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A normative foundation for equity-sensitive health

evaluation: the role of relative comparisons of health gains∗

Juan D. Moreno-Ternero† Lars Peter Østerdal‡

July 2, 2016

Abstract

We explore in this paper the relationship between equity-sensitive population health

evaluation measures and normative concerns for relative comparisons of health gains. Such

a relationship allows us to characterize focal equity-sensitive models for the evaluation of

population health. Instances are the so-called multiplicative Quality Adjusted Life Years

(QALYs) and multiplicative Healthy Years Equivalent (HYEs), as well as generalizations

of the two. Our axiomatic approach assumes social preferences over distributions of

individual health states experienced in a given period of time. It conveys informational

simplicity, as it does not require information about individual preferences on health.
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1 Introduction

It is frequently argued that the benefit a patient derives from a particular health care interven-

tion is defined according to two dimensions: quality of life and quantity of life (e.g., Pliskin,

Shepard and Weinstein, 1980). The so-called Quality Adjusted Life Years (in short, QALYs)

constitute the standard currency to deal with both health dimensions in the methodology of

cost-utility analyses, probably the most widely accepted methodology in the economic evalua-

tion of health care nowadays (e.g., Drummond et al., 2005). Nevertheless, addition of QALYs

is usually criticized on equity grounds (e.g., Harris, 1987; Smith, 1987) and the importance of

considering alternative (equity-sensitive) measures of population health in cost-utility analyses

is widely accepted (e.g., Wagstaff, 1991; Williams, 1997; Nord, 1999; Anand, 2003).1

The purpose of this paper is to explore the relationship between equity-sensitive population

health evaluation measures and normative concerns for relative comparisons of health gains. To

do so, we follow the new axiomatic approach to the evaluation of population health, recently in-

troduced by Hougaard, Moreno-Ternero and Østerdal (2013a). In such an approach, the health

of an individual in the population is defined according to the two dimensions mentioned above

(quality of life and quantity of life). Quantity of life is given by a number of life years, while

no assumptions are made on how quality of life is described. The approach is informationally

simple, as it does not make assumptions about individual preferences over length and quality

of life, which might not be available information, either for practical or ethical reasons.2 This

is in contrast with the more standard approach to population health evaluation, where cardinal

individual health utilities are assumed to be available as the basic input of the model (e.g., Ble-

ichrodt, 1997; Dolan, 1998), or where structured individual preferences for quality and quantity

of life, implying QALY-like individual utility functions, are assumed to exist (e.g., Østerdal,

2005; Harvey and Østerdal, 2010). We here, instead, address population health evaluation

grounding directly on normative concerns over social preferences (on health gains).

One of the equity-sensitive population health evaluation functions for which we provide

normative foundations is the so-called multiplicative QALYs function, which evaluates the

health of a population by the product of the QALYs each individual in the population is

1For discussions on the related issue of the conceptual foundations of measuring (in)equality in health and

health care, the reader is referred to Wagstaff and van Doorslaer (2000), Williams and Cookson (2000) and,

more recently, Fleurbaey and Schokkaert (2012) and Hougaard, Moreno-Ternero and Østerdal (2013b).
2See, for instance, Dolan (2000) and Dolan and Kahneman (2008) for a discussion of the numerous conceptual

and empirical challenges concerning the estimation and interpretation of individual health utility.
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endowed with. Multiplicative forms of the QALY model have been frequently endorsed in

the literature (e.g., Bleichrodt, 1997; Dolan, 1998). A multiplicative form induces an obvious

concern for equity, as it penalizes uneven distributions of QALYs, whereas an additive form is

not sensitive to such uneven distributions.3

QALYs can be seen as a specific computation of the so-called Healthy Years Equivalent (in

short, HYEs), which refer to the socially equivalent population health distribution to a given

one, in which the health outcome of one (and only one) agent is replaced by that of full health,

for some quantity of time.4 The additive HYE model evaluates population health by means of

the unweighted sum of HYEs. As such, it is subject to the same criticism, on equity grounds, of

its counterpart additive QALY model. We also derive in this paper normative foundations for

the multiplicative HYE model in which the health of a population is evaluated by the product

of the HYEs each individual in the population is enjoying.

One might argue that, for large populations, a multiplicative evaluation function might be

too equity sensitive. For that reason, we also derive normative foundations for two families of

population health evaluation functions, each generalizing the multiplicative QALY and HYE

models, respectively. In such families, individual QALYs (respectively, HYEs) are submitted to

an arbitrary (but increasing) function before being added. When such a function is logarithmic,

we recover, precisely, the multiplicative QALY (respectively, HYE) model.

Another focal contribution within the health economics literature to develop equity-sensitive

forms of evaluating a distribution of health is the so-called fair innings notion (e.g., Williams,

1997). Essentially, the notion reflects the feeling that everyone is entitled to some normal span

of health. In some sense, one could consider that the multiplicative QALY and HYE models

characterized in this paper are implementing a variant of the fair innings notion: they both

aim to give a fair number (actually, the average) of quality-adjusted life years, or healthy

years equivalent, to each person. Nevertheless, one might also argue that the fair innings

notion is captured by Williams (1997) upon endorsing a Bergsonian functional form to evaluate

the health distribution of a population. We shall also derive normative foundations for such

functional forms in this paper.

Our model differs from the one used in Hougaard, Moreno-Ternero and Østerdal (2013a) in

3This is arguably the main reason why the UNDP unveiled a new methodology for the calculation of the

so-called Human Development Index (e.g., Zambrano, 2013).
4This notion can be traced back to Mehrez and Gafni (1989) who propose it as a plausible way to reflect

patient’s preferences over health.
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two important aspects.

First, we assume here that the quantity-of-life dimension is always strictly positive, whereas

there it was only assumed to be non-negative. This seemingly innocuous aspect turns out to

make a difference in both analyses. In Hougaard, Moreno-Ternero and Østerdal (2013a), the so-

called social ZERO condition, which says that if an agent gets zero lifetime then her health state

does not influence the social desirability of the health distribution, played an important role

in simplifying the analysis. Such a condition, which is reminiscent of a widely used condition

for individual utility functions on health (e.g., Bleichrodt, Wakker and Johannesson, 1997;

Miyamoto et al., 1998; Østerdal 2005) is controversial, as the concept of health, in real life,

is not properly understood with zero lifetime. In the analysis of this paper, we replace this

condition by another saying that, when quantity of life is sufficiently small, quality of life

becomes almost insignificant.

Second, we consider three core axioms, independent from those in Hougaard, Moreno-

Ternero and Østerdal (2013a), which become crucial for our characterizations. These axioms

convey different concerns for relative changes in lifetime, hence aiming to indeed provide the

population health evaluation functions with an equity-sensitive orientation.

Our analysis is also reminiscent of some contributions within the literature on social choice

and welfare. For instance, Tsui and Weymark (1997) characterized multiplicative social welfare

orderings akin to the population health evaluation functions we derive here. More recently,

Mariotti and Veneziani (2014) have introduced a stylized model to evaluate opportunities in

society as “chances of success”. To do so, they conceptualize boxes of life, in which each entry

refers to the probability of success of each agent in society. In mathematical terms, their

problem is equivalent to evaluating QALY distributions. It turns out that they characterize a

multiplicative criterion to evaluate boxes of life, which could thus be seen as a counterpart to our

characterization of the multiplicative QALY population health evaluation function considered

here. The primitives of our model, however, are not profiles of QALYs (boxes of life) but rather

health matrices made of duplets (referring to quantity and quality of life) each characterizing

one individual. Furthermore, as mentioned above, our model excludes the possibility of zero

lifetimes in the domain, as opposed to theirs. Thus, and contrary to their approach but aligned

with Tsui and Weymark (1997), we rely on functional analysis for our proofs.

The rest of the paper is organized as follows. In Section 2, we introduce the model and the

axioms we consider, as well as a preliminary characterization result. In Section 3, we introduce

and characterize the main population health evaluation functions described above. In Section
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4, we characterize other functions connecting to the notion of fair innings. We discuss the

results in Section 5. For ease of exposition, we collect all proofs in an appendix.

2 The preliminaries

Let us conceptualize a policy maker with preferences defined over distributions of health for a

cohort of individuals (in brief, “population”) that we identify with the set N = {1, ..., n}, where

n ≥ 3.5 The health of each individual in the population will be described by a duplet indicating

the level achieved in two parameters: quality of life and quantity of life (i.e., lifetime).6 Assume

that there exists a set of possible health states, A, defined generally enough to encompass all

possible health states for everybody in the population. We emphasize that A is an abstract

set without any particular mathematical structure.7 Quantity of life will simply be described

by the set of strictly positive real numbers, T = (0,+∞).8 Formally, let hi = (ai, ti) ∈ A × T

denote the health duplet of individual i. A population health distribution (or, simply, a health

profile) h = [h1, . . . , hn] = [(a1, t1), ..., (an, tn)] specifies the health duplet of each individual in

society. We denote the set of all possible health profiles by H.9 Even though we do not impose

a specific mathematical structure on the set A, we assume that it contains a specific element,

a∗, which we refer to as perfect health and which is univocally identified, as a “superior” state,

by the policy maker.10

The policy maker’s preferences (or social preferences) over health profiles are expressed by

a preference relation %, to be read as “at least as preferred as”. As usual, � denotes strict

preference and ∼ denotes indifference. We assume that the relation % is a weak order.

A population health evaluation function is a real-valued function P : H → R. We say that

5Our running interpretation would be a policy maker aiming to evaluate alternative vaccinations for any of

the stages in the immunization schedule of infants, or alternative screening procedures for the early detection

of some cancers, which, in all cases, target a cohort of individuals of the same age.
6An “individual” could also be understood as the representative agent for a certain group.
7A could for instance refer to the resulting multidimensional health states after combining the levels of each

dimension of a categorical measure, such as the so-called EQ-5D, in all possible ways.
8The model introduced in Hougaard, Moreno-Ternero and Østerdal (2013a), differs from this one in allowing

zero lifetimes.
9For ease of exposition, we establish the notational convention that hS ≡ (hi)i∈S , for each S ⊂ N .

10There are two interpretations for our model. One is to assume that individuals only experience chronic

health states. Another is to consider that the health variable expresses some sort of average quality of life along

the lifespan.
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P represents % if

P (h) ≥ P (h′)⇔ h % h′,

for each h, h′ ∈ H. Note that if P represents % then any strictly increasing transformation of

P would also do so.11

2.1 Basic axioms

We now list several basic axioms for social preferences that we endorse for population health

evaluation functions. The first five were introduced in Hougaard, Moreno-Ternero and Østerdal

(2013a), and, therefore, the reader is referred to that paper for further details about them.

First, the axiom saying that the evaluation of the population health should depend only

on the list of quality-quantity duplets, not on who holds them. Formally, let ΠN denote the

class of bijections from N into itself and, for each h ∈ H, and each π ∈ ΠN , let hπ denote the

resulting profile after rearranging coordinates of h, according to π. Then,

Anonymity: h ∼ hπ for each h ∈ H, and each π ∈ ΠN .

The second axiom says that if the distribution of health in a population changes only for

a subgroup of agents in the population, the relative evaluation of the two distributions should

only depend on that subgroup. Formally,

Separability:
[
hS, hN\S

]
%
[
h′S, hN\S

]
⇔
[
hS, h

′
N\S

]
%
[
h′S, h

′
N\S

]
, for each S ⊆ N , and

h, h′ ∈ H.

Third is a standard technical condition, which says that, for fixed distributions of health

states, small changes in lifetimes should not lead to large changes in the evaluation of the

population health distribution. Formally,

Continuity: Let h, h′ ∈ H, and h(k) be a sequence in H such that, for each i ∈ N , h
(k)
i =

(ai, t
(k)
i ) → (ai, ti) = hi. If h(k) % h′ for each k then h % h′, and if h′ % h(k) for each k then

h′ % h.

The next axiom says that replacing the health status of an agent by that of perfect health,

ceteris paribus, cannot worsen the evaluation of the population health. Formally,

11It is worth mentioning that our analysis does not deal with uncertainty. Following Broome (1993), we

consider a formulation of the population health evaluation problem which contains no explicit element of risk,

and in which we obtain characterizations of population health evaluation functions without assumptions on the

policy maker’s (or individuals’) risk attitudes.
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Perfect health superiority: [(a∗, ti), hN\{i}] % h, for each h = [h1, . . . , hn] ∈ H and i ∈ N .

The next one says that if each agent is at perfect health, increasing the time dimension is

strictly better for the policy maker. Formally,

Time monotonicity at perfect health: If ti ≥ t′i, for each i ∈ N , with at least one strict

inequality, then [(a∗, t1), . . . , (a∗, tn)] � [(a∗, t
′
1), . . . , (a∗, t

′
n)].

The last basic axiom we consider says that quality of life improvements become almost

insignificant when lifetimes are negligible. More precisely, it says that any health profile will

be strictly preferred to the resulting profile in which one agent changes to enjoy perfect health,

during a sufficiently small lifetime, whereas the other duplets remain the same. Formally,

Negligible lifetimes condition: For each h ∈ H, and each i ∈ N , there exists ε > 0 such

that h � [(a∗, s), hN\{i}], for each 0 < s < ε.

The previous axiom replaces the pair of axioms in Hougaard, Moreno-Ternero and Østerdal

(2013a), made of the so-called social zero condition (described at the introduction), and the

notion of positive lifetime desirability (society improves if any agent moves from zero lifetime

to positive lifetime, for a given health state), none of which can be formalized in the current

model, which does not allow for zero lifetimes.

In what follows, we refer to the set of axioms introduced above as our basic axioms. Our

first result confirms the implications of the basic axioms.12 They characterize the so-called

generalized Healthy Years Equivalent (HYEs) population health evaluation function, in which

HYEs are submitted to an arbitrary (but increasing) function before being added.13

Generalized HYEs:

P gh[h1, . . . , hn] = P gh[(a1, t1), . . . , (an, tn)] =
n∑
i=1

g(f(ai, ti)), (1)

where g : R++ → R is a strictly increasing and continuous function, and f : A × T → T is a

function indicating the HYEs for each individual, i.e.,

• f is continuous with respect to its second variable,

12Theorem 1 is the counterpart of Theorem 1 in Hougaard, Moreno-Ternero and Østerdal (2013a), which

characterizes in the model allowing for zero lifetimes the population health evaluation functions satisfying

the first five basic axioms considered here, as well as the social zero condition and the axiom of positive life

desirability.
13The characterization is tight, as the axioms are independent.
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• 0 < f(ai, ti) ≤ ti, for each (ai, ti) ∈ A× T , and

• For each h = [h1, . . . , hn] = [(a1, t1), . . . , (an, tn)] ∈ H,

h ∼ [(a∗, f(ai, ti))i∈N ].

Theorem 1 The policy maker’s preferences satisfy the basic axioms, if and only if they can be

represented by a generalized HYEs population health evaluation function.

2.2 Core axioms

We now introduce three alternative axioms that will be combined, independently, to the list

of basic axioms presented above. The three axioms convey a specific concern for relative

comparisons of lifetimes, but each of them formalizes such a concern in a different way.

More precisely, the first one says that a proportional change in life years to individual i is

socially seen as just a good as a change of life years to individual j in the same proportion,

regardless of health states.14 Formally,

Relative lifetime comparisons: For each h ∈ H, c > 0, and i, j ∈ N ,

[
(ai, cti), hN\{i}

]
∼
[
(aj, ctj), hN\{j}

]
.

Now, we could restrict the scope of the previous axiom only to the case in which the two

involved agents enjoy perfect health, giving rise to the following axiom. Formally,

Relative lifetime comparisons at perfect health: For each h ∈ H, c > 0, and i, j ∈ N ,

[
(a∗, cti), (a∗, tj), hN\{i,j}

]
∼
[
(a∗, ti), (a∗, ctj), hN\{i,j}

]
.

Finally, we consider the axiom stating that if we have two health profiles, where each

profile consists of individuals with common health duplets, then the preference between them

is independent of a scaling of the life year component.15 Formally,

Common duplets time scale invariance: For each h = [(a, t)i∈N ], h′ = [(a′, t′)i∈N ] ∈ H,

such that h % h′, and c > 0, [(a, ct)i∈N ] % [(a′, ct′)i∈N ].

14This axiom was first formalized in a health context by Østerdal (2005).
15Note that this is a weak axiom as it only compares profiles in which all agents are endowed with the same

duplet. In the next section, we shall explore the stronger axiom in which profiles might have different duplets.
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3 The main results

We show in this section that some specific equity-oriented population health evaluation func-

tions, defined next, can be characterized by some combinations of the axioms described in the

previous section.

First, we introduce the population health evaluation function in which individual Quality

Adjusted Life Years (QALYs) are multiplied to evaluate the health distribution of the popula-

tion. More precisely,

Multiplicative QALYs:

Pmq[h1, . . . , hn] = Pmq[(a1, t1), . . . , (an, tn)] =
n∏
i=1

(q(ai)ti) , (2)

where q : A→ [0, 1] is an arbitrary function satisfying 0 < q(ai) ≤ q(a∗) = 1, for all ai ∈ A.

Alternatively, we could consider the more general population health evaluation function

in which HYEs, instead of QALYs, are multiplied to evaluate the health distribution of the

population. Formally,

Multiplicative HYEs:

Pmh[h1, . . . , hn] = Pmh[(a1, t1), . . . , (an, tn)] =
n∏
i=1

f(ai, ti), (3)

where f is constructed as in (1)

It is straightforward to see that the multiplicative QALY population health evaluation

function can therefore be seen as a specific instance of the multiplicative HYE population

health evaluation function, in which f(ai, ti) = q(ai)ti, for each (ai, ti) ∈ A× T .

At the risk of stressing the obvious, note that the previous two families endorse a concern for

the equity of the distribution of QALYs or HYEs (more specifically, a concern for the existence

of agents with poor outcomes), which is absent in their counterpart families that evaluate a

health distribution with the (unweighted) sum of the QALYs or HYEs in the population.

As we mentioned in Section 2, population health evaluation functions are “immune” to

monotonic transformations. More precisely, if P represents % then any strictly increasing

transformation of P would also do so. Thus, it is straightforward to see that the following are

equivalent representations of families (2) and (3):

Pmq[h1, . . . , hn] = Pmq[(a1, t1), . . . , (an, tn)] =
n∑
i=1

ln (q(ai)ti) ,

9



where q is constructed as in (2).

Pmh[h1, . . . , hn] = P ph[(a1, t1), . . . , (an, tn)] =
n∑
i=1

ln (f(ai, ti)) ,

where f is constructed as in (1).

A natural generalization of the above families would be obtained when QALYs (or HYEs)

are submitted to an arbitrary (but increasing) function before being added. Formally,

Generalized QALYs:

P gq[h1, . . . , hn] = P gq[(a1, t1), . . . , (an, tn)] =
n∑
i=1

g(q(ai)ti), (4)

where g : R++ → R is a strictly increasing and continuous function, and q is constructed as in

(2).

We are now ready to state the main results of our paper. The first result says that the mul-

tiplicative QALY population health evaluation function is characterized when relative lifetime

comparisons is added to the basic axioms.16 Formally,

Theorem 2 The policy maker’s preferences satisfy relative lifetime comparisons, and the basic

axioms, if and only if they can be represented by the multiplicative QALYs population health

evaluation function.

Theorem 3 shows that the multiplicative HYE population health evaluation function is

characterized when, instead of relative lifetime comparisons, only its weakening to perfect

health is added to the set of basic axioms. Formally,

Theorem 3 The policy maker’s preferences satisfy relative lifetime comparisons at perfect

health, and the basic axioms, if and only if they can be represented by the multiplicative HYEs

population health evaluation function.

Similarly, Theorem 4 shows that the generalized QALY population health evaluation func-

tion, P gq, is characterized when common duplets time scale invariance is the added axiom to

the set of basic axioms. Formally,

16The same functional form was characterized by Østerdal (2005) in a model in which individual QALY

functions (representing individual preferences) are given.
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Theorem 4 The policy maker’s preferences satisfy common duplets time scale invariance, and

the basic axioms, if and only if they can be represented by a generalized QALYs population

health evaluation function.

One might argue that the generalized families (1) and (4), characterized in Theorems 1

and 4, respectively, do not necessarily include a concern for the equality of the distribution (as

it indeed happens for the “logarithmic members” characterized in Theorems 2 and 3). The

following results exhibit the implications of adding a concern for inequality aversion to both

families. More precisely, we consider the axiom stating that a health profile in which two agents

at perfect health have different time spans is dominated by the subsequent profile in which those

agents keep the same perfect health status, but share a time span equal to the average of the

former two. Formally,

Pigou-Dalton transfer at perfect health: For each h = [(a∗, tk)k∈N ] ∈ H, and i, j ∈ N ,

such that ti 6= tj, [(
a∗,

ti + tj
2

)
,

(
a∗,

ti + tj
2

)
, hN\{i,j}

]
� h.

As shown in the next two statements, the addition of this new axiom to the list of axioms

characterizing the general families, imposes that QALYs (HYEs) enter into the population

health evaluation function in a (strictly) concave way.

Corollary 1 The policy maker’s preferences satisfy Pigou-Dalton transfer at perfect health,

common duplets time scale invariance, and the basic axioms, if and only if they can be repre-

sented by a generalized concave QALYs population health evaluation function.

Corollary 2 The policy maker’s preferences satisfy Pigou-Dalton transfer at perfect health and

the basic axioms, if and only if they can be represented by a generalized concave HYEs population

health evaluation function.

4 Further insights

As mentioned in the introduction, the so-called fair innings notion is usually invoked to develop

equity-sensitive forms of evaluating a distribution of health. One might argue that the fair

innings notion is captured by Williams (1997) upon endorsing a Bergsonian functional form

11



to evaluate the health distribution of a population. In the parlance of this paper, that would

amount to consider the subfamilies arising from (1) and (4) after imposing that g is, not only

a strictly increasing, continuous, and concave function (as in Corollaries 1 and 2), but also a

power function. We show in this section how those families could also be characterized when

adding new axioms to the set of basic axioms considered above. Nevertheless, it is worth

acknowledging explicitly that, whereas the notion of a threshold plays a crucial role in the fair

innings reasoning, it does not play any role in our formalization.

Let us start introducing the following two axioms, which were also part of the analysis in

Hougaard, Moreno-Ternero and Østerdal (2013a), for the model considered therein. The first

axiom says that the ranking of a pair of population health distributions does not reverse when

all lifetimes are multiplied by a common positive constant. The second axiom restricts the

scope of the first one to the case in which agents enjoy perfect health. Formally,

Time scale independence: For each c > 0, and h = [(ai, ti)i∈N ], h′ = [(a′i, t
′
i)i∈N ],

h % h′ ⇒ [(ai, cti)i∈N ] % [(a′i, ct
′
i)i∈N ].

Time scale independence at perfect health: For each c > 0, and h = [(a∗, ti)i∈N ], h′ =

[(a∗, t
′
i)i∈N ],

h % h′ ⇒ [(a∗, cti)i∈N ] % [(a∗, ct
′
i)i∈N ].

We now formally define the power versions of the QALYs and HYEs population health

evaluation functions considered above:

Power QALYs:

P pq[h1, . . . , hn] = P pq[(a1, t1), . . . , (an, tn)] =
n∑
i=1

(q(ai)ti)
γ , (5)

where γ is a positive scalar, and q is constructed as in (2).

Power HYEs:

P ph[h1, . . . , hn] = P ph[(a1, t1), . . . , (an, tn)] =
n∑
i=1

f(ai, ti)
γ, (6)

where γ is a positive scalar, and f is constructed as in (1).

Two other somewhat polar families are the following:

Negative power QALYs:

P npq[h1, . . . , hn] = P npq[(a1, t1), . . . , (an, tn)] = −
n∑
i=1

(q(ai)ti)
δ , (7)
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where δ is a negative scalar, and q is constructed as in (2).

Negative power HYEs:

P nph[h1, . . . , hn] = P nph[(a1, t1), . . . , (an, tn)] = −
n∑
i=1

f(ai, ti)
δ, (8)

where δ is a negative scalar, and f is constructed as in (1).

We obtain the following results:

Theorem 5 The policy maker’s preferences satisfy time scale invariance and the basic axioms,

if and only if they can be represented by one of the following population health evaluation

functions:

1. Power QALYs.

2. Multiplicative QALYs.

3. Negative power QALYs.

Theorem 6 The policy maker’s preferences satisfy time scale invariance at perfect health, and

the basic axioms, if and only if they can be represented by one of the following population health

evaluation functions:

1. Power HYEs.

2. Multiplicative HYEs.

3. Negative power HYEs.

The previous two results are of a different nature to Theorems 4 and 5 in Hougaard, Moreno-

Ternero and Østerdal (2013a), which characterize the Power QALYs and HYEs population

health evaluation functions in the domain allowing for zero lifetimes. This is due to the fact

that the other two functional forms in the above statements do not pass the test of imposing

(right) continuity at zero lifetimes.

As stated in the next two corollaries, and similarly to what we did in Section 3, the addition

of the Pigou-Dalton transfer at perfect health axiom, to the previous results, imposes that

QALYs (HYEs) enter into the power families in a (strictly) concave way, i.e., 0 < γ < 1.

Corollary 3 The policy maker’s preferences satisfy Pigou-Dalton transfer at perfect health,

time scale invariance, and the basic axioms, if and only if they can be represented by one of the

following population health evaluation functions:

13



1. Power concave QALYs (i.e., power QALYs for 0 < γ < 1).

2. Multiplicative QALYs.

3. Negative power QALYs.

Corollary 4 The policy maker’s preferences satisfy Pigou-Dalton transfer at perfect health,

time scale invariance at perfect heath, and the basic axioms, if and only if they can be represented

by one of the following population health evaluation functions:

1. Power concave HYEs (i.e., power HYEs for 0 < γ < 1).

2. Multiplicative HYEs.

3. Negative power HYEs.

Our last results will strengthen the previous ones upon adding one of the following three

related axioms, each conveying a specific attitude with respect to time tradeoffs at perfect

health.

Overall time biased tradeoff at perfect health: For each t ∈ T \{1}, h ∈ H, and i, j ∈ N ,[
(a∗, t) ,

(
a∗,

1

t

)
, hN\{i,j}

]
�
[
(a∗, 1) , (a∗, 1) , hN\{i,j}

]
.

Neutral time tradeoff at perfect health: For each t ∈ T , h ∈ H, and i, j ∈ N ,[
(a∗, t) ,

(
a∗,

1

t

)
, hN\{i,j}

]
∼
[
(a∗, 1) , (a∗, 1) , hN\{i,j}

]
.

Egalitarian time biased tradeoff at perfect health: For each t ∈ T \ {1}, h ∈ H, and

i, j ∈ N , [
(a∗, t) ,

(
a∗,

1

t

)
, hN\{i,j}

]
≺
[
(a∗, 1) , (a∗, 1) , hN\{i,j}

]
.

The next result disentangles Corollary 3.

Theorem 7 The following statements hold:

• The policy maker’s preferences satisfy overall time biased tradeoff at perfect health, Pigou-

Dalton transfer at perfect health, time scale invariance, and the basic axioms, if and only if

they can be represented by a power concave QALYs population health evaluation function.

14



• The policy maker’s preferences satisfy neutral time tradeoff at perfect health, time scale

invariance, and the basic axioms, if and only if they can be represented by the multiplicative

QALYs population health evaluation function.

• The policy maker’s preferences satisfy egalitarian time biased tradeoff at perfect health,

time scale invariance, and the basic axioms, if and only if they can be represented by a

negative power QALYs population health evaluation function.

Similarly, the next result disentangles Corollary 4.

Theorem 8 The following statements hold:

• The policy maker’s preferences satisfy overall time biased tradeoff at perfect health, Pigou-

Dalton transfer at perfect health, time scale invariance at perfect health, and the basic

axioms, if and only if they can be represented by a power concave HYEs population health

evaluation function.

• The policy maker’s preferences satisfy neutral time tradeoff at perfect health, time scale

invariance at perfect health, and the basic axioms, if and only if they can be represented

by the multiplicative HYEs population health evaluation function.

• The policy maker’s preferences satisfy egalitarian time biased tradeoff at perfect health,

time scale invariance at perfect health, and the basic axioms, if and only if they can be

represented by a negative power HYEs population health evaluation function.

5 Discussion

We have presented in this paper normative foundations for several equity-sensitive population

health evaluation functions. All of them share the common ground given by our basic axioms.

The normative appeal of those basic axioms seems to be strong, but we have not tested their

positive appeal via experiments or questionnaires, and that could certainly be a plausible line for

future research.17 Beyond those basic axioms, the main population health evaluation functions

17Amiel and Cowell (1999) provide empirical evidence in which respondents of questionnaires related to income

inequality measurement reject separability. Turpcu et al., (2012) show the existence of framing effects in the

empirical support for the axiom in a health context. Nevertheless, it seems that separability is well established

in the health economics literature, as it underlies the use of incremental analysis in cost-effectiveness analysis,

which implies that individuals for whom two treatments yield the same health should not influence the relative
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we single out differ from each other on the specific form of relative lifetime comparisons they

allow.18 We have also provided normative foundations for other population health evaluation

functions (including some capturing the notion of fair innings) resorting to axioms reflecting

independence of the time scale.

To conclude, it is worth mentioning that our analysis is silent regarding the specific func-

tional form one should adopt for the quality function q : A → [0, 1] or the HYE function

f : A× T → T . This issue is left for future research. A plausible avenue to explore it would be

to extend our whole analysis in this paper to the case in which the mathematical structure of

the domain of health states A is more specific, which would allow formalizing new axioms. For

instance, if all the health states in the set A are assumed to be objectively ranked from worst

to best, we could formalize, in the spirit of Hammond (1976), that a “health transfer” between

two agents with equal lifetimes (from the one with the health state ranked higher) would be

welcomed. Such a resulting axiom would translate into a further mathematical condition of the

quality function q : A→ [0, 1] (or the HYE function f : A×T → T ). It is likely to expect that

the combination of new axioms of this sort would drive us towards specific functional forms.

In practice, these functions can be elicited directly via person trade-offs, which aim to derive

quality weights by means of questionnaires in which respondents face hypothetical tradeoffs

regarding different health profiles (e.g., Patrick, Bush and Chen, 1973).

6 Appendix. Proofs of theorems

Proof of Theorem 1. We focus on the non-trivial implication. Formally, assume % satisfies

the basic axioms. Let h ∈ H and i ∈ N . Then, there exists t∗i ∈ T such that h ∼ [(a∗, t
∗
i ), hN\{i}].

Assume otherwise. Then, T = A ∪B, where,

A = {s ∈ T |h � [(a∗, s), hN\{i}]},

and

B = {s ∈ T |[(a∗, s), hN\{i}] � h}.

By the negligible lifetimes condition, A 6= ∅. By perfect health superiority B 6= ∅. By conti-

nuity, A and B are open sets relative to T . As A ∩ B = ∅, it would follow that T is not a

connected set, a contradiction.

evaluation of these treatments (e.g., Gold et al., 1996). As for continuity, it discards leximin evaluations, which

may have intuitive appeal for some observers.
18The implications of absolute lifetime comparisons is explored in Moreno-Ternero and Østerdal (2015).
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Now, by separability, t∗i only depends on (ai, ti) (and, thus, is independent of the remaining

duplets of the profile). Thus, for each i = 1, . . . , n, let fi : A × T → T be defined such

that fi(ai, ti) = t∗i , for each (ai, ti) ∈ A × T . By anonymity, fi(·, ·) ≡ fj(·, ·) ≡ f(·, ·), for each

i, j ∈ N . By time monotonicity at perfect health and perfect health superiority, 0 < f(ai, ti) ≤ ti,

for each (ai, ti) ∈ A×T and, by continuity, f is a continuous function with respect to its second

variable. Furthermore,

h ∼ [(a∗, f(ai, ti))i∈N ],

which implicitly says that social preferences only depend on the profile of healthy years equiva-

lent. By separability and continuity, the evaluation of the healthy years equivalents is separable

and continuous. It also follows that the range of f is a connected subset of R. Thus, by Theo-

rem 3 in Debreu (1960), there exists a strictly increasing and continuous function g : R+ → R

such that

h % h′ ⇐⇒
n∑
i=1

g (f(ai, ti)) ≥
n∑
i=1

g (f(a′i, t
′
i)) ,

which concludes the proof.

Proof of Theorem 2 We focus on the non-trivial implication. Formally, assume % satisfies

the basic axioms and relative lifetime comparisons. Then, by Theorem 1, % can be represented

by a population health evaluation function satisfying (1).

By iterated application of relative lifetime comparisons, and the transitivity of %,

g(f(a1, t1)) + ...+ g(f(an, tn)) = g

(
f

(
a1,

n∏
1

ti

))
+ g(f(a2, 1)) + ...+ g(f(an, 1)).

For a fixed common health state ā, g(f(ā, ·)) therefore satisfies the following functional equation:

g(f(ā, t1)) + g(f(ā, t2)) = g(f(ā, t1t2)) + g(f(ā, 1)),

for all t1, t2 > 0. Let r : A×R→ T be the function such that r(x, y) = g(f(x, exp(y))) for each

(x, y) ∈ A× R. Thus, for each fixed common health state ā ∈ A and any t1, t2 ∈ R, we have

r(ā, t1 + t2) + r(ā, 0) = r(ā, t1) + r(ā, t2), (9)

which is precisely one of Cauchy’s canonical functional equations. As r is continuous, it follows

that the unique solutions to such an equation are the linear functions (e.g., Aczel, 2006; page

43). More precisely, there exist two functions α : A→ R and β : A→ R such that

g(f(ā, t)) = r(ā, ln t) = α(ā) ln t+ β(ā),

17



for each t ∈ T .

Now, by relative lifetime comparisons, it follows that, for each ā, ā′ ∈ A,

g(f(ā, t1)) + g(f(ā′, t2)) = g(f(ā, t1t2)) + g(f(ā′, 1))

= g(f(ā, 1)) + g(f(ā′, t1t2)).

Thus, α(ā) = α(ā′) = α, and, therefore,

P ((a1, t1), ..., (an, tn)) = α

(
n∑
i=1

ln(ti)

)
+

n∑
i=1

β(ai).

To conclude, let q : A → R be such that q(a) = exp
(
β(a)−β(a∗)

α

)
, for each a ∈ A. By perfect

health superiority, it follows that 0 < q(a) ≤ q(a∗) = 1, for all a ∈ A. Now, as the population

health evaluation function is uniquely determined, up to strictly increasing transformations, we

can consider the monotonic transformation of P , P ′ = exp
(
P−nβ(a∗)

α

)
. Then,

P ′((a1, t1), ..., (an, tn)) = exp((P ((a1, t1), ..., (an, tn))− nβ(a∗))/α)

= exp

(
n∑
i=1

ln ti +
n∑
i=1

(
β(a)− β(a∗)

α

))

=
n∏
i=1

q(ai)ti,

as desired.

Proof of Theorem 3 We focus on the non-trivial implication. Formally, assume % satisfies

the basic axioms and relative lifetime comparisons at perfect health. Then, by Theorem 1,

% can be represented by a population health evaluation function satisfying (1). Let h =

[(a1, t1), . . . , (an, tn)] ∈ H, and h′ = [(a′1, t
′
1), . . . , (a

′
n, t
′
n)] ∈ H. Then, by iterated application of

relative lifetime comparisons at perfect health, and the transitivity of %,

h % h′ ⇐⇒ [(a∗,
∏
i∈N

f(ai, ti)), (a∗, 1)k∈N\{i}] % [(a∗,
∏
i∈N

f(a′i, t
′
i)), (a∗, 1)k∈N\{i}].

By time monotonicity at perfect health, and the transitivity of %,

h % h′ ⇐⇒
∏
i∈N

f(ai, ti) ≥
∏
i∈N

f(a′i, t
′
i),

as desired.

Proof of Theorem 4 We focus on its non-trivial implication. Formally, assume % satisfies

the basic axioms and common duplets time scale invariance. Then, by Theorem 1, % can be
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represented by a population health evaluation function satisfying (1). We now make two further

claims.

Claim 1. We claim that for each (a, t), (a′, t′) ∈ A× T , and c > 0,

f(a, t) ≥ f(a′, t′) ⇐⇒ f(a, ct) ≥ f(a′, ct′).

To prove the claim, let h = [(a, t), . . . , (a, t)], h′ = [(a′, t′), . . . , (a′, t′)] ∈ H and c > 0. Denote

hc = [(a, ct), . . . , (a, ct)] and h′c = [(a′, ct′), . . . , (a′, ct′)]. By (1),

h % h′ ⇐⇒ f(a, t) ≥ f(a′, t′),

and

hc % h′c ⇐⇒ f(a, ct) ≥ f(a′, ct′).

By common duplets time scale invariance, the claim follows.

Claim 2. Let q : A→ R be such that q(a) = f(a, 1), for each a ∈ A. We claim that

f(a, t) ≥ f(a′, t′) ⇐⇒ q(a)t ≥ q(a′)t′,

for each (a, t), (a′, t′) ∈ A× T .

In order to prove the claim note that, by definition, f(ai, 1) = f(a∗, q(ai)). By Claim 1,

f(a, t) = f(a′, t′) ⇐⇒ f(a, ct) = f(a′, ct′).

Thus, f(a, t) ≥ f(a′, t′) ⇐⇒ f(a∗, q(a)t) ≥ f(a∗, q(a
′)t′) ⇐⇒ q(a)t ≥ q(a′)t′, as desired.

By Claim 2, it follows that f(·, ·) is a monotonic transformation of the function τ : A×T → R

defined by τ(a, t) = q(a)t, for each (a, t) ∈ A × T . Then, by the above, P gq represents %, as

desired.

Proof of Corollary 1 As before, we focus on the non-trivial implication. Formally, assume

% satisfies the basic axioms, common duplets time scale invariance, and Pigou-Dalton transfer

at perfect health. Then, by Theorem 4, % can be represented by a population health evaluation

function satisfying (4).

Let i, j ∈ N and consider the two health profiles h = [(a∗, tk)k∈N ], where ti 6= tj, and

h′ =
[(
a∗,

ti+tj
2

)
,
(
a∗,

ti+tj
2

)
, hN\{i,j}

]
, By Pigou-Dalton transfer at perfect health, h′ � h,

which, by (4), means that

2g

(
q(a∗)

ti + tj
2

)
+

∑
k∈N\{i,j}

g(q(a∗)tk) > g(q(a∗)ti) + g(q(a∗)tj) +
∑

k∈N\{i,j}

g(q(a∗)tk).
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Or, equivalently (as q(a∗) = 1),

g

(
ti + tj

2

)
>
g(ti)

2
+
g(tj)

2
,

from where it follows that g is strictly concave, as desired.

Proof of Corollary 2 As before, we focus on the non-trivial implication. Formally, assume

% satisfies the basic axioms and Pigou-Dalton transfer at perfect health. Then, by Theorem 1,

% can be represented by a population health evaluation function satisfying (1).

Let i, j ∈ N and consider the two health profiles h = [(a∗, tk)k∈N ], where ti 6= tj, and

h′ =
[(
a∗,

ti+tj
2

)
,
(
a∗,

ti+tj
2

)
, hN\{i,j}

]
, By Pigou-Dalton transfer at perfect health, h′ � h,

which, by (1), means that

2g

(
f

(
a∗,

ti + tj
2

))
+

∑
k∈N\{i,j}

g(f(a∗, tk)) > g(f(a∗, ti)) + g(f(a∗, tj)) +
∑

k∈N\{i,j}

g(f(a∗, tk)).

Or, equivalently (as f(a∗, t) = t, for each t ∈ T ),

g

(
ti + tj

2

)
>
g(ti)

2
+
g(tj)

2
,

from where it follows that g is strictly concave, as desired.

Proof of Theorem 5. We focus on the non-trivial implication. Formally, assume % satisfies

time scale invariance and the basic axioms. Then, by Theorem 1, % can be represented by a

population health evaluation function satisfying (1).

Let q̄ : A → R be such that q̄(a) = f(a, 1), for each a ∈ A. Let P denote the population

health evaluation function defined by

P [h1, . . . , hn] = P [(a1, t1), . . . , (an, tn)] =
n∑
i=1

g (q̄(ai)ti) .

By an analogous argument to that in the proof of Theorem 4 at Hougaard, Moreno-Ternero

and Østerdal (2013a), we obtain that

n∑
i=1

g (q̄(ai)ti) ≥
n∑
i=1

g (q̄(a′i)t
′
i) ⇐⇒

n∑
i=1

g (q̄(ai)cti) ≥
n∑
i=1

g (q̄(a′i)ct
′
i) ,

for each h = [(a1, t1), . . . , (an, tn)] ∈ H, h′ = [(a′1, t
′
1), . . . , (a

′
n, t
′
n)] ∈ H and c > 0.

By Bergson and Samuelson (e.g., Burk, 1936; Samuelson, 1965; Moulin, 1988), there are

only three possible functional forms for P :

• P [h1, . . . , hn] = P [(a1, t1), . . . , (an, tn)] =
∑n

i=1 αi (q̄(ai)ti)
γ ,
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• P [h1, . . . , hn] = P [(a1, t1), . . . , (an, tn)] = −
∑n

i=1 αi (q̄(ai)ti)
δ ,

• P [h1, . . . , hn] = P [(a1, t1), . . . , (an, tn)] =
∑n

i=1 αi log (q̄(ai)ti) ,

for some γ > 0, δ < 0 and αi > 0 for each i ∈ N . By anonymity, αi = αj for each i, j ∈ N ,

which concludes the proof.

Proof of Theorem 6. We focus on the non-trivial implication. Formally, assume % satisfies

time scale invariance at perfect health and the basic axioms. Then, by Theorem 1, % can be

represented by a population health evaluation function satisfying (1).

By time scale invariance at perfect health,

n∑
i=1

g (f(ai, ti)) ≥
n∑
i=1

g (f(a′i, t
′
i)) ⇐⇒

n∑
i=1

g (cf(ai, ti)) ≥
n∑
i=1

g (cf(a′i, t
′
i)) ,

for each h = [(a1, t1), . . . , (an, tn)] ∈ H, h′ = [(a′1, t
′
1), . . . , (a

′
n, t
′
n)] ∈ H and c > 0.

As in the proof of the previous theorem, by Bergson and Samuelson, and anonymity, it

follows that % is represented by one of the following functional forms:

• P [h1, . . . , hn] = P [(a1, t1), . . . , (an, tn)] =
∑n

i=1 (f(ai, ti))
γ ,

• P [h1, . . . , hn] = P [(a1, t1), . . . , (an, tn)] = −
∑n

i=1 (f(ai, ti))
δ ,

• P [h1, . . . , hn] = P [(a1, t1), . . . , (an, tn)] =
∑n

i=1 log (f(ai, ti)) ,

for some γ > 0 and δ < 0, for each i ∈ N , as desired.

Proof of Corollary 3. By Theorem 5, it only remains to show that only the concave

functions of the power QALYs family satisfy Pigou-Dalton transfer at perfect health. Now,

let i, j ∈ N and consider the two health profiles h = [(a∗, tk)k∈N ], where ti 6= tj, and

h′ =
[(
a∗,

ti+tj
2

)
,
(
a∗,

ti+tj
2

)
, hN\{i,j}

]
, By Pigou-Dalton transfer at perfect health, h′ � h,

which, if preferences are represented by a member of the power QALYs family, means that

2q(a∗)

(
ti + tj

2

)γ
+

∑
k∈N\{i,j}

q(a∗)t
γ
k > q(a∗)t

γ
i + q(a∗)t

γ
j +

∑
k∈N\{i,j}

q(a∗)t
γ
k.

Or, equivalently (as q(a∗) = 1), (
ti + tj

2

)γ
>
tγi
2

+
tγj
2
,

from where it follows that 0 < γ < 1, as desired.
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Proof of Corollary 4. By Theorem 6, it only remains to show that only the concave

functions of the power HYEs family satisfy Pigou-Dalton transfer at perfect health. Now,

let i, j ∈ N and consider the two health profiles h = [(a∗, tk)k∈N ], where ti 6= tj, and

h′ =
[(
a∗,

ti+tj
2

)
,
(
a∗,

ti+tj
2

)
, hN\{i,j}

]
, By Pigou-Dalton transfer at perfect health, h′ � h,

which, by (6), means that

2f

(
a∗,

(
ti + tj

2

))γ
+

∑
k∈N\{i,j}

f(a∗, tk)
γ > f(a∗, ti)

γ + f(a∗, tj)
γ +

∑
k∈N\{i,j}

f(a∗, tk)
γ.

Or, equivalently (as f(a∗, t) = t, for each t ∈ T ),(
ti + tj

2

)γ
>
tγi
2

+
tγj
2
,

from where it follows that 0 < γ < 1, as desired.

The following technical lemma will be needed to prove the results presented next.

Lemma 1 For each t ∈ T \ {1}, and each γ 6= 0, tγ + 1
tγ
> 2.

Proof. Let t ∈ T \ {1}. Without loss of generality, assume t > 1. Let f : R → R be

such that f(γ) = tγ + 1
tγ

. Then, f is a continuous and derivable function. Furthermore,

f ′(γ) =
(
tγ − 1

tγ

)
log t. Thus, γf ′(γ) > 0, which implies that f(·) is strictly decreasing for

γ < 0 and strictly increasing for γ > 0. Therefore, f(γ) > f(0) = 2, for each γ 6= 0, as desired.

Proposition 1 The following statements hold:

• The power QALYs and HYEs population health evaluation functions satisfy overall time

biased tradeoff at perfect health.

• The multiplicative QALYs and HYEs population health evaluation functions satisfy neutral

time tradeoff at perfect health.

• The negative power QALYs and HYEs population health evaluation functions satisfy egal-

itarian time biased tradeoff at perfect health.

Proof. The second statement is obvious, so we concentrate on the other two. Let t ∈ T \ {1},

h ∈ H, and i, j ∈ N . Then, as q(a∗) = 1, and f(a∗, t) = t, for each t ∈ T , it follows

P pq

[
(a∗, t) ,

(
a∗,

1

t

)
, hN\{i,j}

]
> P pq

[
(a∗, 1) , (a∗, 1) , hN\{i,j}

]
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if and only if

P ph

[
(a∗, t) ,

(
a∗,

1

t

)
, hN\{i,j}

]
> P ph

[
(a∗, 1) , (a∗, 1) , hN\{i,j}

]
if and only if

tγ +
1

tγ
> 2,

which follows by Lemma 1.

Similarly,

P npq

[
(a∗, t) ,

(
a∗,

1

t

)
, hN\{i,j}

]
< P npq

[
(a∗, 1) , (a∗, 1) , hN\{i,j}

]
if and only if

P nph

[
(a∗, t) ,

(
a∗,

1

t

)
, hN\{i,j}

]
< P nph

[
(a∗, 1) , (a∗, 1) , hN\{i,j}

]
if and only if

−tδ − 1

tδ
< −2,

which also follows by Lemma 1.

To conclude, Theorem 7 is a direct consequence of Corollary 3 and Proposition 1, whereas

Theorem 8 is a direct consequence of Corollary 4 and Proposition 1.
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