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Carry✩

Ralph S.J. Koijen1, Tobias J. Moskowitz2, Lasse Heje Pedersen3, Evert B. Vrugt4

Abstract

We apply the concept of carry, which has been studied almost exclusively in currency markets, to

any asset. A security’s expected return is decomposed into its “carry,” an ex-ante and model-free

characteristic, and its expected price appreciation. Carry predicts returns cross-sectionally and in

time series for a host of different asset classes, including global equities, global bonds, commodities,

US Treasuries, credit, and options. Carry is not explained by known predictors of returns from

these asset classes, and it captures many of these predictors, providing a unifying framework

for return predictability. We reject a generalized version of Uncovered Interest Parity and the

Expectations Hypothesis in favor of models with varying risk premia, in which carry strategies are
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commonly exposed to global recession, liquidity, and volatility risks, though none fully explains

carry’s premium.

JEL classification: G10
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tions, Liquidity risk, Volatility risk



1. Introduction

We define an asset’s “carry” as its futures return, assuming that prices stay the same. Based
on this uniform definition, any security’s return can be decomposed into its carry and its expected
and unexpected price appreciation:

return = carry + E(price appreciation)
︸ ︷︷ ︸

expected return

+ unexpected price shock. (1)

Hence, an asset’s expected return is its carry plus its expected price appreciation. That carry is
a model-free characteristic directly observable ex ante from futures (or synthetic futures) prices
makes it special. Expected price appreciation, by contrast, must be estimated using an asset
pricing model. Empirically, we consider a variety of asset classes and, in every asset class, define
carry consistently as the return on a futures (or synthetic futures) position when the price does
not change. Carry can be directly observed without relying on any particular model, and we show
how carry can be used to test a variety of asset pricing theories.

We explore how carry is related to expected returns and expected price appreciation across
a wide range of diverse assets that include global equities, global government bonds, currencies,
commodities, credit, and options. We examine both the common and the independent variation of
returns across asset classes through the lens of carry to help shed light on theory.

The concept of carry has been studied in the literature almost exclusively for currencies. In
this case, our general definition recovers the well-known currency carry given by the interest rate
differential between two countries. The currency literature focuses on testing uncovered interest
rate parity (UIP) and explaining its empirical deviations.5 However, Eq. (1) is a general relation
that can be applied to any asset. Hence, we test a generalized, across many asset classes, version of
UIP, which also tests the expectations hypothesis (EH) in fixed income markets. Under this theory,
a high carry should not predict a high return as it is compensated by an offsetting low expected
price appreciation. However, under models of time-varying risk premia, a high return premium
naturally shows up as a high carry. The concept of carry can therefore be used to empirically
address some of the central questions in asset pricing: Do expected returns vary over time and
across assets? If so, by how much? How can expected returns be estimated ex ante? Which
economic mechanism drives the variation in expected returns? How much common variation in
expected returns exists across asset classes?

We find that carry is a strong positive predictor of returns in each of the major asset classes
we study, in both the cross section and the time series. A carry trade that goes long high-carry
assets and shorts low-carry assets earns significant returns in each asset class with an annualized
Sharpe ratio of 0.8 on average. Further, a diversified portfolio of carry strategies across all asset
classes earns a Sharpe ratio of 1.2.

The returns to carry are related to, but not explained by, other known return predictors. Carry
generates positive and unexplained alpha within each asset class relative to other known factors
in each asset class. A long literature studies return predictability in different asset classes, usually

5This literature goes back at least to Meese and Rogoff (1983). Surveys are presented by Froot and Thaler
(1990), Lewis (1995), and Engel (1996). Explanations of the UIP failure include liquidity risk (Brunnermeier et al.,
2008), crash risk (Farhi and Gabaix, 2016), volatility risk (Lustig et al., 2014; Menkhoff et al., 2012), peso problems
(Burnside et al., 2011), and infrequent revisions of investor portfolio decisions (Bacchetta and van Wincoop, 2010).
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focusing on one asset class at a time. Taking the main predictors of returns for each asset class,
we show that carry provides unique return predictability. However, in many cases, the reverse is
not true. Carry often subsumes the return predictability of other known factors. This suggests
not only that carry is a stronger predictor of returns, but also that it could be a unifying concept
that ties together many return predictors disjointly scattered across the literature from many asset
classes.

The literature on return predictability has traditionally been somewhat segregated by asset
class.6 Most studies focus on a single asset class or market at a time, ignoring how different
asset classes behave simultaneously. As a consequence, return predictability and theory have often
evolved separately by asset class. We show that seemingly unrelated predictors of returns across
different assets can be bonded together through the concept of carry. For instance, the carry for
bonds is closely related to the slope of the yield curve studied in the bond literature, plus what we
call a “roll down” component that captures the price change that occurs as the bond moves along
the yield curve as time passes. The commodity carry is akin to the basis or convenience yield, and
equity carry is a forward-looking measure of dividend yields.7

While carry is related to these known predictors of returns, it is different from many of these
measures and provides unique return predictability. Carry can be applied more broadly to other
asset markets such as the cross section of US Treasuries across maturities, US credit portfolios, and
US equity index call and put options across moneyness. We find equally strong return predictability
for carry in these other markets, providing an out-of-sample test and a broader unifying framework.

To further quantify carry’s predictability, we run a set of panel regressions of future returns
of each asset on its carry. While carry predicts future returns in every asset class with a positive
coefficient, the magnitude of the predictive coefficient differs across asset classes, indicating whether
carry is positively or negatively related to future price appreciation [see Eq. (1)]. In global equities,
global bonds, and credit markets, the predictive coefficient is greater than one, implying that carry
predicts positive future price changes that add to returns, over and above the carry itself. In
commodity and options markets, the estimated predictive coefficient is less than one, implying
that the market takes back part of the carry (although not all, as implied by UIP and the EH).
Hence, there are commonly shared features across different carry strategies and also interesting
differences.

The panel regressions also indicate that carry tends to predict returns in the presence of contract
fixed effects. To explore the time series predictability of carry in more detail, we consider carry
timing strategies. Instead of a neutral long-short portfolio, carry timing strategies buy (short)
a security when the carry is positive or above its historical mean. Consistent with the panel
regressions, we find that carry timing strategies produce positive Sharpe ratios that average 0.6.
A global carry timing strategy that combines all asset classes has a Sharpe ratio of 0.9.

We examine both the commonality and differences across carry strategies to shed light on asset
pricing theory. Because the strong return predictability of carry lends support to models of time-

6Studies focusing on international equity returns include Chan et al. (1991), Griffin (2002), Griffin et al. (2003),
Hou et al. (2011), Rouwenhorst (1998), Fama and French (1998), and further references in Koijen and Van Nieuwer-
burgh (2011). Studies focusing on government bonds across countries include Ilmanen (1995) and Barr and Priestley
(2004). Studies focusing on commodities returns include Fama and French (1987), Bailey and Chan (1993), Bessem-
binder (1992), Casassus and Collin-Dufresne (2005), Erb and Harvey (2006), Acharya et al. (2010), Gorton et al.
(2012), Tang and Xiong (2010), and Hong and Yogo (2012).

7See Cochrane (2011) and Ilmanen (2011) and references therein.
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varying expected returns, we then ask where the source of this return variation could be coming
from. Theory suggests that expected returns can vary due to macroeconomic risk (Campbell and
Cochrane, 1999; Bansal and Yaron, 2004), limited arbitrage (Shleifer and Vishny, 1997), market
liquidity risk (Pástor and Stambaugh, 2003; Acharya and Pedersen, 2005), funding liquidity risk
(Brunnermeier and Pedersen, 2009; Gârleanu and Pedersen, 2011), volatility risk (Bansal et al.,
2014; Campbell et al., 2012), and downside risk exposure (Henriksson and Merton, 1981; Lettau
et al., 2014). Further, we examine whether carry can be explained by other predictors of returns
across global asset classes such as value and momentum.

We first show that the returns to carry strategies cannot be explained by other known global
return factors such as value, momentum, and time series momentum (Asness et al., 2013; Moskowitz
et al., 2012) within each asset class as well as across all asset classes. The relation between carry and
these factors varies across asset classes, where carry is positively related to value and momentum
in some asset classes and negatively in others. However, none of the carry exposures to value,
momentum, or time series momentum is large in any asset class, and carry consistently produces
positive alpha with respect to these factors. Hence, carry represents a different return predictor
within and across asset classes, adding to the list of factors that drive returns across many markets.

We then assess whether crash risk can explain the ubiquitous returns to carry strategies as
suggested by the literature on currency carry trades (Brunnermeier et al., 2008). While it is
well documented that the currency carry trade has negative skewness (Brunnermeier et al., 2008;
Burnside et al., 2011), this cannot be said for all carry strategies. In fact, several of the carry
strategies we examine have positive skewness and the across-all-asset-class global carry factor has
negligible skewness. All carry strategies have excess kurtosis, however, indicating fat-tailed returns
with large occasional profits and losses. The across-all-asset-class diversified carry factor has a
kurtosis of 5.40, but a diversified passive exposure to all asset classes has an even larger kurtosis.
This evidence suggests that crash risk theories, which have been suggested as an explanation for
the currency carry premium, are unlikely to explain the general carry premium we find.

We then consider whether downside risk can explain the carry premium by looking at Henriksson
and Merton (1981)-type regressions for each asset class and the Lettau et al. (2014) downside risk
measure, which they apply successfully to currency carry strategies specifically and to the cross
section of stocks, equity index options, commodities, and government bonds. The downside beta is
often larger than the market beta, and the price of downside risk is significantly positive. However,
we still find significant alphas in several asset classes.

Standard carry strategies can lead to a substantial amount of turnover. To mitigate turnover,
we consider a “carry1-12” strategy by sorting on the average carry signal during the last 12 months.
The global carry factor based on the time-averaged carry signal still delivers a Sharpe ratio of 1.1
while reducing turnover, on average, by about 50%. We also use realistic estimates of transaction
costs from Bollerslev et al. (2016) and show that our carry strategy net returns are still positive and
significant for global equities, global fixed income, Treasuries, commodities, and currencies. For
options, we have only conservative estimates of transaction costs using bid-ask spreads from Op-
tionMetrics, and our results for options are naturally lower with these high trading costs. However,
taken together, our results cannot be explained by high transaction costs and our carry strategies
produce consistently positive returns net of those trading costs.

We also consider carry’s exposure to liquidity risk and volatility risk. Carry strategies in
almost all asset classes are positively exposed to global liquidity shocks and negatively exposed to
volatility risk. We find signficant risk prices for liquidity and volatility shocks in the data. Hence,

5



carry strategies generally tend to incur losses during times of worsened liquidity and heightened
volatility. These exposures could therefore help explain carry’s return premium, though once again
we find that these risk exposures are inadequate to capture the entire carry premium. One notable
exception is the carry trade across US Treasuries of different maturities, which has the opposite
loadings on liquidity and volatility risks and, thus, acts as a hedge against the other carry strategies
during these times, which makes the positive average returns of this strategy particularly puzzling.

Consistent with the liquidity and volatility exposures, we find that carry returns tend to be lower
during global recessions, which appears to hold uniformly across asset classes. Flipping the analysis
around, we identify the worst and best carry return episodes for the diversified carry strategy
applied across all asset classes. We term these episodes carry “drawdowns” and “expansions,”
respectively. The three biggest global carry drawdowns (August 1972 to September 1975, March
1980 to June 1982, and August 2008 to February 2009) coincide with major global business cycle
and macroeconomic events. Reexamining each individual carry strategy within each asset class,
we find that during carry drawdowns all carry strategies perform poorly and, moreover, perform
significantly worse than passive exposures to these same markets and asset classes during these
times. This lower frequency co-movement is obscured when considering monthly returns. Hence,
the modest unconditional pairwise correlations mask some important dynamics and some lower
frequency co-movements. Part of the return premium earned on average for going long carry could
be compensation for exposure that generates large losses during extreme times of global recessions.
Whether these extreme times are related to macroeconomic risks and heightened risk aversion or
are times of limited capital and arbitrage and funding squeezes remains an open question. The
former could explain some of the common variation across carry strategies, and the latter could be
linked to some of the individual asset class variation, where arbitrage capital is more limiting.

Despite these risks, the large 1.2 Sharpe ratio of the diversified carry factor still presents
a high hurdle for asset pricing models to explain (Hansen and Jagannathan, 1997). Although
macro/recession risk compensation can contribute partly to the high returns to carry strategies in
general, margin requirements and funding costs, volatility risk, and limits to arbitrage could be
necessary to justify the high Sharpe ratios in the data. The positive exposures of carry to liquidity
and volatility risks are consistent with this notion.

Our paper contributes to a growing literature on global asset pricing that analyzes multiple
markets jointly.8 Studying different markets simultaneously identifies both common and unique
features of various return predictors that provide a novel set of facts to test asset pricing theory.
Theory seeking to explain time-varying return premia should confront the ubiquitous presence of
carry premia across different asset classes.

The remainder of the paper is organized as follows. Section 2 defines carry for each asset class
and examines theoretically how it relates to expected returns in each asset class. Section 3 examines
carry’s return predictability globally across asset classes. Section 4 investigates the common and
independent variation of carry strategies across asset classes and tests various asset pricing theories
for the carry premium, including liquidity, volatility, downside, and global business cycle risks.

8 Asness et al. (2013) study cross-sectional value and momentum strategies across eight markets and asset classes,
Moskowitz et al. (2012) show time series momentum across asset classes, Fama and French (2011) examine size,
value, and momentum in global equity markets jointly, and Lettau et al. (2014) study downside risk across asset
classes jointly.
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2. Carry: a characteristic of any asset

We decompose the return of any security into three components: carry, expected price appre-
ciation, and unexpected price appreciation. We define carry uniformly as the return on a futures
position when the price stays constant over the holding period. We give a precise definition of carry
for any futures contract and show how carry can be computed in a consistent manner for other
assets by constructing a synthetic futures and applying the same definition for carry. We apply this
methodology across eight diverse asset classes: currencies, equities, global bonds, commodities, US
Treasuries, credit, call index options, and put index options. For each asset class, we discuss how
our consistent, uniform futures-based definition of carry can be interpreted and relate it to existing
economic theory.

We define the return and carry for a futures contract as follows. At any time t, consider a futures
contract that expires in the next time period t + 1 with a current futures price Ft and a spot price
of the underlying security St, and assume an investor allocates Xt dollars of capital to finance each
futures contract (where Xt must be at least as large as the margin requirement). In the next period,
the value of the margin capital and the futures contract is equal to Xt(1+rf

t )+Ft+1−Ft, where rf
t

is the current risk-free interest rate earned on the margin capital. The return per allocated capital
over one period is

rtotal return
t+1 =

Xt(1 + rf
t ) + Ft+1 − Ft − Xt

Xt

=
Ft+1 − Ft

Xt

+ rf
t (2)

and the return in excess of the risk-free rate is

rt+1 =
Ft+1 − Ft

Xt

. (3)

The carry, Ct, of the futures contract is then computed as the futures excess return under the
assumption of a constant spot price from t to t + 1. Under the assumption of constant spot prices
(St+1 = St), we have that Ft+1 = St because the futures price expires at the future spot price
(Ft+1 = St+1). Therefore, the carry is defined simply as

Ct =
St − Ft

Xt

. (4)

This definition makes it clear that carry is directly observable from current futures and spot prices.
The scaling factor Xt can be chosen freely depending on the needs of the researcher (or investor)
as long as a consistent scaling of returns [Eq. (3)] and carry [Eq. (4)] is used as we discuss below.

Based on this definition of carry, we can explicitly decompose the excess return on the futures
into its three components:

rt+1 =
St+1 − St + St − Ft

Xt

= Ct + Et

(
ΔSt+1

Xt

)

︸ ︷︷ ︸
Et(rt+1)

+ut+1, (5)

where ΔSt+1 = St+1 − St is the price change and ut+1 = (St+1 − Et(St+1))/Xt is the unexpected
price shock with mean zero. Eq. (5) shows how the futures return is the sum of the carry, the
expected spot price change, and the unexpected price move. Because the last term is zero in

7



expectation, the expected return is the sum of the first two. In other words, carry, Ct, is related to
the expected return Et(rt+1), but the two are not necessarily the same. The expected return on an
asset is composed of both the carry on the asset and the expected price appreciation of the asset,
which depends on the specific asset pricing model used to form expectations and risk premia. The
carry component of a futures contract’s expected return, however, can be measured in advance in a
straightforward mechanical way without the need to specify a pricing model or stochastic discount
factor. Carry is therefore a simple observable characteristic that is a component of the expected
return on an asset.

Carry can be relevant for predicting expected price changes on an asset, which also contribute
to its expected return. That is, Ct can provide information for predicting Et(ΔSt+1), which we
investigate empirically in this paper. Eq. (5) provides a unifying framework for carry and its link
to risk premia across a variety of asset classes, as our definition of carry can be applied to many
asset classes.

The definition of carry makes it clear how carry scales linearly with the position size Xt. For an
investor who uses twice the leverage (i.e., half the capital X), both the return and the measured
carry naturally double. In the empirical analysis, we choose the position sizes as follows. In most
asset classes, we compute returns and carry based on a fully collateralized position, meaning that
the amount of capital allocated to the position is equal to the futures price, Xt = Ft. The carry of
a fully collateralized position is therefore

Ct =
St − Ft

Ft

, (6)

and the excess return is computed similarly, rt+1 = (Ft+1 − Ft)/Ft. As discussed below, in asset
classes where the asset volatilities vary significantly in the cross section, we choose position sizes
that put the various assets on a comparable scale. However, we emphasize that the definition of
carry is the same function of the position size and prices across all assets. Lastly, our carry measure
also applies to foreign-denominated futures contracts as explained in Appendix A.

2.1. Currency carry

We begin by illustrating how our general definition of carry applies to the asset class that has
been the center of attention in the classic carry trade literature, namely, currencies. The classic
definition of currency carry is the local interest rate in the corresponding country. This definition
captures an investment in a currency by putting cash into a country’s money market, which earns
the interest rate if the exchange rate (the price of the currency) does not change.

To see how our general futures-based definition compares with the classic one, we derive the
carry of a currency from forward or futures prices. The no-arbitrage price of a currency forward
contract with spot exchange rate St (measured in number of local currency units per unit of foreign
currency), local interest rate rf , and foreign interest rate rf∗ is Ft = St(1+rf

t )/(1+rf∗
t ). Therefore,

the carry of the currency is

Ct =
St − Ft

Ft

=
(
rf∗
t − rf

t

) 1

1 + rf
t

. (7)

The carry of investing in a currency forward is the interest rate spread, rf∗ − rf , adjusted for a
scaling factor that is close to one, (1 + rf

t )−1. The carry is the foreign interest rate in excess of the
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local risk-free rate rf because the forward contract is a zero-cost instrument whose return is an
excess return. The scaling factor simply reflects that a currency exposure using a forward/futures
contract corresponds to buying one unit of foreign currency in the future, which corresponds to
buying (1 + rf

t )−1 units of currency today. The scaling factor could be eliminated if we change the
assumed position size, that is, changed Xt in Eq. (4).

Eq. (7) applies only when the currency forward satisfies the covered interest rate parity, Ft =
St(1+ rf

t )/(1+ rf∗
t ). However, we can always use our general definition of carry, Ct = (St −Ft)/Ft.

Even when the covered interest rate parity fails [for examples, see Gârleanu and Pedersen (2011)
and Du et al. (2016)], our carry definition is still the currency return if the spot exchange rate
stays constant. Further, one can view Eq. (7) as a way to derive currency-implied interest rates.

Our focus on forwards and futures in the definition of carry is helpful not only for consistency
across markets, but it is also the most realistic market for speculators who tend to get foreign
exchange exposure through currency forwards or futures. Consistently, our data on currencies
come from one-month currency forward contracts as explained in the next section.

An extensive literature studies the carry trade in currencies. The historical positive return
to currency carry trades is a well-known violation of the so-called uncovered interest rate parity
(UIP). The UIP is based on the simple assumption that all currencies should have the same
expected return, but many economic settings would imply differences in expected returns across
countries. For instance, differences in expected currency returns could arise from differences in
consumption risk (Lustig and Verdelhan, 2007), crash risk (Brunnermeier et al., 2008; Burnside
et al., 2011), liquidity risk (Brunnermeier et al., 2008), and country size (Hassan, 2013), where a
country with more exposure to consumption or liquidity risk could have both a high interest rate
and a cheaper exchange rate.

While we investigate the currency carry trade and its link to macroeconomic and liquidity
risks, our goal is to study the role of carry more broadly across asset classes and identify the
characteristics of carry returns that are common and unique to each asset class. Some of the
results in the literature pertaining to currency carry trades, such as negative skewness, are not
evident in other asset classes, while other characteristics, such as a high Sharpe ratio and exposure
to recessions, liquidity risk, and volatility risk, are more common to carry trades across asset
classes.

2.2. Global equity carry

For equities, the no-arbitrage price of a futures contract, Ft = St(1 + rf
t )−EQ

t (Dt+1), depends
on the current equity value St, the expected future dividend payment Dt+1 computed under the
risk-neutral measure Q, and the risk-free interest rate rf

t in the country of the equity index.9

Substituting this expression back into the general definition of carry in Eq. (6), the equity carry
can be written as

Ct =
St − Ft

Ft

=

(
EQ

t (Dt+1)

St

− rf
t

)
St

Ft

. (8)

The equity carry is simply the expected dividend yield minus the local risk-free rate, multiplied
by a scaling factor, which is close to one, St/Ft. This expression for the equity carry is intuitive

9van Binsbergen et al. (2012) and van Binsbergen et al. (2013) study the asset pricing properties of dividend
futures prices, EQ

t (Dt+n), n = 1, 2, . . . , in the US, Europe, and Japan. See van Binsbergen and Koijen (2017) for a
review of this literature.
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because, if stock prices stay constant, the stock return comes solely from dividends. Hence, carry
is the forward-looking dividend yield in excess of rf . While the literature on value investing
studies historical dividend yields, our futures-based measure of carry depends on expected dividends
derived from futures prices. We show that these two measures can be quite different.

To further understand the relation between carry and expected returns, consider Gordon’s
growth model for the price St of a stock with (constant) dividend growth g and expected return
E(R), St = D/(E(R)− g). This standard equity pricing equation implies that the expected excess
return E(R)− rf = D/S − rf + g is equal to the carry (dividend yield over the risk-free rate) plus
the expected price appreciation arising from the expected dividend growth, g.

If expected returns were constant, then the dividend growth would be high when the dividend
yield were low such that the two components of E(R) would offset each other. If expected returns
do vary, then it is natural to expect carry to be positively related to expected returns. If a stock’s
expected return increases while dividends stay the same, then its price drops and its dividend yield
increases (Campbell and Shiller, 1988). Hence, a high expected return leads to a high carry and
the carry predicts returns more than one-for-one. This discount rate mechanism is consistent with
standard macro-finance models, such as Bansal and Yaron (2004), Campbell and Cochrane (1999),
Gabaix (2012), and Wachter (2013), and models of time-varying liquidity risk premia (Pástor and
Stambaugh, 2003; Acharya and Pedersen, 2005; Gârleanu and Pedersen, 2011). We investigate in
the next section the relation between carry and expected returns for equities as well as the other
asset classes and find evidence consistent with this varying discount rate mechanism.

As the above equations indicate, carry for equities is related to the dividend yield, which has
been extensively studied as a predictor of returns, starting with Campbell and Shiller (1988) and
Fama and French (1988). Our carry measure for equities and the standard dividend yield used in
the literature are related, but they are not the same. Carry provides a forward-looking measure
of dividends derived from futures prices, while the standard dividend yield used in the prediction
literature is backward-looking. We show below that dividend yield strategies for equities are
different from our equity carry strategy.

Lastly, as a practical empirical matter, we do not always have an equity futures contract with
exactly one month to expiration. In such cases, we interpolate between the two nearest-to-maturity
futures prices to compute a consistent series of synthetic one-month equity futures prices and apply
the general carry definition for these.10

2.3. Commodity carry

The no-arbitrage price of a commodity futures contract is Ft = St(1 + rf
t − δt), where δt is the

expected convenience yield in excess of storage costs. Hence, the commodity carry can be written
as

Ct =
St − Ft

Ft

=
(
δt − rf

) 1

1 + rf − δt

. (9)

The commodity carry is the expected convenience yield of the commodity in excess of the risk-free
rate (adjusted for a scaling factor that is close to one).

To compute the carry from Eq. (9), we need data on the current futures price Ft and current
spot price St. However, commodity spot markets are often highly illiquid and clean spot price data

10We interpolate the futures prices only to compute the equity carry. We use the most actively traded equities
contract to compute the return series. See Section 3 and Appendix Appendix B for details on the data construction.
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on commodities are often unavailable. To avoid using the often unreliable spot price, we use the
two futures contracts closest to expiry and extrapolate the futures curve to compute the synthetic
spot price and interpolate the curve to compute the synthetic one-month futures price. 11 Based
on these synthetic futures prices, we apply our general definition of carry in Eq. (6).

As seen from (9), commodity carry is effectively the same as the predictor of commodity returns
examined in the literature known as the basis (Gorton et al., 2012; Hong and Yogo, 2012; Yang,
2013).

2.4. Carry for finite-maturity securities

So far, we have considered infinite-maturity securities such as equities and currencies. When
applying a consistent definition of carry for finite-maturity securities such as bonds and options,
special care must be taken. We define the carry Cτ

t at time t for a security with τ time periods to
maturity as

Cτ
t =

Sτ−1
t − F τ

t

F τ
t

. (10)

Fτ
t is the futures price when the underlying security currently has τ periods to maturity and delivery

is next period, and Sτ−1
t is the spot price of a security with τ − 1 periods to maturity.

The tricky issue is which spot price to use in the numerator, Sτ−1
t or Sτ

t ? Our definition
corresponds to assuming that the spot price for securities of maturity τ stays constant, Sτ−1

t+1 = Sτ−1
t .

When the futures expires next period, the underlying security has a maturity of τ−1, corresponding
to a spot price of Sτ−1

t .
Our definition of carry is more natural than an alternative assumption that the price of the

security with a maturity date at t + τ stays constant, Sτ−1
t+1 = Sτ

t . Our definition is more natural
for several reasons.

First, consider a security with one period to maturity, τ = 1. In this case, the alternative
assumption clearly makes no sense. Assuming that S0

t+1 = S1
t is illogical because the bond or

option value at maturity S0
t+1 is known in advance and almost surely not equal to the current

price, i.e., S0
t+1 6= S1

t is known for sure. Second, the alternative definition fails to recognize that
finite-maturity securities have a natural drift toward the known final value at maturity. In contrast,
our definition of carry has no such contradiction for securities with one period to maturity.

Third, our definition is natural as it treats securities with similar time to maturity as similar,
recognizing that the nature of a security changes with maturity. Fourth, we point out that this
maturity-sensitive definition of carry is consistent with our earlier definition for infinite-maturity
securities with τ = ∞, for the simple reason that infinite-maturity securities remain infinite ma-
turity.

2.5. Global bond carry

The carry definition Eq. (10) can be directly applied to bond futures. However, liquid bond
futures contracts are traded only in a few countries and, when they exist, typically only the first-
to-expire contract is liquid. To create a broad global cross section of bonds, we therefore compute

11We interpolate futures prices only to compute carry. We follow the Goldman Sachs Commodity Index (GSCI)
roll conventions in computing futures returns.
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synthetic futures prices based on an extensive data set of zero-coupon rates and apply the same
carry definition.12

With zero-coupon bond yield yτ
t for a bond with τ periods to maturity at time t, the spot

price is naturally given by Sτ
t = 1

(1+yτ
t )τ . The one-period futures price for a contract where the

underlying currently has maturity τ is given by F τ
t = (1 + rf

t )Sτ
t . Applying the carry definition

[Eq. (10)], the carry of a τ -period bond is

Cτ
t =

(1 + yτ
t )τ

(1 + rf
t )(1 + yτ−1

t )τ−1
− 1. (11)

We can rewrite the carry based on the forward interest rate from τ − 1 to τ . Because the
forward rate is f τ−1,τ

t :=
(1+yτ

t )τ

(1+yτ−1
t )τ−1 , we have

Cτ
t =

f τ−1,τ
t − rf

t

1 + rf
t

, (12)

where the numerator is the forward-spot spread [as discussed by Fama and Bliss (1987) in a time
series context]. For the connection between the bond carry and the forward rate, note that the
bond carry is the return one earns if the yield curve stays the same over the next time period
(adjusted for the risk-free rate). If one buys a τ -period bond, earns the carry over one period, and
then sells it with yield yτ−1

t , then the hold-to-maturity yield must be the initial yield yτ
t . Likewise,

a forward rate is the rate that can be locked in between time τ − 1 to τ such that the full-period
yield yτ

t equals the compound yield of first earning yτ−1
t over the first τ−1 periods and then earning

the forward rate in the end. Because the order of returns does not matter, this argument shows
why carry equals the forward rate (even though the carry is intuitively earned in the first time
period and the forward rate is intuitively earned in the last period).

We compute the carry using this exact formula [Eq. (11)], but we can get an intuitive expression
using a simple approximation based on the bond’s modified duration, Dmod,

Cτ
t ' (yτ

t − rf
t︸ ︷︷ ︸

slope

)−Dmod
(
yτ−1

t − yτ
t

)

︸ ︷︷ ︸
roll down

. (13)

This equation shows that the bond carry consists of two effects: (1) the bond’s yield spread to the
risk-free rate, which is also called the slope of the term structure plus (2) the “roll down,” which
captures the price increase due to the fact that the bond rolls down the yield curve. To understand
the roll down, note that the carry calculation corresponds to the assumption that the entire yield
curve stays constant so, as the bond rolls down the yield curve, the yield changes from yτ

t to yτ−1
t ,

resulting in a price appreciation that is minus the yield change times the modified duration.
The intuitive Eq. (13) highlights how carry captures the standard bond predictor, namely,

slope (or yield spread). Slope is a standard predictor of bond returns in the time series (Fama and
Bliss, 1987; Campbell and Shiller, 1991) and cross section (Brooks and Moskowitz, 2016). Our
carry definition is approximately the slope plus a roll-down component. We explore the link to the

12For countries with bond futures data, the correlation between futures returns and our synthetic futures returns
exceeds 0.95.
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slope strategy in more detail in Section 3.

2.6. Carry across Treasuries of different maturities

We examine carry for US Treasuries in the cross section from one to ten years of maturity. We
compute the carry in the same way for these bonds, but we adjust the position sizing to account
for their very different risks. For instance, a portfolio that invests long $1 of 10-year bonds and
shorts $1 of 1-year bonds is dominated by the 10-year bonds, which are far more volatile. To put
the bonds on a common scale in terms of volatility, we consider duration-adjusted bond returns
or, said differently, adjust the capital Xτ

t supporting each bond of maturity τ as seen in Eqs. (3)
and (4).

We use the natural scaling that each bond τ is supported by an amount of capital Xτ
t = F τ

t Dτ
t

equal to (or proportional to) the product of its duration Dτ
t and the synthetic futures price F τ

t . A
riskier bond with a larger duration is supported by a larger amount of capital and, as a result, its
return and carry are scaled down accordingly using the general Eqs. (3) and (4). This position
sizing gives the different bonds similar risk profiles. With this duration-adjusted position size, the
carry is given by

Cτ
t (X = F τ

t Dτ
t ) =

Cτ
t (X = F τ

t )

Dτ
t

, (14)

where we use the notation that the carry C(∙) is a function of the capital amount X and the
right-hand side contains the carry of a fully collateralized position Cτ

t (Xτ
t = F τ

t ) defined in Eq.
(11). Adjusting the capital supporting the position means that realized returns are scaled (i.e.,
duration-adjusted) in the same way as the carry.

2.7. Carry of the slope of global yield curves

In addition to the synthetic global bond futures, we examine test assets in each country that
capture the slope of the yield curve. We consider in each country a long position in the 10-year
bond and a short position in the 2-year bond, where each bond position is sized based on its
duration as in subsection 2.6. The carry of this slope-of-the-yield-curve position in any country
thus is

Cslope
t = C10Y

t (X = F 10Y
t D10Y

t ) − C2Y
t (X = F 2Y

t D2Y
t ). (15)

The return corresponding to this long-short portfolio is computed analogously. Again, we use the
same definition of carry, applied to all securities and relevant position sizes.

2.8. Credit market carry

We look at the carry of US credit portfolios sorted by maturity and credit quality. We compute
the carry for duration-adjusted bonds in the same way as for global bonds using Eqs. (11) and
(14). This definition of carry is the credit spread (the yield over the risk-free rate) plus the roll
down on the credit curve.

2.9. Option carry

Finally, we apply our finite-maturity definition of carry to US equity index options. We use
the notation GCall (τ ,K; St, σt,τ ) for the price of a call option at time t with maturity τ , strike
K, underlying equity index price St, and implied volatility σt,τ . The corresponding put price is
denoted by GPut (τ ,K; St, σt,τ ) . To compute the carry, consider a synthetic one-month futures
that gives the obligation to buy an option that currently has maturity τ with futures price F τ

t =
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(1 + rf
t )Gj(τ ,K; St, σt,τ ). Given that the option maturity is τ − 1 next month when the futures

expires, the corresponding spot price is Gj(τ − 1, K; St, σt,τ−1), so using our general framework we
arrive at the following option carry Cj

t :

Cj
t (τ ,K) =

Gj(τ − 1, K; St, σt,τ−1)

(1 + rf
t )Gj(τ ,K; St, σt,τ )

− 1, (16)

which varies with the type of option traded j = Call, Put, maturity τ , and strike K.13 While we
compute option carry using the exact expression Eq. (16) throughout the paper, we can get some
intuition through an approximation based on the derivative of the option price with respect to
time to maturity (i.e., its theta, θ) and implied volatility (i.e., vega, ν):

Gj(τ − 1, K; St, σt,τ−1) ' Gj(τ ,K; St, σt,τ ) + θj
t(−1) + νj

t(σt,τ−1 − σt,τ ). (17)

This allows us to write the option carry as14

Cj
t (τ ,K) '

−θj
t + νj

t(στ−1 − στ )

Gj(τ ,K; St, σt,τ )
− rf . (18)

The size of the carry is therefore driven by the time decay (via θ), which often leads to a negative
carry, and the “roll down” on the implied volatility curve (via ν). The option contracts that we
consider differ in terms of their moneyness, maturity, and put/call characteristic as we describe
further below.15

3. Carry and expected returns

We examine how carry relates to expected returns across the asset classes we study. This
analysis provides a test of a generalized version of UIP/EH versus varying risk premia across asset
classes. We first briefly describe our sample of securities in each asset class (Appendix Appendix
B details the data sources) and then we examine the predictability of carry for average returns,
consider its relation to other predictors of returns in each asset class, and assess how carry relates
to asset price appreciation across asset classes.

13Our equity strategies are a special case of the call options carry strategy, where lim K → 0 and τ = 1. The
numerator of Eq. (16) is the current stock price, and the denominator is the forward price of equity.

14 If θ is annualized (as in OptionMetrics) and one uses a data frequency of, say, Δt = 1/12 years (i.e., one
month), then θ should be replaced by θΔt in Eqs. (17) and (18), but the simplest approach is to rely on the exact
relation [Eq. (16)] as we do.

15Starting in 2004, the Chicago Board Options Exchange (CBOE) introduced futures on the VIX, where the
payoff of these futures contracts equals the VIX. Following our definition of carry, the carry of these contracts
equals the current level of the VIX relative to the futures price or the risk-neutral expectation of the change in
the VIX. On average, the carry is negative for these securities, but it turns positive during bad economic periods
when the VIX typically spikes upward and the volatility term structure inverts. Our preliminary evidence suggests
that the carry predicts the VIX futures returns in the time series, consistent with what we find for index options.
Recently, various exchanges across the world introduced volatility futures on different indices. Their history is too
short and the contracts too illiquid to implement a cross-sectional strategy, but this could be interesting to explore
at a future date when longer and more reliable data become available.
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3.1. Data and summary statistics

Table 1 presents summary statistics for the returns and the carry of each of the instruments
we use. Sample means and standard deviations are reported, as well as the starting date for each
of the series.

Thirteen country equity index futures are used, beginning as early as March 1988 through
September 2012: US (S&P 500), Canada (S&P TSE 60), UK (FTSE 100), France (CAC), Ger-
many (DAX), Spain (IBEX), Italy (FTSE MIB), The Netherlands (EOE AEX), Sweden (OMX),
Switzerland (SMI), Japan (Nikkei), Hong Kong (Hang Seng), and Australia (S&P ASX 200).

We consider 20 foreign exchange forward contracts covering the period November 1983 to
September 2012 (with some currencies starting as late as February 1997 and the Euro beginning in
February 1999). We also include the US as one of the countries for which the carry and currency
return are, by definition, equal to zero.

The commodities sample covers 24 commodities futures dating as far back as January 1980
(through September 2012). Not surprisingly, commodities exhibit the largest cross-sectional vari-
ation in mean and standard deviation of returns as they contain the most diverse assets, covering
commodities in metals, energy, and agriculture and livestock.

The global fixed income sample consists of ten government bonds starting as far back as Novem-
ber 1983 through September 2012. Bonds exhibit the least cross-sectional variation across markets,
but substantial variation still exists in average returns and volatility across the markets. These
same bond markets are used to compute the 10-year minus 2-year slope returns in each of the ten
markets.

For US Treasuries, we use standard Center for Research in Security Prices (CRSP) bond port-
folios with maturities equal to 1 to 12, 13 to 24, 25 to 36, 37 to 48, 49 to 60, and 61 to 120 months.
The sample period is August 1971 to September 2012. To compute the carry, we use the bond
yields of Gurkaynak, Sack, and Wright.16

For credit, we use the Barclays’ corporate bond indices for intermediate (average duration
about five years) and long-term (average duration about ten years) maturities. In addition, we
have information on the average maturity within a given portfolio and the average bond yield. In
terms of credit quality, we consider AAA, AA, A, and BAA. The sample period is January 1973
to September 2012.

For index options, we use data from OptionMetrics starting in January 1996 through Decem-
ber 2011. We use the following indices: Dow Jones Industrial Average (DJX), NASDAQ 100
Index (NDX), CBOE Mini-NDX Index (MNX), AMEX Major Market Index (XMI), S&P500 In-
dex (SPX), S&P100 Index (OEX), S&P Midcap 400 Index (MID), S&P Smallcap 600 Index (SML),
Russell 2000 Index (RUT), and PSE Wilshire Smallcap Index (WSX). We take positions in options
between 30 and 60 days to maturity on the last trading day of each month. We exclude options
with nonstandard expiration dates. We hold the positions for one month.17 We implement the
carry strategies separately for call and put options and we construct two groups for calls and puts,
respectively, based on the delta: out-of-the-money (Δcall ∈ [0.2, 0.4) or Δput ∈ [−0.4,−0.2)) and
at-the-money (Δcall ∈ [0.4, 0.6) or Δput ∈ [−0.6,−0.4)). We select one option per delta group for

16See http://www.federalreserve.gov/econresdata/researchdata.htm.
17The screens largely follow from Frazzini and Pedersen (2011), but here we focus on the most liquid index options

across only two delta groups. Our results are stronger if we include all five delta groups as defined in Frazzini and
Pedersen (2011).
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each index. If multiple options are available, we select the contract with the highest volume. If
multiple contracts are still available, we select the contracts with the highest open interest. In some
rare cases, if we still have multiple matches, then we choose the option with the highest price, that
is, the option that is most in the money (in a given moneyness group). We do not take positions
in options for which the volume or open interest are zero for the contracts that are required to
compute the carry.
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Table 1: Summary statistics. This table lists all the instruments that we use in our analysis
and reports summary statistics. For each instrument, we report the beginning date for which
the returns and carry are available, the annualized mean excess return, the annualized standard
deviation of return, the mean annualized carry, and the annualized standard deviation of carry.
Panel A contains equities, commodities, currencies, and fixed income, and Panel B contains fixed
income slope trades (10-year versus 2-year bonds), US Treasuries, US credit portfolios, and US
equity index options, separated by calls and puts and averaged across delta groups.

Panel A: Equities, commodities, currencies, and fixed income

Instrument Begin Excess return Carry Instrument Begin Excess return Carry
sample Mean St.dev. Mean St.dev. sample Mean St.dev. Mean St.dev.

Equities Commodities
US Mar-88 6.0 14.9 -1.4 0.7 Crude oil Feb-99 21.1 32.0 0.8 5.4
Canada Oct-99 5.7 15.8 -0.7 0.8 Gasoil Feb-99 20.7 32.9 2.7 5.3
UK Mar-88 3.6 15.1 -1.6 1.4 WTI crude Feb-87 11.6 33.5 1.5 7.0
France Jan-89 3.4 19.6 -0.5 1.9 Unl. gasoline Nov-05 12.6 36.2 -2.1 9.8
Germany Dec-90 6.3 21.5 -3.4 1.1 Heating oil Aug-86 12.2 32.8 -0.3 8.3
Spain Aug-92 8.2 22.0 1.7 2.1 Natural gas Feb-94 -16.6 53.6 -26.6 21.3
Italy Apr-04 -1.4 21.1 1.4 1.5 Cotton Feb-80 0.4 25.2 -3.8 7.2
Netherlands Feb-89 5.6 19.8 0.2 1.5 Coffee Feb-81 2.5 37.7 -4.8 5.0
Sweden Mar-05 8.5 19.0 1.3 2.2 Cocoa Feb-84 -3.9 29.2 -6.5 3.4
Switzerland Nov-91 7.3 16.4 -0.0 1.3 Sugar Feb-80 0.9 39.4 -2.8 6.1
Japan Oct-88 -3.5 22.1 -0.4 1.6 Soybeans Feb-80 2.8 23.7 -2.4 5.6
Hong Kong May-92 10.8 27.8 1.4 2.2 Kansas wheat Feb-99 1.1 29.5 -8.7 3.2
Australia Jun-00 3.7 13.2 0.9 1.0 Corn Feb-80 -3.3 25.8 -10.2 5.3

Wheat Feb-80 -5.0 25.2 -8.5 5.7
Currencies Lean hogs Jun-86 -3.2 24.5 -14.3 19.8
Australia Jan-85 4.7 12.1 3.2 0.8 Feeder cattle Feb-02 2.2 15.5 -1.6 4.6
Austria Feb-97 -2.6 8.7 -2.1 0.0 Live cattle Feb-80 2.2 14.1 -0.2 6.1
Belgium Feb-97 -2.7 8.7 -2.1 0.1 Gold Feb-80 -0.8 17.6 -5.3 1.1
Canada Jan-85 2.1 7.2 0.8 0.5 Silver Feb-80 -0.8 31.3 -6.1 1.8
Denmark Jan-85 3.9 11.1 0.9 0.9 Aluminum Feb-91 -2.3 19.3 -5.0 1.5
Euro Feb-99 1.2 10.8 -0.3 0.4 Nickel Mar-93 11.6 35.6 0.4 2.5
France Nov-83 4.6 11.2 1.6 0.9 Lead Mar-95 10.4 29.7 -0.7 2.7
Germany Nov-83 2.8 11.7 -0.9 0.9 Zinc Mar-91 0.9 25.8 -4.7 2.0
Ireland Feb-97 -2.5 8.9 0.5 0.2 Copper May-86 15.3 28.1 4.3 3.4
Italy Apr-84 5.1 11.1 4.3 0.8
Japan Nov-83 1.7 11.4 -2.7 0.7 Fixed income
Netherlands Nov-83 3.0 11.6 -0.7 0.9 Australia Mar-87 5.6 11.2 0.8 0.6
New Zealand Jan-85 7.0 12.6 4.3 1.2 Canada Jun-90 6.6 8.8 2.3 0.5
Norway Jan-85 4.3 11.1 2.3 0.9 Germany Nov-83 4.7 7.5 2.1 0.5
Portugal Feb-97 -2.3 8.4 -0.6 0.2 UK Nov-83 3.9 10.2 0.1 0.8
Spain Feb-97 -1.5 8.5 -0.7 0.2 Japan Feb-85 4.5 7.3 1.9 0.4
Sweden Jan-85 3.3 11.5 1.7 0.9 New Zealand Jul-03 3.3 8.6 0.7 0.8
Switzerland Nov-83 1.9 12.1 -1.9 0.7 Norway Feb-98 3.9 9.0 0.9 0.5
UK Nov-83 2.8 10.4 1.9 0.6 Sweden Jan-93 6.1 9.3 1.7 0.4
US Nov-83 0.0 0.0 0.0 0.0 Switzerland Feb-88 3.0 6.0 1.5 0.6

US Nov-83 6.3 10.8 2.5 0.6
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Panel B: Fixed income slope, US Treasuries, credit, and equity index options

Instrument Begin Excess return Carry
sample mean stdev mean stdev

Fixed income, 10y-2y slope
Australia Mar-87 0.0 0.9 0.0 0.2
Canada Jun-90 -0.3 0.8 -0.2 0.1
Germany Nov-83 -0.1 0.6 -0.1 0.1
UK Nov-83 0.2 0.8 0.1 0.2
Japan Feb-85 0.1 0.5 0.1 0.1
New Zealand Jul-03 0.2 0.8 0.2 0.2
Norway Feb-98 0.2 1.1 0.1 0.2
Sweden Jan-93 -0.1 0.6 -0.1 0.2
Switzerland Feb-88 0.1 0.6 0.1 0.2
US Nov-83 -0.1 0.7 -0.1 0.1
US Treasuries
10-year Aug-71 1.2 1.6 1.2 0.4
7-year Aug-71 0.8 1.5 0.7 0.2
5-year Aug-71 0.7 1.4 0.6 0.2
3-year Aug-71 0.6 1.2 0.5 0.1
2-year Aug-71 0.5 1.1 0.4 0.1
1-year Aug-71 0.4 0.9 0.3 0.1
Credits, US
A, Intermediate Feb-73 0.4 1.3 0.4 0.1
AA, Intermediate Feb-73 0.4 1.2 0.3 0.1
AAA, Intermediate Feb-73 0.4 1.3 0.3 0.1
BAA, Intermediate Feb-73 0.6 1.3 0.5 0.1
A, Long Feb-73 0.3 1.0 0.3 0.1
AA, Long Feb-73 0.3 1.0 0.2 0.1
AAA, Long Feb-73 0.2 1.0 0.2 0.1
BAA, Long Feb-73 0.4 1.1 0.3 0.1
Call options (average across delta groups)
DJ Industrial Average Oct-97 -138.5 332.7 -689.4 56.9
S&P Midcap 400 Mar-97 -52.8 370.0 -774.0 57.0
Mini-NDX Sep-00 11.3 391.3 -708.3 53.3
NASDAQ 100 Jan-96 51.4 422.2 -737.3 57.7
S&P 100 Jan-96 -138.2 326.2 -716.3 59.1
Russell 2000 Jan-96 -84.4 367.5 -701.2 56.7
S&P Smallcap 600 May-05 -446.1 155.2 -746.2 63.6
S&P 500 Jan-96 -152.8 302.1 -713.8 58.2
AMEX Major Market Jan-96 119.3 452.1 -680.6 46.2
Put options (average across delta groups)
DJ Industrial Average Oct-97 -320.6 305.4 -593.0 45.7
S&P Midcap 400 Jan-96 -828.7 117.9 -518.8 64.1
Mini-NDX Aug-00 -218.8 362.2 -585.0 47.1
NASDAQ 100 Jan-96 -284.7 338.5 -592.1 50.7
S&P 100 Jan-96 -309.3 315.7 -598.8 47.4
Russell 2000 Feb-96 -283.4 318.6 -595.5 48.9
S&P Smallcap 600 Feb-04 -807.9 59.5 -537.6 53.3
S&P 500 Jan-96 -323.1 300.9 -580.6 47.2
AMEX Major Market Jan-96 -572.2 158.8 -521.5 47.6
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3.2. Defining a carry trade portfolio

A carry trade is a trading strategy that goes long high-carry securities and shorts low-carry
securities. Various ways exist of choosing the exact carry-trade portfolio weights, but our main
results are robust across a number of portfolio weighting schemes. One way to construct the carry
trade is to rank assets by their carry and go long the top x% of securities and short the bottom
x%, with equal weights applied to all securities within the two groups, and ignore (e.g., place
zero weight on) the securities in between these two extremes. Another method, which we use, is
a carry trade specification that takes a position in all securities weighted by their carry ranking.
This weighting scheme accounts for differences across carry signals even within the top and bottom
x% and does not ignore the securities in the middle. Yet, by using ranks instead of weights that
are linear in the signals, we avoid the impact of outliers in the signals. This weighting scheme is
therefore a compromise between going long x% and short x% of the securities, which places zero
weight on the securities in the middle, versus a signal-weighted scheme that can place considerable
weight on the extremes. A rank-based weighting scheme tends to deliver more stable returns as
a result, since it is better diversified than a top minus bottom x% approach while also limiting
extreme weights on potential outliers relative to a signal weighted strategy. Asness et al. (2013)
introduce this rank-based weighting approach for value and momentum factors.

The weight on each security i at time t is given by

wi
t = zt

(

rank(C i
t) −

Nt + 1

2

)

, (19)

where C i
t is security i’s carry, Nt is the number of available securities at time t, and the scalar zt

ensures that the sum of the long and short positions equals 1 and −1, respectively. This weighting
scheme is similar to that used by Asness et al. (2013) who show that the resulting portfolios are
highly correlated with other zero-cost portfolios that use different weights.

With these portfolio weights, the return of the carry trade portfolio is naturally the weighted
sum of the returns ri

t+1 on the individual securities,

rt+1 =
∑

i

wi
tr

i
t+1. (20)

We consider two measures of carry: (1) The “current carry” or “carry1m,” which is measured
at the end of each month, and (2) “carry1-12,” which is a moving average of the current carry
over the past 12 months (including the most recent one). Carry1-12 smoothes potential seasonal
components that can arise in calculating carry for certain assets.18 Most of the results in the paper
pertain to the current carry, but we report the basic results for carry1-12 as well.

Because carry is a return (under the assumption of no price changes), the carry of the portfolio

18For instance, the equity carry over the next month depends on whether most companies are expected to pay
dividends in that specific month, and countries differ widely in their dividend calendar (e.g., Japan versus US).
Current carry tends to go long an equity index if that country is in its dividend season, and carry1-12 goes long
an equity index that has a high overall dividend yield for that year regardless of what month those dividends were
paid. In addition, some commodity futures have strong seasonal components that are eliminated by using carry1-12.
Fixed income, currencies, and US equity index options do not exhibit much seasonal carry pattern, but we also
consider strategies based on both their current carry and carry1-12 for completeness.
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is computed analogously to the return on the portfolio, that is,

Cportfolio
t =

∑

i

wi
tC

i
t . (21)

The carry of the carry trade portfolio is equal to the weighted-average carry of the high carry
securities minus the average carry among the low carry securities:

Ccarry trade
t =

∑

i

wi
tC

i
t =

∑

wi
t>0

wi
tC

i
t −

∑

wi
t<0

|wi
t|C

i
t > 0. (22)

The carry of the carry trade portfolio is naturally always positive and depends on the cross-sectional
dispersion of carry among the constituent securities.

3.3. Carry trade portfolio returns within an asset class

For each global asset class, we construct a carry strategy using portfolio weights following Eq.
(19) that invests in high-carry securities while short selling low-carry securities. Each security is
weighted by the rank of its carry, and the portfolio is rebalanced every month.

Table 1 reports the mean and standard deviation of the carry for each asset, which ranges
considerably within an asset class (especially commodities) and across asset classes. Table 2 reports
the annualized mean, standard deviation, skewness, excess kurtosis, and Sharpe ratio of the carry
strategy returns for each asset class.

Panel A of Table 2 shows that the carry strategies in all nine asset classes have significant
positive returns. The first row of each asset class reports statistics on the returns to carry. The
average returns to carry range from 0.24% for US credit to 179% for US equity index put options.
However, these strategies face markedly different volatilities, so looking at their Sharpe ratios is
more informative. The Sharpe ratios for the carry strategies range from 0.37 for call options to
1.80 for put options, with the average being 0.78 across all asset classes.

For comparison, we report the returns to a passive long investment in each asset class, which
is an equal-weighted portfolio of all the securities in each asset class. The second row for each
asset class reports the returns to an equal-weighted benchmark of all securities in that asset class.
Comparing the first two rows for each asset class, a carry strategy in every asset class outperforms
a simple passive equal-weighted investment in the asset class itself, except for the global bond
level and slope strategies for which the Sharpe ratios are basically the same. A passive exposure
to the asset classes generates only a 0.13 Sharpe ratio on average (or 0.41 if we short the options
strategies), far lower than the 0.78 Sharpe ratio of the carry strategies on average. Furthermore,
the long-short carry strategies are (close to) market-neutral, making their high returns even more
puzzling. More formally, as we show below, all of the alphas of the carry strategies with respect
to each asset class’ long-only passive benchmark are significantly positive.
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Table 2: The returns to carry strategies by asset class. Panel A reports, for each asset class,
the mean annualized excess return, the annualized standard deviation of return, the skewness of
monthly returns, kurtosis of monthly returns, and the annualized Sharpe ratio. These statistics
are reported for the long-short carry strategy (Carry1M), a passive equal-weighted exposure in
each asset class (EW), and a strategy based on the main standard predictor of returns in the
existing literature. These statistics are also reported for a diversified portfolio of all carry trades
across all asset classes, that is, the “global carry factor,” where each asset class is weighted by
the inverse of its full-sample standard deviation of returns and an equal-weighted passive exposure
to all asset classes computed similarly. Panel B reports results for carry trades conducted at a
coarser level by first grouping securities by region or broader asset class and then generating a carry
trade. For equities, fixed income, and currencies we group all index futures into one of five regions
(North America, UK, continental Europe, Asia, and New Zealand and Australia) and compute
the equal-weighted average carry and equal-weighted average returns of these five regions. For
commodities we group instruments into three categories: agriculture and livestock, metals, and
energy. We then create carry trade portfolios using only these regional or group portfolios. Credit,
US Treasuries, and options are excluded from Panel B. In Panel C, we report the results for the
long-short carry1-12 strategy (Carry1-12).

Panel A: Carry1M trades by security within an asset class
Asset class Strategy Mean St.dev. Skewness Kurtosis Sharpe ratio
Global equities Carry 9.58 10.48 0.24 5.14 0.91

EW 5.21 15.73 -0.63 3.86 0.33
D/P 4.22 11.81 -0.14 5.39 0.36

Fixed income 10Y global (level) Carry 3.85 7.45 -0.43 6.66 0.52
EW 5.04 6.85 -0.11 3.70 0.74
Yield 3.55 7.73 -0.81 10.13 0.46

Fixed income 10Y-2Y global (slope) Carry 0.68 0.66 0.33 4.92 1.03
EW 0.01 0.43 -0.28 4.08 0.01

US Treasuries (maturity) Carry 0.46 0.67 0.47 10.46 0.68
EW 0.69 1.22 0.58 12.38 0.57

Commodities Carry 11.22 18.78 -0.40 4.55 0.60
EW 1.05 13.45 -0.71 6.32 0.08
Basis 11.22 18.78 -0.40 4.55 0.60

Currencies Carry 5.29 7.80 -0.68 4.46 0.68
EW 2.88 8.10 -0.16 3.44 0.36

Carry 5.29 7.80 -0.68 4.46 0.68

Credit Carry 0.24 0.52 1.31 18.18 0.47
EW 0.37 1.09 -0.03 7.10 0.34
Yield 0.04 0.51 0.43 9.24 0.07

Call options Carry 63.55 171.51 -2.82 14.49 0.37
EW -73 313 1.15 3.88 -0.23

Short vol. 5.88 18.00 -7.07 75.58 0.33

Put options Carry 178.90 99.30 -1.75 10.12 1.80
EW -299 296 1.94 7.11 -1.01

Short vol. 5.88 18.00 -7.07 75.58 0.33
All asset classes (global carry factor) Carry 7.18 5.96 -0.03 5.40 1.20

EW 2.80 6.99 -0.43 9.28 0.40
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Panel B: Carry1M trades by region or group within an asset class

Asset Class Strategy Mean St.dev. Skewness Kurtosis Sharpe ratio

Global equities Carry 5.95 10.95 0.45 4.23 0.54
EW 4.79 14.67 -0.65 3.92 0.33

Fixed income 10Y Carry 3.71 8.50 -0.37 5.22 0.44
EW 5.09 6.91 -0.07 3.70 0.74

Fixed income 10Y-2Y Carry 0.59 0.70 0.12 4.83 0.85
EW 0.02 0.43 -0.34 3.98 0.04

Commodities Carry 14.97 31.00 -0.04 4.93 0.48
EW 1.37 16.15 -0.56 5.86 0.09

Currencies Carry 4.76 10.73 -1.00 5.31 0.44
EW 2.68 7.00 -0.05 3.34 0.38

Panel C: Carry1-12 trades by security within an asset class

Asset class Strategy Mean St.dev. Skewness Kurtosis Sharpe ratio

Global equities Carry1-12 5.90 10.12 0.22 3.73 0.58

Fixed income 10Y global (level) Carry1-12 3.11 6.81 -0.11 4.59 0.46

Fixed income 10Y-2Y global (slope) Carry1-12 0.24 0.67 -0.11 6.26 0.35

US Treasuries (maturity) Carry1-12 0.47 0.60 0.27 8.33 0.78

Commodities Carry1-12 12.69 19.40 -0.82 5.70 0.65

Currencies Carry1-12 4.25 7.71 -0.96 6.08 0.55

Credit Carry1-12 0.27 0.58 -0.07 21.20 0.46

Call options Carry1-12 42.62 158.81 -1.95 8.71 0.27

Put options Carry1-12 136.13 89.37 -1.22 7.98 1.52

All asset classes (global carry factor) Carry1-12 6.54 5.84 -0.15 6.23 1.12
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The third row of each asset class reports return statistics for the main “standard” predictor
of returns from the existing literature that is most closely related to carry (if one exists). For
example, the standard predictor for equity indices is the dividend yield (D/P), which is similar,
but not identical, to our futures-based carry measure, which is the expected dividend yield in excess
of the short rate. For global fixed income and credit securities, the standard predictor is the yield
spread;19 for commodities it is the basis; for options, short volatility; and for currencies, carry.
Subsection 4.2 considers a broader set of global factors that include global value and momentum
factors.

To put the standard return predictors on an equal footing with carry, we construct these factors
using the same methodology and asset classes. We construct portfolio weights using Eq. (19) based
on each security’s standard predictor rank, and we construct factor returns based on Eq. (20).

As Table 2 shows, carry produces different and stronger return predictability than the standard
predictor in all asset classes except for commodities and currencies, when they are the same. We
explore more formally the link between carry and these other predictors in subsection 3.5.

Panel B of Table 2 looks at carry trades in a coarser fashion by first grouping securities by
region or broader asset class and then generating a carry trade. For example, for equities we
group all index futures into one of five regions (North America, UK, continental Europe, Asia,
and New Zealand/Australia) and compute the equal-weighted average carry and equal-weighted
average returns of these five regions. We then create a carry trade portfolio using only these five
regional portfolios. Conducting this coarser examination of carry allows us to see whether carry
trade returns are largely driven by across region carry differences or within region carry differences
when comparing the results to those in Panel A. We repeat the same exercise for global bond
levels and slopes (again, assigning country bonds to the same five regions) and for currencies. For
commodities, we assign all futures contracts to one of three groups: agriculture and livestock,
metals, or energy. Carry strategies based on these coarser groupings of securities produce similar,
but slightly smaller, Sharpe ratios than carry strategies formed at the disaggregated individual
security level. This suggests that significant variation in carry comes from differences across regions
and that our results are robust to different weighting schemes.

In Panel C, we report the results for the carry1-12 strategy. By averaging the monthly carry
across 12 months, we remove any effect of seasonalities, which are most pronounced for equities
and commodities. However, doing so comes at the expense of using less recent data. We find that
the carry1-12 strategy produces slightly lower Sharpe ratios in all asset classes, with the exception
of commodities and US credit, but the differences are often small.

Both the region- or group-based and carry1-12 strategies show that measurement error is un-
likely to drive our results. However, all strategies still use overlapping data in computing the carry
and returns. In Appendix Appendix C, we also consider a “carry2-13” strategy, which starts from
the carry1-12 signal and then skips a month to avoid any overlap in data used to construct the sig-
nal and to compute returns. We find that the carry1-12 and the carry2-13 earn virtually identical
returns, illustrating that measurement error in overlapping data cannot explain our results.

The robust performance of carry strategies across asset classes, using a uniform futures-based
definition of carry across those asset classes, indicates that carry is an important component of
expected returns. The previous literature focuses only on currency carry trades, finding similar

19Although the yield spread is a common predictor in the time series for US Treasuries, it is not commonly used
to sort the cross section of US Treasuries.
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results to those we find for currencies in Table 2. However, we find that a carry strategy works
at least as well in other asset classes, too, performing markedly better in equities and put options
than in currencies, and performing about as well as currencies in commodities, global fixed income,
and Treasuries. Hence, carry is a broader concept that can be applied to many assets in general
and is not unique to currencies.20

Examining the higher moments of the carry trade returns in each asset class, we find the
strong negative skewness associated with the currency carry trade shown by Brunnermeier et al.
(2008). Likewise, commodity and fixed-income carry strategies exhibit some negative skewness
and the options carry strategies exhibit very large negative skewness. However, carry strategies in
equities, US Treasuries, and credit have positive skewness. The carry strategies in all asset classes
exhibit excess kurtosis, which is typically larger than the kurtosis of the passive long strategy
in each asset class, indicating fat-tailed positive and negative returns. For instance, the credit
carry strategy exhibits positive skewness and large kurtosis as it suffers extreme negative returns,
particularly around recessions, which are then followed by even more extreme positive returns
during the recovery (resulting in overall positive skewness). While negative skewness perhaps is
not a general characteristic of all these carry strategies, the potential for large negative returns
appears pervasive.

The same can be said for the main predictor of returns in each asset class. In all but one case,
the main predictor of returns in each asset class has at least as large a kurtosis as carry and often
more negative skewness.

3.4. Diversified carry trade portfolio

Table 2 also reports the performance of a diversified carry strategy across all asset classes,
which is constructed as the equal-volatility-weighted average of carry portfolio returns across asset
classes. We weight each carry portfolio by 10% divided by its in-sample volatility so that each carry
strategy contributes equally to the total volatility of the diversified portfolio. (Said differently, we
scale each portfolio to 10% volatility and then take an equal-weighted average.) This procedure is
similar to that used by Asness et al. (2013) and Moskowitz et al. (2012) to combine returns from
different asset classes with very different volatilities.21 We call this diversified across-asset-class
portfolio the global carry factor, GCF . For comparison, we also construct a diversified passive long
position across all asset classes using the same method (i.e., we equal weight passive long positions
in each asset, each scaled to 10% volatility).

As Panel A of Table 2 reports, the diversified carry trade portfolio has a Sharpe ratio of 1.20
per annum. The diversified passive long position in all asset classes produces only a 0.40 Sharpe
ratio. These numbers suggest that carry is a strong predictor of expected returns globally across
asset classes. Moreover, the substantial increase in Sharpe ratio for the diversified carry portfolio
relative to the average of the individual carry portfolio Sharpe ratios in each asset class (which is
0.78) indicates significant diversification benefits of applying carry trades across asset classes. The
increase in Sharpe ratio is far lower than expected if these trades were unrelated to each other.

20Several recent papers also study carry strategies for commodities in isolation. See, for instance, Szymanowska
et al. (2014) and Yang (2013).

21Because commodities have roughly ten times the volatility of Treasuries and options have 300 times the volatility
of Treasuries and 30 times the volatility of commodities or equities, a simple equal-weighted average of carry returns
across asset classes has its variation dominated by option carry risk and under-represented by fixed income carry
risk. Volatility-weighting the asset classes into a diversified portfolio gives each asset class equal risk representation.
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Given the nine asset classes we study, if the carry trades were independent, the increase in Sharpe
ratio should be threefold. In fact, the increase is “only” about 60%, suggesting some commonality
among carry trades in different asset classes. We investigate both the common and independent
variation in carry across these markets. In Panel C, we report the properties of the global carry1-
12 factor. The Sharpe ratio equals 1.12, which is close to the Sharpe ratio of the global carry1m
strategy. This illustrates again that little is lost by averaging the carry1m signal across 12 months.

Table 2 also shows that the global carry factor has little skewness, while the diversified passive
long has a modest negative skewness of -0.4. The global carry factor has an excess kurtosis of 5.4,
which is actually lower than that of the diversified passive long position. However, this kurtosis
is nevertheless large, indicating a non-normal return distribution with higher probability of large
moves.

Fig. 1 plots the cumulative monthly returns to the global carry factor diversified across all
asset classes as well as the standard currency carry trade. The GCF produces significant returns
throughout the sample period, significant in absolute terms and in comparison with the currency
carry strategy. However, some significant drawdown periods are also evident, and they tend to
coincide for the two carry strategies.
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Fig. 1: Cumulative returns on the global carry factor (GCF ). The figure displays the cumulative
sum of the excess returns of the global carry factor, a diversified carry strategy across all asset
classes, and the currency carry portfolio applied only to currencies. The global carry factor is
constructed as the equal-volatility-weighted average of carry portfolio returns across the asset
classes. We weight each asset class’s carry portfolio by the inverse of its sample volatility so that
each carry strategy in each asset class contributes roughly equally to the total volatility of the
diversified portfolio. The sample period is from 1983 until 2012. For ease of comparison, the
currency carry series is scaled to the same ex post volatility as that of the global carry factor (6%
annualized).
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3.5. How does carry relate to other return predictors?

The evidence in Table 2 suggests that carry is a unique predictor of returns in some asset
classes, different from other predictors found in the literature, and is essentially the same as other
predictors in other asset classes carry. For example, our common futures-based carry measure is
related to the dividend yield in equities. Carry in fixed income is related to the yield spread, and
carry in commodities is the basis trade related to the convenience yield. While these predictors have
traditionally been treated as separate and unrelated phenomena in each asset class, the concept of
carry provides a common theme that can link these predictors.

Table 3 examines the relation between carry and the main predictor of returns in each asset
class more formally by performing spanning tests of carry and the main predictor of returns for
each asset class. Panel A reports results from regressing carry’s returns on the returns from the
main predictive variable in each asset class. Column 1 regresses equity carry returns on the returns
to a strategy based on historical D/P.

Carry here is a forward-looking measure of D/P in excess of the local risk-free rate. As the risk-
free rate is of a similar order of magnitude as D/P, sorting on carry or D/P leads to quite different
strategies. Moreover, being forward-looking, the equity carry strategy tilts toward countries that
are expected to pay high dividends in a particular month (without receiving the dividends, as we
take positions only in futures). As Table 3 indicates, equity carry has a large positive and significant
alpha of 77 basis points per month (t-statistic = 4.36). For fixed income, the relation between
carry and the bond’s yield is high, where the alpha is positive but not statistically significant and
the beta with respect to a yield strategy is 0.91 (t-statistic = 24.16). Carry in fixed income is
defined as the yield plus the roll down component, and the roll down component explains only
a small part of carry’s returns. For credit, carry is also related to yield, but adds something
more, delivering a positive and significant alpha. Likewise, in options, carry is positively related
to shorting volatility but provides additional predictive power for returns even after controlling for
the returns to shorting volatility. For commodities, carry is exactly the same as the basis trade,
and, of course, in currencies carry itself is the main predictor of returns (hence, we do not report
those spanning tests).

Panel B of Table 3 reports results from the reverse regression of the main predictor’s returns
in each asset class on carry. In every case, the returns to carry capture the returns to the main
predictor variable in every asset class. This suggests that carry spans the returns generated by
these predictors.

Panel C reports the time series correlation between the returns of carry strategies and the
strategy based on standard predictors. The correlation is high for fixed income, around 20% for
credit and put options, and 10% for equities. The returns are virtually uncorrelated for call options.

Combining the results from the Panels A-C, carry provides new return predictability not ex-
plained by standard predictors of returns, but the reverse is not true; carry explains or spans
the predictive power of these other variables across all assets. Our general concept of carry thus
provides a unifying framework that synthesizes much of the return predictability evidence found
in global asset classes. While return predictors across asset classes have mostly been treated dis-
jointly by the literature, carry helps link them together and capture their returns within a single
framework.
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Table 3: Spanning tests of carry versus standard return predictors by asset class. Panel A reports
regression results of each carry portfolio’s returns in each asset class on the main standard predictor
of returns for that asset class. The intercepts or alphas (in percent) from these regressions as
well as the betas on the main predictor of returns are reported along with their t-statistics (in
parentheses) and the R2 from the regression. Panel B reports the reverse regression of the returns
to the main predictor in each asset class on carry’s returns. The last row of Panel A and B reports
the information ratio (IR) which is the alpha divided by the residual standard deviation from
the regression. Panel C reports the time series correlation between the returns of the traditional
strategy returns and the carry strategy returns.

Panel A: Regressing carry on standard return predictors

Equities FI level Credit Calls Puts
Standard predictor: D/P Yield spread Credit spread Short vol. Short vol.

α 0.77 0.05 0.02 5.11 14.29
(4.36) (1.22) (2.96) (1.45) (6.84)

β 0.08 0.91 0.22 0.37 1.25
(0.94) (24.16) (1.69) (1.48) (2.84)

R2 0.81 89.19 4.56 0.15 5.18
IR 0.88 0.25 0.46 0.36 1.77

Panel B: Regressing standard return predictors on carry

Equities FI level Credit Calls Puts
Standard predictor: D/P Yield spread Credit spread Short vol. Short vol.

α 0.27 -0.02 -0.01 0.47 -0.12
(1.42) (-0.42) (-0.15) (1.25) (-0.15)

β 0.10 0.98 0.21 0.00 0.04
(0.95) (25.25) (1.93) (1.61) (1.18)

R2 0.81 89.19 4.56 0.15 5.18
IR 0.28 -0.09 -0.03 0.31 -0.09

Panel C: Correlation between carry strategies and traditional strategies

Equities FI level Credit Calls Puts
Standard predictor: D/P Yield spread Credit spread Short vol. Short vol.

Correlation 9.0% 94.4% 21.4% 3.9% 22.8%
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3.6. Does the market take back part of the carry?

The unique return predictability from carry comes from two sources: the carry itself, plus any
price appreciation that can be related to or predicted by carry. We now investigate in more detail
the relation among carry, expected price changes, and total expected returns.

The significant returns to the carry trade indicate that carry is a signal of expected returns,
but can more be learned by testing the generalized UIP/EH in a regression framework? To better
understand the relation between carry and expected returns, we examine Eq. (5), which decom-
poses expected returns into carry and expected price appreciation. To estimate this relation, we
run the following panel regression for each asset class:

ri
t+1 = ai + bt + cC i

t + εi
t+1, (23)

where ai is an asset-specific intercept (or fixed effect), bt are time fixed effects, C i
t is the carry on

asset i at time t, and c is the coefficient of interest that measures how carry predicts returns.
For consideration are five hypotheses.

Hypothesis 1: c = 0 means that carry does not predict returns, consistent with a generalized notion of the
UIP/EH.

Hypothesis 2: c = 1 means that the expected return moves one-for-one with carry. While c = 0 means that
the total return is unpredictable, c = 1 means that price changes (the return excluding carry)
are unpredictable by carry.

Hypothesis 3: c ∈ (0, 1) means that a positive carry is associated with a negative expected price appreciation
such that the market “takes back” part of the carry, but not all.

Hypothesis 4: c > 1 means that a positive carry is associated with a positive expected price appreciation
so that an investor gets the carry and price appreciation, too—that is, carry predicts further
price increases.

Hypothesis 5: c < 0 implies that carry predicts such a negative price change that it more than offsets the
direct effect of a positive carry.

Table 4 reports the results for each asset class with and without fixed effects. Without asset and
time fixed effects, c represents the total predictability of returns from carry from both its passive
and dynamic components. Including time fixed effects removes the time series predictable return
component coming from general exposure to assets at a given point in time. Similarly, including
asset-specific fixed effects removes the predictable return component of carry coming from passive
exposure to assets with different unconditional average returns. By including both asset and time
fixed effects, the slope coefficient c in Eq. (23) represents the predictability of returns to carry
coming purely from variation in carry.
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The results in Table 4 indicate that carry is a strong predictor of expected returns, with consis-
tently positive and statistically significant coefficients on carry, save for the commodity strategy,
which can be tainted by strong seasonal effects in carry for commodities, and for call options.

Focusing on the magnitude of the predictive coefficient, Table 4 shows that the point estimate
of c is greater than one for equities, global bond levels and slope, and credit, less than one for US
Treasuries, commodities, and options, and around one for currencies (depending on whether fixed
effects are included). These results imply that for equities, for instance, when the dividend yield is
high, not only is an investor rewarded with a high carry, but also equity prices tend to appreciate
more than usual, consistent with the discount-rate mechanism discussed in subsection 2.2.

Similarly, for fixed income securities buying a 10-year bond with a high carry provides returns
from the carry itself (i.e., from the yield spread over the short rate and from rolling down the
yield curve) and leads to additional price appreciation as yields tend to fall. This is surprising
as the expectations hypothesis suggests that a high term spread implies that short and long rates
are expected to increase, but this is not what we find on average. However, these results must be
interpreted with caution as the predictive coefficient is not statistically significantly different from
one in all but a few cases.

For currencies, the predictive coefficient is close to one, which means that high interest rate
currencies neither depreciate nor appreciate on average. Hence, the currency investor earns the
interest-rate differential, on average. This finding goes back to Fama (1984), who ran these regres-
sions slightly differently. The well-known Fama (1984) result is that the predictive coefficient has
the wrong sign relative to uncovered interest rate parity, which corresponds to a coefficient larger
than one in our regression.22

For commodities, the predictive coefficient is significantly less than one, so that when a com-
modity has a high spot price relative to its futures price, implying a high carry, the spot price tends
to depreciate on average, thus lowering the realized return on average below the carry. Similarly,
we see the same for US Treasuries and options.

We illustrate these findings in an intuitive way in Fig. 2. For each asset class, the figure plots
the carry trade’s cumulative return and cumulative carry [see Eq. (22) for the carry of the carry
trade]. When the cumulative return is higher than the cumulative carry, it indicates that carry
investors earn a price appreciation in addition to the carry, corresponding to a regression coefficient
c greater than one in Eq. (23). A cumulative return lower than the cumulative carry indicates
that the market takes back part of the carry (c < 1). In the panel regressions, we use the carry
itself, and the strategies are based on the ranks of the carry [see Eq. (19)], which can lead to small
discrepancies (e.g., the carry strategy for corporate bonds). Looking at carry trade returns thus
provides the investment analogue to the regression coefficients above. The carry trade corresponds
most closely to the regressions with time fixed effects and without asset fixed effects because we
consider a long-short (i.e., cross-sectional) trade based on raw carry signals.

We can also examine how the predictive coefficient changes across the different regression spec-
ifications with and without fixed effects to see how the predictability of carry changes once the
passive exposures are removed. For example, the coefficient on carry for equities drops very little
when including asset and time fixed effects, which is consistent with a dynamic component to
equity carry strategies dominating the predictability of returns.

In Table 5, we explore the correlation between fixed effects in more detail. In Column 1, we

22See also Hassan and Mano (2013), who decompose the currency carry trade into static and dynamic components.
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Fig. 2: Global carry strategies: cumulative returns and cumulative carry. The figure shows, for
each asset class, the cumulative sum of the excess returns of the long-short carry portfolio. Also,
the figure shows the cumulative carry (that is, cumulative return if prices stay the same over each
month) of the carry trade. The difference between the return and the carry is the realized price
appreciation of the long versus short positions. A cumulative return below the cumulative carry
indicates that the market “takes back” part of the carry. Otherwise, the carry investor earns capital
appreciation in addition to the carry. The sample period is 1972 to 2012.

compute, within each asset class, the correlation between the average return and the average carry
of a security. If this correlation is high, a static strategy that sorts on the carry earns positive
returns (that is, if the average carry would be known in advance). The correlations are on average
high for fixed income, currencies, and commodities.

In Column 2, we compute the correlation between the average carry in period t and the average
return in period t + 1 within each asset class. If the correlation is positive, we can use the carry to
time the passive long strategy in a given asset class. We again find positive correlations in all asset
classes, with the exception of call options. This suggests that carry is a useful signal for timing as
well.
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Table 5: Correlation of fixed effects by asset class. The table reports for each asset class the
correlation between contracts and time fixed effects. In case of contract fixed effects, we compute
the average return and the average carry for each security in an asset class, and we report the
cross-sectional correlation across all securities in a given asset class. In case of time fixed effects,
we compute the average carry across all securities in a given asset class and the average return in
the next period, and we report the time series correlation in a given asset class.

Strategy Contract fixed effects Time fixed effects

Global equities 11.7% 8.7%
Fixed income 10Y global (level) 60.1% 10.6%
Fixed income 10Y-2Y global (slope) 98.5% 5.9%
US Treasuries (maturity) 99.3% 9.1%
Commodities 83.9% 2.6%
Currencies 72.2% 16.4%
Credit 97.0% 18.5%
Call options 16.3% -10.0%
Put options 28.7% 12.0%

3.7. Carry timing

We now consider a carry timing strategy within each asset class to analyze the time series
predictability of carry in more detail. The weight of security i in this case is

wi
t = zt

(
2I(C i

t − C > 0) − 1
)
, (24)

where I(C i
t − C > 0) is an indicator function that equals one if C i

t > C. As before, we set zt so
that we have $2 of exposure in each period. However, instead of being a $1 long and a $1 short
at all times, this strategy typically takes either aggregate long or short positions. We consider the
cases in which C = 0 and C = the average carry across all securities in a given asset class up to
that point in time. Consequently, like the cross-sectional strategy, the timing strategy is fully out
of sample.

Table 6 contains the results. Comparing the carry with zero, the carry strategy produces
positive returns in all asset classes. However, in some asset classes, the strategy is highly correlated
with the passive long strategy as the carry is positive or negative most of the time. Setting C
equal to the historical mean up to a given point in time provides a better test of the time series
predictability of carry that is less correlated to passive long or short positions. Sharpe ratios of
these timing strategies are also large and positive in all asset classes, with the exception of call
options. A global carry factor, regardless of the cutoff point, results in a Sharpe ratio of a little
over 0.9. In addition, the global carry factor now has positive skewness, but considerable more
skewness than the cross-sectional global carry factor. The time series correlation between both
global carry factors (using C equal to zero and equal to the historical mean up to a particular
time) is 59%.
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Table 6: The returns to carry timing strategies by asset class. The table reports for each asset
class, the mean annualized excess return, the annualized standard deviation of return, the skewness
of monthly returns, kurtosis of monthly returns, and the annualized Sharpe ratio. Statistics are
reported for two carry timing strategies. In the first timing strategy, we compare the carry of a
security with zero. In the second timing strategy, we compare the carry with the average carry
across all securities in an asset class up to a particular time. Statistics are also reported for a
diversified portfolio of all carry trades across all asset classes, that is, the “global carry factor,” in
which each asset class is weighted by the inverse of its full-sample standard deviation of returns.

Asset class Reference point Mean St.dev. Skewness Kurtosis Sharpe ratio

Global equities 0 7.69 18.66 0.34 4.41 0.41
Mean 12.75 16.92 0.12 5.00 0.75

Fixed income 10Y global 0 7.09 10.93 -0.16 4.05 0.65
Mean 6.82 9.89 -0.11 4.56 0.69

Fixed income 10Y-2Y global 0 0.33 0.75 -0.45 5.55 0.44
Mean 0.34 0.75 -0.37 5.52 0.46

US Treasuries (maturity) 0 1.36 2.28 -0.48 14.51 0.60
Mean 0.59 1.93 -1.26 22.34 0.31

Commodities 0 8.28 20.78 0.13 5.56 0.40
Mean 12.20 16.24 -0.34 3.57 0.75

Currencies 0 7.86 10.01 -0.72 5.63 0.78
Mean 5.04 9.50 -0.50 4.35 0.53

Credit 0 1.27 2.00 -0.24 8.00 0.64
Mean 1.15 1.95 -0.30 8.69 0.59

Options calls 0 146.45 626.92 -1.15 3.88 0.23
Mean -35.66 264 -2.12 13.35 -0.14

Options puts 0 597.76 592.72 -1.94 7.11 1.01
Mean 233.12 244.04 2.61 22.49 0.96

All asset classes (GCF ) 0 6.03 6.45 0.72 12.89 0.93
Mean 5.89 6.27 0.09 18.66 0.94

4. Testing potential explanations for carry

Having established the strong predictability of carry across asset classes and time, we next turn
to testing economic theories to address what underlying economic sources could be driving carry’s
return predictability.

We start by examining the common variation across carry strategies to study the potential for
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a common risk-based explanation of carry predictability across asset classes. Next, we investigate
whether carry can be explained by other known global factors, including value and momentum,
and analyze theoretical explanations based on crash risk, volatility risk, liquidity risk, and macroe-
conomic risk. Finally, we consider the worst episodes for carry returns to determine if they coincide
with other identified economic shocks.

4.1. Common risk: correlations and factor exposures

Table 7 reports the monthly correlations of carry trade returns across the nine asset classes.
Of the 36 pair-wise correlations, 24 are positive and 10 are significantly positive at the 5% level
(p-values are reported in parentheses). These positive correlations are consistent with a factor
structure in returns across asset markets, but the correlations tend to be small on average.

Table 7: Correlation of global carry strategies. The table reports the monthly return correlations
between carry strategies for each asset class in which carry trades are performed using individual
securities within each asset class. The p-values of the correlations are reported in parentheses.

EQ FI 10Y FI 10Y−2Y Treasuries COMM FX Credit Calls Puts
EQ 0.16 0.09 0.09 -0.03 0.05 0.06 0.11 -0.09
FI 10Y (0.01) -0.07 0.09 0.05 0.15 -0.02 -0.07 0.06
FI 10Y−2Y (0.13) (0.22) 0.20 0.09 -0.01 0.18 -0.06 0.03
Treasuries (0.14) (0.09) (0.00) 0.12 -0.05 0.12 0.08 -0.06
COMM (0.60) (0.32) (0.09) (0.02) 0.02 0.04 -0.15 0.08
FX (0.36) (0.01) (0.82) (0.34) (0.69) 0.21 -.014 0.11
Credit (0.32) (0.69) (0.00) (0.01) (0.40) (0.00) -0.04 0.09
Calls (0.13) (0.31) (0.37) (0.26) (0.04) (0.05) (0.55) 0.15
Puts (0.24) (0.39) (0.66) (0.44) (0.25) (0.13) (0.21) (0.03)

Next, we explore what economic factors could be driving the common variation in carry returns.
Table 8 reports regression results for each carry portfolio’s returns in each asset class on a set of
other factors that have been shown to explain the cross section of global asset returns. We regress
the time series of carry returns in each asset class on the corresponding passive long portfolio
returns (equal-weighted average of all securities) in each asset class, the value and momentum
factors for each asset class, and time series momentum (TSMOM) factors for each asset class. The
global value and momentum factors are based on Asness et al. (2013) and the TSMOM factors
are those of Moskowitz et al. (2012). These factors are computed for each asset class separately
for equities, fixed income, commodities, and currencies. For fixed income slope and Treasuries, we
use the fixed income factors and, for the credit and options strategies, we use the diversified value
and momentum “everywhere” factors of Asness et al. (2013) (which also includes individual equity
strategies) and the globally diversified TSMOM factor of Moskowitz et al. (2012).23

Table 8 reports both the intercepts (or alphas) from these regressions as well as factor exposures
to these other known factors. Results are shown from regressing the carry trade portfolio returns in

23We focus here on global factors that can be defined across asset classes. Section 3.3 considers asset-class specific
factors, showing that these do not explain carry.
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Table 8: Carry trade exposures to other factors. The table reports regression results for each carry
portfolio’s returns on factor returns: the passive long portfolio returns (EW average of all securities)
in each asset class, the value and momentum asset class-specific factors of Asness et al. (2013), and
the time series momentum (TSMOM) factor of Moskowitz et al. (2012), where these latter factors
are computed for each asset class separately for equities, fixed income, commodities, and currencies.
For fixed income slope and Treasuries, we use the fixed income factors and for the credit and options
strategies, we use the global-across-all-asset-class diversified value and momentum “everywhere”
factors of Asness et al. (2013) and the globally diversified across all asset classes TSMOM factor
of Moskowitz et al. (2012). The table reports both the intercepts or alphas (in percent) from these
regressions as well as the betas on the various factors for the carry strategies that on individual
securities within each asset class. The table reports regression results for the GCF on the all-
asset-class market, value, momentum, and TSMOM factors. Also reported are the R2 from the
regression and the information ratio, IR, which is the alpha divided by the residual volatility from
the regression. All t-statistics are in parentheses.

Global equities FI 10Y global FI 10Y-2Y global US Treasuries Commodities

α 0.82 0.82 0.35 0.33 0.06 0.05 0.03 0.02 0.93 0.64
( 4.70 ) ( 4.71 ) ( 3.06 ) ( 3.08 ) ( 5.53 ) ( 5.01 ) ( 3.38 ) ( 2.74 ) ( 3.43 ) ( 2.57 )

Passive long -0.06 -0.06 -0.07 -0.18 -0.02 0.07 0.16 0.12 0.01 -0.02
( -1.15 ) ( -1.21 ) ( -0.94 ) ( -2.10 ) ( -0.22 ) ( 0.67 ) ( 2.57 ) ( 3.51 ) ( 0.12 ) ( -0.31 )

Value 0.17 0.07 -0.01 0.00 -0.21
( 1.82 ) ( 0.51 ) ( -0.81 ) ( -0.67 ) ( -2.96 )

Momentum 0.04 0.56 -0.01 0.00 0.29
( 0.44 ) ( 4.26 ) ( -0.65) ( 0.04 ) ( 3.81 )

TSMOM -0.04 0.03 -0.00 0.00 -0.04
( -1.66 ) ( 1.82 ) ( -0.62 ) ( 0.80 ) ( -0.45 )

R2 0.01 0.03 0.00 0.16 0.00 0.01 0.08 0.07 0.00 0.20
IR 0.95 0.95 0.57 0.61 1.03 1.01 0.54 0.64 0.60 0.47

Currencies Credits Call options Put options GCF

α 0.40 0.30 0.02 0.02 3.21 6.93 13.02 12.55 0.57 0.51
( 3.31 ) ( 2.31 ) ( 2.85 ) ( 1.70 ) ( 1.07 ) ( 2.15 ) ( 4.74 ) ( 4.55 ) ( 7.19 ) ( 6.74 )

Passive long 0.17 0.22 0.02 0.14 -0.34 -0.35 -0.08 -0.09 0.11 0.17
( 2.47 ) ( 3.46 ) ( 0.50 ) ( 2.31 ) ( -5.90 ) ( -6.07 ) ( -1.85 ) ( -2.10 ) ( 1.36 ) ( 2.15 )

Value 0.11 0.01 -5.96 2.82 0.05
( 1.08 ) ( 0.82 ) ( -2.14 ) ( 0.98 ) ( 0.80 )

Momentum 0.03 0.00 -4.32 2.14 0.08
( 0.31 ) ( -0.21 ) ( -2.54 ) ( 1.01 ) ( 1.40 )

TSMOM 0.01 0.00 -0.92 -0.77 -0.02
( 0.25 ) ( -1.42 ) ( -1.00 ) ( -1.07 ) ( -0.82 )

R2 0.03 0.05 0.00 0.07 0.39 0.43 0.05 0.07 0.02 0.04
IR 0.63 0.47 0.45 0.39 0.29 0.64 1.61 1.56 1.16 1.55

each asset class on the equal-weighted passive index for that asset class. The alphas for every carry
strategy in every asset class are positive and statistically significant (except for calls), indicating
that, in every asset class, a carry strategy provides abnormal returns above and beyond simple
passive exposure to that asset class. Put differently, carry trades offer excess returns over the
“local” market return in each asset class. Further, the betas are often not significantly different
from zero. Hence, carry strategies provide sizable return premia without much market exposure
to the asset class itself. Also reported are the R2 from the regression and the information ratio,
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IR, which is the alpha divided by the residual volatility from the regression. The IRs are large,
reflecting high risk-adjusted returns to carry strategies even after accounting for exposure to the
local market index.

For the value and cross-sectional and time series momentum factor exposures, we find mixed
evidence across the asset classes. For instance, in equities, carry strategies have a positive value
exposure, but no momentum or time series momentum exposure. Because the carry for global
equities is the expected dividend yield, the positive loading on value is intuitive. However, an
equity carry strategy, which is derived from our futures definition and is the expected dividend
yield relative to the short-term interest rate, is substantially different from the standard value
strategy that sorts on historical dividend yields.24 The positive exposure of equity carry to value,
however, does not significantly reduce the alpha or information ratio of the strategy.

For fixed income, carry loads positively on cross-sectional and time series momentum, though
again the alphas and IRs remain significantly positive. In commodities, a carry strategy loads
significantly negatively on value and significantly positively on cross-sectional momentum, but it
exhibits little relation to time series momentum. The exposure to value and cross-sectional mo-
mentum captures a significant fraction of the variation in commodity carry’s returns, as the R2

jumps from less than 1% to 20% when the value and momentum factors are included in the regres-
sion. However, because the carry trade’s loadings on value and momentum are of opposite signs,
the impact on the alpha of the commodity carry strategy is small as the exposures to these two
positive return factors offset each other. The alpha diminishes by 29 basis points per month but
remains economically large at 64 basis points per month and statistically significant. Currency
carry strategies exhibit no reliable loading on value, momentum, or time series momentum. Con-
sequently, the alpha of the currency carry portfolio remains large and significant. Similarly, for
credit, no reliable loadings on these other factors are present and, hence, a significant carry alpha
remains. For call options, the loadings of the carry strategies on value, momentum, and TSMOM
are all negative, making the alphas even larger. Finally, for puts, there are no reliable loadings
on these other factors. Table 8 reports regression results for the diversified GCF on the global
all-asset-class market, value, momentum, and TSMOM factors. The alphas and IRs are large and
significant and there are no reliable betas with respect to these factors. Other known global factors
that explain returns across markets and asset classes, such as value, momentum, and time series
momentum, do not capture the returns to carry.

4.2. Turnover and transaction costs

We next consider the role of trading costs in explaining carry returns. To measure trading costs
for all asset classes except credits and options, we use the estimates used in Bollerslev et al. (2016).
For options, we measure the bid-ask spread in OptionMetrics. This estimate of trading costs is
conservative, as OptionMetrics uses the last quotes on a given trading day. As option markets close
15 minutes later than equity markets, bid-ask spreads widen during this period thereby overstating

24First, in unreported results, we show for the US equity market, using a long time series, that the dynamics of
carry are different from the standard dividend yield. Second, sorting countries directly on historical dividend yield
instead of carry results in a portfolio less than 0.30 correlated to the carry strategy in equities. Finally, running a
time-series regression of carry returns in equities on a dividend yield strategy in equities produces significant alphas
as shown in Table 3. Hence, carry contains important independent information beyond the standard dividend yield
studied in the literature.
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the impact of realistic transaction costs. We nevertheless report the results for completeness. We
also compute all statistics for the traditional predictors as a point of reference.

Table 9: Turnover and Sharpe ratios adjusted for transaction costs. Panel A reports the turnover
of the long-short carry1m strategy as well as the Sharpe ratios adjusted for transaction costs when
available. The transaction costs are expressed in half-spreads. We also report the results for the
traditional predictors for equities (D/P), fixed income (yield spread), and credits (yield spread).
In Panel B, we report the same results for the carry1-12 strategy. The results for the traditional
predictors are the same in both panels.

Panel A: Turnover and After-Cost Sharpe Ratios for Carry1m Strategies

Transaction costs (half-spreads)

Asset class Strategy Turnover 0 1 2 5
Global equities Carry 6.2 0.91 0.90 0.88 0.82

D/P 0.9 0.36 0.36 0.35 0.35
Fixed income 10Y global (level) Carry 1.4 0.52 0.51 0.51 0.49

Yield 1.4 0.46 0.45 0.45 0.43
Fixed income 10Y-2Y global (slope) 2.3 1.03 0.93 0.84 0.55
US Treasuries (maturity) 2.5 0.68 0.63 0.57 0.39
Commodities 3.6 0.60 0.58 0.57 0.53
Currencies 1.1 0.68 0.67 0.66 0.63
Credits Carry 1.1 0.47

Yield 0.5 0.07
Options calls 6.7 0.37 -0.77 -1.62 -3.18
Options puts 6.4 1.80 0.42 -0.67 -2.71

Panel B: Turnover and After-Cost Sharpe Ratios for Carry1-12 Strategies

Transaction costs (half-spreads)

Asset class Strategy Turnover 0 1 2 5
Global equities Carry 1.4 0.58 0.58 0.57 0.56

D/P 0.9 0.36 0.36 0.35 0.35
Fixed income 10Y global (level) Carry 0.6 0.46 0.45 0.45 0.44

Yield 1.4 0.46 0.45 0.45 0.43
Fixed income 10Y-2Y global (slope) 0.8 0.35 0.32 0.29 0.20
US Treasuries (maturity) 0.5 0.78 0.76 0.75 0.71
Commodities 1.1 0.65 0.65 0.65 0.63
Currencies 0.5 0.55 0.55 0.54 0.53
Credits Carry 0.3 0.46

Yield 0.5 0.07
Call options 5.8 0.27 -0.80 -1.60 -3.09
Put options 5.6 1.52 0.20 -0.82 -2.67

In Table 9, we report the results for carry1m in Panel A and for carry1-12 in Panel B. Turnover

37



for a given period is computed as

Turnovert =
1

4

∑

i

∣
∣wi

t−1(1 + ri
t) − wi

t

∣
∣ , (25)

where we divide by four to avoid double-counting (a factor of two) and to adjust for the fact
that the long-short strategies have $2 exposure (another factor of two). We compute the average
turnover per month and multiply it by 12 to obtain average annual turnover.

For equities, the turnover is high for the carry1m strategy, being more than four times that
of the carry1-12 strategy. The carry1m strategy is sensitive to seasonalities in dividends and the
strategy generates considerable turnover as a result. The same is true for commodities. For all
asset classes, turnover reduces significantly when moving from the carry1m to the carry1-12 as the
signals are less volatile. Consequently, carry1-12 strategies are much less sensitive to trading costs
and closer to traditional strategies (e.g., D/P for equities). The turnover of the other strategies is
more moderate, with the exception of the options as is to be expected.

The table also reports the impact of transaction costs on the strategies’ Sharpe ratios. The
bottom line is that the impact is moderate as the strategies are based on liquid futures markets.
For options, the impact is large. For a half-spread, the carry strategies based on put options still
result in positive Sharpe ratios, but this is no longer the case for two or five times the half-spread.
The transaction costs for options are likely to be conservative, which suggests that carry strategies
for put options are implementable though trading costs could be too large for the call option
strategy.

Taken together, our results cannot be explained by, and are not subsumed by, trading costs.

4.3. Crashes and downside risk exposure

The large and growing literature on the currency carry strategy considers whether carry returns
compensate investors for crash risk or business cycle risk. By studying multiple asset classes at
the same time, we provide out-of-sample evidence of existing theories, as well as some guidance
for new theories to be developed. We find that all carry strategies produce high Sharpe ratios
and often have high kurtosis. However, results regarding skewness are mixed. Furthermore, a
diversified carry strategy across all asset classes exhibits little skewness and mitigates the most
extreme kurtosis. Hence, these measures of crash risk do not appear to explain carry returns more
generally. Given the common variation in carry strategies, we investigate several other theories
that could generate this commonality and perhaps explain (at least part of) carry’s returns.

We start by testing whether downside risk can explain the carry returns. Panel A of Table 10
reports regression results from a Henriksson and Merton (1981) style regression:

rt = β0 + βmktrmt + βdown max{0,−rmt} + εt, (26)

where we use the passive long strategy as the market return, rmt, in each of the asset classes. As
Panel A shows, the downside betas are not significant, save for the option carry strategies.

Lettau et al. (2014) also propose a downside risk measure based on the CAPM that captures
currency carry returns and cross-sectional variation in returns from some other asset classes. In
their model, expected returns are driven by the market beta, βLMW,mkt = Cov(rt, rmt)/V ar(rmt),
and the market beta conditional on low returns, βLMW,down = Cov(rt, rmt | rmt < μ−σ)/V ar(rmt |
rmt < μ−σ), where μ and σ are the average and standard deviation of rmt, respectively. Following
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Lettau et al. (2014), we use the CRSP value-weighted excess return as rmt. Panel B of Table
10 reports the results. The downside betas are significant for fixed income (level), commodities,
currencies, and both call and put options, which is consistent with some of the results in Lettau
et al. (2014). This lends support to the idea that some component of global carry returns can
be explained by downside risk. We estimate the risk prices using Fama and MacBeth regressions
and find that both are significant, but the price of market risk has the incorrect sign. The price
of downside risk does have the correct sign and is highly significant. The model is successful at
explaining the returns on fixed income (level), commodities, and both option carry strategies, but
the alphas for all other strategies remain significantly positive. Hence, the downside risk measures
of Henriksson and Merton (1981) and Lettau et al. (2014) do not seem to fully explain the returns
to carry strategies across the asset classes we study.

4.4. Global liquidity and volatility risk
Other leading explanations of the high average returns to the currency carry trade rely on

liquidity risks and volatility risk. We investigate whether our carry strategies across asset classes
are also exposed to these risks, as an out-of-sample test of these theories.

We measure global liquidity risk as in Asness et al. (2013), who use the first principal component
of a large set of liquidity variables that measure market and funding liquidity. The sample period
for which we have global liquidity shocks is January 1987 to July 2011.

We measure volatility risk by changes in VXO, which is the implied volatility of S&P 100 index
options. VIX changes and VXO changes are highly correlated, but the advantage of using VXO
instead of VIX is that the sample starts earlier in January 1986. (Results using VIX are similar.)

Table 11 reports the coefficients of a simple time series regression of carry returns on global
liquidity shocks and volatility changes. We scale the returns to have 10% volatility over the sample
for comparability and we multiply the loadings by 100. The table also reports the corresponding
t-statistics of the coefficients. We confirm the findings of the currency carry literature: Carry
returns are positively exposed to global liquidity shocks and negatively exposed to volatility risk.

We find that the exposures are largely consistent in terms of sign across asset classes. For
liquidity risk, the loadings are significant at least at the 5% level for currencies, credits, and put
options. For volatility risk, the exposures are significantly negative for fixed income (for the level
strategy), commodities, currencies, and put options.

The exposure of the carry strategy using Treasuries is opposite of all the other carry strategies.
It has a negative exposure to global liquidity shocks and a positive and significant loading on
volatility changes. This implies that the Treasuries carry strategy provides a hedge against liquidity
and volatility risk, suggesting that liquidity and volatility risk are an incomplete explanation for
the cross section of carry strategy returns (or, alternatively, this could be due to random chance
or noise, which investors might not have expected ex ante).

We also run asset pricing tests to see whether carry risk premia can be explained by liquidity
and volatility risk. Table 11 reports the risk prices, which we estimate using Fama and MacBeth
regressions. We find that the price of liquidity risk is positive and the price of volatility risk is
negative, as expected. Both risk prices are statistically significant, which lends support to the idea
that liquidity and volatility risk explain part of the carry premia across asset classes.

However, the alphas of equities, fixed income (slope), Treasuries, credits, and put options remain
statistically significant at the 5% level. Although we find consistent and significant prices of risk
for liquidity and volatility among our carry strategies across all asset classes, the risk premia and
exposure to these risks are insufficient to fully explain carry’s ubiquitous return premium.
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Table 10: Exposures to downside risk. The table reports regression results of carry strategy returns
in each asset class on measures of downside market risk. The volatility of returns are scaled to 10%
over the sample. We use the Henriksson and Merton (1981) model in Panel A, where downside
beta is estimated from a regression of returns on the market (beta) and the maximum of zero or
minus the market return (downside beta). The passive long strategy is used as the market return
in each of the asset classes. Panel B reports results from the Lettau, Maggiori, and Weber (2014)
downside risk measure, which estimates the beta of a strategy over the full sample and on the sub-
sample where the excess market return is one standard deviation below zero. We use the excess
return on the CRSP value-weighted index as the excess market return. The intercept or monthly
α, its t-statistic, and the betas and their t-statistics are reported along with the regression R2 for
the Henriksson and Merton (1981) model. We estimate the risk prices and alphas for the Lettau,
Maggiori, and Weber (2014) model using Fama and MacBeth regressions.

Panel A: Henriksson and Merton (1981) downside risk

Asset class Intercept (t-statistic) βmkt (t-statistic) βdown (t-statistic) R2(%)

Global equities 0.42 (1.30) 0.06 (0.52) 0.22 (1.22) 1.9
Fixed income 10Y global 0.33 (1.78) -0.06 (-0.45) 0.02 (0.09) 0.4
Fixed income 10Y-2Y global 0.05 (3.29) 0.08 (0.38) 0.19 (0.60) 0.2
US Treasuries (maturity) 0.01 (0.39) 0.23 (1.99) 0.18 (0.97) 9.6
Commodities 1.09 (2.76) -0.05 (-0.30) -0.11 (-0.45) 0.1
Currencies 0.61 (3.39) 0.06 (0.54) -0.23 (-1.12) 3.6
Credits 0.03 (2.44) -0.03 (-0.37) -0.10 (-0.83) 0.7
Call options 49.69 (9.83) -0.78 (-10.61) -1.21 (-9.60) 67.9
Put options 43.14 (8.20) -0.33 (-7.68) -0.74 (-7.49) 36.3

Panel B: Lettau, Maggiori, and Weber (2014) downside risk

Asset class α (t-statistic) βLMW,mkt (t-statistic) βLMW,down (t-statistic)

Global equities 0.91% (5.38) -0.03 (-0.69) -0.11 (-0.52)
Fixed income 10Y global -0.12% (-1.21) 0.04 (0.73) 0.36 (2.28)
Fixed income 10Y-2Y global 0.79% (5.14) -0.02 (-0.54) 0.02 (0.23)
US Treasuries (maturity) 0.85% (5.76) -0.11 (-2.91) -0.13 (-1.09)
Commodities 0.16% (1.10) 0.03 (0.91) 0.24 (3.26)
Currencies 0.27% (2.70) 0.21 (5.29) 0.40 (3.85)
Credits 0.35% (2.90) 0.20 (3.98) 0.23 (1.32)
Call options 0.00% (0.00) -0.13 (-2.56) 0.06 (3.34)
Put options 0.01% (0.14) 0.01 (0.14) 0.83 (5.37)

Risk prices (t-statistic)
Market risk -0.019 (-2.65)
Downside risk 0.017 (4.89)

An aggressive interpretation concludes that carry is unexplained by downside, liquidity, or
volatility risks and presents a substantial asset pricing puzzle that rejects many theories, possibly
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Table 11: Exposures to global liquidity shocks and volatility changes. The top panel of the table
reports the loadings of carry strategy returns on both global liquidity shocks and volatility changes.
The table reports the asset class, the loadings, and the corresponding t-statistics. The exposures
are multiplied by one hundred and the strategy returns are scaled to an annual volatility of 10%.
Global liquidity shocks are measured as in Asness et al. (2013). Volatility changes are measured
using changes in VXO, the implied volatility of S&P100 options. The table also reports the
monthly alphas of the strategies and the t-statistics of the alphas. The bottom panel reports the
risk prices and the corresponding t-statistics. The risk prices and alphas are estimated using Fama
and MacBeth regressions.

Asset class Exposure to (t-statistic) Exposure to (t-statistic) Alpha (t-statistic)
liquidity shocks volatility changes

Equities global 0.70 (1.43) 0.00 (0.01) 0.71% (4.09)
Fixed income 10Y global 0.41 (0.76) -0.12 (-2.11) 0.07% (0.47)
Fixed income 10Y-2Y global 0.84 (1.52) -0.03 (-0.92) 0.61% (3.67)
US Treasuries -0.29 (-0.37) 0.10 (2.37) 0.94% (5.98)
Commodities 0.51 (1.26) -0.08 (-2.19) 0.26% (1.59)
Currencies 2.19 (3.01) -0.15 (-4.46) -0.08% (-0.64)
Credit 3.89 (3.34) -0.01 (-0.15) -0.31% (-5.46)
Call options -0.25 (-0.95) -0.04 (-1.57) 0.19% (0.90)
Put options 1.26 (2.01) -0.13 (-2.00) 0.70% (4.14)

Risk prices (t-statistic)
Liquidity 0.16 (3.53)
Volatility -2.28 (-2.65)

offering a wildly profitable investment opportunity. A cautious interpretation can conclude that
carry strategies almost uniformly load significantly on these risks that partially explains their
returns and that, perhaps if better measures of these risks were available, carry’s exposure to
them, and if risk premia estimates were more precise, most of the returns to carry through risk
could be explained.

In Appendix Appendix D, we study the connection between drawdowns of the global carry
factor, drawdowns of all individual carry strategies, and global business cycle risk. Overall, some
common risk faced by carry strategies apparently manifests itself during global recessionary periods
often characterized by illiquidity and volatility spikes. While our attempts at measuring and
quantifying these risks and their associated prices yield significant but modest results on carry, these
initial findings could lay the groundwork for further empirical and theoretical investigation into the
sources of the ubiquitous carry return premium. Explaining the returns to carry simultaneously
across all the asset classes we study remains a daunting and challenging task for existing asset
pricing theory.

41



Appendix A. Foreign-denominated futures

We briefly explain how we compute the US-dollar return and carry of a futures contract that
is denominated in foreign currency. Suppose that the exchange rate is et (measured in number of
local currency per unit of foreign currency), the local interest rate is rf , the foreign interest rate is
rf∗, the spot price is St, and the futures price is Ft, where both St and Ft are measured in foreign
currency.

Suppose that a US investor allocates Xt dollars of capital to the position. This capital is
transferred into Xt/et in a foreign-denominated margin account. One time period later, the
investor’s foreign denominated capital is (1 + rf∗)Xt/et + Ft+1 − Ft, so that the dollar cap-
ital is et+1

(
(1 + rf∗)Xt/et + Ft+1 − Ft

)
. Assuming that the investor hedges the currency ex-

posure of the margin capital and that covered interest rate parity holds, the dollar capital is
(1 + rf )Xt + et+1(Ft+1 −Ft). Hence, the hedged dollar return in excess of the local risk-free rate is

rt+1 =
et+1(Ft+1 − Ft)

Xt

. (A.1)

For a fully collateralized futures with Xt = etFt,

rt+1 =
et+1(Ft+1 − Ft)

etFt

=
(et+1 − et + et)(Ft+1 − Ft)

etFt

=
Ft+1 − Ft

Ft

+
et+1 − et

et

Ft+1 − Ft

Ft

(A.2)

We compute the futures return using this formula, but it is very similar to the simpler expression
(Ft+1 − Ft)/Ft, which is off only by the last term of Eq. (A.2) that is of second-order importance
(as it is a product of returns).

We compute the carry of a foreign-denominated futures as the return if the spot price stays the
same such that Ft+1 = St and if the exchange rate stays the same, et+1 = et. Using this together
with Eq. (A.2), the carry is25

Ct =
St − Ft

Ft

. (A.3)

Appendix B. Data sources

We describe the data sources we use to construct our return series. Table 1 provides summary
statistics on our data, including sample period start dates.

Equities We use equity index futures from 13 markets: the US (S&P 500), Canada (S&P TSE
60), the UK (FTSE 100), France (CAC), Germany (DAX), Spain (IBEX), Italy (FTSE MIB), the

25It is straightforward to compute the carry if the investor does not hedge the interest rate. In this case, the
carry is adjusted by a term r∗f − rf , where r∗f denotes the interest rate in the country of the index and rf is the US
interest rate.
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Netherlands (EOE AEX), Sweden (OMX), Switzerland (SMI), Japan (Nikkei), Hong Kong (Hang
Seng), and Australia (S&P ASX 200). The data source is Bloomberg. We collect data on spot,
nearest-, and second-nearest-to-expiration contracts to calculate the carry. Bloomberg tickers are
reported in Table B.1.

Market Spot ticker Futures ticker
US SPX Index SPx Index
Canada SPTSX60 Index PTx Index
UK UKX Index Zx Index
France CAC Index CFx Index
Germany DAX Index GXx Index
Spain IBEX Index IBx Index
Italy FTSEMIB Index STx Index
Netherlands AEX Index EOx Index
Sweden OMX Index QCx Index
Switzerland SMI Index SMx Index
Japan NKY Index NKx Index
Hong Kong HSI Index HIx Index
Australia AS51 Index XPx Index

Table B.1: The table reports the Bloomberg tickers that we use for equities. First and second
generic futures prices can be retrieved from Bloomberg by substituting 1 and 2 with the ‘x’ in the
futures ticker. For instance, SP1 Index and SP2 Index are the first and second generic futures
contracts for the S&P 500.

We calculate daily returns for the most active equity futures contract (which is the front-month
contract), rolled three days prior to expiration, and aggregate the daily returns to monthly returns.
This procedure ensures that we do not interpolate prices to compute returns.

We consider two additional robustness checks. First, we run all of our analyses without the first
trading day of the month to check for the impact of nonsynchronous settlement prices. Second,
we omit the DAX, which is a total return index, from our calculations. Our results are robust to
these changes.

Currencies The currency data consist of spot and one-month-forward rates for 19 countries:
Austria, Belgium, France, Germany, Ireland, Italy, the Netherlands, Portugal and Spain, which
replaced their currencies with the Euro in January 1999, and Australia, Canada, Denmark, Japan,
New Zealand, Norway, Sweden, Switzerland, the United Kingdom, and the United States. Our
basic data set is obtained from Barclays Bank International (BBI) prior to January 1997 and
WMR/Reuters thereafter. However, we verify and clean our quotes with data obtained from
HSBC, Thomson Reuters, and data from BBI and WMR/Reuters sampled one day before and one
day after the end of the month using the algorithm described below.

Table B.2 summarizes the Datastream tickers for our spot and one-month-forward exchange
rates, both from BBI and WMR/Reuters. In addition, it shows the Bloomberg and Global Financial
Data tickers for the interbank offered rates.

At the start of our sample, in October 1983, six pairs are available. All exchange rates are
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BBI-spot BBI-frwd WMR-spot WMR-frwd BB ibor GFD ibor
Austria - - AUSTSC$ USATS1F VIBO1M Index IBAUT1D
Belgium - - BELGLU$ USBEF1F BIBOR1M Index IBBEL1D
France BBFRFSP BBFRF1F FRENFR$ USFRF1F PIBOFF1M Index IBFRA1D
Germany BBDEMSP BBDEM1F DMARKE$ USDEM1F DM0001M Index IBDEU1D
Ireland - - IPUNTE$ USIEP1F DIBO01M Index IBIRL1D
Italy BBITLSP BBITL1F ITALIR$ USITL1F RIBORM1M Index IBITA1D
Netherlands BBNLGSP BBNLG1F GUILDE$ USNLG1F AIBO1M Index IBNLD1D
Portugal - - PORTES$ USPTE1F LIS21M Index IBPRT1D
Spain - - SPANPE$ USESP1F MIBOR01M Index IBESP1D
Euro BBEURSP BBEUR1F EUDOLLR USEUR1F EUR001M Index IBEUR1D
Australia BBAUDSP BBAUD1F AUSTDO$ USAUD1F AU0001M Index IBAUS1D
Canada BBCADSP BBCAD1F CNDOLL$ USCAD1F CD0001M Index IBCAN1D
Denmark BBDKKSP BBDKK1F DANISH$ USDKK1F CIBO01M Index IBDNK1D
Japan BBJPYSP BBJPY1F JAPAYE$ USJPY1F JY0001M Index IBJPN1D
New Zealand BBNZDSP BBNZD1F NZDOLL$ USNZD1F NZ0001M Index IBNZL1D
Norway BBNOKSP BBNOK1F NORKRO$ USNOK1F NIBOR1M Index IBNOR1D
Sweden BBSEKSP BBSEK1F SWEKRO$ USSEK1F STIB1M Index IBSWE1D
Switzerland BBCHFSP BBCHF1F SWISSF$ USCHF1F SF0001M Index IBCHE1D
UK BBGBPSP BBGBP1F USDOLLR USGBP1F BP0001M Index IBGBR1D
US - - - - US0001M Index IBUSA1D

Table B.2: The table summarizes the Datastream tickers for our spot and one-month forward
exchange rates, both from BBI and WMR/Reuters. In addition, the last two columns show the
Bloomberg and Global Financial Data tickers for the interbank offered rates.

available since January 1997. There are 10 pairs in the sample since January 1999, following the
introduction of the Euro.

Several data errors apparently are in the basic data set. We use the following algorithm to
remove such errors. Our results do not strongly depend on removing these outliers. For each
currency and each date in our sample, we back out the implied foreign interest rate using the
spot and forward exchange rate and the US one-month LIBOR. We subsequently compare the
implied foreign interest rate with the interbank offered rate obtained from Global Financial Data
and Bloomberg. If the absolute difference between the currency-implied rate and the IBOR rate
is greater than a specified threshold, which we set at 2%, we further investigate the quotes using
data from our alternative sources.
Our algorithm can be summarized as follows:

• Before (after) January 1997, if data are available from WMR/Reuters (BBI) and the ab-
solute difference of the implied rate is below the threshold, replace the default source BBI
(WMR/Reuters) with WMR/Reuters (BBI)

– If data are available from WMR/Reuters (BBI) and the absolute difference of the implied
rate is also above the threshold, we keep the default source BBI (WMR/Reuters).

• Else, if data are available from HSBC and the absolute difference of the implied rate is below
the threshold, replace the default source with HSBC.

– If data are available from HSBC and the absolute difference of the implied rate is also
above the threshold, keep the default source.
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• Else, if data are available from Thomson Reuters and the absolute difference of the implied
rate is below the threshold, replace the default source with Thomson/Reuters.

– If data are available from Thomson Reuters and the absolute difference of the implied
rate is also above the threshold, keep the default source.

If none of the other sources is available, we compare the end-of-month quotes with quotes
sampled one day before and one day after the end of the month and run the same checks. In cases
in which the interbank offered rate has a shorter history than our currency data, we include the
default data if the currency-implied rate is within the tolerance of the currency-implied rate from
any of the sources.

A few remaining cases exist, for example, in which the interbank offered rate is not yet available,
but the month-end quote is different from both the day immediately before and after the end of
the month. In these cases, we check whether the absolute difference of the implied rates from these
two observations is within the tolerance and take the observation one day before month-end if that
is the case.

Fig. B.1 for Sweden illustrates the effects of our procedure by plotting the interbank offered
rate (Libor BB) with the currency-implied rate from the original data (Libor implied) and the
currency-implied rate after our data cleaning algorithm has been applied (Libor implied NEW).
Sweden serves as an illustration only, and the impact for other countries is similar.
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Fig. B.1: The figure shows the dynamics of three Libor rates: Bloomberg (Libor BB), the one
implied by currency data (Libor implied), and the one implied by our corrected currency data
(Libor implied NEW).

Some of the extreme quotes from the original source are removed (for instance, October 1993),
whereas other extremes are kept (such as the observations in 1992 during the banking crisis).
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Commodities Because no reliable spot prices are available for most commodities, we use the
nearest-, second-nearest, and third-nearest to expiration futures prices, downloaded from Bloomberg.

Our data set consists of 24 commodities: six in energy [brent crude oil, gasoil, WTI crude oil,
RBOB gasoline, heating oil, and natural gas], eight in agriculture [cotton, coffee, cocoa, sugar,
soybeans, Kansas wheat, corn, and wheat], three in livestock [lean hogs, feeder cattle, and live
cattle) and seven in metals (gold, silver, aluminum, nickel, lead, zinc, and copper].

Carry is calculated using nearest-, second-nearest, and third-nearest to expiration contracts. We
linearly interpolate the prices to a constant, one-month maturity. As with equities, we interpolate
future prices only to compute carry and not to compute the returns on the actual strategies.

Industrial metals (traded on the London Metals Exchange, LME) are different from the other
contracts, because futures contracts can have daily expiration dates up to three months out. Fol-
lowing LME market practice, we collect cash and three-month (constant maturity) futures prices
and interpolate between both prices to obtain the one-month future price.

We use the Goldman Sachs Commodity Index (GSCI) to calculate returns for all commodities.
Returns exclude the interest rate on the collateral (i.e., excess returns) and the indices have expo-
sure to nearby futures contracts, which are rolled to the next contract month from the fifth to the
ninth business day of the month.

Table B.3 shows the tickers for the Goldman Sachs Excess Return indices, generic futures
contracts. LME spot and three-month forward tickers are LMAHDY and LMAHDS03 (aluminum),
LMNIDY and LMNIDS03 (nickel), LMPBDY and LMPBDS03 (lead), LMZSDY and LMZSDS03
(zinc), and LMCADY and LMCADS03 (copper).
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GSCI ER Futures Ticker
Crude Oil SPGCBRP Index COx Comdty
Gasoil SPGCGOP Index QSx Comdty
WTI Crude SPGCCLP Index CLx Comdty
Unl. Gasoline SPGCHUP Index XBx Comdty
Heating Oil SPGCHOP Index HOx Comdty
Natural Gas SPGCNGP Index NGx Comdty
Cotton SPGCCTP Index CTx Comdty
Coffee SPGCKCP Index KCx Comdty
Cocoa SPGCCCP Index CCx Comdty
Sugar SPGCSBP Index SBx Comdty
Soybeans SPGCSOP Index Sx Comdty
Kansas Wheat SPGCKWP Index KWx Comdty
Corn SPGCCNP Index Cx Comdty
Wheat SPGCWHP Index Wx Comdty
Lean Hogs SPGCLHP Index LHx Comdty
Feeder Cattle SPGCFCP Index FCx Comdty
Live Cattle SPGCLCP Index LCx Comdty
Gold SPGCGCP Index GCx Comdty
Silver SPGCSIP Index SIx Comdty
Aluminum SPGCIAP Index -
Nickel SPGCIKP Index -
Lead SPGCILP Index -
Zinc SPGCIZP Index -
Copper SPGCICP Index -

Table B.3: First-, second-, and third generic futures prices can be retrieved from Bloomberg by
substituting 1, 2 and 3 with the ‘z’ in the futures ticker. For instance, CO1 Comdty, CO2 Comdty,
and CO3 Comdty are the first-, second-, and third-generic futures contracts for crude oil.
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Fixed income Bond futures are available only for a very limited number of countries and for a
relatively short sample period. We therefore create synthetic futures returns for ten countries: US,
Australia, Canada, Germany, UK, Japan, New Zealand, Norway, Sweden, and Switzerland.

We collect constant maturity, zero coupon yields from two sources. For the period up to
and including May 2009, we use the zero coupon data available from the website of Jonathan
Wright, used initially in Wright (2011).26 From June 2009 onward, we use zero coupon data from
Bloomberg. We calculate the price of a synthetic future, each month, on the ten-year zero coupon
bond and the price of a bond with a remaining maturity of nine years and 11 months (by linear
interpolation). For countries in which (liquid) bond futures exist (US, Australia, Canada, Germany,
UK, and Japan), the correlations between actual futures returns and our synthetic futures returns
are in excess of 0.95.

Table B.4 reports the Bloomberg tickers for the zero coupon yields and the futures contracts
(where available).

10y ZC Ticker 9y ZC Ticker Futures Ticker
US F08210y Index F08209Y Index TYx Comdty
Australia F12710y Index F12709Y Index XMx Comdty
Canada F10110y Index F10109Y Index CNx Comdty
Germany F91010y Index F91009Y Index RXx Comdty
UK F11010y Index F11009Y Index Gx Comdty
Japan F10510y Index F10509Y Index JBx Comdty
New Zealand F25010y Index F25009Y Index -
Norway F26610y Index F26609Y Index -
Sweden F25910y Index F25909Y Index -
Switzerland F25610y Index F25609Y Index -

Table B.4: First and second generic futures prices can be retrieved from Bloomberg by substituting
1 and 2 with the ‘x’ in the futures ticker. For instance, TY1 Comdty and TY2 Comdty are the
first and second generic futures contracts for the US 10-year bond.

Index options and US Treasuries The data sources for index options, alongside the screens we
use, and for US Treasury returns and yields are discussed in the main text.

Appendix C. Carry2-13

In Table C.1, we compare the carry1-12 and the carry2-13 strategies. Both strategies average
the monthly carry1m signal over 12 months. For the carry2-13 strategy, we lag the signal by one
month to avoid any overlap between the data used to construct the signal and the data used to
compute the returns. By skipping a month, we use more stale data in case of the carry2-13 strategy.
Nevertheless, we find very similar results for both strategies. Both global carry factors result in
a Sharpe ratio of about 1.1 and the difference is only 0.02. We conclude that our results are not
driven by the overlap between carry signals and returns.

26See http://econ.jhu.edu/directory/jonathan-wright/.
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Table C.1: The Returns to Carry2-13 and Carry2-13 Strategies By Asset Class

The table reports for each asset class, the mean annualized excess return, the annualized standard deviation of return, the
skewness of monthly returns, kurtosis of monthly returns, and the annualized Sharpe ratio. These statistics are reported for
the long/short carry1-12 strategy (“Carry1-12”) and for the long/short carry2-13 strategy (“Carry2-13”). These statistics
are also reported for a diversified portfolio of all carry trades across all asset classes, which we call the “global carry factor,”
where each asset class is weighted by the inverse of its full-sample standard deviation of returns.

Asset class Strategy Mean Stdev Skewness Kurtosis Sharpe ratio

Global equities Carry2-13 4.50 10.31 0.16 3.69 0.44
Carry1-12 5.90 10.12 0.22 3.73 0.58

Fixed income 10Y global (level) Carry2-13 3.42 7.00 0.29 6.02 0.49
Carry1-12 3.11 6.81 -0.11 4.59 0.46

Fixed income 10Y−2Y global (slope) Carry2-13 0.17 0.65 -0.08 6.13 0.26
Carry1-12 0.24 0.67 -0.11 6.26 0.35

US Treasuries (maturity) Carry2-13 0.46 0.60 0.42 7.59 0.77
Carry1-12 0.47 0.60 0.27 8.33 0.78

Commodities Carry2-13 11.06 19.20 -0.90 6.29 0.58
Carry1-12 12.69 19.40 -0.82 5.70 0.65

Currencies Carry2-13 4.03 7.72 -0.97 6.04 0.52
Carry1-12 4.25 7.71 -0.96 6.08 0.55

Credit Carry2-13 0.26 0.58 -0.10 22.53 0.45
Carry1-12 0.27 0.58 -0.07 21.20 0.46

Options calls Carry2-13 67.06 148.93 -1.76 8.94 0.45
Carry1-12 42.62 158.81 -1.95 8.71 0.27

Options puts Carry2-13 122.01 87.59 -1.02 7.47 1.39
Carry1-12 136.13 89.37 -1.22 7.98 1.52

All asset classes (global carry factor) Carry2-13 6.19 5.65 -0.21 6.20 1.10
Carry1-12 6.54 5.84 -0.15 6.23 1.12

Appendix D. Carry drawdowns

Instead of looking at various market downside risk measures and their relation to carry returns,
we flip the analysis around and consider the worst returns for carry strategies to determine what
common features among these strategies emerge during these times and whether they are related
to other macroeconomic variables.

We start by focusing on the global carry factor in which we combine all carry strategies across
all asset classes. Fig. 1, which plots the cumulative returns on the global carry factor, shows
that, despite its high Sharpe ratio, the global carry strategy is far from riskless, exhibiting sizable
declines for extended periods of time. We investigate the worst and best carry return episodes from
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this global carry factor to shed light on potential common sources of risk across carry strategies.
We identify, what we call, carry “drawdowns.” We first compute the drawdown of the global

carry strategy, which is defined as

Dt ≡
t∑

s=1

rs − max
u∈{1,...,t}

u∑

s=1

rs, (D.1)

where rs denotes the excess return on the global carry factor. The drawdown dynamics are pre-
sented in Fig. D.1. The three biggest global carry drawdowns are August 1972 to September 1975,
March 1980 to June 1982, and August 2008 to February 2009. The two largest drawdowns are
also the longest lasting ones, and the third longest is from May 1997 to October 1998. These
drawdowns coincide with plausibly bad aggregate states of the global economy. For example, using
a global recession indicator, which is a GDP weighted average of regional recession dummies (using
NBER data methodology), these periods are all during the height of global recessions, including
the 2008-2009 global financial crisis, as highlighted in Fig. D.1.

We next compute all drawdowns for the GCF , defined as periods over which Dt < 0, and define
expansions as all other periods. During carry drawdowns, the average value of the global recession
indicator is much lower than during carry expansions. The carry returns tend to be negative in
most asset classes during these carry drawdowns.
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Fig. D.1: Drawdown dynamics of the global carry factor (GCF ). The figure shows
the drawdown dynamics of the global carry strategy. We define the drawdown as
Dt ≡

∑t
s=1 rs − maxu∈{1,...,t}

∑u
s=1 rs, where rs denotes the return on the global carry

strategy. We construct the global carry factor by weighing the carry strategy of each asset class
by the inverse of the standard deviation of returns and scaling the weights so that they sum to
one. The dash-dotted line corresponds to a global recession indicator. The sample period is 1972
to 2012.
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