
 

                                  

 

 

Pathway Computation in Models Derived from Bio-science Text
Sources

Andreasen, Troels; Styltsvig, Henrik Bulskov; Jensen, Per Anker; Nilsson, Jørgen Fischer

Document Version
Accepted author manuscript

Published in:
Foundations of Intelligent Systems - 23rd International Symposium, ISMIS 2017, Proceedings

DOI:
10.1007/978-3-319-60438-1_42

Publication date:
2017

License
Unspecified

Citation for published version (APA):
Andreasen, T., Styltsvig, H. B., Jensen, P. A., & Nilsson, J. F. (2017). Pathway Computation in Models Derived
from Bio-science Text Sources. In M. Kryszkiewicz , A. Appice, D. Ślęzak, H. Rybinski, A. Skowron, & Z. W. Raś
(Eds.), Foundations of Intelligent Systems - 23rd International Symposium, ISMIS 2017, Proceedings:
Proceedings of the 23rd International Symposium, ISMIS 2017 (Vol. 10352, pp. 424-434). Springer.
https://doi.org/10.1007/978-3-319-60438-1_42
Link to publication in CBS Research Portal

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us (research.lib@cbs.dk) providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 04. Jul. 2025

https://doi.org/10.1007/978-3-319-60438-1_42
https://doi.org/10.1007/978-3-319-60438-1_42
https://research.cbs.dk/en/publications/8f4a027f-b066-49d3-8cb9-b735ed824c73


 

                                  

 

 

 

Pathway Computation in Models Derived from Bio-science 

Text Sources 
Troels Andreasen, Henrik Bulskov Styltsvig, Per Anker Jensen, and Jørgen Fischer Nilsson 

Article in proceedings (Accepted version*) 

 

 

Please cite this article as: 
Andreasen, T., Styltsvig, H. B., Jensen, P. A., & Nilsson, J. F. (2017). Pathway Computation in Models Derived 

from Bio-science Text Sources. In M. Kryszkiewicz , A. Appice, D. Ślęzak, H. Rybinski, A. Skowron, & Z. W. Raś 
(Eds.), Foundations of Intelligent Systems: Proceedings of the 23rd International Symposium, ISMIS 2017 (pp. 

424-434). Springer. Lecture Notes in Computer Science, Vol.. 10352, DOI: 10.1007/978-3-319-60438-1_42 
 

This is a post-peer-review, pre-copyedit version of an article published in Foundations of Intelligent Systems: 
Proceedings of the 23rd International Symposium, ISMIS 2017. The final authenticated version is available 

online at:  

 

DOI: https://doi.org/10.1007/978-3-319-60438-1_42 

 

 

 

 

* This version of the article has been accepted for publication and undergone full peer review but 
has not been through the copyediting, typesetting, pagination and proofreading process, which may 

lead to differences between this version and the publisher’s final version AKA Version of Record.  

 

Uploaded to CBS Research Portal: February 2019 

 

https://doi.org/10.1007/978-3-319-60438-1_42
https://research.cbs.dk/en/publications/pathway-computation-in-models-derived-from-bio-science-text-sourc


Pathway Computation in Models Derived from
Bio-Science Text Sources

Troels Andreasen1, Henrik Bulskov1, Per Anker Jensen2,
Jørgen Fischer Nilsson3

1Computer Science, Roskilde University,
2Management, Society and Communication, Copenhagen Business School
3Mathematics and Computer Science, Technical University of Denmark,

{troels,bulskov}@ruc.dk, paj.msc@cbs.dk, jfni@dtu.dk

Abstract. This paper outlines a system, OntoScape, serving to ac-
complish complex inference tasks on knowledge bases and bio-models
derived from life-science text corpora. The system applies so-called nat-
ural logic, a form of logic which is readable for humans. This logic af-
fords ontological representations of complex terms appearing in the text
sources. Along with logical propositions, the system applies a semantic
graph representation facilitating calculation of bio-pathways. More gen-
erally, the system affords means of query answering appealing to general
and domain specific inference rules.
Keywords: Semantic text processing in bio-informatics; bio-models using
natural logic and semantic graphs; querying and pathway computation

1 Introduction

This paper addresses logic-based bio-models derived from life science texts. We
discuss representation languages and reasoning principles for bio-models derived
from actual life science sources. In particular, we describe and exemplify the
intended query answering and pathway functionality, that is, the ability to com-
pute conceptual pathways in the stored model.

Our approach is based on the construction of a logical model for a consid-
ered bio-system and is in line with the foundational developments in [1, 2]. One
main challenge in the logical approach is the extraction of comprehensive bio-
models from text sources and formalisation of these. This logical approach is in
contrast to established and rather succesful approaches to text mining based on
direct references to phrases in concrete text sources and advanced information
extraction techniques, cf. for example [13–16].

At first sight our approach resembles the well-known, rather simplistic entity-
relationship models and RDF representations. However, our framework is unique
in various respects, first of all in its generativity, that is, the ability of the
models to accommodate arbitrarily complex concepts formed by composition
of lexicalized classes and relationships as discussed in [3]. By way of examples,
the virtually open-ended supply of concept terms such as ‘cell in the liver that
secretes hormone’, ‘arteria in pancreas’, ‘secrete from the exocrine pancreas’ are



accomodated in the model by composing simple, given class terms into compound
concept terms with an obvious resemblance to phrases in natural language, as
these examples illustrate. All such encountered concepts are situated in the so-
called “generative ontology” in a manner such that they can be “de-constructed”
and reasoned with computationally.

The generativity and the liaison to natural language specifications is achieved,
as mentioned, by adopting ’natural logic’ cf. [6, 7] as the logical model language.
In addition, the models come in the form of graphs with concepts as nodes and
relations as edges.

The paper is organized as follows: In section 2 we introduce models formalized
in terms of natural logic. In section 3 we derive semantic graph-based models
from the natural logic specifications and in section 4 we exemplify natural logic
model fragments drawn from various medical text sources. Section 5 describes
our prototype system and explains the pathway computation functionality, con-
cluding finally in section 6.

2 Models in Natural Logic

In the applied natural logic conception, a knowledge base or specification consists
of a collection of descriptive sentences called ’propositions’ in order to distinguish
them from the natural language sentences from which they are derived. Propo-
sitions in the applied logic, dubbed NaturaLog, are of the following general
form

Cterm1 Relterm Cterm2
where

– The two Cterms are atomic or compound concept terms.
– The Relterm is a relational term, in the simplest cases corresponding to a

transitive verb, e.g. ‘cause’, or ‘secrete’ or prepositions like ‘in’, ‘via’ etc.

In a logical proposition like betacell secrete insulin the two concept terms are
atomic, and so is the intervening relational term. A bio-model comprising also the
class inclusion ontology consists of a finite, albeit possibly huge, collection of such
NaturaLog propositions. As it appears, we use sans serif font for propositions
throughout. This model is then the basis for inferences and querying.

Propositions may contain complex structures: Compound Cterms consist of
a class C with attached qualifications. In a more complex proposition like

(cell that secrete insulin) is:located:in (pancreatic gland).
the first concept term consists of the atomic term cell adorned with a relative
clause consisting of the relational term secrete followed by the concept term
insulin. Relative clauses are indicated by the optional keyword ‘that’, merely to
make the reading easier. Relative clauses are assumed always to act restrictively.
For instance, as a matter of principle, cell that secrete insulin is recorded by
the system as a sub-concept of cell in the concept inclusion structure in the
ontology. Likewise, the second concept term pancreatic gland, is recognized as
a sub-concept of the class gland in that all adjectives are also assumed to be



interpreted restrictively. Parentheses are inserted for ease of reading and serve
to ensure disambiguation. They may be omitted if there is no risk of ambiguity.

However, sub-class - and, more generally, sub-concept relationships may also
be specified explicitly, namely by the relation term isa, as seen in copula sen-
tences. Example: betacell isa cell. By contrast, the propositions (cell that secretes
insulin) isa cell and (pancreatic cell) isa cell are inferred by the system according
to the principles mentioned. Still, (pancreatic cell) isa (cell located-in pancreas)
(and vice versa) has to be provided.

As it appears, the natural logic propositions are perfectly readable, if some-
what stereotypical, by domain experts by virtue of their resemblance to natural
language. The converse, challenging task of automating translation from man-
ageable parts of natural language in scientific text sources into natural logic is
approached in our [3].

2.1 Quantifiers and Recursion in Concept Terms

The above propositional form Cterm1 Relterm Cterm2 is a special case of

Q1 Cterm1 Relterm Q2 Cterm2

where the Qs are quantifiers, primarily ‘all/every’ or ‘some’. Usually the quanti-
fiers are absent with Q1 then being interpreted as all and Q2 as some by default.
Accordingly, the example betacell secrete insulin is interpreted logically as the
proposition all betacell secrete some insulin, where some insulin is meant to be
some portion or amount of insulin. Generally speaking, classes are assumed to
be non-empty (appealing to existential import), and the entities in a class of
substance are taken to be arbitrary, non-empty amounts of the substance.

The propositional form all Cterm1 Relterm some Cterm2 corresponds to
the predicate logic formula ∀x(Cterm1[x] → ∃y(Relterm[x, y] ∧ Cterm2[y])),
see further [3, 4], where we also discuss the relationship to description logic. The
introduced NaturaLog forms cover only those parts of binary predicate logic
which are considered relevant for bio-modelling. Notable exclusions at present
are logical negation and logical disjunctions.

Recall that a concept term consists of a class C followed by one or more qual-
ifications or restrictions, where restrictions consist of a relational term followed
by a concept term: Relterm Cterm. In case of more than one restriction, these
are to form a conjunction with and understood as logical conjunction proper.
By contrast, two and-aligned concept terms within the same class are conceived
of as a logical disjunction (ex. beta-cell and alpha-cell produce hormone). Ac-
cordingly, concept terms have a finitely nested, recursive structure reflecting the
syntax of natural language nominal phrases with possibly nested relative clauses
and prepositional phrases. The handling of adjectives (ex. pancreatic gland) and
compound nouns (ex. lung symptom) are both assumed to be acting restrictively.
These as well as genitives will not be discussed further in this paper.



2.2 Ontologies

As mentioned above, a special case of the above propositions is class inclusion
relationships corresponding to stylized copula sentences. For example, in the
proposition pancreas isa (endocrine gland), isa denotes concept inclusion. The
synonymy relation syn is construed as both way isa, cf. the declaration pancreas
syn (pancreatic gland). Such propositions form the backbone of the ontology
in our knowledge-based bio-models. Also partonomic propositions like betacell
part-of (endocrine pancreas) are included in the ontology; cf. [8] for the various
partonomic relations.

By contrast, a proposition like betacell secrete insulin is understood as an
observational fact, an assertion, and therefore does not belong to the ontology
proper. The concept of betacell would then be expected to be defined in some
other way, which may or may not be part of the logical bio-model. However,
the stated assertion might be replaced by the definitional proposition (cell that
secrete insulin) syn betacell at the discretion of the domain expert. This proposi-
tion posits that all cells that secrete insulin (whatever their location), are to be
called betacells.

3 Bio-models as Semantic Graphs

In our framework, the natural logic propositions constituting a bio-knowledge
base are parallelled by an alternative representation in the form of directed
graphs as commonly used in bio-models [9–11]. The graphs come about by de-
composing compound and relational concept terms into their constituents in the
form of triples [6]. These triples are re-conceived of as labeled directed edges
between nodes. Every concept is associated with one node and vice versa.

This semantic graph representation facilitates computation of relevant asso-
ciations between concepts, namely by computation of connecting paths in the
graph. For example, the subject concept in the proposition (cell that secrete
insulin) located-in pancreas corresponding to the natural language sentence cell
that secretes insulin is located in pancreas is internally decomposed into the two
triples

(cell-that-secrete-insulin) isa cell.
(cell-that-secrete-insulin) produce insulin.

where the added auxiliary concept (cell-that-secrete-insulin) is conceived of as an
atomic name of a node defined by the two triples. An arc symbol as in ‘�’ is
inserted between the defining edges in the graph rendition to express that they
form the definition of the concept, in casu (cell-that-secrete-insulin).

The given proposition, which is epistemically in observational mode, then be-
comes represented by the triple (cell-that-secrete-insulin) located-in pancreas. So in
this way a distinction is made between definitional and assertive (observational)
propositions. This ensures that the original propositions, whatever their com-
plexity, can be reconstructed modulo paraphrasation from the semantic graph
as indicated with the double-headed arrow in figure 3. A graph representing the
proposition and the decomposed subject term is shown in figure 1.
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Fig. 1: The graph corresponding to the natural language sentence cell that secretes
insulin is located in pancreas.

4 Fragments of a Bio-model: A Case Study

To exemplify the approach, below we develop fragments of logical knowledge base
representation based on excerpts from Wikipedia articles on endocrine glands
and insulin. The fragments of concern are stated as propositions in an extended,
relaxed form of NaturaLog, cf. [3].

Some propositions introduce sub-concepts by agglutination rather than by
the use of separate words, calling for manual treatment. Conversely, some would-
be compounds like islet of Langerhans and Graves’ disease should not be decom-
posed, but should be kept as atomic class names. From the source [12] we consider
the following

Endocrine glands are glands of the endocrine system that secrete
hormones directly into the blood rather than through a duct. The major
glands of the endocrine system include the pineal gland, pituitary
gland, pancreas, ovaries, testes, thyroid gland, parathyroid gland,
hypothalamus and adrenal glands.

leading to the following triples

(endocrine gland) isa gland.
(endocrine gland) isa (gland that secrete hormone).
pancreas isa (endocrine gland).
hypothalamus isa (endocrine gland).
(thyroid gland) isa (endocrine gland).
(parathyroid gland) isa (endocrine gland).

where a few of the obvious triples corresponding to propositions about location
of the secretion and further specialisations of (endocrine gland) are omitted.
Corresponding to these propositions we derive the semantic graph shown in
figure 2. In addition, also from [12], we consider:

The pancreas, located in the abdomen close to the stomach, is both
an exocrine and an endocrine gland. Calcitonin, produced by
the parafollicular cells of the thyroid gland in response to rising
blood calcium levels, depresses blood calcium levels by inhibiting bone
matrix resorption and enhancing calcium deposit in bone.
The parathyroid glands, located on the dorsal aspect of the thyroid
gland, secrete parathyroid hormone, which causes an increase in
blood calcium levels.
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Fig. 2: Semantic graph focussing on endocrine gland.

from which we derive the following propositions (again omitting some to limit
the extent of the example):

pancreas isa (endocrine gland).
pancreas isa (exocrine gland).
calcitonin produced-by (parafollicular cell in the thyroid gland).
(parafollicular cell in the thyroid gland) located-in (thyroid gland).
(parafollicular cell in the thyroid gland) isa (parafollicular cell).
(parafollicular cell) isa (cell).
(rising calcium level in blood) cause (production of calcitonin).
(production of calcitonin) produce calcitonin.
(rising calcium level in blood) located-in blood.
(parathyroid glands) secrete (parathyroid hormone).
(parathyroid hormone) cause (rising calcium level in blood).

All derived propositions above, including those shown in figure 2, are situated
in the semantic graph shown in figure 4.

5 A prototype system

As indicated above, pathway query answers are provided by first extracting
propositions from relevant texts as contributions to the semantic graph. The
extracted propositions are combined with knowledge from supplementary sources
into a semantic graph with unified nodes. Finally, pathways are computed in a
separate module based on the semantic graph. We briefly describe these tasks
below.

5.1 Extracting propositions from text

The problem of deriving Naturalog propositions from a natural language text
remains an open issue. Our main idea is to analyse the text seen from an extended
version of NaturaLog (see [3]). This extension is purely syntactical so that it
captures more expression forms in the text. However, it is at present semantically
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Fig. 3: Building the semantic graph.

conservative in the sense that propositions in the extended NaturaLog can be
decomposed into the simple NaturaLog applied here. We intend to pursue
this approach by stepwise extending also semantically NaturaLog to capture
more meaning in the text. For instance, various forms of anaphora constructs
fall outside NaturaLog, semantically. Also, for the moment, we consider only
affirmative propositions, although in bio-texts one comes across negations for
instance in the form of exceptions.

Furthermore, we envisage that one sentence may give rise to multiple propo-
sitions e.g. due to linguistic conjunctions, appositions, and parenthetical relative
clauses. As shown in figure 1, one proposition in general gives rise to multiple
triples in the graph rendition by a decomposition introducing nodes for com-
pound, auxiliary terms.

5.2 Building the semantic graph

Given a proposition extraction module, a semantic graph is built by processing
a corpus and situating the extracted triples in the graph. The graph is incre-
mentally expanded by results derived from supplementary texts. Apart from
textual input, contributions to the knowledge base may also be in the form of
common knowledge lexical ressources (such as WORDNET), domain specific
structured vocabularies/thesauri (such as UMLS) as well as other medical and
bioscience sources that include taxonomic knowledge. Common for these sources
is that they provide what can be considered concepts and relations connect-
ing these. Therefore, the transformation into NaturaLog triples can be done
by simple means. These triples, however, connect only atomic concepts. Thus,
the contributions from such resources can be considered “skeleton”-ontologies to
be further expanded with new atomic and compound concepts extracted from
textual sources. The resource-based skeleton ontology is thus expanded into a
generative ontology that grows incrementally with concepts and triples derived
from new text sources. A sketch of the ontology building is shown in figure 3.

In figure 4 an example semantic graph is shown. The graph includes the
example propositions derived in section 4 and it includes the following additional
atomic concept triples:

gland isa organ.
stomach isa organ.
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Fig. 4: A miniature ontology corresponding to a subset of the bio-model propositions
listed in section 4. Two pathways connecting ”rising calcium level in blood” and ”gland”
are shown.

grehlin isa hormone.
hormone isa protein.
insulin isa hormone.
pancreas produce insulin.

These may stem from results of other text sources or may be assumed to be part
of a skeleton ontology that forms the basis for building the semantic graph.

5.3 Computational Query Answering and Pathfinding

Relationships derived by specialization of the subject and generalization of the
object, know as inference by monotonicity, are identified by computational traver-
sal of stated relationships. Concepts are connected in the semantic graph by
pathways reflecting mathematical composition of the relations represented by
edges in the logical bio-model, cf. [2]. It is our tenet that bio-pathways appear
among the computed pathways between the given query concepts.

This computation process is supported by logical inference rules since in-
ferred propositions may constitute shortcuts, as it were, in the graph view. For



instance, the transitivity of inclusion, isa, conceptually shortens the distance
from a concept to a superior concept in the ontology via intermediate concepts.
Similarly for partonomic, causative and effect relations. In [4], the path finding
is explained more abstractly as application of appropriate logical comprehension
principles supporting the relation composition.

A miniature ontology, corresponding to a subset of the bio-model propositions
listed in section 4, is visualised in the graph in figure 4. In addition, two candidate
answers to the query comprising two concepts

rising calcium level in blood ∼ gland?

are indicated.
An answer is provided as a pathway connecting the two concepts and the

pathway can be seen as an explanation of how the two concepts are related.
Consider the graph in figure 4 and assume that the darkgrey nodes are not yet
inserted. The reading of the (answer corresponding to) lightgrey path can be

Rising calcium level in the blood causes production of calcitonin in the
parafollicular cells in the thyroid gland, which is an endocrine gland,
which is a gland.

Suppose, at a later state, that new knowledge is being added to the base and
that this include the darkgrey nodes in figure 4. The two query concepts are
now connected by a new and shorter pathway corresponding to the following
alternative answer.

Rising calcium level in the blood is stimulated by parathyroid hormone,
which is secreted by the parathyroid gland, which is an endocrine gland,
which is a gland”.

A pathway computation, being more than a pure inferential process, in our
system is also the composition of relations guided by appropriate path compu-
tation. In our framework this computation is reduced algorithmically to search
for weighted paths between concept nodes in the graph representation, utilizing
standard heuristic algorithms in artificial intelligence. The intermediate propo-
sitional representations refer back to the source texts so that computed paths
can be shown by highlighting excerpts in the texts.

6 Summary and Conclusion

We have described a system for querying and pathfinding in bio-models tak-
ing the form of logical knowledge bases derived from text sources. The applied
logical language accommodates complex propositions, which can be queried by
deductive means, and the supporting semantic graph form enables algorithmic
pathfinding between concepts. A small scale prototype has been developed that
translates complex propositions into a graph representation for pathfinding. This
prototype is described in detail in [5]. Computational translation of text sources
into the logical form is a challenging problem, which is approached in [3] by
adopting enriched forms of natural logic as a specification language for bio-
systems.
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