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Abstract

Malaria is a major cause of morbidity and mortality in sub-Saharan Africa. It is also a dynamic

contributor to poverty through its effects on children’s cognitive development. This paper

examines the degree to which malaria in early childhood impacts on educational achieve-

ment in later childhood. The substantial decline in malaria in the region over recent years

allows an assessment of its impact to be made. Focusing on Tanzania, we combine data

from the Malaria Atlas Project and the 2010–2014 Uwezo household surveys (N = 246,325).

We relate the district-level risk of malaria in a child’s year of birth to his/her performance in

tests of acquired cognitive skills (literacy and numeracy). For causal identification, we rely on

differences across districts in the pace of decline in malaria prevalence occurring over the

last 15 years. We control for time-invariant district level, age, birth cohort and survey year

effects, as well as district-level trends and individual and household-specific factors. In addi-

tion, we use sibling variation in birth-year exposure to malaria to strengthen our identification.

A ten percentage-point decrease in malaria prevalence in birth year is associated with a 0.06

standard deviation (p = 0.000) increase in English literacy achievement. This estimate is

comparable in magnitude to education intervention programs with very large effects. Our

results are robust to a large number of sensitivity analyses. We find no statistically significant

effects of birth-year malaria exposure on attainments in numeracy and Kiswahili, and we

argue that this is probably attributable to strong ceiling effects in these test scores. We con-

clude that in Tanzania malaria is an important factor in geographical variation in English liter-

acy. This indicates that malaria is a significant public health challenge to educational

achievement in this country, and probably in other regions with malaria.

Introduction

Malaria infection in childhood has been associated with persistent cognitive impairment [1–

3]. The association is particularly strong with severe forms of malaria resulting from infection

with the Plasmodium falciparum parasite, including cerebral malaria, malaria with seizures,
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and severe malarial anemia [4–6]. However, uncomplicated [7–10] and asymptomatic malaria

[11] have also been negatively associated with performance in cognitive tests and academic

achievement in prospective case-control [8], cohort [7,10] or cross-sectional comparison stud-

ies [9,11]. Further, randomized controlled trials (RCTs) in which prophylaxis or treatment

were given to school-aged children have found that preventive measures can lead to improve-

ments in cognitive or academic performance [12,13].

These findings suggest that post-malarial cognitive impairment represents a significant

public health challenge to educational achievement [5,14] and may also, as a consequence, be

an obstacle to the alleviation of poverty in regions where malaria is present. However, previous

studies suffer from a number of methodological weaknesses that limit our ability to draw firm

conclusions regarding causality and the magnitude of the problem. Most are based on small

samples that are not representative on a national scale. Moreover, despite controlling for an

observed list of potential confounders, case-control, cohort and cross-sectional comparison

studies potentially involve omitted variables bias.

A separate recent body of literature has explored longer-term effects of childhood malaria

using either temporal variation in climatic variables [15,16] or implementation of malaria

eradication programs [17–23] as exogenous sources of variation in exposure. Most of these

studies have looked at outcomes in adulthood, and most find that exposure to malaria in child-

hood depresses income in adulthood. Some have also looked at adult literacy and educational

attainment, with more mixed results, especially in the latter case. For example, in Mexico,

Hoyt Bleakley found evidence that exposure to malaria in childhood led to lower income and a

lower probability of being literate in adulthood but had no effect on years of schooling [17].

This is consistent with long-term income consequences of malaria being driven primarily by

effects on cognitive abilities (as formed in childhood) rather than the mere quantity of school-

ing. Meanwhile, to our knowledge only one of the studies from this body of literature (focusing

on Zambia) looks directly at skill formation during childhood [23]. This study concludes that

children exposed to low but resurgent malaria prevalence in infancy perform worse in cogni-

tive tests at age six than children who are exposed to higher malaria prevalence from birth.

Ruling out other explanations, the authors argue that this is probably due to the first group’s

failure to form partial immunity in infancy–an immunity which would protect them in the

context of rising prevalence.

In this study, we explore how exposure to malaria in early childhood affects performance in

literacy and numeracy tests in later childhood in a context where prevalence is not on the rise.

We employ an indirect approach relating the risk of contracting malaria in early childhood,

defined as the district-level prevalence of malaria in the child’s year of birth, to their perfor-

mance on benchmarked literacy and numeracy tests when they are of school age. In view of the

phased and cumulative nature of malaria interventions in Tanzania, we do not depend on a

unique exogenous policy intervention to obtain causal identification. Rather, we rely on the

observed temporal and spatial variation in malaria risk associated with the rapid decline in prev-

alence over the last 15 years. We use repeated cross-sectional data on test scores, collected at the

household level, which are representative at both national and district levels. This enables us to

control for time-invariant district level, age, birth cohort and survey year effects, as well as indi-

vidual and household-specific factors. To our knowledge this is the first study to use nationally

representative longitudinal data to estimate the impact of early life malaria exposure on aca-

demic performance in school-age children in Africa. The richness of our data allows us to

address many of the potential weaknesses of previous studies, and as a consequence we are able

not only to estimate the effect of early life malaria exposure on academic performance in mid to

late childhood, but also to shed light on the importance of malaria exposure in explaining geo-

graphical inequalities in academic performance in the context of Tanzania.

Early life malaria exposure and academic performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0199542 June 22, 2018 2 / 16

Funding: NRK received financial support for this

study from Ulla og Mogens Folmer Andersens

Fond (J.nr. 100041-1). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0199542


Methods

Study population and data sources

The data used for this study refer to children resident in mainland Tanzania aged 7–14 during

the period 2010–2014. We combine national- and district-level representative data on aca-

demic performance among children with district-level estimates of Plasmodium falciparum
parasite rates (PfPR) for each year from 2000 to 2015. The latter represent direct metrics of

malaria risk, which we calculate based on pixel level estimates from the Malaria Atlas Project

(MAP) [24] and pixel level population estimates from the WorldPop Project [25,26]. The MAP

data consist of continuous predictions of Plasmodium falciparum parasite rates among 2 to 10

year-olds (hereafter simply referred to as PfPR) at 5 × 5 km spatial resolution. These are gener-

ated using a spatiotemporal Bayesian model combining (i) PfPR estimates of 27,573 spatially

and temporally unique population clusters obtained from hundreds of community-based or

national cross-sectional surveys from across the African continent, (ii) an optimized set of

environmental covariates, and (iii) modeled coverage of Insecticide-Treated bed Nets (ITN),

Artemisinin-based Combination Therapies (ACT) and Indoor Residual Spraying (IRS). In the

modeling process, survey-based estimates of PfPR are adjusted by age, season and type of diag-

nostic (rapid diagnostic testing/microscopy), and the modelling of ITN coverage includes

socio-demographic covariates [24]. Of the 27,573 population clusters 2,678 are from Tanzania

(see S4 Fig for a map of clusters).

The WorldPop data consist of predictions of population density at 1x1 km spatial resolu-

tion. These predictions are generated using a non-parametric model in which census data are

combined with land cover information, climatic data, elevation data, observed lights at night,

information on networks of roads and waterways, large water bodies, and protected area delin-

eations [25]. In the case of Tanzania, population grids are available for 2000, 2005, 2010 and

2015. We estimate intermediate years by taking the natural logarithm of the WorldPop esti-

mates, linearly interpolating the missing years, and finally taking the exponential for the indi-

vidual years. To arrive at annual district-level estimates of PfPR, we aggregate population data

to pixels that correspond to the resolution of the MAP data. For each pixel we then multiply

PfPR and the population count and overlay the resulting raster with 2002 district boundaries

obtained from the Global Administrative Unit Layers initiative [27]. District-level averages are

then calculated by summing over all pixels that fall within a district and dividing by the district

population size. Fig 1 illustrates the spatial and temporal variation in PfPR for districts within

regions of Tanzania during the period 2000–2015. A recent study concluded that the large

drop in prevalence between 2000 and 2015 was due primarily to unprecedented levels of inter-

vention coverage during this period [24].

Data on children’s educational performance come from the 2010–2014 Uwezo cross-sec-

tional surveys for Tanzania [28]. The data are representative at the district level, and cover chil-

dren aged 7–16, both in and out of school. In the African context, this level of within-country

coverage is unparalleled, and it provides a valuable opportunity to analyze developments over

time and across space. The tests are designed to measure basic skills in English and Kiswahili

literacy as well as numeracy. The numeracy test has six incremental levels: Number recogni-

tion, counting, magnitude comparison, addition, subtraction and multiplication. The literacy

tests have five incremental levels: Letter recognition, reading words, reading paragraphs, read-

ing a story and comprehension of the story read. For each test, children who fail to pass any of

the levels are awarded a score of one. The other children are awarded a score equal to the high-

est level passed plus one. The difficulty of the tests is fixed and corresponds to the level

expected after two years of completed schooling. The tests were developed by a panel of experts

from the Tanzanian Institute of Education, the University of Dar Es Salaam, practicing

Early life malaria exposure and academic performance
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Fig 1. Developments in Plasmodium falciparum parasite rates for districts within regions of Tanzania, 2000–2015. Each graph represents a region, and each line a

district within a region, with 2002 boundaries obtained from the Global Administrative Unit Layers initiative.

https://doi.org/10.1371/journal.pone.0199542.g001
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teachers and experts in the subject area. They were refined in consultation with the Ministry of

Education and Vocational Training to ensure that they reflect the national second grade

curriculum.

The pooled test score dataset, which covers the surveys undertaken annually from 2010 to

2014, includes a total of 199,767 households and reflects a coverage rate of 79 percent relative

to the survey design. From the pooled dataset we exclude children born before 2000, as this is

the first year for which we have malaria data. Further, as we wish to control for birth-year fixed

effects in our analysis (see below), we exclude children born in 2007, as this birth year is only

found in the 2014 survey. This gives us a final pooled sample size of 246,325 children. Table 1

presents summary statistics for the main variables included in this study, split by low/high

malaria prevalence districts.

The last data source is the National Centers for Environmental Information (NOAA) [29],

which provides data on night-time light density from 1992 to 2013 at pixel level. Since data on

economic activity over time and at the sub-country level is very limited or non-existent in low

income contexts, night-time light density has been widely used in recent years to investigate

variation in development outcomes [30].

Table 1. Summary of district by birth cohort means, by PfPR category.

Low prevalence

PfPR districts

High prevalence PfPR districts Difference in means

Mean Standard

deviation

Mean Standard deviation Mean Standard deviation

Individual:
Age 9.634 1.876 9.630 1.880 0.004 0.008

Female (share) 0.506 0.500 0.505 0.500 0.001 0.002

Birth order 2.516 1.543 2.643 1.643 -0.127��� 0.006

Currently enrolled (share) 0.895 0.306 0.879 0.327 0.016��� 0.001

Never enrolled (share) 0.071 0.256 0.087 0.281 -0.016��� 0.001

Highest completed grade 2.974 1.877 2.715 1.810 0.259��� 0.008

English score 0.615 1.669 0.187 1.554 0.428��� 0.007

Numeracy score -0.274 2.106 -0.621 2.122 0.347��� 0.009

Kiswahili score 0.129 1.859 -0.178 1.848 0.307��� 0.007

Household:

Poor (share) 0.430 0.495 0.460 0.498 -0.030��� 0.002

Ultra-poor (share) 0.128 0.334 0.117 0.322 0.011��� 0.001

Maternal education—none (share) 0.183 0.387 0.228 0.420 -0.045��� 0.002

Maternal education—primary (share) 0.728 0.445 0.698 0.459 0.030��� 0.002

Maternal education—secondary (share) 0.034 0.180 0.026 0.160 0.008��� 0.001

Maternal education—post secondary (share) 0.015 0.122 0.010 0.099 0.005��� 0.000

Household size 6.779 3.211 7.043 3.383 -0.264��� 0.013

District:
Night lights per capita 0.002 0.003 0.002 0.002 0.000��� 0.000

Birth-year PfPR 0.152 0.085 0.404 0.144 -0.252��� 0.000

Survey-year PfPR 0.056 0.027 0.098 0.041 -0.042��� 0.000

Notes: Summary statistics pertain to the sample of birth cohorts born between 2000 and 2006, both years included. Low prevalence districts are districts with PfPR

below median (0.322) in 2000. Low prevalence districts are districts with PfPR below median (0.322) in 2000. The standard deviation of the pooled (both low and high

PfPR) distributions is 1.627 (English), 1.860 (Kiswahili) and 2.121 (numeracy).

��� denotes significance at the 1% level. The average district size is 8923 Km2 (minimum 80 km2 and maximum 55.816 km2)

https://doi.org/10.1371/journal.pone.0199542.t001
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Since the study is based entirely on existing, publicly available, anonymized datasets, no

ethical approval has been sought.

Procedures and statistical analysis

We investigate the causal link between infection by malaria in early childhood and academic

performance in later childhood (7–14 years of age). Thus, the outcomes of interest are perfor-

mance in numeracy and English and Kiswahili literacy tests.

As a result of the nature of the Uwezo tests, raw test scores are not comparable across ages

and survey years. Specifically, since the tests are not age-dependent, the median test scores

increase with age (see S1–S3 Figs). By implication, the same raw score may be indicative of

median performance among 7 year-olds but be well below median performance for 14 year-

olds. Similarly, as there is some variation in the difficulty of tests across the survey years, the

same raw test score may be indicative of a different standard of performance for individuals of

the same age in different years. To increase the comparability of test score interpretations

across individuals in the pooled sample, we therefore center raw test scores by age and year by

subtracting the median score of all children of the same age tested in the same year from indi-

vidual test scores. The centered test scores (hereafter referred to simply as the test scores) then

indicate deviations from the median performance of children of the same age in the same year.

We chose this transformation rather than the common approach of standardizing test scores

by mean and standard deviations, because the test score distributions are highly skewed, and

the median is a better measure of central tendency than the mean in skewed distributions.

Our main predictor variable is PfPR at the district level in a child’s birth year. We choose

birth-year prevalence as a measure of the risk of contracting malaria in early childhood rather

than an average prevalence over a given age range in order to avoid arbitrarily assigning specific

weights to risks experienced at distinct ages in early childhood. It should be noted, however, that

birth-year prevalence is in fact strongly correlated with the arithmetic mean of the risk experi-

enced at each age prior to school entry (correlation coefficient 0.810). This essentially means that

we would not expect to see different results if, instead, we were to use an average prevalence over

a given age range (results using average prevalence for the three-year period covering the year

before, of and after birth are available in the S1 Table). The decision to use birth year rather than

any other year in early childhood was motivated by the facts (i) that for the majority of children,

this is when the district-level risk is highest, and (ii) that pre-natal period and infancy are funda-

mental periods of brain development and hence most likely to be associated with the highest risk

of cognitive impairment [31]. Importantly, however, given the strong correlation of district-level

PfPR between years, we are not claiming to identify the specific effect of birth-year exposure but

rather use birth-year PfPR as a proxy for early life exposure.

The analysis proceeds as follows. First, we present the crude association between birth-year

PfPR and test scores graphically, plotting average test scores for groups defined by 0.1 intervals

of birth-year PfPR. Second, we assess the relationship between birth-year PfPR and test scores

in a multivariate regression framework. In addition to malaria exposure, we expect individual

test scores to be determined by individual and household-specific factors, contextual factors in

early childhood, and contextual factors in the survey year. To account for these multiple

sources of variation, our baseline specification is as follows:

yihjkt ¼ a0 þ bPfPRkj þ X 0

itgþ X 0

htdþ yxjk þ ljt þ lk þ εit

where y is the centered test score of interest, i indexes individuals, h indexes the household

to which the child belongs, k indexes the child’s birth cohort (i.e. year or birth), j indexes the

district of residence, and t indicates the year of the survey. On the right-side of the model, in

Early life malaria exposure and academic performance
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addition to the main explanatory variable of interest (PfPR) and residual error (ε), we include

five main groups of controls. These are: (1) individual factors (denoted Xi, which are her gen-

der, birth order and a set of dummy variables for child age); (2) household factors (denoted Xh,

which are the size of the household, three dummy variables capturing the highest level of edu-

cation of the mother’s education, and two dummy variables for socio-economic status, based

on ownership of assets); (3) district-level nightlights per capita in the child’s year of birth

(denoted xjk), which represents a time-varying measure of economic development at the dis-

trict level; (4) joint survey year and district fixed effects (denoted λjt); (5) birth year given by

the penultimate term. Note that the observed covariates were chosen based on the full set of

information available in the datasets across all survey rounds (i.e. no controls were initially

included but subsequently dropped). Also, fixed effects for each survey year are implicitly

included since they are a linear combination of birth year and age.

To estimate the above specification, we rely on ordinary least squares (OLS) methods, treat-

ing the various sets of unobserved group-level effects (i.e. birth cohort, district by survey year

etc.) as fixed effects. This is implemented in Stata v15.1 using the user-written command

reghdfe [32]; a full set of replication files is also available in S1 File. We prefer OLS as its proper-

ties are well established and it constitutes a highly robust estimator for conditional means,

regardless of the underlying distribution of the data [33]. OLS estimators naturally extend to

incorporate multiple fixed effects, and we adopt this treatment of the unobserved terms since

random or mixed effects approaches typically require some assumptions to be made about the

structure of correlation between the random effects and other covariates. Fixed effects estima-

tors, by contrast, impose no such assumptions and are thus expected to be consistent over a

broader range of conditions. Furthermore, we found that the large size of the dataset and the

multiple unobserved terms included in our model meant that alternative mixed effects (maxi-

mum likelihood) estimators frequently failed to converge.

In the calculation of standard errors for our estimates, we adopt a two-way clustering proce-

dure. Here we follow Abadie and Wooldridge [34] who identify two primary and separate rea-

sons for using clustered standard errors. The first is a sample design rationale, which captures

the notion that if there are clusters in the population that are not represented in the sample,

one should cluster errors at the level of such ‘missing’ clusters. In our case, these are the PSUs

(villages) rather than administrative districts, since all districts are covered by the surveys. The

second rationale for clustering arises when some aggregate of units, rather than individuals (or

the units of observation), is assigned collectively to a treatment. In our case, following our defi-

nition of PfPR, this is the district by cohort birth year. We consider that both these sources of

clustering are potentially relevant and, thus, we apply two-way clustering by the PSU and the

district by cohort birth year. Note that this delivers more conservative results than clustering

by either factor separately.

We recognize that our baseline specification may not capture the full range of factors that

potentially confound the relationship between malaria and test scores. For example, high PfPR

districts may have been systematically favored in the allocation of health interventions, and if

these interventions had independent effects on children’s cognitive development this may

have biased our results. To examine whether this source of bias is material, we estimate the

relationship between PfPR and test scores using a household fixed effects estimator. This

amounts to replacing the set of observed household covariates (Xh) with a general household-

specific term, which is also treated as a fixed effect in the estimation. Because children born in

different years living in the same household are likely to be less differentially affected by

changes that occur between their birth years than children born in different birth years in dif-

ferent households, this should reduce (but may not entirely eliminate) such potential bias. For

instance, a mother who receives health care information for her second child may use that

Early life malaria exposure and academic performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0199542 June 22, 2018 7 / 16

https://doi.org/10.1371/journal.pone.0199542


information to improve care for her first child. Another mother who has a child in the same

year as the first mother’s first child, but does not have a subsequent child, on the other hand,

may not receive the improved information at all, and hence may not improve her child’s care.

Therefore, substantial variations in estimates with and without these household fixed effects

may indicate that some part of the partial correlation between malaria reduction and test

scores is driven by other district-specific time-varying factors (such as childhood development

interventions). On the other hand, the discovery of similar estimates would strengthen confi-

dence in the assumption that districts have not experienced such differential paths.

In addition to the baseline and household fixed effects specifications, we undertake a series of

robustness checks. First, we construct a pseudo-panel at the level of birth cohorts within districts

[17,35]. The average outcomes in this panel will be a result of district-birth-year average individual

and contextual factors, most of which are absorbed by district and birth-year fixed effects, which

we include in a multivariate linear regression. This approach will deliver consistent estimates of the

relationship between malaria and test scores provided that we assume that district-specific shocks

or developments in the birth-year period covered by our analysis do not affect children born in dif-

ferent years differentially on average. Note that, under the assumption that seasonality in births is

constant across the birth years considered, this approach also alleviates concerns that results are

confounded by the facts that in the main analysis, (1) individuals born days apart, but in different

years, are assigned different risks of malaria; and (2) individuals born within the same year but in

seasons with different levels of malaria prevalence are assigned the same risk of malaria.

Next, we address the fact that we have chosen a transformation of data which is not stan-

dard in educational research. This may lead to a concern that our results are sensitive to the

particular choice of transformation. To address this, we revert to the raw test scores and create

a set of binary (dummy) variables, taking a value of 1 if the child scores above each specific

increment. So, a child with the lowest test score (none correct) receives a zero for each of these

dummy variables; and a child with the highest test score (all correct) receives a one for each.

For each dummy variable we re-run our household fixed effects model, which amounts to a

linear probability model in each case. Note that this method is similar to the first stage of the

approach, set out in [36], used to consistently estimate parameters of an ordered logit model in

the presence of fixed effects. The point is that by looking at the various incremental scores sep-

arately we take into account the ordinal nature of the raw test scores and allow for unequal dif-

ferences in ability at each increment (i.e. the difference in ability between children receiving 1

and 2 may be larger or smaller than the difference between children receiving 3 and 4).

The next two robustness checks are a response to the fact that from the modelled PfPR data

(Fig 1) it appears that in some districts PfPR increased between 2000 and 2002. While this increase

may be an empirical reality, we cannot rule out the possibility that it is due to the specifics of the

modelling behind the estimates. To deal with this concern, we test the sensitivity of our results to

(i) dropping individuals from districts with an initial rise in PfPR, and (ii) dropping individuals

born before 2002. The final robustness check is needed because a reduction in malaria which

affects a given cohort in its birth year could also affect adjacent cohorts and thereby introduce

imprecision in the measure of birth-year malaria exposure. To address this concern, we restrict

the sample to individuals born several years apart who are therefore likely to have experienced dif-

ferent disease environments. In particular, we drop individuals born between 2002 and 2004.

Results

Fig 2 shows that in all three tests the average performance of Tanzanian children decreases as

birth-year PfPR increases (for a visualization of the spread of test scores by 0.1 intervals of

birth-year PfPR, see violin plots in S5–S7 Figs).
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Columns (1), (4) and (7) in Table 2 report the estimated crude bivariate association between

birth-year PfPR and test scores for English, numeracy and Kiswahili, respectively. In keeping

with the graphical evidence, a significant negative association can be seen between children’s

birth-year exposure to malaria and their performance in all tests. Columns (2), (5) and (8)

present estimates from the multivariate model described above, which includes all controls.

For English literacy, the relationship between birth-year malaria prevalence and test scores is

reduced in magnitude but remains statistically significant. For numeracy and Kiswahili the

coefficient magnitude is reduced even further, becoming insignificant. These results are robust

to ignoring sampling weights (results available upon request). Columns (3), (6) and (9) show

the results from estimations using household fixed effects. Note that the number of observa-

tions for these regressions is smaller than it is for the other regressions, as only households

with at least two children aged 7–14 are included. These results confirm those obtained in the

previous multivariate models. This suggests that potential bias from omitted birth year by dis-

trict-level factors is at most negligible.

Fig 2. The relation between average academic performance and birth-year PfPR. Note that test scores are averaged for individuals with birth-year PfPR falling within

the same 0.1 interval.

https://doi.org/10.1371/journal.pone.0199542.g002
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For English, the estimated coefficient on birth-year malaria prevalence under the preferred

model (Table 2, column 2) is -0.903 (SE 0.161; p = 0.000). The magnitude of the implied rela-

tionship between birth-year malaria and English literacy can be grasped by considering the

implied effect of going from a birth-year prevalence rate equal to the average of “high preva-

lence” districts (0.404; see Table 1) to a rate equal to the average of the “low prevalence” dis-

tricts (0.153; see Table 1). This is equivalent to reducing birth-year PfPR by 0.251, which

translates to a 0.227 point expected increase in the test score. Equivalently, this represents an

increase of 0.140 standard deviations of the pooled test score distribution (pooled SD = 1.627,

see Table 1).

In Table 3 we present the results of a series of robustness checks for the effect on English

(equivalent results for the effects on numeracy and Kiswahili can be seen in S3–S8 Tables).

Row 1 shows the results from estimating the alternative specification using a pseudo-panel of

cohort level averages. Rows 2, 3 and 4 address the validity of the malaria data. Finally, rows 5

to 9 show the results obtained by estimating our specification using different definitions of the

outcome variable. None of these raises concerns that the negative association between birth-

year PfPR and performance on the English achievement test is fragile.

Discussion

We have shown that birth-year district-level malaria prevalence negatively predicts perfor-

mance in English literacy tests among children of primary school age. Our estimates suggest

that a reduction of average birth-year prevalence in districts with above-median prevalence to

that in districts with below median prevalence would increase average English test scores by

0.144 standard deviations (0.121, when household fixed effects are factored in). At first glance,

this may seem to be a small effect, but it needs to be seen in the context of the generally low

sensitivity of test scores to interventions, even at the school level [37,38]. A recent meta-analy-

sis based on 77 randomized experiments, with a total of 111 treatment arms, has compared the

effects of different categories of school-based intervention on learning in developing country

primary schools across different learning outcomes [38]. Our estimates of the effect of malaria

on English test scores are comparable to interventions with the largest mean effect sizes. This

includes, for example, interventions based on student/teacher performance incentives (mean

effect size 0.089 standard deviation), contract or volunteer teachers (mean effect 0.101 SD),

reduction in class size, ability grouping or smaller learning groups within classes (mean effect

Table 2. Estimates of the relation between test scores and birth-year PfPR.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

English English English Numeracy Numeracy Numeracy Kiswahili Kiswahili Kiswahili

Birth-year PfPR -2.003��� -0.903��� -0.758��� -2.286��� 0.083 0.051 -2.064��� -0.036 0.057

(0.122) (0.161) (0.206) (0.170) (0.239) (0.254) (0.143) (0.203) (0.230)

Controls No Yes Yes No Yes Yes No Yes Yes

HH fixed effects No No Yes No No Yes No No Yes

Observations 246,325 246,325 149,262 246,325 246,325 149,262 246,325 246,325 149,262

R-squared 0.042 0.182 0.722 0.034 0.194 0.712 0.034 0.239 0.715

Notes: All regressions are estimated using OLS. Dependent variable: Individual test score centered with the survey year and age-specific median. Standard errors appear

in parenthesis and are clustered by village and district-by-cohort. In columns 2, 3, 5, 6, 8 and 9 the estimates are corrected for: individual and household characteristics

(age, gender, birth order, household size, maternal education and wealth), birth year, year, district and district-by-year fixed effects as well as birth-year district-level

economic development (measured as night-time lights). Population weights applied.

���, �� and � denote significance at the 1, 5 and 10% levels, respectively.

https://doi.org/10.1371/journal.pone.0199542.t002
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0.117 standard deviation), teacher training classes (mean effect 0.123 SD), and treatments with

computers or instructional technology (mean effect 0.150 SD).

The same meta-analysis found that school-based health and nutrition interventions gener-

ally had limited or statistically insignificant mean effects. In view of this, it seems reasonable to

conclude that the estimated effect of malaria on performance in English tests is material. The

same conclusion can be drawn when we consider the educational achievement gap between

areas of high and low malaria prevalence. For instance, the difference in average test scores

between districts at or above the 95th percentile of the PfPR distribution in 2000 and districts

at or below the 5th percentile of the PfPR distribution was 1.156 points. The difference in aver-

age birth-year PfPR in those districts is 60.4 percentage points. Thus, our effect estimate of

-0.783 to -0.934 corresponds to around 40 to 50 percent of the test score gap between these dis-

tricts. While this seems to be a very large effect magnitude, we need to bear in mind that a 107

to 128 percent decrease in malaria risk would be required for the test score of a child to

increase by just one point relative to the median child in his/her age group. The largest

decrease in district-level PfPR during the last 15 years was 93 percent. Hence, while birth-year

PfPR represents an important factor in explaining why children in high malaria prevalence

areas perform worse in English literacy tests than children in low malaria prevalence areas, it is

Table 3. Robustness of English achievement.

Full sample Household FE

Model Description Outcome N Estimate N Estimate

(1) Cohort-level results Cohort average test score 2,542 -1.002��� -

(0.167) -

(2) Reduced cohorts Individual centered test score 160,167 -1.193��� 68,329 -1.047���

(0.196) (0.277)

(3) Reduced districts Individual centered test score 186,141 -1.235��� 113,299 -1.580���

(0.245) (0.288)

(4) Only youngest and oldest cohorts Individual centered test score 129,056 -0.929��� 42,821 -0.973���

(0.180) (0.308)

Competency cutoff
(5) Cutoff 1 Dummy variable (letters or higher = 1) 246,325 0.057� 149,262 0.070

(0.032) (0.049)

(6) Cutoff 2 Dummy variable (words or higher = 1) 246,325 -0.132��� 149,262 -0.123��

(0.033) (0.050)

(7) Cutoff 3 Dummy variable (paragraph or higher = 1) 246,325 -0.245��� 149,262 -0.243���

(0.043) (0.059)

(8) Cutoff 4 Dummy variable (story or higher = 1) 246,325 -0.227��� 149,262 -0.202���

(0.043) (0.064)

(9) Cutoff 5 Dummy variable (full competencies = 1) 246,325 -0.206��� 149,262 -0.168���

(0.041) (0.059)

Notes: All regressions are estimated using OLS. Dependent variable: Individual test score centered with the survey year and age-specific median. Standard errors appear

in parenthesis and are clustered by village and district-by-cohort. In rows 2–9 estimates are adjusted for: individual and household characteristics (age, gender, birth

order, household size, mother’s educational level and wealth), birth year, year, district and district-year fixed effects as well as birth year district-level economic

development (measured as night-time lights). Population weights applied.

���, �� and � denote significance at the 1, 5 and 10% levels, respectively.

Row 1 shows the results obtained by estimating a pseudo-panel of cohort level averages. Row 2 shows the results obtained by dropping individuals born before 2002.

Row 3 shows the results obtained by dropping individuals from districts with an initial rise in PfPR. Row 4 shows the results obtained by dropping individuals born

between 2002 to 2004. Rows 5 to 9 show the results of estimating the effect of birth-year PfPR at each specific increment of the test scores.

https://doi.org/10.1371/journal.pone.0199542.t003
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only a part of the overall explanation for differences in academic achievement between chil-

dren. Given the relatively large effect on English literacy, it is perhaps surprising that we did

not find an overall effect on numeracy or Kiswahili. However, in this context it should be

noted that in a recent validation of the Uwezo tests undertaken in Kenya it was found that the

tests in numeracy and Kiswahili discriminate only to a limited extent between children’s skill

levels [39]. The reason is that these tests do not have items of difficulty that fully span the dif-

ferent ability levels in early grades. They only span difficulties at the lower end of the ability

distribution. In effect, the insignificant effect on numeracy and Kiswahili literacy scores does

not necessarily mean that early life malaria exposure has no effect, but rather reflects strong

ceiling effects in the numeracy and Kiswahili test scores (see S8 Fig). One way to assess this

possibility is to estimate our specification using only children for whom ceiling effects are

small. We therefore re-estimated our baseline and household fixed effect models using only

children who were 7–9 years old (See S1–S3 Figs for the age-specific test score distributions).

Table 4 shows that when we confine our attention to children aged 7–9 years old, we find

that birth-year PfPR has strong negative effects on academic achievement across all three test

scores. This supports the argument that strong ceiling effects in the numeracy and Kiswahili

test scores are likely to explain the insignificant results. This in turn suggests that the effect lies

at the upper end of the ability distribution, as ceiling effects would not influence the results if

the effects were in the lower end of the ability distribution.

We found that our results are insensitive to a large number of robustness analyses. Nonethe-

less, four additional issues should be mentioned. The first relates to the malaria prevalence data,

which do not allow us to ascertain whether any given child actually has malaria. Here we rely on

an “intention-to-treat” approach, assuming that children in higher prevalence areas are more

likely to contract malaria. However, if there is systematic difference in the relative probability of

malaria infection between high and low achieving children across high and low PfPR areas, this

could create a bias leading either to over- or underestimation of the effect of malaria on aca-

demic performance. The averaging process in the dynamic pseudo-panel approach should,

however, eliminate the individual-level measurement error giving rise to this type of bias.

Hence the fact that our results are robust to this approach suggests that we should not be con-

cerned that individual-level measurement error is leading us to under- or overestimate results.

The second issue relates to the potential of “selective mortality” to confound results. That is,

assuming that death from malaria is more likely among children who are disadvantaged in

Table 4. Main results using only children aged 7 to 9 years.

(1) (2) (3) (4) (5) (6)

English English Numeracy Numeracy Kiswahili Kiswahili

Birth-year PfPR -1.709��� -1.747��� -0.739�� -1.449�� -0.682��� -0.752

(0.262) (0.433) (0.286) (0.591) (0.221) (0.566)

Observations 119,611 31,658 119,611 31,658 119,611 31,658

R-squared 0.187 0.745 0.222 0.771 0.210 0.742

Household FE No Yes No Yes No Yes

Notes: All regressions are estimated using OLS. Dependent variable: Individual test score centered with the survey year × age-specific median. Standard errors appear in

parenthesis and are clustered by village and district-by-cohort. All estimates are adjusted for: individual and household characteristics (age, gender, birth-order,

household size, mother’s educational level and wealth), birth year, year, district and district-by-year fixed effects as well as birth-year district-level economic

development (measured as night-time lights). The sample is restricted to children between 7–9 years old. Population weights applied.

��� and �� denote significance at the 1 and 5% levels, respectively.

https://doi.org/10.1371/journal.pone.0199542.t004
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terms of the determinants of learning (e.g. cognitive abilities or parental income levels), it is

possible that the reduction in malaria prevalence led to a change in birth cohort composition

producing a larger share of children with less in the way of prerequisites of learning. This

would bias our results towards zero, as older cohorts, born in periods of higher malaria preva-

lence, would on average be doing better than they would have if more disadvantaged children

had survived. Thus, if selective mortality occurred, our findings may have underestimated the

true effect of malaria exposure on academic performance.

Third, all of our analyses assume that a child’s district of current residence is also the district

of his/her early childhood residence. This introduces the possibility that “selective migration”

biased our results. For example, if it is more common for the more able children to move from

areas of high prevalence to areas of low prevalence during childhood, we may be underestimat-

ing their earliest childhood malaria exposure. However, excluding regions with above median

in-migration from our analysis does not change our results (results available on request).

The fourth issue is that we cannot adjust for district-specific cohort effects, for example,

due to selective allocation of health interventions. Addressing this by comparing results with

and without household fixed effects, we found strong correspondence. As children within the

same household are likely to be less differentially affected by changes that occur between their

birth years than children from different households, we take the strong correspondence to

indicate that results are not likely to be confounded by district-specific cohort effects. This rea-

soning fails, however, if older siblings are not affected by changes that occur after their year of

birth in ways that influence their potential for learning in later life–for example, if the only ele-

ments of postnatal care interventions that affect learning are infant-specific elements such as

promotion of exclusive breastfeeding, or if mothers do not in fact implement recommended

practices such as immunization to older children. In response to this concern, we would point

out that the two largest national child health programs, both of which expanded during our

study period, were the Expanded Program on Immunization (EPI) and the Integrated Man-

agement of Childhood Illness (IMCI). EPI already had very high national coverage in 1999

(over 80 percent) [40], and therefore it is less likely that there would be systematic differences

in immunization between children born in different years after 2000 within the same house-

hold. EPI was expanded in 2002 to include a DPT-HepB vaccine, and this could, potentially,

have resulted in a difference between cohorts born before and after this year. However, our

results are robust to excluding these cohorts (see Table 3). It is true that the IMCI program,

covering only 50 percent of districts in 2004 [41], is more likely to be a source of confounding.

However, our main results are robust to the inclusion only of districts that had implemented

IMCI prior to 2000 (results available on request).

In short, although we cannot rule out the possibility that our results are subject to bias, there

is no evidence that the bias is, or is likely to be, severe. Consequently, our findings corroborate

the existing evidence that exposure to malaria in early life materially impairs academic perfor-

mance. We conclude that in the Tanzanian context, at least, early childhood malaria exposure

represents a significant public health challenge with real implications for academic performance.
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(TIF)

Early life malaria exposure and academic performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0199542 June 22, 2018 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0199542.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0199542.s002
https://doi.org/10.1371/journal.pone.0199542


S3 Fig. Distributions of raw Kiswahili test scores by age.

(TIF)

S4 Fig. Map of malaria data clusters.

(PNG)

S5 Fig. Violin plots of centered English test scores by bins of birth-year PfPR.
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