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Abstract

We introduce a reduced-form term structure model with closed-form solu-
tions for yields where the short rate and market prices of risk are nonlinear
functions of Gaussian state variables. The nonlinear model with three factors
matches the time-variation in expected excess returns and yield volatilities of
U.S. Treasury bonds from 1961 to 2014. Yields and their variances depend on
only three factors, yet the model exhibits features consistent with unspanned
risk premia (URP) and unspanned stochastic volatility (USV). The probabil-
ity of a high volatility scenario increases with the monetary experiment and
remains high during the Greenspan area, even though volatilities came back
down.
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The U.S. Treasury bond market is a large and important financial market. Policy

makers, investors, and researchers need models to disentangle market expectations

from risk premiums, and estimate expected returns and Sharpe ratios, both across

maturity and over time. The most prominent class of models are affine models.

However, there are a number of empirical facts documented in the literature that these

models struggle with matching simultaneously : a) excess returns are time-varying, b)

a part of expected excess returns is unspanned by the yield curve, c) yield variances

are time varying, and d) a part of yield variances is unspanned by the yield curve.1

Affine models have been shown to match each of these four findings separately, but

not simultaneously and only by increasing the number of factors beyond the standard

level, slope, and curvature factors.2

We introduce an arbitrage-free dynamic term structure model where the short

rate and market prices of risk are nonlinear functions of Gaussian state variables. We

provide closed-form solutions for bond prices and since the factors are Gaussian our

nonlinear model is as tractable as a standard Gaussian model. We show that the

model can capture all four findings mentioned above simultaneously and it does so

with only three factors driving yields and their variances. The value of having few

factors is illustrated by Duffee (2010) who estimates a five-factor Gaussian model

to capture time variation in expected returns and finds huge Sharpe ratios due to

overfitting.

1Although the literature is too large to cite in full, examples include Campbell and Shiller (1991)
and Cochrane and Piazzesi (2005) on time-varying excess returns, Duffee (2011b) and Joslin, Prieb-
sch, and Singleton (2014) on unspanned expected excess returns, Jacobs and Karoui (2009) and
Collin-Dufresne, Goldstein, and Jones (2009) on time-varying volatility, and Collin-Dufresne and
Goldstein (2002) and Andersen and Benzoni (2010) on unspanned stochastic volatility.

2Dai and Singleton (2002), and Tang and Xia (2007) find that the only affine three-factor model
that can capture time-variation in expected excess returns is the Gaussian model that has no stochas-
tic volatility. Duffee (2011b), Wright (2011) and Joslin, Priebsch, and Singleton (2014) capture
unspanned expected excess in four- and five-factor affine models that have no stochastic volatility.
Unspanned stochastic volatility is typically modelled by adding additional factors to the standard
three factors (Collin-Dufresne, Goldstein, and Jones (2009) and Creal and Wu (2015)). See also Dai
and Singleton (2003) and Duffee (2010) and the references therein.
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We use a monthly panel of five zero-coupon Treasury bond yields and their realized

variances from 1961 to 2014 to estimate the nonlinear model with three factors. To

compare the implications of the nonlinear model with those from the standard class

of affine models, we also estimate a three-factor affine model with one stochastic

volatility factor, the essentially affine A1(3) model.

We first assess the ability of the nonlinear model to predict excess bond returns in

sample and regress realized excess returns on model-implied expected excess return.

The average R2 across bond maturities and holding horizons is 27% for the nonlinear

model, 9% for the A1(3) model, and no more than 15% for any affine model in which

expected excess returns are linear functions of yields. Campbell and Shiller (1991)

document a positive relation between the slope of the yield curve and expected excess

returns, a finding that affine models with stochastic volatility have difficulty matching

(see Dai and Singleton (2002)). In simulations, we show that the nonlinear (but not

the A1(3)) model can capture this positive relation.

There is empirical evidence that a part of expected excess bond returns is not

spanned by linear combinations of yields, a phenomenon we refer to as Unspanned

Risk Premia (URP).3 URP arises in our model due to a nonlinear relation between

expected excess returns and yields. To quantitatively explore this explanation, we

regress expected excess returns implied by the nonlinear model on its Principal Com-

ponents (PCs) of yields and find that the first three PCs explain 67 − 72% of the

variation in expected excess returns. Furthermore, the regression residuals correlate

with expected inflation in the data (measured through surveys), not because inflation

has any explanatory power in the model but because it happens to correlate with

“the amount of nonlinearity.” Duffee (2011b), Wright (2011), and Joslin, Priebsch,

and Singleton (2014) use five-factor Gaussian models where one or two factors that

3See Ludvigson and Ng (2009), Cooper and Priestley (2009), Cieslak and Povala (2015), Duf-
fee (2011b), Joslin, Priebsch, and Singleton (2014), Chernov and Mueller (2012), and Bauer and
Rudebusch (2015).
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are orthogonal to the yield curve explain expected excess returns and are related to

expected inflation. We capture the same phenomenon with a nonlinear model that

retains a parsimonious three-factor structure to price bonds and yet allows for time

variation in volatilities.

The nonlinear and A1(3) model can capture the persistent time variation in

volatilities and the high volatility during the monetary experiment in the early eight-

ies. However, the two models have different implications for the cross-sectional and

predictive distribution of yield volatility. In the nonlinear model more than one fac-

tor drives the cross-sectional variation in yield volatilities while by construction the

A1(3) model only has one. Moreover, in the nonlinear model the probability of a high

volatility scenario increases with the monetary experiment and remains high during

the Greenspan area even though volatilities came down significantly. This finding

resembles the appearance and persistence of the equity option smile since the crash

of 1987. In contrast, the distribution of future volatility in the A1(3) model is similar

before and after the monetary experiment.

There is a large literature suggesting that interest rate volatility risk cannot be

hedged by a portfolio consisting solely of bonds; a phenomenon referred to by Collin-

Dufresne and Goldstein (2002) as Unspanned Stochastic Volatility (USV). The em-

pirical evidence supporting USV typically comes from a low R2 when regressing a

measure of volatility on interest rates.4 To test the ability of the nonlinear model

to capture the empirical evidence on USV, we use the methodology of Andersen and

Benzoni (2010) and regress the model-implied variance of yields on the PCs of model-

implied yields. The first three PCs explain 42 − 44%, which is only slightly higher

than in the data where they explain 30− 35% of the variation in realized yield vari-

ance. If we include the fourth and fifth PC, these numbers increase to 55− 62% and

4Papers on this topic include Collin-Dufresne and Goldstein (2002), Heidari and Wu (2003), Fan,
Gupta, and Ritchken (2003), Li and Zhao (2006), Carr, Gabaix, and Wu (2009), Andersen and
Benzoni (2010), Bikbov and Chernov (2009), Joslin (2014), and Creal and Wu (2014).
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40 − 43%, respectively. Hence, our nonlinear model quantitatively captures the R2s

in USV regressions in the data. In contrast, since there is a linear relation between

yield variance and yields in standard affine models, the first three PCs explain already

100% in the A1(3) model.5

The standard procedure in the reduced form term structure literature is to specify

the short rate and the market prices of risk as functions of the state variables. Instead,

we model the functional form of the stochastic discount factor directly by multiplying

the stochastic discount factor from a Gaussian term structure model with the term

1 + γe−βX , where β and γ are parameters and X is the Gaussian state vector. This

functional form is a special case of the stochastic discount factor that arises in many

equilibrium models in the literature. In such models, the stochastic discount factor

can be decomposed into a weighted average of different representative agent models.

Importantly, the weights on the different models are time-varying and this is a source

of time-varying risk premia and volatility of bond yields.

Our paper is not the first to propose a nonlinear term structure model. Dai, Sin-

gleton, and Yang (2007)) estimate a regime-switching model and show that excluding

the monetary experiment in the estimation leads their model to pick up minor vari-

ations in volatility. In contrast, the nonlinear model can pick up states that did not

occur in the sample used to estimate the model. Specifically, we estimate the model

using a sample that excludes the monetary experiment and find that it still implies

a significant probability of a strong increase in volatility. Furthermore, while the

Gaussian model is a special case of both models our nonlinear model only increases

the number of parameters from 23 to 27 whereas the regime-switching model in Dai,

Singleton, and Yang (2007) has 56 parameters. Quadratic term structure models have

5Collin-Dufresne and Goldstein (2002) introduce knife edge parameter restrictions in affine models
such that volatility state variable(s) do not affect bond pricing, the so called USV models. The most
commonly used USV models–the A1(3) and A1(4) USV models–have one factor driving volatility and
this factor is independent of yields. These models generate zero R2s in USV regressions inconsistent
with the empirical evidence.
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been proposed by Ahn, Dittmar, and Gallant (2002) and Leippold and Wu (2003)

among others, but Ahn, Dittmar, and Gallant (2002) find that quadratic term struc-

ture models are not able to generate the level of conditional volatility observed for

short- and intermediate-term bond yields. Ahn, Dittmar, Gallant, and Gao (2003)

propose a class of nonlinear term structure models based on the inverted square-root

model of Ahn and Gao (1999), but in contrast to our nonlinear model they do not

provide closed-form solutions for bond prices. Dai, Le, and Singleton (2010) develop a

class of discrete time models that are affine under the risk neutral measure, but show

nonlinear dynamics under the historical measure. They illustrate that the model en-

compasses many equilibrium models with recursive preferences and habit formation.

Carr, Gabaix, and Wu (2009) use the linearity generating framework of Gabaix (2009)

to price swaps and interest rate derivatives.

The rest of the paper is organized as follows. Section 1 describes the model.

Section 2 estimates the model and Section 3 presents the empirical results. Section 4

concludes.

1 The Model

In this section we present a nonlinear model of the term structure of interest rates. Un-

certainty is represented by a d-dimensional Brownian motionW (t) = (W1(t), ...,Wd(t))
′.

There is a d-dimensional Gaussian state vector X(t) that follows the dynamics

dX(t) = κ
(

X̄ −X(t)
)

dt+ Σ dW (t), (1)

where X̄ is d–dimensional and κ and Σ are d× d–dimensional.

5



1.1 The Stochastic Discount Factor

We assume that there is no arbitrage and that the strictly positive stochastic discount

factor (SDF) is

M(t) = M0(t)
(

1 + γe−β′X(t)
)

, (2)

where γ denotes a nonnegative constant, β a d-dimensional vector, andM0(t) a strictly

positive stochastic process.

Equation (2) is a key departure from standard term structure models (Vasicek

(1977), Cox, Ingersoll, and Ross (1985), Duffie and Kan (1996), and Dai and Singleton

(2000)). Rather than specifying the short rate and the market price of risk, which in

turn pins down the SDF, we specify the functional form of the SDF directly.6 This

approach is motivated by equilibrium models where the SDF is a function of structural

parameters and thus the risk-free rate and market price of risk are interconnected.

Moreover, we show in Appendix C that the SDF specified in equation (2) is a special

case of the SDF in many popular equilibrium models.

To keep the model comparable to the existing literature on affine term structure

models we introduce a base model for which M0(t) is the SDF. The dynamics of M0(t)

are

dM0(t)

M0(t)
= −r0(t)dt− Λ0(t)

′dW (t), (3)

where r0(t) and Λ0(t) are affine functions of the state vector X(t). Specifically,

r0(t) = ρ0,0 + ρ′0,XX(t), (4)

Λ0(t) = λ0,0 + λ0,XX(t), (5)

where ρ0,0 is a scalar, ρ0,X and λ0,0 are d-dimensional vectors, and λ0,X is a d × d-

6Constantinides (1992), Rogers (1997), Gabaix (2009), and Carr, Gabaix, and Wu (2009) also
specify the functional form of the SDF directly and provide closed form solutions for bond prices.
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dimensional matrix. It is well known that bond prices in the base model belong to

the class of Gaussian term structure models (Duffee (2002) and Dai and Singleton

(2002)) with essentially affine risk premia. If γ or every element of β is zero, then the

nonlinear model collapses to the Gaussian base model. We now provide closed form

solutions for bond prices in the nonlinear model.

1.2 Closed-Form Bond Prices

Let P (t, T ) denote the price at time t of a zero-coupon bond that matures at time T .

Specifically,

P (t, T ) = Et

[

M(T )

M(t)

]

. (6)

We show in the next theorem that the price of a bond is a weighted average of bond

prices in artificial economies that belong to the class of essentially affine Gaussian

term structure models.

Theorem 1. The price of a zero-coupon bond that matures at time T is

P (t, T ) = s(t)P0(t, T ) + (1− s(t))P1(t, T ), (7)

where

s(t) =
1

1 + γe−β′X(t)
∈ (0, 1] (8)

Pn(t, T ) = eAn(T−t)+Bn(T−t)′X(t). (9)

The coefficient An(T − t) and the d-dimensional vector Bn(T − t) solve the ordinary

7



differential equations

dAn(τ)

dτ
=

1

2
Bn(τ)

′ΣΣ′Bn(τ) +Bn(τ)
′
(

κX̄ − Σλn,0

)

− ρn,0, An(0) = 0, (10)

dBn(τ)

dτ
= − (κ + Σλn,X)

′ Bn(τ)− ρn,X , Bn(0) = 0d, (11)

where

ρn,0 = ρ0,0 + nβ ′κX̄ − nβ ′Σλ0,0 −
1

2
n2β ′ΣΣ′β, (12)

ρn,X = ρ0,X − nκ′β − nλ′
0,XΣ

′β, (13)

λn,0 = λ0,0 + nΣ′β, (14)

λn,X = λ0,X . (15)

The proof of this theorem is given in Appendix A (where we provide a proof

of a more general class of nonlinear models). To provide some intuition we define

M1(t) = γe−β′X(t)M0(t) and rewrite the bond pricing equation (6) using the fact that

s(t) = M0(t)/M(t) = 1−M1(t)/M(t). Specifically,

P (t, T ) = s(t)Et

[

M0(T )

M0(t)

]

+ (1− s(t))Et

[

M1(T )

M1(t)

]

. (16)

Applying Ito’s lemma to M1(t) leads to

dM1(t)

M1(t)
= −r1(t)dt− Λ1(t)

′dW (t), (17)

where r1(t) and Λ1(t) are affine functions of the state vector X(t). Specifically,

r1(t) = ρ1,0 + ρ′1,XX(t), (18)

Λ1(t) = λ1,0 + λ1,XX(t), (19)

8



where ρ1,0, ρ1,X , λ1,0, and λ1,X are given in equations (12), (13), (14), and (15),

respectively. Hence, both expectations in equation (16) are equal to bond prices in

artificial economies with discount factors M0(t) and M1(t), respectively. These bond

prices belong to the class of essentially affine term structure models and hence P (t, T )

can be computed in closed form.

1.3 The Short Rate and the Price of Risk

Applying Ito’s lemma to equation (2) leads to the dynamics of the SDF:

dM(t)

M(t)
= −r(t) dt− Λ(t)′dW (t), (20)

where both the short rate r(t) and the market price of risk Λ(t) are nonlinear functions

of the state vector X(t) given in equations (21) and (22), respectively. The short rate

is given by

r(t) = s(t)r0(t) + (1− s(t))r1(t). (21)

Our model allows the short rate to be nonlinear in the state variables without losing

the tractability of closed form solutions of bond prices and a Gaussian state space.7

The d-dimensional market price of risk is given by

Λ(t) = s(t)Λ0(t) + (1− s(t))Λ1(t). (22)

Equation (22) shows that even if the market prices of risk in the base model are

constant, the market prices of risks in the general model are stochastic due to varia-

7Chan, Karolyi, Longstaff, and Sanders (1992), Ait-Sahalia (1996a), Ait-Sahalia (1996b), Stanton
(1997), Pritsker (1998), Chapman and Pearson (2000), Ang and Bekaert (2002), and Jones (2003)
study the nonlinearity of the short rate. Jermann (2013) and Richard (2013) study nonlinear term
structure models, but they do not obtain closed form solutions for bond prices.
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tions in the weight s(t). When s(t) approaches zero or one, then Λ(t) approaches the

market price of risk of an essentially affine Gaussian model.

1.4 Expected Return and Volatility

We know that the bond price is a weighted average of exponential affine bond prices

(see equation (7)). Hence, variations of instantaneous bond returns are due to vari-

ations in the two artificial bond prices P0(t, T ) and P1(t, T ) and due to variations in

the weight s(t). Specifically, the dynamics of the bond price P (t, T ) are

dP (t, T )

P (t, T )
= (r(t) + e(t, T )) dt+ σ(t, T )′ dW (t), (23)

where e(t, T ) denotes the instantaneous expected excess return and σ(t, T ) denotes

the local volatility vector of a zero-coupon bond that matures at time T .

The local volatility vector of the bond is given by

σ(t, T ) = ω(t, T )σ0(T − t) + (1− ω(t, T ))σ1(T − t) + (s(t)− ω(t, T ))β, (24)

where σi(T − t) = Σ′Bi(T − t) denotes the local bond volatility vector in the Gaussian

model with SDF Mi(t) and ω(t, T ) denotes the contribution of P0(t, T ) to the bond

price P (t, T ). Specifically,

ω(t, T ) =
P0(t, T )s(t)

P (t, T )
∈ (0, 1]. (25)

When s(t) approaches zero or one, then σ(t, T ) approaches the deterministic local

volatility of a Gaussian model. However, in contrast to the short rate and the market

price of risk, the local volatility can move outside the range of the two local Gaussian

volatilities, σ0(T − t) and σ1(T − t), because of the last term in equation (24).

10



Intuitively, there are two distinct contributions to volatility in equation (24). The

direct term, defined as

σvol(t, T ) = ω(t, T )σ0(T − t) + (1− ω(t, T ))σ1(T − t), (26)

arises because the two artificial Gaussian models have constant but different yield

volatilities. The indirect term, defined as

σlev(t, T ) = (s(t)− ω(t, T ))β (27)

is due to the Gaussian models having different yield levels. Two special cases illus-

trate the distinct contributions to volatility. If P0(t, T ) = P1(t, T ) = P (t, T ), then

σlev(t, T ) = 0 and the local volatility vector reduces to σ(t, T ) = s(t)σ0(T − t) +

(1− s(t)) σ1(T − t). On the other hand, if σ0(T − t) = σ1(T − t), the first term

is constant, but there is still stochastic volatility due to the second term which be-

comes more important the bigger the difference between the two artificial bond prices

P1(t, T ) and P0(t, T ).
8

The instantaneous expected excess return and volatility of the bond are

e(t, T ) = Λ(t)′σ(t, T ) (28)

v(t, T ) =
√

σ(t, T )′σ(t, T ). (29)

Equations (20)-(29) show that the nonlinear term structure model differs from the

essentially affine Gaussian base model in two important aspects. First, the volatilities

of bond returns and yields are time-varying and hence expected excess returns are

moving with both the price and the quantity of risk.9 Second, the short rate r(t), the

8If λ0,X and κ are zero, then σ0(T − t) = σ1(T − t).
9The instantaneous volatility of the bond yield is 1

τ
v(t, t+ τ).
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instantaneous volatility v(t, T ), and the instantaneous expected excess return e(t, T )

are nonlinear functions of X(t).

2 Estimation

In this section, we estimate the nonlinear model described in Section 1 and compare

it to a standard essentially affine A1(3) model. Both models have three factors and

the number of parameters is 23 in the affine model and 26 in the nonlinear model.

The A1(3) model is well know and thus we defer details to Appendix B.

2.1 Data

We treat each period as a month and estimate the models using a monthly panel of

five zero-coupon Treasury bond yields and their realized variances.10 We use daily

(continuously compounded) 1-, 2-, 3-, 4-, and 5-year zero-coupon yields extracted

from U.S. Treasury security prices by the method of Gurkaynak, Sack, and Wright

(2007). The data is available from the Federal Reserve Board’s webpage and covers

the period 1961:07 to 2014:04. For each bond maturity, we average daily observations

within a month to get a time series of monthly yields. We use realized yield variance to

measure yield variance. Let yτt and rvτt denote the yield and realized yield variance of

a τ -year bond in month t based on daily observations within that month. Specifically,

yτt =
1

Nt

Nt
∑

i=1

yτd,t (i) , (30)

rvτt = 12

Nt
∑

i=1

(

yτd,t (i)− yτd,t (i− 1)
)2

, (31)

10Cieslak and Povala (2014) also include realized variance in the estimation of term structure
models.
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where yτd,t (i) denotes the yield at day i within month t, Nt denotes the number of

trading days within month t, and yτd,t (0) denotes the last observation in month t− 1.

The realized variance converges to the quadratic variation as N approaches infinity,

see Andersen, Bollerslev, and Diebold (2010) and the references therein for a detailed

discussion.

To check the accuracy of realized variance based on daily data, we compare re-

alized volatility with option-implied volatility (to be consistent with the options lit-

erature we look at implied volatility instead of implied variance). We obtain implied

price volatility of one month at-the-money options on five-year Treasury futures from

Datastream and convert it to yield volatility.11 We then calculate monthly volatil-

ity by averaging over daily volatilities. Figure 1 shows that realized volatility tracks

option-implied volatility closely (the correlation is 87%), and thus we conclude that

realized variance is a useful measure for yield variance.

2.2 Estimation Methodology

We use the Unscented Kalman Filter (UKF) to estimate the nonlinear model and

the approximate Kalman filter to estimate the A1(3) model. Christoffersen, Dorion,

Jacobs, and Karoui (2014) show that the UKF works well in estimating term structure

models when highly nonlinear instruments are observed. We briefly discuss the setup

but refer to Christoffersen, Dorion, Jacobs, and Karoui (2014) and Carr and Wu

(2009) for a detailed description of this nonlinear filter.

We stack the five yields in month t in the vector Yt, the corresponding five realized

yield variances in the vector RVt, and set up the model in state-space form. The

11We calculate yield volatility by dividing price volatility with the bond duration. We calculate
bond duration in two steps. We first find the coupon that makes the present value of a five year
bond’s cash flow equal to the at-the-money price of the underlying bond the option is written on
(available from Datastream). We then calculate the modified duration of this bond.
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measurement equation is







Yt

RVt






=







f(Xt)

g(Xt)






+







σyI5 0

0 σrvI5






ǫt, ǫt ∼ N(0, I10), (32)

where f(·) is the function determining the relation between the latent variables and

yields, g(·) is the function determining the relation between the latent variables and

the variance of yields, and the positive parameters σrv and σy are the pricing errors for

yields and their variances.12 Specifically, f = (f1, ..., f5)
′ and g = (g1, ..., g5)

′ where

fτ (Xt) = −1

τ
ln (P (Xt, t+ τ)) (33)

gτ(Xt) =
1

τ 2
v2(Xt, t+ τ) (34)

with P (Xt, t+ τ) and v(Xt, t+ τ) given in Equation (7) and (29), respectively.

In the nonlinear model the state space is Gaussian and thus the transition equa-

tion for the latent variables is

Xt+1 = C +DXt + ηt+1, ηt ∼ N(0, Q), (35)

where C is a vector and D is a matrix that enters the one-month ahead expectation

of Xt, i.e., Et(Xt+1) = C +DXt. The covariance matrix of Xt+1 given Xt is constant

and equal to Q.

In the A1(3) model we use the Gaussian transition equation in (35) as an approx-

imation because the dynamics of X are non-Gaussian. This is a standard approach

in the literature (Feldhütter and Lando (2008)). The bond price P (Xt, t + τ) and

12We choose to keep the estimation as parsimonious as possible by letting the σrv be the same
for all realized variances. An alternative is to use the theoretical result in Barndorff-Nielsen and
Shephard (2002) that the variance of the measurement noise is approximately two times the square
of the spot variance and allow for different measurement errors across bond maturity.
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volatility v(Xt, t+ τ) in equation (33) and (34) of the A1(3) model are given in equa-

tion (61) and (62) in Appendix B. We can use the approximate Kalman filter because

both yields and variances are affine in X in the A1(3) model.

We use the normalization proposed in Dai and Singleton (2000) to guarantee

that the parameters are well identified if s(Xt) is close to zero or one, or if γ and

all elements of β are close to zero. In the nonlinear model, we assume in Equation

(1) that the mean reversion matrix, κ, is lower triangular, the mean of the state

variables, X̄ , is the zero vector, and that the local volatility, Σ, is the identity matrix.

The normalizations in the A1(3) model are given in Appendix B.

2.3 Estimation Results

Estimated parameters are reported in Table 1. The volatility of the pricing errors

σy and σrv show that the nonlinear model matches yields slightly better and realized

variances slightly worse, but overall the fit of both models is of similar magnitude.

Figure 2 shows that both models fit yields well. Figure 3 shows that there are larger

fitting errors for realized variances than for yields, which is not surprising given real-

ized variance is a noisy estimate of the true underlying variance.

The bond price in the nonlinear model is a weighted average of two Gaussian bond

prices (see Theorem 1). Figure 4 shows the weight s(Xt) on the Gaussian base model.

If the stochastic weight approaches zero or one, then the bond price approaches the

bond price in a Gaussian model where yields are affine functions of the state variables

and yield variances are constant. The stochastic weight is distinctly different from

one and varies substantially over the sample period, that is, the mean and volatility of

s(Xt) are 79.98% and 21.35%, respectively. Moreover, there are both high-frequency

and low-frequency movements in s(Xt). The high-frequency movements push s(Xt)

away from one during recessions; we see spikes during the 1970, 1973-1975, 1980, 2001,
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and 2007-2009 recessions. The low-frequency movement start in the early eighties

where the weight moves significantly below one and slowly returns over the next 30

years.

To quantify the impact of nonlinearities in our model, we regress yields and their

variances on the three state variables. By construction the R2 of these regressions in

the A1(3) model is 100%. In the nonlinear model, the R2s when regressing the one to

five-year yields on the three state variables are 89.40%, 89.64%, 90.12%, 90.66%, and

91.14%, respectively, showing a considerable amount of nonlinearity. Nonlinearity

shows up even stronger in the relation between yield variances and the three fac-

tors. Specifically, the R2s when regressing the one to five-year yield variances on the

three state variables are 29.52%, 27.99%, 28.18%, 29.52%, and 31.67%, respectively.

For comparison, regressing the stochastic weight s(Xt) on all three state variables

leads to an R2 of 80.88%. Overall, these initial results suggest an important role for

nonlinearity and we explore this in detail in the next section.

3 Empirical Results

In this section we focus on the empirical properties of the nonlinear model and com-

pare it to a standard affine model with stochastic volatility, the A1(3) model.

3.1 Expected Excess Returns

Expected excess returns of U.S. Treasury bonds vary over time as documented in

among others Fama and Bliss (1987) and Campbell and Shiller (1991) (CS). CS

document this by regressing future yield changes on the scaled slope of the yield curve.

The slope regression coefficient is one if excess holding period returns are constant,

but CS find negative regression coefficients implying that a steep slope predicts high
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future excess bond returns. Panel A in Table 2 shows that the nonlinear model

captures the negative CS regression coefficients in population, while the A1(3) model

does not. This is consistent with evidence in Dai and Singleton (2002), Tang and Xia

(2007), and Feldhütter (2008) that in the class of three-factor affine models the A1(3)

model cannot generate negative CS regression coefficients.13

Figure 5 shows that one-year expected excess returns in the nonlinear model are

positive since the mid-80s while they are alternating between positive and negative

in the A1(3) model. Although not shown in the figure, this is also the case at longer

holding horizons. Realized returns are predominantly positive since the mid-80s,

which may suggest that the nonlinear model fits expected excess returns better than

the A1(3) model. We run a regression of realized excess returns on expected excess

returns to test this formally.14 The results are reported in Panel B of Table 2. If the

model captures expected excess returns well, then the slope coefficient should be one,

the constant zero, and the R2 high. The slope coefficients are lower but generally close

to one in the nonlinear model with an average slope coefficient of 0.85. In the A1(3)

model the slope coefficients are basically one at the one-year horizon but become

too low at longer horizons and the average coefficient is 0.69. Similarly, the average

constant α is closer to zero in the nonlinear model (-0.0046) than in the A1(3) model

(0.0089). The average R2 across bond maturity and holding horizon is 27% in the

nonlinear model while it is only 9% in the A1(3) model.

To measure how well the nonlinear model predicts excess returns we compare the

mean squared error of the predictor to the unconditional variance of excess returns.

Specifically, we define the statistic “fraction of variance explained” that measures the

13The mentioned studies show that only the Gaussian model can match the CS regression coeffi-
cients, while the A1(3) comes closest to matching the coefficients among the models with stochastic
volatility, An(3), n > 0. We do not compare with a Gaussian model because it does not allow for
stochastic volatility and therefore it fails in capturing the time-variation in yield volatility.

14Moments of yields and returns are easily calculated using Gauss-Hermite quadrature, see Ap-
pendix D for details. In the rest of the paper we use Gauss-Hermite quadrature when we do not
have closed-form solutions for expectations or variances.
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explanatory power of the model implied expected excess return as follows15

FVE = 1−
1
T

∑T

t=1

(

rxτ
t,t+n − Et

[

rxτ
t,t+n

])2

1
T

∑T
t=1

(

rxτ
t,t+n − 1

T

∑T
t=1 rx

τ
t,t+n

)2 , (36)

where rxτ
t,t+n is the n-year log return on a bond with maturity τ in excess of the n-

year yield and Et[rx
τ
t,t+n] is the corresponding model implied expected excess return.

If the predictor is unbiased, then the R2 from the regression of realized on expected

excess returns is equal to the FVE and otherwise it is an upper bound. Panel B of

Table 2 shows that the FVEs in the nonlinear model are higher than in the A1(3)

model, and in contrast to the nonlinear model, the performance of the A1(3) model

deteriorates as we increase the holding horizon.

To compare the nonlinear model to affine models more generally we regress future

excess returns on the five yields. The R2s from this regression corresponds to the

explanatory power of the Cochrane and Piazzesi (2005) factor and is an upper bound

for the FVE of any affine model for which expected excess returns are spanned by

yields. Panel B of Table 2 shows that the FVEs of the nonlinear model are equal to

or higher than the explanatory power of the Cochrane-Piazzesi factor.16 This implies

that no affine model without hidden risk premium factors (see discussion below) can

explain more of the variation in realized excess returns than the nonlinear model.

15Almeida, Graveline, and Joslin (2011) refer to this measure as a modified R2.
16The average R2 from regressing excess returns onto yields for a one-year holding horizon is 17%

which is lower than the 37% reported in Cochrane and Piazzesi (2005). There are two reasons for
this. First, the data sets are different. If we use the Fama-Bliss data, then the average R2 increases
to 25%. Second, Cochrane and Piazzesi (2005) use the period 1964-2003 and R2’s are lower outside
this sample period as documented in Duffee (2012).
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3.1.1 Unspanned Risk Premia

There is a lot of empirical evidence that shows that a part of excess bond returns

is explained by macro factors not spanned by linear combinations of yields.17 For

example, Bauer and Rudebusch (2015) find that the R2 when regressing realized

excess returns on the first three PC of yields along with expected inflation is 85%

higher than when regressing on just the first three PCs.18 We refer to this empirical

finding as Unspanned Risk Premia or URP.

To quantitatively capture URP in a term structure model Duffee (2011b), Joslin,

Priebsch, and Singleton (2014), and Chernov and Mueller (2012) use five-factor Gaus-

sian models. The reason for using five factors is that three factors are needed to

explain the cross section of bond yields and then one or two factors orthogonal to the

yield curve explain expected excess returns. An alternative explanation for the span-

ning puzzle that has not been explored in the literature is that there is a nonlinear

relation between yields and expected excess returns. We therefore ask the question:

are nonlinearities empirically important for understanding the spanning puzzle?

To answer the question, we start by regressing model-implied one-year expected

excess return on the first five PCs of model-implied yields in the sample period. The

R2s of these regressions are reported in Table 3. Panel C shows that by construction

the first three PCs explain all the variation in expected excess returns in the A1(3)

model (since expected excess returns are linear in the yields). Panel B shows that the

first three PCs explain on average 69.4% of the variation of expected excess returns in

the nonlinear model in the sample period. That is, almost one third of the variation

of expected excess returns is due to a nonlinear relation between expected excess

17See Ludvigson and Ng (2009), Cooper and Priestley (2009), Cieslak and Povala (2015), Duf-
fee (2011b), Joslin, Priebsch, and Singleton (2014), and Chernov and Mueller (2012). Bauer and
Rudebusch (2015) argue that this evidence can be explained by measurement error.

18The R2 is 0.36 in the former and 0.195 in the latter, see Bauer and Rudebusch (2015)’s Table
3. Joslin, Priebsch, and Singleton (2014) present similar evidence.
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returns and yields.

Empirically, realized excess returns are invariably used in lieu of expected excess

returns as dependent variable. To see how this noise affects the importance of non-

linearities, we simulate 1,000,000 months and regress realized excess returns on the

five PCs. Panel D shows the results for the nonlinear model, while Panel E shows the

results for the A1(3) model. We see that the R2 in the nonlinear model are largely

in line with the actual R2 in Panel A while this is not the case for the A1(3) model.

The final column shows the R2s when regressing realized excess returns on expected

excess returns. The average R2 is 81% higher than when regressing on the first three

PCs in the nonlinear model (26.2% vs 14.5%). This implies that if there is a macro

variable that perfectly tracks expected excess returns, average R2s when regressing

realized excess returns on the first three PCs and this macro factor would be 81%

higher than when regressing on just the first three PCs; similar to the incremental

R2 documented in Bauer and Rudebusch (2015). Of course, this is not because this

macro factor contains any information not in the yield curve.

Is it plausible that macro factors (partially) pick up nonlinearities? To address

this question, we take the residuals from regressing expected excess returns on PCs

in the nonlinear model (Panel B in Table 3) and regress them on expected inflation.19

Table 4 shows the results. Expected inflation explains about 11% of the variation and

is statistically significant at the 5% level when using residuals based on the first three

PCs. The R2s increase to slightly less than 20% when adding the fourth PC. Even

when including all five PCs expected inflation is highly significant. Thus, although all

information about expected excess returns is contained in the yield curve, expected

inflation appears to contain information about them when running linear regressions.

19Expected inflation is measured as the mean forecasts of price growth in the Michigan Survey of
Consumers (MSC). MSC is a survey conducted on monthly frequencies covering a large cross-section
of consumers and Ang, Bekaert, and Wei (2007) show that it is a good unbiased predictor of inflation.
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Overall, our nonlinear model highlights an alternative channel that helps explain

the spanning puzzle: expected excess returns are nonlinearly related to yields and

therefore a part of expected excess returns appears to be “hidden” from a linear

combination of yields and this part can be picked up by macro factors. This is

achieved in a parsimonious three-factor model rather than a five-factor model as is

common in the literature.

3.2 Stochastic Volatilities

Table 6 shows that there is more than one factor in realized yield variances in our

data: the first PC of yield variances explain 94,5% of the variation while the first

two PCs explain 99.2%. The A1(3) model has by definition only one factor explain-

ing volatilities and therefore the first PC explain all the variation in model-implied

realized variances.20 In the nonlinear model, the first PC explains 97.5% of the vari-

ation in model-implied variances and the first two PCs explain 99.9%. Hence, yield

variances in the nonlinear model exhibit a linear multi-factor structure as in the data.

The nonlinear and A1(3) model also have significantly different distributions of

future yield volatility. Figure 6 shows the one-year ahead conditional distribution

of the instantaneous yield volatility for the bond with three years to maturity (the

distributions for bonds with other maturities are similar).21 The volatility is a linear

function of only one factor in the A1(3) model and the distribution of future volatility

is fairly symmetric and does not change much over time. In the nonlinear model

volatility is a nonlinear function of three factors and the volatility distribution takes

on a variety of shapes that persist over time.

The 97.5 quantiles of the one-year ahead volatility distribution in the nonlinear

20Even though realized variances are noisy measures of integrated variances, average yields nev-
ertheless span realized variances, see Andersen and Benzoni (2010).

21The instantaneous yield volatility is 1
τ
v(τ)(t) with v(τ)(t) given in equation (29).

21



model shows that the market did not anticipate the possibility of very volatile yields

before the monetary experiment in the early 80s, apart from brief periods around the

1970s recessions. However, there is a significant probability of a high yield volatility

scenario since the 80s, despite the fact that volatilities have come down to levels

similar to those in the 60s and 70s. It is only in the calm 2005-2006 period a high-

volatility scenario was unlikely. This finding suggest that there is information about

the risk of a high volatility regime in Treasury bond data which is similar to the

appearance of the smile in equity options since the stock market crash of 87. To

test whether the nonlinear model can capture this information from Treasury bond

data that exclude the monetary experiment, we re-estimate the parameters using

yield and realized yield variance data for the period August 1987 to April 2014 (Alan

Greenspan became chairman of the Fed on August 11, 1987). Table 1 shows the

parameters of the nonlinear model estimated using yields and realized yield variances

for the period August 1987 to April 2014. The parameters β and γ that capture

the nonlinearities of the model are similar to the estimates using data that includes

the early 80s. Figure 7 shows the 97.5 quantiles of the one-year ahead distribution

of yield volatility for sample periods with and without the early 80s. There is a fat

right-tail in the volatility distribution in both cases and hence the nonlinear model

captures the risk of strong increase in volatility, even when such an event is not in

the sample used to estimate the model.

The regime-switching models of Dai, Singleton, and Yang (2007), Bansal and

Zhou (2002), and Bansal, Tauchen, and Zhou (2004) capture time variation in the

probabilities of high volatility regimes by adding a state variable that picks up the

regime. However, if a high-volatility regime is not in the sample used to estimate

the model, then the regimes in the model will pick up minor variations in volatility

(see the discussion in Dai, Singleton, and Yang (2007)). Everything works through

nonlinearities in our model and therefore the probability of a high-volatility regime
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can be pinned down in a sample that does not include such an episode.

3.2.1 Unspanned Stochastic Volatility

There is a large literature suggesting that interest rate volatility risk cannot be hedged

by a portfolio consisting solely of bonds; a phenomenon referred to by Collin-Dufresne

and Goldstein (2002) as Unspanned Stochastic Volatility (USV). The empirical ev-

idence supporting USV typically comes from a low R2 when regressing measures of

volatility on interest rates. For instance, Collin-Dufresne and Goldstein (2002) regress

straddle returns on changes in swap rates and document R2s as low as 10%. Similarly,

Andersen and Benzoni (2010) (AB) regress yield variances - measured using high fre-

quency data - on the first six PCs of yields and find low R2s. Inconsistent with this

evidence, standard affine models produce high R2’s in USV regressions because there

is a linear relation between yield variances and yields in the model.

The nonlinear model provides an alternative explanation for low R2s in USV

regression because the relation between yield variances and yields is nonlinear. How-

ever, it is an empirical question if nonlinearities in the model are strong enough to

produce R2s similar to those found in the data. To answer this question, we follow

AB and regress realized yield variance on principal components of yields. The R2s

of these regressions for the data are reported in Panel A of Table 5. The average R2

when regressing realized variance on the first three PCs is 32.4%, confirming that the

PCs of yields only explain a fraction of the variation in variance.22 Panel B shows

that the average R2 is 42.5% when we regress monthly model-implied instantaneous

yield variance on the first three PCs of monthly model-implied yields which is not

substantially higher than in the data. In contrast, Panel D shows that in the A1(3)

model the R2 is 100% once the first three PCs are included in the regression of in-

22The R2 are higher than those found in AB because the sample period includes the monetary ex-
periment, see Jacobs and Karoui (2009) for a discussion of the explanatory power in USV regressions
for different time periods.
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stantaneous variance on yield PCs. Hence, the presence of nonlinearities give rise to

low R2’s in AB’s USV regression.

To understand why a significant part of variance is (linearly) unspanned by yields

we recall that equation (24) shows that the local volatility consists of two components,

σlev and σvol, and thus the instantaneous yield variance is

σ(t, T )′σ(t, T ) = σvol(t, T )
′σvol(t, T ) + σlev(t, T )

′σlev(t, T ) + 2σvol(t, T )
′σlev(t, T ) (37)

While the average R2 across maturities when regressing the yield variance on the first

five PCs of model-implied yields is only 59.2%, the average R2 when regressing each

component in (37) on the five PCs of yields is 94.4%, 88.2%, and 94.9%, respectively.

Hence, each component is close to being linearly spanned, but they partially offset

each other.23 When P1(t, T ) = P2(t, T ) the second and third term in (37) vanish and

volatility is largely spanned. Hence, the fraction of volatility that is unspanned varies

significantly over time consistent with findings in Jacobs and Karoui (2009).

Bikbov and Chernov (2009) discuss how measurement error due to microstructure

effects such as the bid-ask spread in option and bond prices affects the explanatory

power of USV regressions. Collin-Dufresne and Goldstein (2002) argue that measure-

ment error cannot be the reason for low R2’s in USV regressions because there is a

strong factor structure in the regression residuals across bond maturities. Panel F

of Table 5 confirms the factor structure in the data because the first PC explains

91.8% of the residual variation. The first PC explains 98% of the residual variation

in the regression implied by the nonlinear model. Hence, our nonlinear model can

capture the low explanatory power and the strong residual factor structure of the

USV regressions that is observed in the data.

23In particular, as s(t) moves towards the high volatility model, the yield difference between the
two models tends to decrease. That is, as the first part in (37) increases, the second part in the
same equation tends to decrease.

24



The USV regressions in Table 5’s Panel A are subject to a measurement error

not discussed in Bikbov and Chernov (2009) due to the use of realized variance

instead of option-implied variance. To assess the importance of this measurement

error we consider the nonlinear and A1(3) model and simulate 1,000,000 months of

daily data (with 21 days in each month), compute monthly realized variance and

monthly average yield, and regress realized variance on the five PCs of yields. Panel

C shows the results for the nonlinear model. The results are very similar to those when

using instantaneous variance in the sample period – the average R2 is 39.8% for the

first three PCs – so our results are robust to taking into account measurement error

in realized variance. Panel E shows that the average R2 is 45.8% in the A1(3) model

when regressing realized variance on the first three PCs of yields in the simulated

sample, which brings model R2s much closer to data R2s. However, the R2s when

using only one or two PCs in the model are zero which is strongly at odds with the

data.24

Collin-Dufresne and Goldstein (2002) introduce knife edge parameter restrictions

in affine models such that volatility state variable(s) do not affect bond yields, the so-

called USV models. The most commonly used USV models – the A1(3) and A1(4) –

have one factor driving volatility and this factor does not affect yields. These models

generate zero R2s in the above USV regression in population, inconsistent with the

empirical evidence. In contrast, the nonlinear model retains a parsimonious three-

factor structure and yet can generate R2s in USV regressions which are broadly in

line with those in the data.

24Since measurement errors when using realized variance in the A1(3) model result in a drop in
R2s from 100% to 45.8%, an interesting question is if the population R2s in the nonlinear model in
Panel C would be substantially higher if instantaneous variance is used instead of realized variance.
The answer is no. If instantaneous model-implied variance is used the average R2 is 48.4% instead
of 43.6% in Panel C.

25



3.3 Cross-sectional fit of three-factor models

The nonlinear bond pricing model allows us to capture the observed time variation

in the mean and volatility of excess bond returns. However, Balduzzi and Chiang

(2012) show that in the cross-section there is an almost linear relation between yields

of different maturities. To check wether the nonlinear model captures the cross-

sectional linearity we follow Duffee (2011a) and determine the principal components

of zero-coupon bond yield changes with maturities ranging from one to five years

and regress the yield changes of each bond on a constant and the first three principal

components. The results for the data (based on 634 observations) and the two models

(based on one million simulated observations) are shown in Table 6.

Panel A of Table 6 shows that the first three principal components describe almost

all the variation of bond yield changes in the nonlinear model which is consistent with

the data. Moreover, Panel B of Table 6 shows that the loading for each yield on the

level, slope, and curvature factor in the nonlinear model is similar to the data. We

conclude that the cross-sectional variation of bond yields implied by the nonlinear

model is well explained by the first three principal components and no yield breaks

this linear relation.

4 Conclusion

We introduce a new reduced form term structure model where the short rate and

market prices of risk are nonlinear functions of Gaussian state variables and derive

closed form solutions for yields. The nonlinear model with three Gaussian factors

matches both the time-variation in expected excess returns and yield volatilities of

U.S. Treasury bonds from 1961 to 2014. Because there are nonlinear relations between

factors, yields, and variances, the model exhibits features consistent with empirical
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evidence on unspanned risk premia (URP) and unspanned stochastic volatility (USV).

We are not aware of any term structure models–in particular a model with only three

factors–that have empirical properties consistent with evidence on time-variation in

expected excess returns and volatilities, URP, and USV.

Although our empirical analysis has focused on a nonlinear generalization of an

affine Gaussian model, it is possible to generalize a wide range of term structure

models such as affine models with stochastic volatility and quadratic models. Our

generalization introduces new dynamics for bond returns while keeping the new model

as tractable as the standard model. Furthermore, the method extends to processes

such as jump-diffusions and continuous time Markov chains.
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A General Nonlinear Gaussian Model

Let γ denote a nonnegative constant and M0(t) a strictly positive stochastic process

with dynamics given in equation (3). The stochastic discount factor is defined as

M(t) = M0(t)
(

1 + γe−β′X(t)
)α

, (38)

where β ∈ Rd and α ∈ N .

We show in the next theorem that the price of a bond is a weighted average

of bond prices in artificial economies that belong to the class of essentially affine

Gaussian term structure models.

Theorem 2. The price of a zero-coupon bond that matures at time T is

P (t, T ) =

α
∑

n=0

sn(t)Pn(t, T ), (39)

where

Pn(t, T ) = eAn(T−t)+Bn(T−t)′X(t), (40)

sn(t) =

(

α

n

)

γne−nβ′X(t)

(1 + γe−β′X(t))
α . (41)

The coefficient An(T − t) and the d-dimensional vector Bn(T − t) solve the ordinary

differential equations given in equation (10) and (11).

Proof. Using the binomial expansion theorem, the stochastic discount factor in Equa-

tion (38) can be expanded as

M(t) =
α
∑

n=0

Mn(t), (42)
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where

Mn(t) =

(

α

n

)

γne−nβ′X(t)M0(t). (43)

Each summand can be interpreted as a stochastic discount factor in an artificial

economy.25 The dynamics of the strictly positive stochastic process Mn(t) are

dMn(t)

Mn(t)
= −rn(t) dt− Λn(t)

′dW (t), (44)

where

Λn(t) = Λ0(t) + nΣ′β (45)

rn(t) = r0(t) + nβ ′κ
(

X̄ −X(t)
)

− n2

2
β ′ΣΣ′β − nβ ′ΣΛ0(t). (46)

Plugging in for r0(t) and Λ0(t), it is straightforward to show that Λn(t) and rn(t)

are affine functions of X(t) with coefficients given in Equations (12)-(15). If Mn(t)

is interpreted as a stochastic discount factor of an artificial economy indexed by n

then we know that bond prices in this economy belong to the class of essentially

(exponential) affine Gaussian term structure models and hence

Pn(t, T ) = eAn(T−t)+Bn(T−t)′X(t), (47)

where coefficient An(T − t) and the d-dimensional vector Bn(T − t) solve the ordinary

differential equations (10) and (11). Hence, the bond price is

P (t, T ) =
α
∑

n=0

sn(t)Pn(t, T ), (48)

where sn(t) is given in equation (41).

25Similar expansions of the stochastic discount factor appear in Yan (2008), Dumas, Kurshev, and
Uppal (2009), Bhamra and Uppal (2014), and Ehling, Gallmeyer, Heyerdahl-Larsen, and Illeditsch
(2013).
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Proof of Theorem 1. Set α = 1 in Theorem 2.

Applying Ito’s lemma to equation (38) leads to the dynamics of the stochastic

discount factor:

dM(t)

M(t)
= −r(t) dt− Λ(t)′dW (t), (49)

where

r(t) = r0(t) + α (1− s(t)) β ′κ
(

X̄ −X(t)
)

− α(1− s(t))β ′ΣΛ0(t)

− α

2
(1− s(t)) (α (1− s(t)) + s(t))β ′ΣΣ′β.

(50)

and

Λ(t) = Λ0(t) + α (1− s(t))Σ′β. (51)

Let ωn(t, T ) denote the contribution of each artificial exponential affine bond price

to the total bond price. Specifically,

ωn(t, T ) =
Pn(t, T )sn(t)

P (t, T )
. (52)

The dynamics of the bond price P (t, T ) are

dP (t, T )

P (t, T )
= (r(t) + Λ(t)′σ(t, T )) dt+ σ(t, T )′ dW (t), (53)

where

σ(t, T ) = Σ′

(

α
∑

n=0

ωn(t, T )Bn(T − t) + β

(

α
∑

n=0

n ωn(t, T )− α(1− s(t))

))

. (54)
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B Essentially Affine A1(3) Model

We briefly describe the A1(3) model in this section and refer the reader to Duffee

(2002) for a detailed discussion. The dynamics of the three-dimensional state vector

X(t) = (X1(t), X2(t), X3(t))
′ are

dX(t) = κ
(

X̄ −X(t)
)

dt+ S(t) dW (t), (55)

where X̄ = (X̄1, 0, 0)
′ is the long run mean,

κ =













κ(1,1) 0 0

κ(2,1) κ(2,2) κ(2,3)

κ(3,1) κ(3,2) κ(3,3)













(56)

is the positive-definite mean reversion matrix, W (t) is a three-dimensional Brownian

motion, and

S(t) =













√

δ1X1(t) 0 0

0
√

1 + δ2X1(t) 0

0 0
√

1 + δ3X1(t)













(57)

is the local volatility matrix with δ = (1, δ2, δ3).

The dynamics of the stochastic discount factor M(t) are

dM(t)

M(t)
= −r(t) dt− Λ(t)′ dW (t), (58)

where the short rate r(t) and the three-dimensional vector S(t)Λ(t) are affine functions

of X(t). Specifically,

r(t) = ρ0 + ρ′XX(t), (59)
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where ρ0 is a scalar and ρX is a 3-dimensional vector. The market price of risk Λ(t)

is the solution of the equation

S(t)Λ(t) =













λX,(1,1)X1(t)

λ0,2 + λX,(2,1)X1(t) + λX,(2,2)X2(t) + λX,(2,3)X3(t)

λ0,3 + λX,(3,1)X1(t) + λX,(3,2)X2(t) + λX,(3,3)X3(t)













, (60)

where λ0 denotes a three dimensional vector and λX a three-dimensional matrix.

Hence, the bond price and the instantaneous yield volatility are

P (X(t), T ) = eA(T−t)+B(T−t)′X(t) (61)

v(X(t), T ) =
√

B(T − t)′S(X(t))S(X(t))B(T − t), (62)

where A(τ) and B(τ) satisfy the ODEs

dA(τ)

dτ
=
(

κX̄ − λ0

)′
B(τ) +

1

2

3
∑

i=2

Bi(τ)
2 − ρ0, A(0) = 0 (63)

dB(τ)

dτ
= (κ+ λX)

′ B(τ) +
1

2

3
∑

i=1

Bi(τ)δi − ρX , B(0) = 03×1. (64)

C Equilibrium Models

In this section we show that the functional form of the state price density in equation

(2) and (38) naturally comes out of several equilibrium models.26 We need to allow

for state variables that follow arithmetic Brownian motions and hence we rewrite the

dynamics of the state vector in equation (1) in the slightly more general form

dX(t) = (θ − κX(t)) dt+ Σ dW (t), (65)

26Chen and Joslin (2012) provide an alternative way to solve many of these equilibrium models
that is based on a nonlinear transform of processes with tractable characteristic functions.
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where θ is d–dimensional and κ and Σ are d× d–dimensional.

In what follows, the standard consumption based asset pricing model with a

representative agent power utility and log-normally distributed consumption will serve

as our benchmark model. Specifically, the state price density takes the following form

M0(t) = e−ρtC(t)−R, (66)

where R is the coefficient of RRA and C is aggregate consumption with dynamics

dC(t)

C(t)
= µCdt+ σ′

CdW (t). (67)

The short rate and the market price of risk are both constant and given by

Λ0 = RσC (68)

r0 = ρ+RµC − 1

2
R (R + 1)σ′

CσC . (69)

Table 7 summarizes the relation between the nonlinear term structure models and

the equilibrium models discussed in this section.

C.1 Two Trees

Cochrane, Longstaff, and Santa-Clara (2008) study an economy in which aggregate

consumption is the sum of two Lucas trees. In particular they assume that the

dividends of each tree follow a geometric Brownian motion

dDi(t) = Di(t) (µidt+ σ′
idW (t)) . (70)

Aggregate consumption is C(t) = D1(t)+D2(t). There is a representative agent with
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power utility and risk aversion R. Hence, the stochastic discount factor is

M(t) = e−ρtC(t)−R

= e−ρt (D1(t) +D2(t))
−R

= e−ρtD1(t)
−R

(

1 +
D2(t)

D1(t)

)−R

= M0(t)
(

1 + elog(D2(t))−log(D1(t))
)−R

, (71)

where M0(t) = e−ρtD−R
1 and X(t) = log (D1(t)/D2(t)). Equation (71) has the same

form as the SDF in equation (38) with α /∈ N . Specifically, γ = 1, β = 1, and

α = −R. Note that in this case the state variable is the log-ratio of two geometric

Brownian motions and thus κ = 0. The share s(X(t)) and hence yields are not

stationary.

C.2 Multiple Consumption Goods

Models with multiple consumption goods and CES consumption aggregator naturally

falls within the functional form of the SDF in equation (38). Consider a setting with

two consumption goods. The aggregate output of the two goods are given by

dDi(t) = Di(t) (µidt+ σ′
idW (t)) . (72)

Assume that the representative agent has the following utility over aggregate con-

sumption C,

u(C, t) = e−ρt 1

1−R
C1−R, (73)

where

C(C1, C2) =
(

φ1−bCb
1 + (1− φ)1−b Cb

2

)
1
b

. (74)
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We use the aggregate consumption bundle as numeraire, and consequently the state

price density is

M(t) = e−ρtC(t)−R

= (φ)
bR
1−b e−ρtD1(t)

−R

(

1 +

(

1− φ

φ

)1−b(
D2(t)

D1(t)

)b
)−R

b

.

(75)

After normalizing equation (75) has the same form as the SDF in equation (38) with

α /∈ N . Specifically, X(t) = log(D1(t)/D2(t)), γ =
(

1−φ

φ

)1−b

, β = b, and α = −R
b
.

As in the case with Two Trees, the share s(X(t)) and hence yields are not stationary.

C.3 External Habit Formation

The utility function in Campbell and Cochrane (1999) is

U(C,H) = e−ρt 1

1− R
(C −H)1−R , (76)

where H is the habit level. Rather than working directly with the habit level, Camp-

bell and Cochrane (1999) define the surplus consumption ratio s = C−H
C

. The stochas-

tic discount factor is

M(t) = e−ρtC(t)−Rs(t)−R (77)

= M0(t)s(t)
−R. (78)

Define the state variable

dX(t) = κ
(

X̄ −X(t)
)

dt+ bdW (t), (79)
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where κ > 0,σc > 0 and b > 0. Now let s(t) = 1
1+e−βX(t) . Note that s(t) is between 0

and 1. In particular, s(t) follows

ds(t) = s(t) (µs(t)dt+ σs(t)dW (t)) , (80)

where

µs(t) = (1− s(t))

(

βκ
(

X̄ −X(t)
)

+
1

2
(1− 2s(t))β2b2

)

(81)

σs(t) = (1− s(t))βb. (82)

The functional form of the surplus consumption ratio differs from Campbell and

Cochrane (1999). However, note that the surplus consumption ratio is locally per-

fectly correlated with consumption shocks, mean-reverting and bounded between 0

and 1 just as in Campbell and Cochrane (1999). The state price density can be

written as

M(t) = M0(t)
(

1 + e−βX(t)
)R

. (83)

The above state price density has the same form as equation (38) with parameters

γ = 1, β = β, and α = R. Note that the state variable X in this case is mean-

reverting and therefore the share s(X(t)) and hence yields are stationary.

C.4 Heterogeneous Beliefs

Consider an economy with two agents that have different beliefs. Let both agents have

power utility with the same coefficient of relative risk aversion, R. Moreover, assume

that aggregate consumption follows the dynamics in equation (67). The agents do
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not observe the expected growth rate and agree to disagree.27 The equilibrium can be

solved by forming the central planner problem with stochastic weight λ that captures

the agents’ initial relative wealth and their differences in beliefs (see Basak (2000),

for example),

U(C, λ) = max
{C1+C2=C}

(

1

1− R
C1−R

1 + λ
1

1− R
C1−R

2

)

. (84)

Solving the above problem leads to the optimal consumption of the agents

C1(t) = s(t)C(t), (85)

C2(t) = (1− s(t))C(t), (86)

where s(t) = 1

1+λ(t)
1
R

is the consumption share of the first agent and C is the aggregate

consumption. The state price density as perceived by the first agent is

M(t) = e−ρtC1(t)
−R

= e−ρtC(t)−Rs(t)−R

= M0(t)
(

1 + e
1
R
log(λ(t))

)R

. (87)

This has the same form as equation (38) with X(t) = log(λ(t)), γ = 1, β = − 1
R
, and

α = R. The dynamics of the state variable is driven by the log-likelihood ratio of the

two agents and consequently the share s(X(t)) and hence yields are not stationary.

27The model can easily be generalised to a setting with disagreement about multiple stochastic
processes and learning. For instance, Ehling, Gallmeyer, Heyerdahl-Larsen, and Illeditsch (2013)
show that in a model with disagreement about inflation, the bond prices are weighted averages of
quadratic Gaussian term structure models.
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C.5 HARA Utility

Consider a pure exchange economy with a representative agent with utility u(t, c) =

e−ρt

1−R
(C + b)1−R, where R > 0 and b > 0. We can write the SDF as

M(t) = e−ρtC(t)−R

= e−ρt (C(t) + b)−R

= e−ρtC(t)−R

(

1 +
b

C(t)

)−R

= M0(t)
(

1 + elog(b)−log(C(t))
)−R

(88)

After normalizing equation (88) has the same form as the SDF in equation (38) with

α /∈ N . Specifically, X(t) = log(b/C(t)), γ = 1, β = 1, and α = −R. Similarly to

the model with Two Trees and multiple consumption goods, the share s(X(t)) and

hence yields are nonstationary as the ratio b/C(t) will eventually converge to zero or

infinity depending on the expected growth in the economy.

D Gauss-Hermite Quadrature

While bond prices and bond yields are given in closed form, conditional moments of

yields and bond returns are not. However, it is straightforward to calculate condi-

tional expectations using Gauss-Hermite polynomials because the state vector X(t)

is Gaussian.28

In this section we illustrate how to calculate the expectation of a function of

Gaussian state variables. Let µX and ΣX denote the conditional mean and variance

of X(u) at time t < u. Let f(X(t)) be a function of the state vector at time t.

For instance if you want to calculate at time t the n-th uncentered moment of the

28For more details see Judd (1998).
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bond yield with maturity τ at time u, then f(X(u)) =
(

y(τ)(X(u))
)n
. Hence, the

conditional expectation of y(τ)(X(u)) at time t is

Et [f (X(u))] =

∫

Rd

f(x)
1

(

(2π)d |ΣX |
)0.5 e

− 1
2
(x−µX)′Σ−1

X
(x−µX)dx. (89)

Define y =
√
2σ−1

X (x− µX) where σX is determined by the Cholesky decomposition

ΣX = σXσ
′
X . Hence, we can write Equation (89) as

π− d
2

∫

Rd

f(
√
2σXy + µX)e

−y′ydy. (90)

Let g(y) = f(
√
2σXy + µX). We set d = 3 in the empirical section of the paper and

thus the integral in Equation (90) can be approximated by the n point Gauss-Hermite

quadrature

∫

Rd

f(
√
2σXy + µX)e

−y′ydy ≈
n
∑

i=1

n
∑

j=1

n
∑

k=1

wiwjwkg(y1(i), y2(j), y3(k)), (91)

where wi are the weighs and yl(i) are the nodes for the n point Gauss-Hermite quadra-

ture for i = 1, .., n and l = 1, .., 3. We use n = 4 in equation (91).
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Nonlinear Nonlinear, post-Voelcker A1(3)
0.3127
(0.04224)

0 0 0.3452
(0.08753)

0 0 1.421
(0.1863)

0 0

κ 0.3063
(0.05601)

0.002189
(2.246e−05)

0 0.5507
(0.09825)

0.003245
(0.002091)

0 −0.04787
(1.899)

0.07225
(0.01938)

−0.003283
(4.101)

1.258
(0.1103)

0.03804
(0.02125)

0.4098
(0.0377)

1.057
(0.2745)

1.072e− 05
(0.0002734)

0.4449
(0.2494)

0.283
(0.6523)

−0.009014
(0.07474)

0.356
(0.01893)

ρ0 −0.001756
(0.01408)

−0.001002
(0.02238)

0.08832
(0.3038)

ρX 0.0002071
(0.0001846)

0.003061
(0.0002364)

0.004345
(0.0001742)

0.0002036
(0.0009384)

0.005161
(0.0004481)

0.004939
(0.0005533)

0.0003736
(0.0002645)

0.001131
(0.0009603)

1.385e− 05
(0.000302)

λ0 0.7569
(0.04302)

−0.01631
(0.5559)

−0.4413
(0.3375)

0.3814
(0.09227)

−0.02483
(0.09312)

−0.3191
(0.2209)

0 0.6101
(106.4)

0.006454
(7.178)

−0.2187
(0.04129)

0.005572
(0.001321)

−0.02053
(0.005609)

−0.2244
(0.06907)

0.003604
(0.00792)

−0.02491
(0.04552)

6.75e− 05
(0.07544)

0 0

λX −1.735e− 06
(4.238e−05)

0.001197
(0.03785)

0.6863
(0.03001)

−1.558e− 06
(2.248e−05)

0.001282
(0.03908)

0.7165
(0.05695)

2.378
(3.64)

−0.0006549
(0.01964)

3.381
(5.878)

−0.2943
(0.1053)

−0.02387
(0.01562)

0.04613
(0.05121)

−0.3973
(0.2578)

−0.0237
(0.02542)

0.05947
(0.2159)

0.01683
(0.7003)

−0.0001671
(0.0733)

1.302e− 05
(0.01966)

γ 0.0003857
(0.0004591)

0.0005653
(0.0007368)

β −1.444
(0.008187)

−0.2376
(0.01831)

0.2846
(0.02526)

−1.196
(0.0521)

−0.2737
(0.07188)

0.3483
(0.08285)

δ 491.5
(836.6)

2.417
(0.3336)

(κX)1 1.509
(0.1109)

σy 0.0005463
(6.945e−05)

0.0004679
(9.47e−05)

0.0006001
(8.676e−05)

σrv 7.281e− 05
(8.491e−06)

2.857e− 05
(3.381e−06)

6.18e− 05
(6.019e−06)

Table 1: Parameter estimates. This table contains parameter estimates and asymptotic standard errors (in parenthesis). The
first and third columns show the parameters estimates based on an estimation where yield and realized variance data from the
period 1961:07-2014:04 is used. The second column shows parameter estimates for the nonlinear model based on an estimation
where data for the period 1987:08-2014:04 is used.
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Panel A: Campbell-Shiller regression coefficients

bond maturity 2-year 3-year 4-year 5-year

Data −0.63
(0.64)

−0.93
(0.69)

−1.21
(0.73)

−1.47
(0.77)

Nonlinear model -0.61 -0.61 -0.63 -0.65
A1(3) model -0.01 0.01 0.04 0.07

Panel B: Regressing realized excess returns on expected excess retuns

Nonlinear model A1(3) model Cochrane-Piazzesi
Maturity α× 103 β R2 FVE α× 103 β R2 FVE R2

One-year holding horizon

τ=2 −2.58
(2.89)

0.81
(0.20)

0.22 0.15 2.53
(2.62)

0.96
(0.35)

0.12 0.10 0.15

τ=3 −4.85
(5.06)

0.83
(0.20)

0.23 0.16 4.05
(4.64)

0.97
(0.33)

0.13 0.12 0.16

τ=4 −6.60
(6.74)

0.85
(0.19)

0.24 0.18 5.07
(6.32)

1.00
(0.32)

0.15 0.13 0.18

τ=5 −7.51
(8.09)

0.86
(0.19)

0.25 0.20 5.85
(7.77)

1.03
(0.32)

0.16 0.15 0.20

Two-year holding horizon

τ=3 −3.73
(4.60)

0.87
(0.22)

0.29 0.23 6.31
(4.73)

0.62
(0.38)

0.07 0.00 0.10

τ=4 −6.36
(8.08)

0.89
(0.21)

0.30 0.25 10.75
(8.51)

0.67
(0.37)

0.08 0.03 0.11

τ=5 −7.72
(10.70)

0.91
(0.21)

0.32 0.29 14.24
(11.71)

0.73
(0.36)

0.10 0.05 0.13

Three-year holding horizon

τ=4 −2.30
(5.54)

0.83
(0.23)

0.29 0.24 10.30
(6.45)

0.31
(0.41)

0.02 -0.15 0.13

τ=5 −3.96
(10.05)

0.87
(0.22)

0.33 0.29 17.60
(12.09)

0.40
(0.40)

0.03 -0.11 0.15

Four-year holding horizon

τ=5 0.53
(6.57)

0.75
(0.24)

0.25 0.20 12.72
(8.12)

0.25
(0.42)

0.01 -0.21 0.23

Table 2: Excess return regressions. Panel A shows the coefficients φτ from the regres-
sions y(t+ 1, τ − 1)− y(t, τ) = const+ φτ [y(t,τ)−y(t,1)

τ−1
] + residual, where y(t, τ) is the

zero-coupon yield at time t of a bond maturing at time t + τ (τ and t are measured
in years). The actual coefficients are calculated using monthly data of one through
five-year zero coupon bond yields from 1961:7 to 2014:04 obtained from Gurkaynak,
Sack, and Wright (2007). For each model the coefficient is based on one simulated
sample path of 1,000,000 months. Panel B shows regression coefficients from a regres-
sion of realized (log) excess returns on expected (log) excess returns in sample. The

FVE is 1 −
1
T

∑T
t=1(rxτ

t,t+n−Et[rxτ
t,t+n])

2

1
T

∑T
t=1(rxτ

t,t+n−
1
T

∑T
t=1 rx

τ
t,t+n)

2 , where rxτ
t,t+n is the n-year excess return on

a bond with maturity τ and Et[rx
τ
t,t+n] is the corresponding model implied expected

excess return. The last row contains the R2 from the regression of future realized
excess returns on the five yields. For both panels standard errors in parentheses are
computed using the Hansen and Hodrick (1980) correction with number of lags equal
to the number of overlapping months.
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Maturity PC1 PC1-PC2 PC1-PC3 PC1-PC4 PC1-PC5 Full
Panel A: R2 in data
τ =2 2.1 12.6 13.2 14.4 14.6
τ =3 0.8 13.9 14.3 15.9 16.2
τ =4 0.3 15.6 15.8 17.8 18.1
τ =5 0.1 17.2 17.3 19.7 19.9

Panel B: R2 for nonlinear model in data sample
τ =2 7.8 64.7 66.9 85.2 91.1 100.0
τ =3 6.8 67.5 68.6 84.8 90.8 100.0
τ =4 6.5 69.5 70.3 84.9 90.9 100.0
τ =5 6.9 70.8 71.7 85.6 91.2 100.0

Panel C: R2 for A1(3) model in data sample
τ =2 10.8 99.8 100.0 100.0
τ =3 10.5 99.7 100.0 100.0
τ =4 10.2 99.6 100.0 100.0
τ =5 9.9 99.5 100.0 100.0

Panel D: R2 for nonlinear model in population
τ =2 0.0 10.7 14.5 15.7 15.8 28.0
τ =3 0.1 10.5 14.4 15.2 15.3 26.2
τ =4 0.1 10.6 14.5 15.2 15.3 25.3
τ =5 0.1 11.1 14.7 15.6 15.6 25.2

Panel E: R2 for A1(3) model in population
τ =2 3.9 4.5 4.5 4.5 4.5 4.5
τ =3 3.9 4.5 4.5 4.5 4.5 4.5
τ =4 3.9 4.5 4.5 4.5 4.5 4.5
τ =5 3.9 4.5 4.5 4.5 4.5 4.5

Table 3: URP (Unspanned Risk Premia) regressions. This table shows R2s (in per-
cent) from regressions of excess returns (measured monthly) on the five principal com-
ponents (PCs) of yields. The final column shows–where relevant–the R2s when using
model-implied excess return on the righthandside instead of the model-implied PCs.
Panel A shows one-year actual realized excess return on PCs of actual yields in the
data sample 1961:07-2014:04. Panel B shows for the nonlinear model model-implied
one-year excess return on model-implied PCs of yields, 1961:07-2014:04. Panel C
shows for the A1(3) model model-implied one-year excess return on model-implied
PCs of yields, 1961:07-2014:04. Panel D and E shows for the nonlinear respectively
A1(3) model R2s in a regression of realized one-year excess return on PCs of yields
in a simulated data sample of 1,000,000 months.
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PC1-PC3 PC1-PC4 PC1-PC5

Maturity R2 slope t-stat. R2 slope t-stat. R2 slope t-stat.
τ =2 11.52 -0.0011 -1.97 20.56 -0.0011 -4.27 17.76 -0.0008 -3.88
τ =3 11.66 -0.0020 -2.09 19.55 -0.0020 -4.00 16.44 -0.0015 -3.63
τ =4 11.56 -0.0027 -2.17 18.65 -0.0027 -3.79 15.28 -0.0020 -3.39
τ =5 11.09 -0.0033 -2.15 17.78 -0.0032 -3.59 14.17 -0.0024 -3.17

Table 4: URP (Unspanned Risk Premia) and expected inflation. This table shows R2s
(in percent), slope and the t-statistic. We use the mean forecasts of the Michigan
Survey of Consumers (MSC) to measure expected inflation. The residual from the
URP regressions are from regressing the model implied expected excess return on the
first three PCs (PC1-PC3), the first four PCs (PC1-PC4) and all five PCs (PC1-PC5).
Model implied excess returns are measured as the expected one year return in excess
of the one year yield. Standard errors are Newey-West corrected using 12 lags. The
data sample is 1978:1-2014:4 as MSC is only available in monthly frequencies starting
in 1978.
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Maturity PC1 PC1-PC2 PC1-PC3 PC1-PC4 PC1-PC5

Panel A: R2 for data (realized variance, monthly observations, 1961-2014)
τ =1 24.3 26.8 35.0 35.7 40.2
τ =2 23.2 24.8 33.7 35.4 41.6
τ =3 21.9 22.8 32.6 35.8 42.5
τ =4 20.3 20.7 31.1 35.9 42.6
τ =5 18.8 18.9 29.6 36.0 42.6

Panel B: R2 for nonlinear model (instantaneous variance, 1961-2014)
τ =1 21.6 21.8 44.0 47.9 55.1
τ =2 19.1 19.1 42.3 49.2 57.4
τ =3 17.5 17.6 41.8 50.9 59.9
τ =4 16.7 16.8 42.0 52.9 61.7
τ =5 16.9 17.2 42.4 54.6 62.1

Panel C: R2 for nonlinear model (realized variance, 1,000,000 simulated months)
τ =1 31.8 32.7 40.8 46.0 56.9
τ =2 32.8 33.8 40.7 48.6 60.8
τ =3 32.9 34.2 40.1 50.3 63.4
τ =4 32.6 34.4 39.2 51.0 65.0
τ =5 31.9 34.7 38.3 51.0 66.1

Panel D: R2 for A1(3) model (instantaneous variance, 1961-2014)
τ = 1, ..., 5 21.5 22.3 100.0 100.0 100.0

Panel E: R2 for A1(3) model (realized variance, 1,000,000 simulated months)
τ = 1, ..., 5 0.0 0.0 45.8 45.8 45.8

Panel F: Percent of residual variation explained by residual PCs, 1961-2014
Data 91.8 98.7 99.9 100.0 100.0

Nonlinear model 97.9 99.9 100.0 100.0 100.0

Table 5: USV (Unspanned Stochastic Volatility) regressions. Panel A shows R2s (in
percent) from regressing realized variance on the five principal components (PCs) of
yields. Panel B shows R2s for the nonlinear model from regressing model-implied
instantaneous variance on the PCs of model-implied yields in the sample period.
Panel C shows R2s for the nonlinear model from regressing monthly realized variance
(based on daily model-implied yields) on the PCs of monthly yields (based on averages
over daily model-implied yields) in a sample of 1,000,000 simulated months. Panel D
and E shows corresponding results for the A1(3) model corresponding to Panel B and
C for the nonlinear model, where only results for one maturity is shown because R2’s
are the same for all maturities. Panel F shows the explanatory power of the PCs of
the residuals of the regressions in Panel A and B.
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Panel A: PCA of yield changes PCA of realized variances

PC1 PC1-PC2 PC1-PC3 PC1 PC1-PC2 PC1-PC3

Data 0.9550 0.9975 0.9999 0.9454 0.9922 0.9996
Nonlinear 0.9819 0.9995 1.0000 0.9750 0.9993 1.0000
A1(3) 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

Panel B: Yield changes on PCs Realized variances on PCs

PC1 PC2 PC3 PC1 PC2 PC3

Maturity Data

τ = 1 0.47 0.72 0.48 0.50 0.74 −0.43
τ = 2 0.46 0.22 −0.52 0.49 0.14 0.60
τ = 3 0.45 −0.12 −0.46 0.46 −0.22 0.38
τ = 4 0.43 −0.36 −0.02 0.41 −0.41 −0.12
τ = 5 0.42 −0.54 0.54 0.37 −0.47 −0.54

Nonlinear Model

τ = 1 0.46 0.67 0.52 0.53 0.64 −0.48
τ = 2 0.45 0.28 −0.36 0.49 0.20 0.40
τ = 3 0.45 −0.05 −0.52 0.44 −0.16 0.50
τ = 4 0.44 −0.34 −0.17 0.39 −0.42 0.09
τ = 5 0.44 −0.60 0.54 0.34 −0.59 −0.59

A1(3) Model

τ = 1 0.52 0.66 −0.53 0.54
τ = 2 0.48 0.21 0.58 0.49
τ = 3 0.44 −0.14 0.41 0.44
τ = 4 0.41 −0.39 −0.04 0.39
τ = 5 0.38 −0.58 −0.46 0.35

Table 6: Cross-sectional fit of three-factor models. Principal components are con-
structed from a panel of constant-maturity zero-coupon bond yield changes and from
a panel of realized variances of constant-maturity zero-coupon bond yields. Maturi-
ties are ranging from one to five years in both panels. Panel A shows the contribution
of the first three principal components to the total variation in bond yield changes
(columns 2-4) and realized yield variances (columns 5-7). Columns 2-4 of Panel B
show the slope coefficients from the regressions of each yield on a constant and the
first three principal components of yield changes. Columns 5-7 of Panel B show the
slope coefficients from the regressions of each realized yield variance on a constant
and the first three principal components of realized yield variances. The actual coef-
ficients are computed using monthly data of one through five-year zero coupon bond
yield changes and their realized variances from 1961:07 to 2014:04. For each model
the coefficient is based on one simulated sample path of 1,000,000 months and the
monthly realized variances are based on squared changes of simulated yields.

52



Model N d X α γ β Stationary
Two trees 1 2 log (D1(t)/D2(t)) −R 1 1 No

Multiple consumption goods 1 2 log (D1(t)/D2(t)) −R
b

(

1−φ

φ

)1−b

b No

External habit formation 1 1 X R 1 β Yes
Heterogeneous beliefs 1 1 log (λ(t)) R 1 − 1

R
No

HARA utility 1 1 log (b/C(t)) −R 1 1 No

Table 7: Equilibrium models. The table shows various equilibrium models and how
they map into the nonlinear term structure models.
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Figure 1: Realized and option-implied yield volatility. We use monthly estimates of
realized yield variance based on daily squared yield changes. This graph shows that
option-implied volatility tracks the realized volatility closely over the last 10 years
(the correlation is 87%). Option-implied volatility is obtained from 1-month at-the-
money options on 5-year Treasury futures as explained in the text. The data are
available from Datastream since October 2003.
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Figure 2: Fit to yields. This figure shows the actual yield along the estimated yield
in the nonlinear and the A1(3) model. The actual yield is calculated on a monthly
basis and is based on the average daily yield over the month. We use daily data from
Gurkaynak, Sack, and Wright(2007) for the period 07:1961-04:2014.
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Figure 3: Fit to realized variance. This figure shows the realized annualized yield
variance along with the (annualized) instantaneous yield variance in the nonlinear
and the A1(3) model. The realized variance is calculated on a monthly basis and is
based on daily squared yield changes. We use daily data from Gurkaynak, Sack, and
Wright(2007) for the period 07:1961-04:2014.
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Figure 4: Stochastic weight on Gaussian base model. The bond price in the nonlinear
model is P (t, T ) = s(t)P0(t, T )+(1−s(t))P1(t, T ) where P0(t, T ) and P1(t, T ) are bond
prices that belong to the class of essentially affine Gaussian term structure models
and s(t) is a stochastic weight between 0 and 1. This figure shows the stochastic
weight and the shaded areas show NBER recessions.
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Figure 5: Expected excess returns. The graphs show the expected one year log excess
returns of zero-coupon Treasury bonds with maturities of 2, 3, 4, and 5 years. The
thin blue lines show expected excess returns in the three-factor A1(3) model and the
thick red lines show expected excess returns in the three-factor nonlinear model. The
shaded areas show NBER recessions.
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Figure 6: Distribution of one-year ahead yield volatility. The graphs show quantiles
in the one-year ahead distribution of instantaneous volatility for the bond with a
maturity of three years. The top graph shows the distribution in the three-factor
nonlinear model, while the bottom graph shows the distribution in the three-factor
A1(3) model. The data sample is 07:1961 to 04:2014 and the results for July in each
year are plotted. 59
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Figure 7: Distribution of one-year ahead yield volatility for nonlinear model estimated
using 1961-2014 and estimated using 1987-2014. The graphs show the 97.5% quantiles
in the one-year ahead distribution of instantaneous volatility. The red line shows the
97.5% quantiles in the three-factor nonlinear model, where the model is estimated by
using data in the whole sample period 1961-2014. The yellow line shows the 97.5%
quantiles in the three-factor nonlinear model, where the model is estimated by using
data in the period 1987-2014. The results for September in each year are plotted.
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