available that is not immediately

relevant for the administrative or operational processes and not checked for correctness.

For instance this can be further background variables on benefit claiming individuals such

as nationality or educational background. If these variables do not enter the equation for

determining the level and duration of benefits entitlements, it is likely that this information

is not carefully checked by the data producer. Data errors can have different natures. They

can be random by accidentally entering the wrong value and not checking for correctness.

Or they can be systematic if there are financial consequences for the data producer to over-

or underreport certain values. In our application we focus on the educational degree in

German administrative employment records, which is known to be prone to missing values

and misclassification (Fitzenberger et al., 2006, Kruppe et al., 2014). Although the mech-

anisms behind these errors are not well researched, they are believed to be random. The

affected administrative data are used in much of the academic labour market research about

Germany and it serves as an important source of information for the German government

and public administration. Our empirical analysis of the relevance of data quality problems

in these data for estimating labour market transitions is therefore of wider academic and

non-academic interest.

Once data problems are identified, there are good chances that a suitable statistical model

for misclassified data or data with missing values has already been developed. Regression

models with missing values are typically estimated by (mutliple) imputation methods or by

maximum likelihood. See Little and Rubin (2002) for a comprehensive overview of imputa-
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tion methods. Liang et al. (2004) suggest a partially linear regression model with missing

values in covariates that is estimated by maximum likelihood. Other contributions have

considered models with mismeasured variables. See for example Caroll et al. (2006) for a

comprehensive overview. Examples of more recent works include Chen et al. (2005), Chen

et al. (2008) and Yi et al. (2015) which have in common that they use the method of

maximum likelihood estimation and base on the seminal work by Lee and Stepanski (1995).

Messer and Natarajan (2008) and Valaste et al. (2010) study the finite sample properties of

regression calibration, multiple imputation for measurement error and maximum likelihood

estimation by means of simulations. Their results suggest that maximum likelihood based

models are preferable as they tend to produce estimates with the smallest mean squared

error, in particular if external validation data is used. Caroll et al. (2006) also link mismea-

sured information to a missing data problem if there is validation data available. Blackwell

et al. (2015) use multiple overimputation, a variant of multiple imputation, to address mea-

surement error and missing data simultaneously. In this paper we consider a model with

a variable that is mismeasured and possesses missing values. We use external validation

data and employ the method of maximum likelihood estimation. As a novelty we allow

the misclassified covariate to be interacted with a nonparametric function of a continuous

covariate.

We show that our proposed semiparametric generalised linear regression model can be

estimated with a sample of 20m observations in a reasonable amount of time. To our knowl-

edge similar models with or without side information have not been applied to such exten-

sive data. Existing studies in economics that use misclassification models use less complex

models and much smaller survey data (e.g. Magnac and Visser, 1999, and Hernandez and
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Pudney, 2007). In our application we consider nonparametric age profiles in a labour market

transition model. These age profiles are allowed to vary freely across educational degrees,

where the latter are only observable with errors. We find evidence for practically relevant

estimation bias in nonparametric functionals and marginal effects when misclassification is

ignored.

The paper is structured as follows. Section 2 contains an informal presentation of our

model. Section 3 outlines the general model and Section 4 contains the application to labour

market data. Section 5 summarises the main findings.

2 Informal Presentation

We consider a regression model with dependent variable Y and covariates X and U . As a

difficulty the analysis data comprises of Y and X only. U is a discrete covariate which is

not observed but correlated with X. Omitting U from the model would therefore generally

lead to inconsistent results. Instead of U the analysis data contains U∗ which is U plus a

non-classical measurement error. The measurement error is not assumed to be independent

of X but conditionally independent of Y , i.e. U∗ ⊥⊥ Y |X,U . Our model does not require

that U and U∗ have the same support. For example U∗ can contain missing values which

do not exist for U . Thus, the model does not only allow for misclassification but also for

incomplete data (compare e.g. Hartley and Hocking, 1971). In addition to the analysis

data, we make use of the existence of validation data for the misclassified U . The validation

data contain U , U∗ and W ⊆ X. Analysis data and validation data are independent

samples of the same population but they are not linked and so small in size that we can
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assume that they comprise of different population units. It is therefore possible to determine

P (U = u|U∗ = u∗,W ) with the validation data and we assume that the covariates which are

in the analysis model but not in the validation data are not informative for the measurement

error, i.e. P (U = u|U∗ = u∗, X) = P (U = u|U∗ = u∗,W ) = pu|u∗ . The availability

of validation data therefore allows direct estimation of the error structure. This normally

leads to more precise estimation of the analysis model than if validation information was

not available (Carroll et al., 2006).

We consider the generalized partial linear model (GPLM):

P (Y = y|X,U∗) =
∑
u

f(y, η(X,u;β),θ)pu|u∗(X) (1)

where f is a known density with unknown nuisance parameters θ, η is a semi-parametric

regression model, and pu|u∗ is a parametric density (for example, as for a multinomial logit

model). The sum over u goes over the values on the support of U .

This model for the observed probability is a special case of a more general model and it

is motivated by applying the law of total probability to the extended model

P (Y = y|X,U∗) =

∫
P (Y = y, U = u|X,U∗)du

=

∫
P (Y = y|X,U = u)P (U = u|X,U∗)du

with all the densities understood as Radon-Nykodym derivatives of corresponding proba-

bility measures with respect to products of Lebesgue measures and counting measures to

allow for both continuous and discrete random variables. The identification of this model is

discussed e.g. in Chen et al. (2005) with and in Chen et al. (2008) without using auxiliary

data.

The aim is to estimate θ, η, pu|u∗ and β in model (1) on the basis of the two samples.

6



This can be done in one step or in two steps. In the latter case the probabilities pu|u∗ are

first estimated with the validation sample and then plugged into the model. In the second

step the remaining unknowns are estimated with the analysis data. Before formally stating

our general model we now sketch the simple case of a linear regression model with normal

error and a dummy variable U as an illustrating example.

In the linear regression model with normal error ε we have η = η(x, u;β) = β0+βxx+βuu,

ε ∼ N(0, σ2), and θ = σ. Suppose we have two random samples (Y,X,U∗)i for i = 1, . . . , n

and (U∗, U,W )j for j = 1, . . . ,m. In the first step pu|u∗ is estimated by for example a

standard parametric model such as multinomial logit with the validation data to obtain

p̂u|u∗(Xi). In the second step the following log likelihood function is maximized

logL(β, σ) =

n∑
i=1

ln

[
1∑

u=0

fε
(
yi, β0 + xiβx + βuu, σ

)
· p̂u|u∗i (xi)

]

on the grounds of the analysis data with variables Y , X and U∗.

3 The Model

Y ∈ Y ⊂ R is a discrete or continuous outcome. X ∈ X ⊆ Rk is 1 × k-dimensional with

discrete or continuous covariates and Z ∈ Z ⊆ R is another continuous covariate. U∗ ∈ U∗

is one dimensional and discrete with finite number of values. U ∈ U is also one dimensional

with U ⊆ U∗. U∗ contains misclassified information about U . The analysis data comprises

of Y,X, Z, U∗ while the validation data consists of U∗, U,W , where W ⊆ {X, Z}. The

misclassification in U∗ is assumed to be not related with the outcome, i.e. U∗ ⊥⊥ Y |X, Z, U .

β is a k + 1 × 1 vector of unknown parameters and η is a partially linear and partially

unknown function with η(x, z, u) = (1,x)β + γu(z), where γu are unknown but smooth
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functions which are allowed to differ across values of U . Accordingly, let γ be the vector of

functions γu. The analysis model can be then written as

P (Y = y|X,Z,U∗) =
∑
u

f(y, η(X, Z, u;β, γu),θ)pu|u∗(X, Z),

where f is a known density with unknown nuisance parameters θ, and where the conditional

density pu|u∗ is specified below.

3.1 Estimation

We assume that analysis data of size n and validation data of size m are two independent

random samples from the same population. U and W are therefore observed on the same

support in the two samples. The semiparameric analysis model is estimated by Smoothed

Local Maximum Likelihood. The estimator is related to the approach by Severini and Wong

(1992). The algorithm that we use for estimation is related Severini and Staniswalis (1994),

who developed a profile likelihood estimator for GPLM models without misclassification.

In the first step the validation model P (U = u|U∗ = u∗,W ) is estimated by parametric

Maximum Likelihood such as probit or multinomial logit. The resulting estimated coeffi-

cients are then used to determine P̂ (U = u|U∗ = u∗,W ) = p̂u|u∗(x, z). Whenever some

components of {X, Z} are not available in the validation data, it is required that they are

redundant in the validation model: P (U = u|U∗ = u∗,X, Z) = P (U = u|U∗ = u∗,W ).

Fitted values for the validation model are computed for all observations of the analysis data.

This does not require extrapolation because U and W are observed on the same support in

both samples. The fitted values are plugged into the following second stage smoothed log
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likelihood

logL(β,γ,θ) =

∫ n∑
i=1

ln

[∑
u∈U

f
(
yi, (1,xi)β + γu(z),θ

)
· p̂u|u∗i (xi, zi)

]
·Kh(zi − z)dz, (2)

for the calculation of an estimator for γu and into a parametric likelihood

logL(β,γ,θ) =

n∑
i=1

ln

[∑
u∈U

f
(
yi, (1,xi)β + γu(zi),θ

)
· p̂u|u∗i (xi, zi)

]
, (3)

for the estimation of the parametric components. Here Kh(·) is a classical Kernel function

which satisfies Kh(·) > 0,
∫
Kh(x)dx = 1 and h > 0 is a bandwidth. This likelihood is

globally maximized in β, θ and γ(·) at a vector of functions R→ R, z 7→ γu(z) for each u.

The resulting estimators are denoted β̂, θ̂ and γ̂, where the latter is a vector whose length

is determined by the number of values in U.

One step procedure Instead of pre-estimating the misclassification probabilities with the

validation data it is possible to estimate all unknown parameters in one step if the analysis

data and the validation data can be jointly used. The smoothed likelihood is then formed

of information from the validation and analysis data simultaneously:

logL(β,βv,γ,θ,θv) =

∫ n∑
i=1

ln

[∑
u∈U

f
(
yi, (1,xi)β + γu(z),θ

)
· g
(
u, (1,xi, zi, u

∗
i )βv,θv

)]

·Kh(zi − z) +

m∑
j=1

ln
[
g
(
uj , (1,wj , u

∗
j )βv,θv

)]
dz,

where g is a known density function with unknown nuisance parameters θv and βv is a

(k + 3 × 1) vector of unknown parameters of the validation model. For theoretical reasons

the one step procedure should be more efficient than the two step procedure. Given that

our analysis and validation data are held separately, we cannot estimate the model in one

step. In what follows we therefore focus on the two step procedure.

9



Algorithm For optimizing (2) and (3) the algorithm iterates between optimizing the para-

metric part with parameters β,θ and the non-parametric part with the smoothed functions

γ(·), i.e. we have to solve

0 =

n∑
i=1

d

dγu(z)
ln

[∑
u∈U

f
(
yi, (1,xi)β + γu(z),θ

)
· p̂u|u∗i (xi, zi)

]
·Kh(zi − z),

with respect to γu(z) and

0 =

n∑
i=1

d

d(β,θ)t
ln

[∑
u∈U

f
(
yi, (1,xi)β + γu(zi),θ

)
· p̂u|u∗i (xi, zi)

]
·Kh(zi − z),

with respect to the coefficient vector (β,θ)t.

The bandwidth selection is done by the method of cross-validation.

Inference Since the distribution of the smoothed local likelihood estimator for (β,γ,θ)

in (2) is difficult to derive we suggest the following bootstrap procedure for standard errors

and other inference statistics. In particular, we bootstrap the analysis data (yi,xi, zi, u
∗
i )

for model (2) by drawing n times with replacement. Instead of p̂u|u∗i we use for each boot-

strap observation p̂bu|u∗i
(xi, zi) = p̂u|u∗i (xi, zi) + φ(u∗i ,xi, zi) where φ(u∗i ,xi, zi) is a random

draw from the asymptotic distribution of p̂u|u∗i (xi, zi)−pu|u∗i (xi, zi). Thus, we do not boot-

strap the first step of the estimation procedure but use information about the asymptotic

distribution of the estimated misclassification probabilities. This procedure is in particular

convenient when analysis and validation data are not linked or held in separate locations as

in our application.

Computation The main challenges for obtaining estimates and inference statistics stems

from the large sample and the slow convergence of the Newton-Raphson-type algorithm.

In our code the computation is considerably accelerated through the following measures.
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Several time consuming functions are implement in C which resulted in dramatic speed

increases. Cross validation and the bootstrap exploit multiple core structures by paralleliza-

tion. A binning procedure as that in Fan and Marron (1994) is used and starting values of

the algorithm are obtained by pre-estimating the model on a much smaller random sample.

It took approximately one day to obtain the final point estimates on a mid performance

server with 2 multiple core XEON CPUs and at least 64GB RAM. R-sample code for our

model is available from the first author. Code for a parametric version of the model is

already made available as R-package (misclassGLM).

3.2 Discussion of Properties

This subsection provides a discussion of the identifiability of the nonparametric functions

and the validity of the bootstrap procedure. A rigorous statement of asymptotic properties

and regularity conditions is given in Appendix A.I. A small simulation exercise to illustrate

how our proposed misclassification model corrects estimation bias due to misclassification is

given in Section S.II in the supplementary material.

Identification of the nonparametric functions γu(·) We start with a discussion of the

model under the simplifying assumption that there are no parameters β and θ and that the

misclassification probabilities pu|u∗i (xi, zi) are known. We will skip the latter condition below

but we will keep the first assumption in the following heuristic discussion and in the theo-

retical appendix. This simplifies the notation. Furthermore, the main aim of our discussion

and theory is the study of consistency of the bootstrap. Our main point is that bootstrap

of the nonparametric part works as long as the bias part of the nonparametric estimator
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is asymptotically negligible. We expect that the same result applies in case that there are

parametric components in the model. Because of the faster convergence of the parametric

estimators they do not affect the limiting behavior of the nonparametric estimator and of

its bootstrap estimator. But assuming that there are no parametric components makes the

heuristic discussion and its theoretical justification more transparent. For convenience we

also assume that U = U∗. Then for u ∈ U the kernel estimator γ̂u(z) is equal to γu where

γu solves:

0 =
1

n

n∑
i=1

d

dγu
ln

[∑
u∈U

f
(
yi, γu

)
· pu|u∗i (xi, zi)

]
·Kh(zi − z).

For fixed z, we now use the notation f̂ui = f(yi, γ̂u(z)), f̂uη,i = fη(yi, γ̂u(zi)), f̄
u
i = f(yi, γu(z)),

f̄uη,i = fη(yi, γu(z)), fui = f(yi, γu(zi)), f
u
η,i = fη(yi, γu(zi)), f

u
ηη,i = fηη(yi, γu(zi)), and

pui = pu|u∗i (xi, zi), where fη(y, η) and fηη(y, η) are the first or second derivative of f(y, η)

with respect to η. With this notation we can rewrite the last equation:

0 =
1

n

n∑
i=1

f̂uη,ip
u
i∑

v∈U f̂
v
i p

v
i

Kh(zi − z)

for u ∈ U. By expansion one gets the following approximation of the right hand side of the

last equation:

0 ≈ 1

n

n∑
i=1

fuη,ip
u
i∑

v∈U f
v
i p

v
i

Kh(zi − z) +
1

n

n∑
i=1

(f̄uη,i − fuη,i)pui∑
v∈U f

v
i p

v
i

Kh(zi − z)

− 1

n

n∑
i=1

fuη,ip
u
i

(
∑
v∈U f

v
i p

v
i )

2

∑
v∈U

(f̄vi − fvi )pviKh(zi − z)

+
1

n

n∑
i=1

(f̂uη,i − f̄uη,i)pui∑
v∈U f

v
i p

v
i

Kh(zi − z)

− 1

n

n∑
i=1

fuη,ip
u
i

(
∑
v∈U f

v
i p

v
i )

2

∑
v∈U

(f̂vi − f̄vi )pviKh(zi − z).

A careful analysis shows that, under regularity conditions for bandwidth h of order n−1/5,

the error of this expansion is of order oP (n−2/5). The first term S(z) on the right hand
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side is of order OP (n−2/5). Note that under our conditions E[fuη,ip
u
i /(
∑
v∈U f

v
i p

v
i )|zi] = 0.

Furthermore, one gets by common arguments of kernel smoothing theory that the second

and third term is equal to b(z)n−2/5 + oP (n−2/5). For the last two terms we get that their

sum is approximately equal to

1

n

n∑
i=1

fuηη,ip
u
i∑

v∈U f
v
i p

v
i

Kh(zi − z)(γ̂u(z)− γu(z))

− 1

n

n∑
i=1

fuη,ip
u
i

(
∑
v∈U f

v
i p

v
i )

2

∑
v∈U

fvη,ip
v
i (γ̂v(z)− γv(z))Kh(zi − z).

This can be written as −M̂(z)(γ̂(z)−γ(z)) with an r×r matrix M̂(z). Here r is the number

of elements of U. Furthermore γ̂(z) and γ(z) are r-dimensional vectors with elements γ̂u(z)

or γu(z), respectively. One can show by standard kernel smoothing theory that M̂(z) =

M(z) + oP (1), where M(z) has (u, v)-elements

E

[
fuη,ip

u
i f

v
η,ip

v
i

(
∑
w∈U f

w
i p

w
i )2

∣∣∣∣z] fZ(z),

where fZ is the density of Z. This matrix has full rank if there exists no values au(z) with

E

[∑
u∈U

au(z)pu|u∗(x, z)fη(y, γu(z))

∣∣∣∣z
]

= 0.

Suppose that this is not the case. Then, we get that the derivative of

E

[∑
u∈U

pu|u∗(x, z)f(y, γu(z) + δau(z))

∣∣∣∣z
]

with respect to δ is equal to 0. Thus, the values of the likelihood function at the parameter

value γu(z) and at the value γu(z) + δau(z) are negligible small for small values of δ and

cannot be distinguished by finite samples. If there exists not such a function au(z) the

matrix M(z) is invertible and we get that

γ̂(z)− γ(z) = M(z)−1b(z)n−2/5 +M(z)−1S(z) + oP (n−2/5).
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In particular, we get that the function γu(z) is identifiable. The last expansion is the

usual bias-variance decomposition of a kernel estimator. It can be used to determine the

asymptotic distribution of γ̂(z). The asymptotic properties of γ̂ are formally stated in

Theorem 1 in Appendix A.I.

Consistency of the bootstrap approach We discuss again only the case that the model

does not contain parametric components β and θ, but now we assume that the values of

pu|u∗i (xi, zi) are not known and have been estimated in a preliminary data analysis. We

suppose that in this data set the sample size is m and that pu|u∗i (·, ·) is estimated with rate

OP (m−1/2). We assume that the first data set is independent from the second sample. By

an extension of the arguments in the last paragraph one gets with p̂ui = p̂u|u∗i (xi, zi) that

γ̂(z)− γ(z) = M(z)−1b(z)n−2/5 +M(z)−1S(z)

+M(z)−1
1

n

n∑
i=1

fuη,i(p̂
u
i − pui )∑

v∈U f
v
i p

v
i

Kh(zi − z)

−M(z)−1
1

n

n∑
i=1

fuη,ip
u
i

(
∑
v∈U f

v
i p

v
i )

2

∑
v∈U

fvi (p̂vi − pvi )Kh(zi − z)

+oP (n−2/5) + oP (m−1/2).

One can show that up to order oP (m−1/2), the last two terms are equal to their conditional

expectation given the first data set. This gives with a matrix valued function W :

γ̂(z)− γ(z) = M(z)−1b(z)n−2/5 +M(z)−1S(z)

+
∑
u∗∈U

∫
W (z, u∗, x)(p̂·|u∗(x, z)− p·|u∗(x, z)) dx

+oP (n−2/5) + oP (m−1/2),

where p̂·|u∗(x, z) and p·|u∗(x, z)) denote the vectors with elements p̂v|u∗(x, z) and pv|u∗(x, z))

(v ∈ U), respectively. The stochastic behaviour of γ̂(z) is driven by the second term or by
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the third or by both terms, depending on the relation between the rate of convergence

for the two sequences n−2/5 and m−1/2. The most complex situation arises if n−2/5 and

m−1/2 are of the same order. Then γ̂(z)− γ(z) can be decomposed into three components:

a deterministic bias term and two independent stochastic terms, where one comes from

the first estimation step and the other arises in the second step. The performance of the

bootstrap can be easily understood if one of the two rates n−2/5 and m−1/2 dominates the

other. In this case, in the real world and in the bootstrap world the estimation error of

the step with faster rate is negligible. If n−2/5 << m−1/2 this gives consistency of the

bootstrap. If m−1/2 << n−2/5 the bootstrap distribution is asymptotically equal to the

limiting distribution of M(z)−1S(z), thus it gives a consistent estimate of the variance of

γ̂(z)−γ(z) but the bias estimate is asymptotically equal to zero. This can be understood as

for related bootstrap methods in standard kernel estimation problems with one estimation

step. If m−1/2 and n−2/5 are of the same order we get that also in the bootstrap world the

bootstrap analogues of M(z)−1S(z) and of
∑
u∗∈U

∫
W (z, u∗, x)(p̂·|u∗(x, z)− p·|u∗(x, z)) dx

are asymptotically independent. Thus, we get, that also in this case the bootstrap gives

a consistent estimate of the variance. The validity of our bootstrap procedure is formally

established by Theorem 2 in Appendix A.I.

4 Application: Labour Market Transitions

In this section we apply the model of Section 3 by estimating the probability of transi-

tions from employment to other labour market states. A flexible semiparametric statistical

model is a natural candidate for the analysis because the data consists of more than 20m
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observations. The data contains administrative records which are generated by the German

statutory social insurance and by the German Federal Employment Agency through oper-

ational processes. Some of the variables result from operational activity directly, such as

periods of unemployment benefit claims. Others, such as employment period and salaries,

are used for determining pension entitlements. While these variables are believed to be very

precise, the data also contains background variables on individuals which are not used in

processes. They are only collected and added as supplementary information for statistical

analysis and few systematic efforts were made to check for their correctness. A well known

example is the education variable in German employment records which is prone to misclas-

sification and missing values (compare Fitzenberger et al., 2006, Dlugosz, 2011, and Kruppe

et al., 2014).

In addition to the administrative records we have access to a smaller survey sample

that is linked to administrative records. This survey, the ALWA-ADIAB contains precise

information about the educational background (Antoni and Seth, 2011). We use this survey

as our validation data. While it is linked to administrative records, the survey information

is not linked to the main analysis data that we use. Both data sets are held in separate

environments and cannot be linked by us for data security reasons.

As analysis data we use the IAB Employment Sample 04- Regional File (IABS). The

IABS is a 2% random sample of employees who make payments into the social security

system in the period 1975-2004 (Drews, 2008). It is daily spell data comprising start and

end dates of employment records and unemployment benefit claim spells. The data also

comprise of a number of variables on individual level such as salary, gender, nationality

and job characteristics. It also contains information about the employer such as business
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sector and geographic location (county). While we consider labour market transitions in

the period 1999-2002, we use the information since the year 1980 to construct a number of

individual employment history variables such as labour market experience, tenure, previous

job changes and past unemployment experiences among other things. We focus on West-

Germany and only consider employment with contributions to the public social insurance

(thus our analysis excludes minor employment, life-time civil servants and self-employed).

Due to the availability of information about the geographic location of the workplace we

enrich the analysis data by a number of regional indicators on county level which are provided

by the German Federal Statistical Office. In particular, we include information about the

type of the region (urban, sub-urban and rural) and the monthly unemployment rate. Table

4 in the Appendix contains the covariate lists of the analysis and the validation model along

with some basic descriptive statistics.

Our analysis model relates probabilities for labour market transitions of male full-time

employees to a larger set of variables on individual, firm and regional level. In particular,

we estimate the probability for an employee in month t to be in one of the following labour

market states in month t+ 1:

0: continue employment with existing employer

1: local employer change (same labour market region)

2: distant employer change (different labour market region)

3: unemployment (claiming unemployment benefits)

4: unknown (out of the labour force, not observed in the data)
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Our analysis model is a Multinomial Logit Model with base outcome 0. There is a wealth of

empirical literature about the empirical analysis of labour market transitions of employees

in Germany. Examples include Bergemann and Mertens (2002), Gangl (2003), Bookmann

and Steffes (2005), Dütsch and Struck (2011), Wichert and Wilke (2012) and Westerheide

and Kauermann (2014). All these papers do not present a satisfactory solution for dealing

with misclassification.

U∗ is the education variable in the administrative employment records (BeH, Beschäftigtenhistorie).

U is the survey based education variable of the ALWA-ADIAB. This variable is only avail-

able for the survey population. These variables contain information about the educational

degree but not about the years of education. Following Wichert and Wilke (2012) we do not

use the raw education variables but consider three groups of educational levels. In particu-

lar, U ∈ {higher education [HE], vocational training [VT], no degree [ND]}. HE corresponds

to tertiary education (university or polytechnic/applied university) and VT corresponds to

completion of vocational education combined with an apprenticeship. ND is if neither of

the former two is applicable. U∗ also takes on missing values [NA]. The raw variable has

more values but we group them because some of them correspond to almost identical edu-

cational backgrounds. The grouping into broader categories eliminates a larger number of

inconsistencies in the data without deleting analysis relevant information. U , the validation

variable, takes on the same values as U∗ but there are no missing values. This is because

we have dropped the affected observations (about 1%).

Table 1 reports misclassification probabilities for the education information in the vali-

dation data. Findings of previous research are confirmed that there is a sizeable amount of

misclassification (compare Kruppe et al., 2014). The observed education information in the
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analysis data is incorrect in around every other observation for individuals with ”no degree”

or ”higher education”. In order to address missing values and obvious data inconsistencies in

this variable, many empirical research applies a heuristic imputation technique (Fitzenberger

et al., 2006). In order to obtain some insights how well these imputations work, we apply

the IP1 procedure and recompute the misclassification probabilities for the corrected version

of U∗. Table 2 confirms that the IP1 correction generally reduces misclassification for VT

and HE but fails to do so for ND. It is apparent that ND and HE are often reported as VT

in U∗. This wipes out a considerable amount of variation in this variable (provided that it

contains ordered information). It is also apparent that IP1 mainly eliminates missing values

in U∗. Although, still containing considerable misclassification, the IP1 corrected variable

is better than the non-imputed version. We only report results for the corrected variable in

our following analysis because we observed that the precision of the misclassification model

was higher when there are fewer missing values in the analysis data.

Given that U contains ordered information, we estimate an Ordered Probit Model for

P (U |U∗,W ) as validation model. W contains Z and some components of X. The full list

of covariates is given in Table 4 in the appendix. Both validation and analysis data are

randomly drawn from the population. Given their sizes we do not expect that a notable

share of individuals is in both samples and therefore the assumption of independent samples

appears innocent. The estimation results and computed estimated marginal effects for this

model are given in Table S2 in the supplementary material. U∗ and a number of individual

background variables are found to sizably affect the estimated probability of observing the

true value of education (U). Based on this model we compute P̂ (ui|u∗i ,wi) which are

the estimated probabilities of observing the true value of education for all observations in
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Table 1: Misclassification matrix for U∗ (grouped raw data), validation sample.

Grouped education ALWA-ADIAB (U)

BeH (U∗) ND VT HE

NA 13.47 12.70 11.75

ND 54.26 6.88 2.16

VT 31.98 78.73 34.23

HE .30 1.70 51.86

Total 100.00 100.00 100.00

Table 2: Misclassification matrix for U∗ (grouped, IP1 corrected data), validation sample.

Grouped IP1 ALWA-ADIAB (U)

BeH (U∗) ND VT HE

NA 0.99 0.40 0.78

ND 53.27 3.59 1.26

VT 45.35 90.96 33.15

HE .40 5.05 64.81

Total 100.00 100.00 100.00
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Table 3: Sample average of P̂ (ui|u∗i ,wi) tabulated by U∗.

U

U∗ ND VT HE Total

NA 4.54 83.33 12.13 100

ND 62.54 37.37 0.09 100

VT 5.70 86.83 7.47 100

HE 0.00 19.53 80.47 100

our validation sample. Table 3 reports the sample average of P̂ (ui|u∗i ,wi) for all values

of U and U∗. It is apparent that also conditional probabilities point to the presence of

considerable data errors. Using these results we also compute fitted values P̂ (ui|u∗i ,wi) for

all observations in the analysis data to be used in the second step.

For the analysis model we specify the probability of transiting into one of the labour

market states as a partially linear Multinomial Logit Model (PLM):

P (Y = j|U,X, Z) =
exp((1,x)βj + γuj(z))

1 +
∑4
h=1 exp((1,x)βh + γuh(z))

for j = 1, . . . , 4 and γuj(z) is a nonparametric age (z) profile which is allow to differ across

educational degree (u) and labour market state (j). This model is used for the density in the

log-likelihoods (2) and (3). One global bandwidth is used for the estimation of all γuj(z),

that is obtained by the method of cross validation. Due to the nonlinearity of the model the

estimated coefficients are not directly informative. We therefore construct marginal effects

of covariate changes on the response probability, holding all other covariates constant at

their sample averages.

Estimated marginal effects for our misclassification model (misPLM) and a model that

ignores the data errors (PLM) are given in the supplementary material to this paper (Table
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S3), which also contains a detailed discussion of the results (Section S.III). We only describe

here briefly the main result pattern related to accounting for the misclassification. There

is not a uniform pattern for changes in estimated marginal effects when misclassification

has been taken into account. They often increase in size (attenuation bias pattern), but

there are also a number of size decreases and even changes in the direction (e.g. the effect

of past unemployment periods on local employer changes is negative in PLM and positive

in misPLM). Table S3 also provides evidence for the effect of some covariates strongly

differing across destination states. This highlights the importance of using a multiple state

transition model. In general it is somewhat surprising that some of the estimated effects

change sizeably due to misclassification in another variable. In order to explore a possible

pattern in the direction of the bias, we have also estimated the marginal effects conditional

on the different levels of education. These results are given in Table S4 in the supplementary

material. Unfortunately, it is also difficult to determine a systematic bias pattern in these

results except maybe that marginal effects for individuals with HE tend to have the largest

bias.

Figure 1 shows estimated transition probabilities P̂ (j|U,X, Z) in age and by educational

degree with their 90% bootstrap confidence intervals. While estimated age profiles for PLM

and misPLM often posses a similar shape, they are also significant differences. In some cases

the misPLM model produces higher estimated transition probabilities than the PLM and

in some cases they are lower. There is no clear pattern in the direction of the bias and the

probability functions sometimes cross as age increases. For VT, the value of U that occurs

most often in the data and has the fewest errors, the two profiles are very similar. For the

other two categories, there are several interesting and important differences. For example
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for ND, the probability of redundancy is estimated to increase by up to one half (50%)

when misclassification is taken into account. Similarly for HE the estimated probability for

making a distant employer change increases by 20-30% for younger ages in misPLM. While

the probability for redundancy decreases by around 60% when misclassification has been

accounted for. These changes also lead to different conclusions about the relevance of the

educational degree for labour market dynamics. While for instance the results for the PLM

suggest that men with ND and VT have similar probabilities of redundancy for higher ages,

this complectly changes when the misPLM is applied. Here, the probability of redundancy is

estimated to be almost twice as high for ND than for VT, suggesting that the misclassification

mixes up the role of the education background for old-age unemployment. The width of the

confidence intervals varies strongly for the different functions. This is because of the different

number of observed transitions in the relevant age-education combinations. For example for

the destination state ”distant job change” we obtain the narrowest confidence bands for

the group with higher education degree because there are more observed transitions for this

group than for the other two education groups.

The economic content of these results is as follows. The probability for a local employer

change is estimated to generally non-increase in age, except for men aged less than 35 with

higher education degree. When comparing a younger employed with an older employed, the

decrease in local job mobility is estimated to be smallest for HE and largest for ND. Men

without educational degree have the highest local job transition probabilities in younger ages

(in their twenties) but the lowest for higher ages (aged > 40). Men with higher educational

degree have the lowest local job probabilities for younger ages (< 30) but the highest for

higher ages (> 50). Distant employer changes are estimated to be most likely for men
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with higher education degree and least likely for those without any degree. The estimated

probability functions increase in younger ages for those with completed vocational training

and higher education degree but decrease in age after they have reached their maximum

somewhere in the 30s. For those without degree this pattern is least pronounced.

The probability of entering unemployment increases in age for all education groups (with

the exception of young ages for men with completed vocational training). The increase in

redundancy risk accelerates with age and is strongest for ages > 50. This well known pattern

is related to early retirement schemes that use unemployment benefits as a bridge for the

time gap between leaving employment and entry into old age pension (compare Wichert

and Wilke, 2012, or Westerheide and Kauermann, 2014). Given that our model controls

for tenure and additional labour market experience, these results confirm that there is a

strong age discriminating pattern. Due to strong dismissal protection laws it is common in

the German labour market that the employer negotiates a comprehensive early retirement

package with its older employees in exchange of that they accept the redundancy.

5 Summary and Conclusions

We have presented a generalised semiparametric regression model with a misclassified co-

variate and put this model to extensive administrative labour market data. Our application

proves that a flexible, nonlinear misclassification model is operational even with sample sizes

in the 2 digit millions. Although, a number of computational challenges had to be resolved,

including a substantial amount of code was implemented in C and parallel computing was

used as much as possible.
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Despite the large amount of misclassification, a number of main result patterns remain

after accounting for misclassification. This is good news as the data we use are the main

source of information for empirical labour market research about Germany. However, there is

also evidence of some results being misleadingly biased when the misclassification is ignored.

It is therefore preferable in an application to use a model that accounts for misclassification.

Somewhat surprisingly we obtain evidence that not only results for the misclassified variable

can be sizeably biased but also the marginal effects for other (presumably correct) variables

in the model. Given that there is no common attenuation bias pattern in non-linear models

with non classical measurement error, it is difficult to anticipate the direction and the size

of the bias.

Future research should extend the model to errors in several covariates as it is unlikely

that only one variable is affected by misclassification. It would be also of interest to examine

the quality of similar data from other countries. From a more practical perspective of

users of the German data it would be interesting to conduct a comparative analysis of

using the original education variable or the IP1 corrected version each with or without the

misclassification model. This would reveal to what extent direct data correction rules, which

do not require validation data, contribute to reducing inconsistencies. We experimented

with this in early stages and found that a combination of the data correction rule and the

misclassification model produced the best results.
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Methodenreport 02/2008. Institut für Arbeitsmarkt- und Berufsforschung, Nürnberg.
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Appendix

A.I: Asymptotic Properties of the Kernel Estimator and the Boot-

strap

This appendix complements the heuristic discussion of the statistical properties of the kernel

estimator γ̂u(z) in Section 3.2 by deriving and proving rigorous asymptotic statements. In

particular, we establish the asymptotic distribution of the kernel estimator γ̂u(z) and discuss

consistency of the bootstrap procedure.

As in Section 3.2 we make the simplifying assumption that there are no parameters β and

θ and that U = U∗. Then in our model we observe i.i.d. tuples (yi,xi, zi, u
∗
i ) (i = 1, ..., n),

where the conditional density of yi given (xi, zi, u
∗
i ) is

∑
u∈U

f
(
yi, γu(zi)

)
· pu|u∗i (xi, zi).

Here, f
(
yi, γu(zi)

)
is the conditional density of yi, given (xi, zi, ui) and pu|u∗i (xi, zi) is the

conditional probability of ui, given (xi, zi, u
∗
i ). As in our general model f

(
yi, γu

)
does not

depend on zi and because of our simplifying assumption that there is no parameter β it also

does not depend on xi. The conditional probability pu|u∗i (xi, zi) is unknown but an estimate

p̂u|u∗i (xi, zi) of it is available that is based on an additional validation sample. We assume

that the validation sample is independent of the sample (yi,xi, zi, u
∗
i ) (i = 1, ..., n).

Our kernel estimator γ̂(z) = (γ̂u(z))u∈U is equal to γ = (γu)u∈U where γ maximizes

1

n

n∑
i=1

ln

[∑
u∈U

f
(
yi, γu

)
· p̂u|u∗i (xi, zi)

]
·Kh(zi − z).

We will discuss the asymptotic distribution of γ̂ at a fixed point z = z0. We also write

γ̂ = (γ̂u)u∈U for γ̂(z0). The true function γ will be denoted by γ0 = (γ0,u)u∈U.

32



The estimator γ̂ is defined by

Gn(γ̂) = 0,

where

Gn(γ) =
1

n

n∑
i=1

d

dγ
ln

[∑
u∈U

f
(
yi, γu

)
· p̂u|u∗i (xi, zi)

]
·Kh(zi − z0)

=

(
1

n

n∑
i=1

fη
(
yi, γu

)
· p̂u|u∗i (xi, zi)∑

v∈U f
(
yi, γv

)
· p̂v|u∗i (xi, zi)

·Kh(zi − z0)

)
u∈U

with Kh(ζ) = h−1K(h−1ζ).

In our notation we will use the following convention. Suppose that a random variable r =

(s, t) has a continuous component s with values in Rd and a discrete component t with values

in a finite set J and suppose that r has a density φ with respect to the product of the Lebesgue

measure on Rd and the counting measure on J , that is E[h(s, t)] =
∑
t∈J
∫
Rd h(s, t)φ(s, t)ds.

In this case we also write
∫
h(s, t)φ(s, t)ds dt instead of E[h(s, t)].

In our theory we will make use of the following assumptions.

(A1) For u ∈ U the functions γ0,u are twice continuously differentiable in a neighborhood

of the point z0. The point z0 lies in the interior of the support of zi. The density

g(u∗,x, z) of (u∗i ,xi, zi), with respect to products of Lebesgue measures and counting

measures, is differentiable with respect to z in a neighborhood of z0. The derivative

is continuous in z in a neighborhood of z0, uniformly in z and over x ∈ X and u∗ ∈ U.

The transition density pu∗,u(x, z) is differentiable with respect to z in a neighborhood

of z0. The derivative is continuous in z in the neighborhood of z0, uniformly in z ∈ Z

and over x ∈ X and u, u∗ ∈ U.

(A2) The density f(y, η) is three times differentiable with respect to η for all y and for all

η ∈ I. Here I is an interval that is chosen such that γ0,u(z) ∈ I for all u ∈ U and for
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all z in a neighborhood of z0. For some functions ρ1,... ρ4 it holds for all η, η′ ∈ I that

f(y, η)

f(y, η′)
≤ ρ1(y),

∣∣∣∣fη(y, η)

f(y, η)

∣∣∣∣ ≤ ρ2(y),∣∣∣∣fηη(y, η)

f(y, η)

∣∣∣∣ ≤ ρ3(y),

∣∣∣∣fηηη(y, η)

f(y, η)

∣∣∣∣ ≤ ρ4(y),

where the functions ρ1,... ρ4 for some 0 < C <∞ fulfill for z in a neighborhood of z0

E[ρ81(y)|z] ≤ C, E[ρ42(y)|z] ≤ C,

E[ ρ43(y)|z] ≤ C, E[ρ24(y)|z] ≤ C.

(A3) The matrix M is invertible where M is defined by its elements

Mu,w =

∫
fη(y, γ0,u(z0))pu|u∗(x, z0)fη(y, γ0,w(z0))pw|u∗(x, z0)∑

v∈U fη(y, γ0,v(z0)pv|u∗(x, z0)

×g(u∗, x, z0)dy du∗ dx,

(u,w ∈ U).

(A4) It holds that

E

[
sup

|η′−η|≤δ
|fη(y, η)|

]
<∞, E

[
sup

|η′−η|≤δ
|fηη(y, η)|

]
<∞.

(A5) Put

S1,n =

∫
Q(u∗,x)

(
p̂w|u∗(x, z0)− pw|u∗(x, z0)

)
w∈U du∗ dx,

where the matrix valued function Q(u∗,x) has elements

Q(u∗,x)v,w =

∫
fη(y, γ0,v(z0))pv|u∗(x, z0)f(y, γ0,w(z0))∑

u∈U fη(y, γ0,u(z0)(z)pu|u∗(x, z0)

×g(u∗, x, z0)dy.

It holds that

√
mS1,n → N(0,Σ1),
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in distribution, for a symmetric positive semidefinite matrix Σ1. Furthermore it holds

that

√
m sup

{ ∣∣p̂u|u∗(x, z)− pu|u∗(x, z)∣∣ : u|u∗ ∈ U,x ∈ X, z ∈ Z,

|z − z0| ≤ h
}

= OP (1),

√
m sup

{ ∣∣p̂u|u∗(x, z)− p̂u|u∗(x, z0)
∣∣ : u|u∗ ∈ U,x ∈ X, z ∈ Z,

|z − z0| ≤ h
}
→ 0,

in probability.

(A6) The kernel K is a symmetric probability density function with compact support, [−1, 1]

say. For the bandwidth h is holds that nh→∞ and h = O(n−1/5).

We briefly comment on our assumptions. Assumption (A1) is a standard smoothness

condition. Condition (A2) is used to get limit results for some terms using the theorem of

dominated convergence. Assumption (A3) is essential for identification of γ0. Assumption

(A4) is used to allow for interchanging the order of integrating and taking derivatives. This

allows to show that some expectations are equal to zero. The same argument is used in

asymptotics for parametric maximum likelihood theory. Assumptions (A5) can be easily

checked under mild regularity conditions if a parametric estimator is used in the validation

step. Condition (A6) is a standard assumption used in kernel smoothing.

Theorem 1 Make the assumptions (A1)–(A6). It holds that

γ̂ − γ0(z0) = −h2
∫
ζ2K(ζ)dζ M−1b−M−1S1,n −M−1S2,n + oP (m−1/2 + (nh)−1/2),
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where for u ∈ U and for i = 1, ..., n

S2,n,u =
1

n

n∑
i=1

ei,uKh(zi − z0),

ei,u =
fη(yi, γ0,u(z0))∑

v∈U f(yi, γ0,v(zi))pv|u∗i (xi, zi)
pu|u∗i (xi, zi).

Furthermore, the bias vector b has elements

bu =

∫ ∑
w∈U

fη(y, γ0,u(z0))pu|u∗(x, z0)∑
v∈U f(y, γ0,v(z0)pv|u∗(x, z0)

g(u∗, x, z0)

×
[
fη(y, γ0,w(z0))

{
γ′0,w(z0)×

(
∂zpw|u∗(x, z0)

pw|u∗(x, z0)

+
∂zpu|u∗(x, z0)

pu|u∗(x, z0)
+
∂zg(u∗, x, z0)

g(u∗, x, z0)
−
∑
v∈U f(y, γ0,v(z0)∂zpv|u∗(x, z0)∑
v∈U f(y, γ0,v(z0)pv|u∗(x, z0)

)
+

1

2
γ′′0,w(z0)

}
+

1

2
fηη(y, γ0,w(z0))γ′0,w(z0)2

]
dy du∗ dx.

Here ∂zpw|u∗ and ∂zg denote the partial derivative of pw|u∗ or of g, respectively, with respect

to z. Furthermore, it holds that

Σ−1/2n

(
γ̂ − γ0(z0)− h2

∫
ζ2K(ζ)dζ M−1b

)
converges to a normal distribution with identity covariance matrix. Here the matrix Σn is

equal to
1

m
M−1Σ1M

−1 +
1

nh
M−1.

The limiting covariance matrix Σn depends on the ratio of m and nh. If nh/m converges

to zero the asymptotic covariance is asymptotically related only to the estimation error in the

validation step. If this ratio converges to infinity the covariance is driven by the stochastic

errors of the second step. If m and nh are of the same order, the asymptotic variance has

terms coming from both estimation steps. The proof of Theorem 1 can be found in Section

S.I of the supplementary material.

We now come to a discussion of the properties of our bootstrap procedure. Our boot-

strap method makes use of bootstrap samples (ybi ,x
b
i , z

b
i , u
∗b
i ) (i = 1, ..., n) drawn indepen-

dently with replacement from (ybi ,x
b
i , z

b
i , u
∗b
i ) (i = 1, ..., n). Furthermore, independently
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from the bootstrap sample one generates independent φi,u(u∗,x, z) (i = 1, ..., n) such that

√
mφi,u(u∗,x, z) is distributed according to the asymptotic distribution of

√
m(p̂u|u∗(x, z).

This is formalised in Assumption (A7) below. Define p̂bu|u∗i
(xi, zi) = p̂u|u∗i (xi, zi)+φi,u(u∗i ,xi, zi).

The bootstrap estimator γ̂b of γ0(z0) is such that it solves Gbn(γ̂b) = 0, where

Gbn(γ) =

(
1

n

n∑
i=1

fη
(
ybi , γu

)
· p̂b
u|u∗i b(xbi , z

b
i )∑

v∈U f
(
ybi , γv

)
· p̂b
v|u∗i b(xbi , z

b
i )
·Kh(zbi − z0)

)
u∈U

.

We consider the asymptotic behaviour of the bootstrap procedure under the following

additional assumption.

(A7) Put

Sb1,n =

∫
Q(u∗,x)

(
p̂bw|u∗(x, z0)− p̂w|u∗(x, z0)

)
w∈U

du∗ dx

=

∫
Q(u∗,x) (φi,w(u∗,x, z0))w∈U du∗ dx,

where the matrix valued function Q(u∗,x) has been defined in (A5). It holds that

√
mSb1,n has a normal distribution N(0,Σ1) with covariance matrix Σ1 defined in (A5),

and that

√
m sup

{
|φi,w(u∗,x, z)| : w|u∗ ∈ U,x ∈ X, z ∈ Z,

|z − z0| ≤ h
}

= OP (1),

√
m sup

{
|φi,w(u∗,x, z0)| : w|u∗ ∈ U,x ∈ X, z ∈ Z,

|z − z0| ≤ h
}
→ 0,

in probability.

Theorem 2 Make the assumptions (A1)–(A7). It holds that

γ̂b − γ̂ = −M−1Sb1,n −M−1Sb2,n + oP (m−1/2 + (nh)−1/2),

37



where for u ∈ U and for i = 1, ..., n

Sb2,n,u =
1

n

n∑
i=1

ebi,uKh(zbi − z0),

ebi,u =
fη(ybi , γ̂u)∑

v∈U f(ybi , γ̂v)p̂v|u∗i b(xbi , zi)
p̂u|u∗i b(xi, zi).

Furthermore, it holds that, conditionally given the two samples,

Σ−1/2n

(
γ̂b − γ̂

)
converges weakly to a normal distribution with identity covariance matrix.

The theorem shows that the bootstrap is consistent if h2 � m−1/2 + (nh)−1/2. This

is the case for under smoothing, h2 � (nh)−1/2, or if nh/m converges to zero. Otherwise,

if h2, m−1/2 and (nh)−1/2 are of the same order, the bootstrap does not take care of the

bias term and is inconsistent. Nevertheless, it gives a consistent estimate of the variance of

the estimator. The proof of Theorem 2 can be found in Section S.I of the supplementary

material.

5.1 A.II: Tables

Table 4: Covariate lists for the analysis model (U∗,X, Z) and

the validation model (U∗,W ).

Variable Sample Average Validation Model

U∗: Educational Degree (IP1 corrected) (ref: vocational training)

Missing value 0.01 X

No degree 0.14 X

Higher education degree 0.11 X

Demographics

Age (Z) 38.70 X

Work History

Job changes (=1) 0.60

Continued on next page
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Table 4 – continued from previous page

Variable Sample Average Validation Model

Out of labour force periods (=1) 0.40

Distant job changes (=1) 0.14

Unemployment periods (=1) 0.38

Recalls to pre-unemployment employer (=1) 0.10

Tenure 1-4 months 0.07

Tenure 5-11 months 0.11

Tenure 12-23 months 0.14

Tenure 2-<4 years 0.16

Tenure 4-<8 years 0.17

Tenure 8-<15 years 0.17

Tenure ≥ 15 years 0.14

Additional Experience 6-11 months 0.03

Additional Experience 12-23 months 0.05

Additional Experience 2-<4 years 0.12

Additional Experience 4-<8 years 0.19

Additional Experience 8-<15 years 0.21

Additional Experience ≥15 years 0.11

Job Characteristics

Seasonal job type (=1) 0.15

White collar (=1) 0.40 X

Vocational trainee (=1) 0.06 X

Part-time (=1) 0.16 X

Low wage (lowest 20% of full-time wages) (=1) 0.36 X

Immigration Background (ref: German)

Yes 0.11 X

Missing value 0.03 X

Calendar Time (ref: June 2001)

January 0.08

February 0.08

March 0.08

April 0.08

May 0.08

July 0.08

August 0.08

September 0.08

October 0.08

November 0.08

Continued on next page
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Table 4 – continued from previous page

Variable Sample Average Validation Model

December 0.08

Year 1999 0.24 X

Year 2000 0.25 X

Year 2002 0.25 X

Business Sector (ref: agriculture)

Commodities 0.06

Manufacturing (machines) 0.09

Manufacturing (vehicles) 0.08

Manufacturing (consumption goods) 0.05

Food production 0.03

Construction 0.04 X

Finishing trade 0.03 X

Whole sale 0.06 X

Retail 0.08 X

Transport and communication 0.05

Services (business) 0.15

Services (private) 0.05

Services (care and health) 0.11

Services (other public) 0.06

Public institutions 0.06

Region Characteristics (ref: suburban, unemp. rate <4%)

urban 0.56

rural 0.10

Unemployment rate 4-<5% 0.06

Unemployment rate 5-<6% 0.11

Unemployment rate 6-<7% 0.13

Unemployment rate 7-<8% 0.16

Unemployment rate 8-<9% 0.12

Unemployment rate 9-<10% 0.10

Unemployment rate 10-<11% 0.11

Unemployment rate 11-<12% 0.08

Unemployment rate 12-<13% 0.06

Unemployment rate 13-<14% 0.04

Unemployment rate 14-<15% 0.02

Unemployment rate 15-<16% 0.01

Unemployment rate 16-<17% 0.01

Unemployment rate 17-<18% 0.00

Unemployment rate 18-<19% 0.00

Continued on next page
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Table 4 – continued from previous page

Variable Sample Average Validation Model

Unemployment rate 19-20% 0.00

Observations 20,660,311 22,974
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