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a b s t r a c t 

We characterize when physical probabilities, marginal utilities, and the discount rate can 

be recovered from observed state prices for several future time periods. We make no as- 

sumptions of the probability distribution, thus generalizing the time-homogeneous sta- 

tionary model of Ross (2015). Recovery is feasible when the number of maturities with 

observable prices is higher than the number of states of the economy (or the number of 

parameters characterizing the pricing kernel). When recovery is feasible, our model allows 

a closed-form linearized solution. We implement our model empirically, testing the pre- 

dictive power of the recovered expected return and other recovered statistics. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
1. Introduction 

The holy grail in financial economics is to decode prob- 

abilities and risk preferences from asset prices. This decod- 

ing has been viewed as impossible until Ross (2015) pro- 

vided sufficient conditions for such a recovery in a 

time-homogeneous Markov economy (using the Perron–

Frobenius theorem). However, his recovery method has 

been criticized by Borovicka et al. (2016) (who also rely on 

Perron–Frobenius and results of Hansen and Scheinkman 

2009 ), arguing that Ross’s assumptions rule out realistic 

models. 

This paper sheds new light on this debate, both the- 

oretically and empirically. Theoretically, we generalize the 
∗ Corresponding author. 
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recovery theorem to handle a general probability distribu- 

tion that makes no assumptions of time-homogeneity or 

Markovian behavior. We show when recovery is possible—

and when it is not—using a simple counting argument 

(formalized based on Sard’s theorem), which focuses the 

attention on the economics of the problem. When recov- 

ery is possible, we show that our recovery inversion from 

prices to probabilities and preferences can be implemented 

in closed form. We implement our method empirically us- 

ing option data from 1996 to 2015 and study how the re- 

covered expected returns predict future actual returns. 

To understand our method, note first that Ross 

(2015) assumes that state prices are known not just in 

each final state but also starting from each possible cur- 

rent state as illustrated in Fig. 1 , Panel A. Simply put, he 

assumes that we know all prices today and all prices in all 

“parallel universes” with different starting points. Since we 

clearly cannot observe such parallel universes, Ross (2015) 
article under the CC BY-NC-ND license. 
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Fig. 1. Generalized recovery framework. Panel A illustrates the idea behind Ross’s recovery theorem, namely that we start with information about all 

Arrow–Debreu prices in all initial states (not just the state we are currently in, but also prices in “parallel universes” where today’s state is different). Panel 

B shows how Ross moves to a dynamic setting by assuming time-homogeneity, that is, assuming that the prices and probabilities are the same for the two 

dotted lines, and so on for each of the other pairs of lines. Panel C illustrates our generalized recovery method, where we make no assumptions about the 

probabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

proposes to implement his model based on prices for sev-

eral future time periods, relying on the assumption that all

time periods have identical structures for prices and proba-

bilities (time-homogeneity), illustrated in Fig. 1 , Panel B. In

other words, Ross assumes that if S&P 500 is at the level

20 0 0, then one-period option prices do not depend on the

calendar time at which this level is observed. 

We show that the recovery problem can be simpli-

fied by starting directly with the state prices for all future

times given only the current state ( Fig. 1 , Panel C). We im-

pose no dynamic structure on the probabilities, allowing

the probability distribution to be fully general at each fu-

ture time, thus relaxing Ross’s time-homogeneity assump-

tion that is unlikely to be met empirically. 

We first show that when the number of states S is

no greater than the number of time periods T , then re-

covery is possible. To see the intuition, consider simply
the number of equations and the number of unknowns.

First, we have S equations at each time period, one for

each Arrow–Debreu price, for a total of ST equations. Sec-

ond, we have 1 unknown discount rate, S − 1 unknown

marginal utilities, and S − 1 unknown probabilities for each

future time period. In conclusion, we have ST equations

with 1 + (S − 1) + (S − 1) T = ST + S − T unknowns. These

equations are not linear, but we provide a precise sense

in which we can essentially just count equations. Hence,

recovery is possible when S ≤ T . 

To understand the intuition behind this result, note

that, for each time period, we have S equations and only

S − 1 probabilities. Hence, for each additional time period

we have one extra equation that can help us recover the

marginal utilities and discount rate, and the number of

marginal utilities does not grow with the number of time

periods. 
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2 Prior to Ross (2015) , the dynamics of the risk-neutral density and the 

physical density along with the pricing kernel has been extensively re- 

searched using historical option or equity market data (e.g., Jackwerth, 

20 0 0; Jackwerth and Rubinstein, 1996; Bollerslev and Todorov, 2011; Ait- 

Sahalia and Lo, 20 0 0; Rosenberg and Engle, 20 02; Bliss and Panigirt- 
By focusing on square matrices, Ross’s model falls into 

the category S = T , so our counting argument explains 

why he finds recovery. However, our method applies under 

much more general conditions. We show that when Ross’s 

time-homogeneity conditions are met, then our solution is 

the same as his and, generically, it is unique. 1 On the other 

hand, when Ross’s conditions are not met, then our model 

can be solved while Ross’s cannot. Further, we illustrate 

that our solution is far simpler and allows a closed-form 

solution that is accurate when the discount rate is close 

to 1. 

To understand the economics of the condition S ≤ T , 

consider what happens if the economy evolves in a stan- 

dard multinomial tree with no upper or lower bound on 

the state space. For each extra time period, we get at least 

two new states since we can go up from highest state and 

down from the lowest state. Therefore, in this case S > T , 

so we see that recovery is impossible because the num- 

ber of states is higher than the number of time periods. 

Hence, achieving recovery without further assumptions is 

typically impossible in most standard models of finance 

where the state space grows in this way. In other words, 

our model provides a fundamentally different way—via our 

simple counting argument—to understand the critique of 

Borovicka et al. (2016) that recovery is impossible in stan- 

dard models. 

Nevertheless, we show that recovery is possible even 

when S > T under certain conditions. While maintaining 

that probabilities can be fully general (and, indeed, allow 

growth), we assume that the utility function is given via 

a limited number of parameters. Again, we simply need to 

make our counting argument work. To do this, we show 

that if the marginal utilities can be written as functions of 

N parameters, then recovery is possible as long as N + 1 < 

T . This large state-space framework is what we use empir- 

ically as discussed further below. 

We illustrate how our method works in the context of 

three specific models, namely Mehra and Prescott (1985) , 

Cox et al. (1979) , and a simple non-Markovian economy. 

For each economy, we generate model-implied prices and 

seek to recover natural probabilities and preferences us- 

ing our method. This provides an illustration of how our 

method works, its robustness, and its shortcomings. For 

Mehra and Prescott (1985) , we show that S > T so gen- 

eral recovery is impossible, but when we restrict the class 

of utility functions, then we achieve recovery. For the 

binomial Cox–Ross–Rubinstein model (the discrete-time 

version of Black and Scholes 1973 ), we show that recov- 

ery is impossible even under restrictive utility specifica- 

tions because consumption growth is iid., which leads to 

a flat term structure, a pricing matrix of a lower rank, 

and a continuum of solutions for probabilities and pref- 

erences. While the former two models fall in the set- 

ting of Borovicka et al. (2016) (with a non-zero martingale 
1 Generically means that the result holds for all parameters except on 

a “small” set of parameters of zero measure. For the measure-zero set 

of parameters where a certain matrix of prices has less than full rank 

such that there is a continuum of solutions to our generalized recovery 

problem, we show that the multi-period version of Ross’s problem also 

has a continuum of solutions. 
component), we also show how recovery is possible in 

the non-Markovian setting, which falls outside the frame- 

work of Borovicka et al. (2016) and Ross (2015) , illustrating 

the generality of our framework in terms of the allowed 

probabilities. 

Finally, we implement our methodology empirically us- 

ing a large data set of call and put options written on the 

S&P 500 stock market index over the time period 1996–

2015. We estimate state price densities for multiple fu- 

ture horizons and recover probabilities and preferences 

each month. Based on the recovered probabilities, we de- 

rive the risk and expected return over the future month 

from the physical distribution of returns using four dif- 

ferent methods. The recovered expected returns vary sub- 

stantially across specifications, challenging the empirical 

robustness of the results. The recovered expected returns 

have weak predictive power for the future realized returns, 

even when we exclude the global financial crisis. We can 

also recover ex ante volatilities, which have much stronger 

predictive power for future realized volatility. We note that 

a rejection of the recovered distribution is a rejection of 

the joint hypothesis of the general recovery methodol- 

ogy and the specific empirical choices, including the state 

space and the available options. 

The literature on recovery theorems is quickly expand- 

ing. 2 Bakshi et al. (2015) and Audrino et al. (2014) em- 

pirically test the restrictions of Ross’s recovery theorem. 

Martin and Ross (2018) apply the recovery theorem in a 

term structure model in which the driving state variable is 

a stationary Markov chain, illustrating the role played by 

the (infinitely) long end of the yield curve, a role already 

recognized in Kazemi (1992) . Several papers focus on gen- 

eralizing the underlying Markov process to a continuous- 

time process with a continuum of values and an infinite 

horizon ( Carr and Yu 2012, Linetsky and Qin 2016 ) and 

Walden (2017) in particular derive intuitive results on the 

importance of recurrence. All these papers impose time- 

homogeneity of the underlying Markov process. 3 Qin and 

Linetsky (2017) go beyond the Markov assumption, dis- 

cussing factorization of stochastic discount factors and re- 

covery in a general semimartingale setting. 

These approaches require an infinite time horizon, 

while our approach only requires the observed finite- 

maturity data. Indeed, the martingale decomposition used 

by Borovicka et al. (2016) is only defined over an infinite 

horizon, as is the recurrence condition used by Walden 

(2017) and the factorization of Qin and Linetsky (2017) . 4 
zoglou, 2004 and Christoffersen et al., 2013 ). 
3 See also Schneider and Trojani (2018) who focus on recovering mo- 

ments of the physical distribution and Malamud (2016) who shows that 

knowledge of investor preferences is not necessarily enough to recover 

physical probabilities when option supply is noisy, but shows how recov- 

ery can may be feasible when the volatility of option supply shocks is 

also known. 
4 Said differently, if we observe data from a finite number of time peri- 

ods from an economy satisfying the conditions on Borovicka et al. (2016) , 
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Our paper contributes to the literature by characteriz-

ing recovery of any probability distributions observed over

a finite number of periods, by proving a simple solution

and its closed-form approximation, and by providing natu-

ral empirical tests of our generalized method. Rather than

relying on specific probabilistic assumptions (Markov pro-

cesses and ergodocity) as in Ross (2015) and Borovicka

et al. (2016) , we follow the tradition of general equilib-

rium (GE) theory, where Debreu (1970) pioneered the use

of Sard’s theorem and differential topology. Bringing Sard’s

theorem into the recovery debate provides new economic

insight on when recovery is possible. 5 Indeed, the martin-

gale decomposition applied by Borovicka et al. (2016) relies

on knowing the infinite-time distribution of Markov pro-

cesses, which imposes much more structure than needed

and removes the focus from the essence of the recovery

problem, namely the number of economic variables versus

economic restrictions. 

2. Ross’s recovery theorem 

This section briefly describes the mechanics of the

recovery theorem of Ross (2015) as a background for

understanding our generalized result in which we re-

lax the assumption that transition probabilities are

time-homogeneous. 

The idea of the recovery theorem is most easily under-

stood in a one-period setting. In each time period 0 and

1, the economy can be in a finite number of states which

we label 1 , . . . , S. Starting in any state i , there exists a full

set of Arrow–Debreu securities, each of which pays 1 if the

economy is in state j at date 1. The price of these securities

is given by π i, j . 

The objective of the recovery theorem is to use infor-

mation about these observed state prices to infer physi-

cal probabilities p i, j of transitioning from state i to j . We

can express the connection between Arrow–Debreu prices

and physical probabilities by introducing a pricing kernel

m such that for any i, j = 1 , . . . , S, 

π i, j = p i, j m 

i, j . (1)

It takes no more than a simple one-period binomial model

to convince oneself that if we know the Arrow–Debreu

prices in one and only one state at date 0, then there is

in general no hope of recovering physical probabilities. In

short, we cannot separate the contribution to the observed

Arrow–Debreu prices from the physical probabilities and

the pricing kernel. 

The key insight of the recovery theorem is that by as-

suming that we know the Arrow–Debreu prices for all the

possible starting states, then with additional structure on

the pricing kernel, we can recover physical probabilities.

We note that knowing the prices in states we are not cur-

rently in (“parallel universes”) is a strong assumption. 
then there is no unique Markov decomposition. Recurrence means that 

each state is being visited infinitely often, so it can only be defined over 

an infinite horizon. The factorization of Qin and Linetsky (2017) relies on 

limits of T -forward measures, as T goes to infinity. 
5 We thank Steve Ross for pointing out the historical role of Sard’s the- 

orem in general equilibrium theory. 

 

 

 

In any event, under this assumption, Ross’s result is that

there exists a unique set of physical probabilities p i, j for

all i, j = 1 , . . . , S such that Eq. (1) holds if the matrix of

Arrow–Debreu prices is irreducible and if the pricing ker-

nel m has the form known from the standard representa-

tive agent models: 

m 

i, j = δ
u 

j 

u 

i 
, (2)

where δ > 0 is the discount rate, and u = (u 1 , . . . , u S )

is a vector with strictly positive elements representing

marginal utilities. 

The proof can be found in Ross (2015) , but here we note

that counting equations and unknowns certainly makes

it plausible that the theorem is true: there are S 2 ob-

served Arrow–Debreu prices and hence S 2 equations. Be-

cause probabilities from a fixed starting state sum to one,

there are S(S − 1) physical probabilities. It is clear that

scaling the vector u by a constant does not change the

equations, and thus we can assume that u 1 = 1 so that u

contributes with an additional S − 1 unknowns. Adding to

this the unknown δ leaves us exactly with a total of S 2

unknowns. The fact that there is a unique strictly posi-

tive solution hinges on the Frobenius theorem for positive

matrices. 

It is important in Ross’s setting, as it will be in ours that

a state corresponds to a particular level of the marginal

utility of consumption. This level does not depend on cal-

endar time. In our empirical implementation, a state will

correspond to a particular level of the S&P 500 index. 

The most troubling assumption, however, in the theo-

rem above is that we must also know state prices from

starting states that we are currently not in. It is hard to

imagine data that would allow us to know these in prac-

tice. Ross’s way around this assumption is to leave the one-

period setting and assume that we have information about

Arrow–Debreu prices from several future periods, and then

use a time-homogeneity assumption to recover the same

information that we would be able to obtain from the

equations above. 

We therefore consider a discrete-time economy with

time indexed by t , states indexed by s = 1 , . . . , S, and π i, j 
t ,t + τ

denoting the time- t price in state i of an Arrow–Debreu se-

curity that pays 1 in state j at date t + τ . The multi-period

analogue of Eq. (1) becomes 

π i, j 
t ,t + τ = p i, j 

t ,t + τ m 

i, j 
t ,t + τ . (3)

Similarly, the multi-period analogue to Eq. (2) is the fol-

lowing assumption, which again follows from the existence

of a representative agent with time-separable utility: 

Assumption 1 (Time-separable utility). There exists a δ ∈ (0,

1] and marginal utilities u j > 0 for each state j such that for

all times τ , the pricing kernel can be written as 

m 

i, j 
t ,t + τ = δτ u 

j 

u 

i 
. (4)

Critically, to move to a multi-period setting, Ross makes

the following additional assumption of time-homogeneity

to implement his approach empirically: 
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Assumption 2 (Time-homogeneous probabilities). For all 

states i, j , and time horizons τ > 0, p 
i, j 
t ,t + τ does not depend 

on t . 

This assumption is strong and not likely to be satis- 

fied empirically. We note that Assumptions 1 and 2 to- 

gether imply that risk neutral probabilities are also time- 

homogeneous, a prediction that can also be rejected in the 

data. 

In this paper, we dispense with the time-homogeneity 

Assumption 2. We start by maintaining Assumption 1 but 

later consider a broader assumption that can be used in a 

large state space. 

3. A generalized recovery theorem 

The assumption of time-separable utility is consistent 

with many standard models of asset pricing, but the 

assumption of time-homogeneity is much more troubling. 

It restricts us from working with a growing state space 

(as in standard binomial models), and it makes numerical 

implementation extremely hard and non-robust, because 

trying to fit observed state prices to a time-homogeneous 

model is extremely difficult. Furthermore, the main goal of 

the recovery exercise is to recover physical transition prob- 

abilities from the current states to all future states over 

different time horizons. Insisting that these transition 

probabilities arise from constant one-period transition 

probabilities is a strong restriction. We show in this sec- 

tion that by relaxing the assumption of time-homogeneity 

of physical transition probabilities, we can obtain a prob- 

lem that is easier to solve numerically and that allows for a 

much richer modeling structure. We show that our exten- 

sion contains the time-homogeneous case as a special case 

and therefore ultimately should allow us to test whether 

the time-homogeneity assumption can be defended 

empirically. 

3.1. A Noah’s ark example: two states and two dates 

To get the intuition of our approach, we start by consid- 

ering the simplest possible case with two states and two 

time periods. Consider the simple case in which the econ- 

omy has two possible states (1, 2) and two time periods 

starting at time t and ending on dates t + 1 and t + 2 . If

the current state of the world is state 1, then Eq. (3) con- 

sists of four equations: 

π1 , 1 
t ,t +1 

= p 1 , 1 
t ,t +1 

m 

1 , 1 
t ,t +1 

π1 , 2 
t ,t +1 

= (1 − p 1 , 1 
t ,t +1 

) m 

1 , 2 
t ,t +1 

π1 , 1 
t ,t +2 

= p 1 , 1 
t ,t +2 

m 

1 , 1 
t ,t +2 

π1 , 2 
t ,t +2 

= (1 − p 1 , 1 
t ,t +2 

) ︸ ︷︷ ︸ 
2 unknowns 

m 

1 , 2 
t ,t +2 ︸ ︷︷ ︸ 

4 unknowns 

. 

(5) 

We see that we have 4 equations with 6 unknowns, so 

this system cannot be solved in full generality. However, 

the number of unknowns is reduced under the assump- 

tion of time-separable utility (Assumption 1). To see that 
most simply, we introduce the notation h for the normal- 

ized vector of marginal utilities: 

h = 

(
1 , 

u 

2 

u 

1 
, . . . , 

u 

S 

u 

1 

)′ 
≡ (1 , h 2 , . . . , h S ) 

′ , (6) 

where we normalize by u 1 . With this notation and the as- 

sumption of time-separable utility, we can rewrite the sys- 

tem (5) as follows: 

π1 , 1 
t ,t +1 

= p 1 , 1 
t ,t +1 

δ

π1 , 2 
t ,t +1 

= (1 − p 1 , 1 
t ,t +1 

) δh 2 

π1 , 1 
t ,t +2 

= p 1 , 1 
t ,t +2 

δ2 

π1 , 2 
t ,t +2 

= (1 − p 1 , 1 
t ,t +2 

) δ2 h 2 . (7) 

This system now has 4 equations with 4 unknowns, so 

there is hope to recover the physical probabilities p , the 

discount rate δ, and the ratio of marginal utilities h . 

Before we proceed to the general case, it is useful to see 

how the problem is solved in this case. Moving h 2 to the 

left side and adding the first two and the last two equa- 

tions gives us two new equations 

π1 , 1 
t ,t +1 

+ π1 , 2 
t ,t +1 

1 

h 2 

− δ = 0 (8) 

π1 , 1 
t ,t +2 

+ π1 , 2 
t ,t +2 

1 

h 2 

− δ2 = 0 . 

Solving Eq. (8) for h 2 yields 1 
h 2 

= (δ − π1 , 1 
t ,t +1 

) /π1 , 2 
t ,t +1 

, and 

we can further arrive at 

π1 , 1 
t ,t +2 

− π1 , 2 
t ,t +2 

π1 , 1 
t ,t +1 

π1 , 2 
t ,t +1 

+ 

π1 , 2 
t ,t +2 

π1 , 2 
t ,t +1 

δ − δ2 = 0 . (9) 

Hence, we can solve the two-state model by (i) finding δ
as a root of the second degree polynomial (9) , (ii) com- 

puting the marginal utility ratio h 2 from Eq. (8) ; and (iii) 

computing the physical probabilities by rearranging Eq. (7) . 

3.2. General case: notation 

Turning to the general case, recall that there are S states 

and T time periods. Without loss of generality, we assume 

that the economy starts at date 0 in state 1. This allows 

us to introduce some simplifying notation since we do not 

need to keep track of the starting time or the starting state 

– we only need to indicate the final state and time horizon 

over which we are considering a specific transition. 

Accordingly, let πτ s denote the price of receiving 1 at 

date τ if the realized state is s and collect the set of ob- 

served state prices in a T × S matrix � defined as 

� = 

⎡ 

⎣ 

π11 ... π1 S 

. . . 
. . . 

πT 1 ... πT S 

⎤ 

⎦ . (10) 

Similarly, letting p τ s denote the physical transition proba- 

bilities of going from the current state 1 to state s in τ pe- 

riods, we define a T × S matrix P of physical probabilities. 

Note that p τ s is not the probability of going from state τ
to s (as in the setting of Ross 2015 ), but rather the first in-

dex denotes time for the purpose of the derivation of our 

theorem. 
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From the vector of normalized marginal utilities h

defined as in Eq. (6) , we define the S -dimensional di-

agonal matrix H = diag (h ) . Further, we construct a T -

dimensional diagonal matrix of discount factors as D =
diag (δ, δ2 , . . . , δT ) . 

3.3. Generalized recovery 

With this notation in place, the fundamental TS equa-

tions linking state prices and physical probabilities, assum-

ing utilities depend on current state only, can be expressed

in matrix form as 

� = DP H. (11)

Note that the (invertible) diagonal matrices H and D de-

pend only on the vector h and the constant δ, so if we can

determine these, we can find the matrix of physical transi-

tion probabilities from the observed state prices in �: 

P = D 

−1 �H 

−1 . (12)

Since probabilities add up to 1, we can write Pe = e, where

e = (1 , . . . , 1) ′ is a vector of ones. Using this identity, we

can simplify Eq. (12) such that it only depends on δ and h :

�H 

−1 e = DP e = De = (δ, δ2 , . . . , δT ) ′ . (13)

To further manipulate this equation it will be convenient

to work with a division of � into block matrices: 

� = 

[
�1 �2 

]
= 

[
�11 �12 

�21 �22 

]
. (14)

Here, �1 is a column vector of dimension T , where the

first S − 1 elements are denoted by �11 , and the rest of

the vector is denoted �21 . Similarly, �2 is a T × (S − 1)

matrix, where the first S − 1 rows are called �12 , and the

last rows are called �22 . With this notation and the fact

that H(1 , 1) = h (1) = 1 , we can write Eq. (13) as 

�1 + �2 

⎡ 

⎣ 

h 

−1 
2 
. . . 

h 

−1 
S 

⎤ 

⎦ = 

⎡ 

⎣ 

δ
. . . 

δT 

⎤ 

⎦ , (15)

where of course h −1 
s = 

1 
h s 

. Given that these equations are

linear in the inverse marginal utilities h −1 
s , it is tempting to

solve for these. To solve for these S − 1 marginal utilities,

we consider the first S − 1 equations 

�11 + �12 

⎡ 

⎣ 

h 

−1 
2 
. . . 

h 

−1 
S 

⎤ 

⎦ = 

⎡ 

⎣ 

δ
. . . 

δS−1 

⎤ 

⎦ , (16)

with solution 

6 ⎡ 

⎣ 

h 

−1 
2 
. . . 

h 

−1 
S 

⎤ 

⎦ = �−1 
12 

⎛ 

⎝ 

⎡ 

⎣ 

δ
. . . 

δS−1 

⎤ 

⎦ −

⎡ 

⎣ 

π11 

. . . 
πS−1 , 1 

⎤ 

⎦ 

⎞ 

⎠ . (17)

Hence, if δ were known, we would be done. Since δ is a

discount rate, it is reasonable to assume that it is close to
6 Of course, to invert �12 it must have full rank. As long as �2 has full 

rank, we can reorder the rows to ensure that �12 also has full rank. 
one over short time periods. We later use this insight to

derive a closed-form approximation that is accurate as long

as we have a reasonable sense of the size of δ. For now, we

proceed for general unknown δ. 

We thus have the utility ratios given as a linear function

of powers of δ. The remaining T − S + 1 equations give us

�21 + �22 

⎡ 

⎣ 

h 

−1 
2 
. . . 

h 

−1 
S 

⎤ 

⎦ = 

⎡ 

⎣ 

δS 

. . . 

δT 

⎤ 

⎦ , (18)

and from this we see that if we plug in the expression for

the utility ratios found above, we end up with T − S + 1

equations, each of which involves a polynomium in δ of

degree at most T . If T = S, then δ is a root to a single poly-

nomium, so at most a finite number of solutions exist. If

T > S , then generically no solution exists for general Arrow–

Debreu prices � since δ must simultaneously solve several

polynomial equations (where “generically” means almost

surely as defined just below Proposition 1 ). However, if the

prices are generated by the model, then a solution exists

and it will almost surely be unique. To be precise, we say

that � has been “generated by the model” if there exist

δ, P , and H such that � can be found from the right-hand

side of Eq. (11) . The following theorem formalizes these in-

sights (using Sard’s theorem): 

Proposition 1 (Generalized recovery). Consider an economy

satisfying Assumption 1 with Arrow–Debreu prices for each

of the T time periods and S states. The recovery problem has 

1. a continuum of solutions if S > T; 

2. at most S solutions if the submatrix �2 has full rank and

S = T ; 

3. no solution generically in terms of an arbitrary positive

matrix � and S < T; 

4. a unique solution generically if � has been generated by

the model and S < T. 

The proof of this and all following propositions are in

the appendix. The proposition states our results using the

notion “generically,” which means that they fail to hold at

most for a set of measure zero. Said differently, if someone

picks parameters “at random,” then our results hold almost

surely. 7 

Further, since Sard’s theorem is not a standard tool in

asset pricing theory, some words here on the basic intu-

ition behind our use of the theorem are in order. To get

started, consider a linear function f (x ) = Ax from R m to R n

given by the n × m matrix A . We know that if n = m and

A has full rank, then the image of A is all of R n , i.e., every

point of R n is being “hit” by A . If, however, n > m , then the

image of A is a linear subspace of R n , which is vanishingly

small (has Lebesgue measure 0 in R n ). By Sard’s theorem,

we can extend this result to a nonlinear smooth function f

and still conclude that when n > m , the image of f is van-

ishingly small. Said differently, there exists no solution x

to f (x ) = y generically (i.e., if you pick a random y , then
7 We note that the fact that our results hold only generically is not a 

consequence of our solution method—indeed, there exist counterexamples 

for special sets of parameters as discussed in our examples. 
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almost surely no solution exists). 8 While this result is rela- 

tively simple, it has wide-ranging implications and, indeed, 

allows us to prove Proposition 1 . 

4. Generalized recovery versus other forms of recovery 

Proposition 1 provides a simple way to understand 

when recovery is possible, namely, essentially when the 

number of time periods T is at least as large as the num- 

ber of states S . We now show how our method relates to 

Ross’s method and other recovery results. 

4.1. Generalized recovery in a Ross economy 

We first show that our method generalizes Ross’s recov- 

ery method in the sense that if we are in a Ross economy, 

then any solution to Ross’s problem has a corresponding 

solution to our problem. 

It is important to be clear about the terminology here. 

In Ross’s recovery problem, physical transition probabili- 

ties are specified in terms of a one-period transition prob- 

ability matrix P̄ that includes transition probabilities from 

states that we are currently not in (“parallel universes”). 

Our problem focuses on recovering the matrix P of multi- 

period transition probabilities as seen from the state we 

are in at time 0, which we take to be state 1. We say that 

P is generated from P̄ if the k th row of P is equal to the 

first row of P̄ k . The same terminology can be applied to 

state prices, of course. 9 

Proposition 2 (Generalized recovery works in a Ross econ- 

omy). If observed prices � over S = T time periods are gen- 

erated by a Ross economy (i.e., an irreducible matrix �̄ of 

one-period state prices and probabilities P satisfying Assump- 

tions 1 and 2), then 

1. The matrix P generated from P̄ is a solution to our gener- 

alized recovery problem. 

2. P is a unique solution to our generalized recovery problem 

generically in the space of Ross price matrices �̄. 

3. If �12 has full rank, then Ross’s parallel universe prices �̄

can be derived uniquely from multi-period prices � ob- 

served from the current state. Otherwise, there can exist a 

continuum of Ross prices �̄ consistent with the observed 

prices. The rank condition is satisfied generically in the 

space of Ross price matrices. 

Part 1 of the proposition confirms that any solution 

to Ross’s recovery problem corresponds to a solution to 

our generalized problem. Part 2 of the proposition con- 

siders the deeper question of uniqueness. Ross establishes 
8 On a more technical note, Sard’s theorem in fact states that if M is 

the set of critical points of f (i.e., the set of points for which the Jacobian 

matrix of f has rank strictly smaller than n ), then f ( M ) has Lebesgue mea- 

sure zero in R n . When n > m , all points are critical points, and therefore 

in this case f ( M ) is the same as the image of f , which is what we need for 

our proof. 
9 The notion of generating P from P̄ is based on the fact that in a Ross 

economy, the matrix of probabilities of going from state i to state j in k 

time periods is given by P̄ k . Likewise, the k -period state prices are given 

by �̄k . 
a unique solution while our generalized recovery solu- 

tion in our earlier Proposition 1 only narrows the solu- 

tion set down to at most S = T solutions. Interestingly, 

Proposition 2 shows that our method too yields a unique 

solution when prices come from a Ross economy, generi- 

cally. Thus, in this sense, nothing is lost by using general- 

ized recovery even when we are in a Ross economy. 

One way to understand this result is to note that 

Ross’s problem comes down to solving a characteristic 

polynomial, and similarly, our generalized recovery prob- 

lem can be solved via the polynomial given by Eq. (18) . 

Even though these polynomials come from different sets of 

equations, it turns out that they have the same roots when 

Ross’s assumptions are satisfied. 

Finally, part 3 of the proposition deals with the issue 

that some of our results only hold “generically,” that is, 

for almost all parameters. One might ask whether Ross 

also has a similar problem for the (small set of) remain- 

ing parameters. The answer turns out to be yes and for a 

reason that has not yet been discussed in the context of 

Ross’s method. The issue is that Ross finds a unique solu- 

tion given his parallel universe price matrix �̄, but where 

does this matrix come from? In any real-world applica- 

tion, we start with observed prices � over time as in our 

generalized recovery setting. When Ross implements his 

model empirically, he must first find his �̄ from the ob- 

served �, and then use his recovery method (but he does 

not consider the mathematics of the first step, getting �̄

from �). Part 3 of the proposition shows that Ross has 

the same problem as we do for the small set of param- 

eters, where �12 has less than full rank. In other words, 

his lack of uniqueness arises from the difficulty in finding 

the price matrix �̄. Interestingly, this may have been un- 

noticed since Ross takes �̄ as given in his theoretical anal- 

ysis (and shows that his recovery is unique for each �̄). 

This last point is most clearly seen through an exam- 

ple. Consider two different one-period transition probabil- 

ity matrices that are both irreducible: 

P̄ = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 

3 

1 

3 

1 

3 

1 

3 

1 

3 

1 

3 

1 

3 

1 

3 

1 

3 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

and P̄ ′ = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 

3 

1 

3 

1 

3 

1 

3 

2 

3 

0 

1 

3 

0 

2 

3 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

If we assume that the current state is state 1, then since all 

powers of the matrices P̄ and P̄ ′ have the same first row, 

namely ( 1 3 , 
1 
3 , 

1 
3 ) , it follows that the matrices P and P ′ (i.e.,

the physical transition probabilities as seen from state 1) 

generated by P̄ and P̄ ′ become the same matrix 

P = P ′ = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 

3 

1 

3 

1 

3 

1 

3 

1 

3 

1 

3 

1 

3 

1 

3 

1 

3 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

For given discount factors D and marginal utilities H , � = 

DP H and �′ = DP ′ H are then the same, and hence observ- 

ing the 3 × 3 matrix of state prices � would not allow 

us to distinguish between the physical transition matri- 

ces P̄ and P̄ ′ . The problem is not mitigated by observing 
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more periods. It is simply impossible in a world where we

cannot observe parallel universe prices to distinguish be-

tween the two irreducible matrices. In our approach, we

do not seek to recover the one-period transition probabili-

ties. Rather, we recover the matrix P , and our ability to do

so depends on the rank of a submatrix the � matrix. For

example, if we let δ = 0 . 98 , and let h 1 = 1 , h 2 = 0 . 9 , h 3 =
0 . 8 , then the submatrix of state prices �12 has rank 1, and

this means that we would not have unique recovery either.

4.2. Ross recovery in our generalized economy 

We now establish that our formulation is strictly more

general by showing that for many typical price matrices

(e.g., those observed in the data), no solution exists for

Ross’s recovery problem, even though a solution exists for

the generalized recovery problem. 

Proposition 3 (Generalized recovery is more general). With

S = T , there exists set of parameters with positive Lebesgue

measure for the generalized recovery problem where no solu-

tion exists for Ross’s recovery problem. With S < T, generically

among price matrices for the generalized recovery problem,

there exists no solution to Ross’s recovery problem. 

This proposition shows that generalized recovery can

be useful because it can match a broader class of market

prices in addition to the basic advantage that it starts with

the observed multi-period prices (rather than parallel uni-

verse prices). 

4.3. Recovery in infinite horizon 

In addition to generalizing Ross’s method, our result

also provides a simple and intuitive way of understanding

why, for example, growth may present a challenge for re-

covery (cf. the critique of Borovicka et al. 2016 , that recov-

ery is infeasible in standard models). Indeed, we provide

a simple counting argument: Suppose that the economy

has growth such that for each extra time period, the econ-

omy can increase from the previously highest state and

go down from the previously lowest state. Then we get

two new states for each new time period, which implies

that S > T such that recovery is impossible. Nevertheless,

we can still achieve recovery in such a large state space

if we consider a class of pricing kernels that is sufficiently

low-dimensional, as we discuss below in Section 6 . 

Our argument is very different from that of Borovicka

et al. (2016) who rely on a martingale decomposition,

which requires an infinite time horizon. Our counting ar-

gument is simple and is based on a finite horizon, consis-

tent with the data observed in practice. 

Our finite-horizon recovery theorem is therefore also

markedly distinct from the existing approaches that ex-

ist in continuous-time models in that we make no ref-

erence to, and have no need for, recurrence or stationar-

ity conditions. In a diffusion setting, Walden (2017) shows

the fundamental role of recurrence as a necessary condi-

tion for recovery in these models. Recurrence essentially

means that each state is being visited infinitely often, so

it can only be defined over an infinite horizon. Recurrence
bears some resemblance to Ross’s condition of irreducibil-

ity in that an infinite time extension of an irreducible chain

would be recurrent. The result of Walden (2017) is intuitive

since, when states are visited infinitely often, we have a

chance to recover probabilities. 

Our approach can naturally be used to consider

whether recovery is possible in a finite-time version of an

infinite-horizon process (i.e., even if a process is defined

over an infinite horizon, we can ask what happens if we

only see it over a couple of years). Further, we can show

via some examples that recovery may even be possible for

nonrecurrent processes or processes with growth. 

To give a simple example of this, consider a two-period

nonhomogeneous Markov process with two states defined

from the probability transition matrices for each time 

P̄ (0 , 1) = 

(
0 . 4 0 . 6 

0 . 5 0 . 5 

)
and, for t ≥ 1 , 

P̄ (t, t + 1) = 

(
1 0 

0 1 

)
. 

In the first period, the process either stays in its current

state or jumps to the other state, but after that, the process

is absorbed in its current state. If we only observe prices

for two time periods, then this is clearly the restriction of

a nonrecurrent process. Given that S = T = 2 , our counting

argument shows that generalized recovery is feasible. 

We could also imagine a process with growth, starting

in the “lowest state” 1 and evolving according to a transi-

tion matrix specified as an upward drifting process. To give

a simple illustration, imagine Assumptions 1 and 2 hold

and that the one-period transition matrix of physical prob-

abilities across five states is given as 

P̄ = 

⎛ 

⎜ ⎜ ⎝ 

0 . 5 0 . 5 0 0 0 

0 . 1 0 . 5 0 . 4 0 0 

0 0 . 1 0 . 5 0 . 4 0 

0 0 0 . 1 0 . 5 0 . 4 

0 0 0 0 . 5 0 . 5 

⎞ 

⎟ ⎟ ⎠ 

. 

If we observe prices over five time periods, then our count-

ing argument is satisfied S = T = 5 , and we see that it is

not growth per se that makes recovery impossible—it is the

expanding state space necessary to accommodate models

with growth that may cause problems. 

In summary, our results complement those in the lit-

erature in two ways. First, generalized recovery may work

when other methods do not and vice versa. Second, gen-

eralized recovery provides an economic intuition in finite

economies, while other methods do so in infinite-horizon

economies. 

4.4. Flat term structure and risk neutrality 

We finally note that the very special case of an ob-

served flat term structure of interest rates has some special

properties. In particular, with a flat term structure there

exists a solution to the problem in which the representa-

tive agent is risk neutral, echoing an analogous result by

Ross. 

To see this result, note that the price of a zero-coupon

bond with maturity τ is equal to the sum of the τ th row of
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Fig. 2. Closed-form solution: approximation error. The figure shows that 

the generalized recovery problem is very close to being linear. We show 

that the only nonlinearity comes from the discount rate δ due to the 

powers of time, δt . However, the function δ → δt is very close to being 

linear for the relevant range of annual discount rates, say δ ∈ [0.94, 1], 

and the relevant time periods that we study. Panel A plots the discount 

function and the linear approximation around δ0 = 0 . 97 given a horizon 

of t = 2 years. Panel B plots the same for a horizon of a half year. 

 

δ) as δ0 approaches δ. 
�, which we write as ( �e ) τ . Having a flat term structure 

means that the yield on the zero-coupon bonds does not 

depend on maturity, i.e., that there exists a constant r such 

that 

1 

(1 + r) τ
= (�e ) τ . (19) 

Let the T × S matrix Q contain the risk-neutral transition 

probabilities seen from the starting state, i.e., the k th row 

of Q gives us the risk-neutral probabilities of ending in the 

different states at date k . 

Proposition 4 (Flat term structure). Suppose that the term 

structure of interest rates is flat, i.e., there exists r > 0 such 

that 1 
(1+ r) τ = (�e ) τ for all τ = 1 , . . . , T . Then the recovery 

problem is solved with equal physical and risk-neutral proba- 

bilities, P = Q. This means that either the representative agent 

is risk neutral or the recovery problem has multiple solutions. 

We note that this result should be interpreted with cau- 

tion. The knife-edge (i.e., measure zero) case of a flat term 

structure may well be generated by the knife-edge case 

of a price matrix � with low rank, which implies that a 

continuum of solutions may exist, and the representative 

agent may well be risk averse (as one would expect). Intu- 

itively, a flat term structure may be generated by a � with 

so much symmetry that it has a low rank. 

5. Closed-form recovery 

The recovery problem is almost linear, except for the 

powers of the discount rate δ that enter into the prob- 

lem as a polynomial. In practical implementations over the 

time horizons where options are liquid, a linear approxi- 

mation provides an accurate approximation given that δ is 

known to be close to one at an annual horizon. 

The linear approximation is straightforward. To lin- 

earize the discounting of δτ around a point δ0 (say, δ0 = 

0 . 97 ), we write δτ ≈ a τ + b τ δ for known constants a τ and 

b τ . Based on the Taylor expansion δτ ≈ δτ
0 

+ τδτ−1 
0 

(δ −
δ0 ) , we have a τ = −(τ − 1) δτ

0 
and b τ = τδτ−1 

0 
. As seen in 

Fig. 2 , the approximation is accurate for δ ∈ [0.94, 1] for 

time horizons less than two years. 

With the linearization of the polynomials in δ, the 

equations for the recovery problem (13) become the 

following: ⎛ 

⎝ 

π11 

. . . 
πT 1 

⎞ 

⎠ + 

⎛ 

⎝ 

π12 . . . π1 S 

. . . 
. . . 

πT 2 . . . πT S 

⎞ 

⎠ 

⎛ 

⎝ 

h 

−1 
2 
. . . 

h 

−1 
S 

⎞ 

⎠ = 

⎛ 

⎝ 

a 1 + b 1 δ
. . . 

a T + b T δ

⎞ 

⎠ . 

(20) 

which we can rewrite as a system of T equations in S un- 

knowns as ⎛ 

⎝ 

−b 1 π12 . . . π1 S 

. . . 
. . . 

. . . 
−b T πT 2 . . . πT S 

⎞ 

⎠ 

⎛ 

⎜ ⎜ ⎝ 

δ
h 

−1 
2 
. . . 

h 

−1 
S 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎝ 

a 1 − π11 

. . . 
a T − πT 1 

⎞ 

⎠ . (21) 

Rewriting this equation in matrix form as 

Bh δ = a − π1 (22) 
we immediately see the closed-form solution 

h δ = 

{
B 

−1 (a − π1 ) for S = T 

(B 

′ B ) −1 B 

′ (a − π1 ) for S < T . 
(23) 

We see that when S = T , we simply need to solve S linear

equations with S unknowns. When S < T , we could simply 

just consider S equations and ignore the remaining T − S

equations. 

More broadly, if S < T and we start with prices � that 

are not exactly generated by the model (e.g., because of 

noise in the data), then Eq. (23) provides the values of δ
and the vector h that best approximate a solution in the 

sense of least squares. 

The following theorem shows that the closed-form so- 

lution is accurate as long as the value of δ0 is close to the 

true discount rate: 

Proposition 5 (Closed-form solution). If prices are generated 

by the model and B has full rank S ≤ T, then the closed-form 

solution (23) approximates the true solution in the following 

sense: the distance between the true solution ( ̄δ, ̄h , P̄ ) and the 

approximate solution ( δ, h, P ) approaches 0 faster than (δ0 −
¯ ¯
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6. Recovery in a large state space 

A challenge in implementing the Ross recovery theorem

is that it does not allow for an expanding set of states

as we know it, for example, from binomial models and

multinomial models of option pricing. Simply stated, the

expanding state space in a binomial model adds more un-

knowns for each time period than equations even under

the assumption of utility functions that depend on the cur-

rent state only. We next show how we handle an expand-

ing state space in our model. 

We have in mind a case in which the number of states

S is larger than the number of time periods T . In a stan-

dard binomial model, for example, with two time periods

we need five states corresponding to the different values

that the stock can take over its path. The key to solving

this problem is to reduce the dimensionality of the utility

ratios captured in the vector h . To do that, we replace As-

sumption 1 with the following assumption that the pricing

kernels belong to a parametric family with limited dimen-

sionality. 

Assumption 1 ∗ (General utility with N parameters). The

pricing kernel at time τ in state s (given the initial state

1 at time 0) can be written as 

m 

1 ,s 
0 ,τ = δτ h s (θ ) , (24)

where δ ∈ (0, 1] and h( · ) > 0 is a one-to-one C 

∞ smooth

function of the parameter θ ∈ �, an embedding from � ⊂
R 

N to R 

S , and � has a non-empty interior. 

With a large number of unknowns compared to the

number of equations, we need to restrict the set of un-

knowns, and this is done by assuming that the utilities are

parameterized by a lower-dimensional set �. 

6.1. A large discrete state space 

Let us first consider two simple examples of how we

can parameterize marginal utilities with a low-dimensional

set of parameters. First, we consider a simple linear ex-

pression for the marginal utilities, and then we discuss the

case of constant relative risk aversion (a nonlinear map-

ping from risk aversion parameters � to marginal utilities).

We start with a simple linear example of how the pa-

rameterization works. We consider a matrix B of full rank

and dimension (S − 1) × N such that ⎡ 

⎣ 

h 

−1 
2 
. . . 

h 

−1 
S 

⎤ 

⎦ = 

⎛ 

⎝ 

a 1 
. . . 

a S−1 

⎞ 

⎠ + 

⎛ 

⎝ 

b 11 . . . b 1 N 
. . . 

. . . 
b S−1 , 1 . . . b S−1 ,N 

⎞ 

⎠ 

⎡ 

⎣ 

θ1 

. . . 
θN 

⎤ 

⎦ =A + Bθ

(25)

Combining this equation with the recovery problem

(15) gives 

( �1 + �2 A ) + �2 B 

⎛ 

⎝ 

θ1 

. . . 
θN 

⎞ 

⎠ = 

⎛ 

⎝ 

δ
. . . 

δT 

⎞ 

⎠ . (26)

This equation has exactly the same form as our original

recovery problem (15) , but now � + � A plays the role
1 2 
of �1 , similarly �2 B plays the role of �2 , and θ plays

the role of (h −1 
2 

, . . . , h −1 
S 

) ′ . The only difference is that the

dimension of the unknown parameter has been reduced

from S − 1 to N . Therefore, Proposition 1 holds as stated

with S replaced by N + 1 . 

Hence, while before we could achieve recovery if S ≤ T ,

now we can achieve recovery as long as N + 1 ≤ T . In other

words, recovery is possible as long as the representative

agent’s utility function can be specified by a number of pa-

rameters that is small relative to the number of time peri-

ods for which we have price data. 

Assumption 1 ∗ also allows for the marginal utilities to

be non-linear function of the risk aversion parameters θ .

This generality is useful because standard utility functions

can give rise to such a nonlinearity. As a simple exam-

ple, consider an economy with a representative agent with

CRRA preferences. In this economy, the pricing kernel in

state s at time τ (given the current state 1 at time 0) is 

m 

1 ,s 
0 ,τ = δτ

(
c s 

c 1 

)−θ

, (27)

where c s is the known consumption in state s of the rep-

resentative agent, and θ is the unknown risk aversion pa-

rameter. Hence, Assumption 1 ∗ is clearly satisfied with

h −1 
s (θ ) = ( c s c 1 

) θ . Our generalized recovery result extends to

the large state space as stated in the following proposition.

Proposition 6 (Generalized recovery in a large state

space). Consider an economy satisfying Assumption 1 ∗ with

Arrow–Debreu prices for each of the T time periods and S

states such that N + 1 < T . The recovery problem has 

1. no solution generically in terms of an arbitrary � matrix

of positive elements; 

2. a unique solution generically if � has been generated by

the model. 

As one simple application of the proposition, we can

recover preferences from state prices if we know that the

pricing kernel is bounded and there are sufficiently many

time periods as seen in the following corollary. Said differ-

ently, using a simplified or winsorized pricing kernel (or

state space) is a special case of Proposition 6 . 

Corollary 7 (Generalized recovery with bounded ker-

nel). Suppose that the pricing kernel is bounded in the sense

that there exist states s̄ > s such that h s = h s̄ for s > s̄ and

h s = h s for s < s . Then the conclusion of Proposition 6 applies,

where N is the number of states from s to s̄ . 

6.2. Continuous state space 

Finally, we note that our framework also easily extends

to a continuous state space under Assumption 1 ∗ in dis-

crete time (see Walden 2017 for the case of continuous

time and continuous state space). We start with a con-

tinuous state-space density πτ ( s ) at each time point τ =
1 , . . . , T (given the current state at time 0). As before, πτ ( s )

represents Arrow–Debreu prices or, more precisely, πτ ( s ) ds

represents the current value of receiving 1 at time τ if the

state is in a small interval ds around s . Similarly, we let

p τ ( s ) denote the physical probability density of transition-

ing to s in τ periods. The fundamental recovery equations
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11 We note that prices of long-lived assets, for example the overall stock 

market, depends on both X t and Y t (even if the aggregate consumption Y t 
is the aggregate dividend). Therefore, stock index options would provide 

information on Arrow–Debreu prices on each state s t = (y t , x t ) . Alterna- 

tively, we could consider recovery based only on Arrow–Debreu securities 

that depend on y t . This would correspond to observing options on “divi- 

dend strips.” Either way, we get the same recovery results in the Mehra 

and Prescott (1985) model. 
now become 

πτ (s ) = δτ h s (θ ) p τ (s ) . (28) 

By moving h to the left-hand side and integrating, we can 

eliminate the natural probabilities as before. ∫ 
πτ (s ) h 

−1 
s (θ ) ds = δτ . (29) 

For each time period τ , this gives an equation to help us 

recover the N + 1 unknowns, namely the discount rate δ
and the parameters θ ∈ R 

N . Hence, we are in the same sit- 

uation as in the discrete-state model of Section 6.1 , and we 

have recovery if there are enough time periods as stated in 

Proposition 6 . 

As before, the linear case is particularly simple. Suppose 

that the marginal utilities can be written as 10 

h 

−1 
s (θ ) = A (s ) + B (s ) θ, (30) 

where for each s, A ( s ) is a known scalar and B ( s ) is a

known row vector of dimension N . Using this expression, 

we can rewrite Eq. (29) as a simple equation of the same 

form as our original recovery problem (15) : 

πA 
τ + πB 

τ θ = δτ , (31) 

where πA 
τ = 

∫ 
πτ (s ) A (s ) ds and πB 

τ = 

∫ 
πτ (s ) B (s ) ds . Hence,

as before, we have T equations that are linear except for 

the powers of the discount rate. 

7. Recovery in specific models: examples 

In this section we investigate recovery of specific mod- 

els of interest. In a controlled environment, we show when 

for given state prices, our model recovers the true under- 

lying risk-aversion parameter and time-preference param- 

eter, along with the true multiperiod physical probabilities. 

7.1. Recovery in the Mehra and Prescott (1985) model 

The Mehra and Prescott (1985) model works as follows. 

The aggregate consumption either grows at rate u = 1 . 054 

or shrinks at rate d = 0 . 982 over the next period. This con- 

sumption growth between time t − 1 and t is captured by 

a process X t . The aggregate consumption process can be 

written as 

 t = 

t ∏ 

s =1 

X s (32) 

where the initial consumption is normalized as Y 0 = 1 . 

Consumption growth X t is a Markov process with two 

states, up and down. The probability of having an up state 

after an up state is φuu ; = P r(X t = u | X t−1 = u ) = 0 . 43 and,

equally, the probability of staying in the down state is 

φdd = 0 . 43 . Hence, the probability of switching state is 

φud = φdu = 0 . 57 . 

The Arrow–Debreu price of receiving 1 at time t in a 

state s t = (y t , x t ) is computed based on the CRRA prefer- 

ences for the representative agent with risk aversion γ = 4 

as 

π1 ,s t 
0 ,t 

= δt y 
−γ
t P r(X t = x t , Y t = y t ) , (33) 
10 Note that h −1 
s (θ ) denotes 1 

h s (θ ) 
, i.e., it is not the inverse function of 

h s ( θ ). 
where the time-preference parameter is δ = 0 . 98 , and the 

physical probabilities P r(X t = x t , Y t = y t ) of each state are

computed based on the Markov probabilities above. 11 

Based on this model of Mehra and Prescott (1985) , we 

compute Arrow–Debreu prices in each state over T = 20 

time periods and examine whether we can recover prob- 

abilities and preferences based on knowing only these 

prices (we have also performed the recovery for other val- 

ues of T ). 

We first notice from Eq. (32) that consumption has 

growth, which immediately implies that S > T . This means 

that recovery is impossible without further assumptions. 

Hence, we proceed using the method concerning a large 

state space of Section 6 . The simplest way to proceed is to 

assume that we know the form of the pricing kernel (33) , 

but we do not know the risk aversion γ , the discount rate 

δ, or the probabilities. We can then write the generalized 

recovery equation set on the form 

�h 

−1 (γ ) = 

[
δ δ2 . . . δT 

]′ 
, (34) 

where h is a one-to-one C ∞ smooth function of the pa- 

rameter γ based on Eq. (33) ; see Appendix B for details. 12 

Therefore, we are in the domain of Assumption 1 ∗ and, as 

long as T > 2 (since N = 1 is the number of risk aversion

parameters and 2 is the total number of variables, δ and 

γ ) then we know by Proposition 6 that the generalized re- 

covery equation set generically has a unique solution. 

We first seek to recover γ and δ by minimizing the 

pricing errors (again, see Appendix B for details). Panel A 

of Fig. 3 shows the objective function for this minimiza- 

tion problem. As seen from the figure, there is a unique 

solution to the problem, which naturally equals the true 

parameters ˆ δ = 0 . 98 , ˆ γ = 4 . 

Finally, we turn to the recovery of natural probabilities. 

It is worth noticing that we do not recover the Markov 

switching probabilities φuu , φdd , φud , or φdu . Rather, 

what is recovered is the multi-period probabilities p 
1 ,s t 
0 ,t 

of transitioning from the initial state to each future state 

(consistent with the intuition conveyed in Fig. 1 ). 13 The 

probabilities p 
1 ,s t 
0 ,t 

are recovered exactly. Fortunately, these 

multi-period probabilities are all we need for making pre- 

dictions about such statistics as expected returns, vari- 

ances, and quantiles across different time horizons. 

7.2. Cox–Ross–Rubinstein and iid. consumption growth 

We can capture the standard binomial model of Cox 

et al. (1979) (i.e., the discrete time counterpart to Black–

Scholes–Merton) as follows. We consider the same model 
12 Matlab code is available from the authors upon request. 
13 Recovery of the underlying path-dependent probabilities is possible if 

we have access to Arrow–Debreu prices for all paths or if we assume that 

we know the structure of the underlying tree. 
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Fig. 3. Generalized recovery: objective function in specific economic 

models. The figure shows the objective function used for the general- 

ized recovery method, the squared pricing errors in (B.3) . Panel A shows 

that the objective function for the Mehra and Prescott (1985) model has 

a unique minimum, making the generalized recovery feasible. Panel B 

shows that generalized recovery is not feasible in the Cox-Ross-Rubinstein 

model with iid. consumption, as the objective has a continuum of so- 

lutions. Panel C shows that generalized recovery is feasible in the non- 

Markovian model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for aggregate consumption Y t , but now X t is iid. (corre-

sponding to φuu = φdu and φdd = φud ). In other words,

the standard binomial model has iid. consumption growth.

Specifically, we assume that up and down probabilities are

always 50% ( φuu = φdu = φdd = φud = 0 . 5 ). 

This binomial model implies a flat term structure that

puts us in the case of Proposition 4 , where recovery is im-

possible. 14 Concretely, the problem is that the price ma-

trix � from Eq. (34) is not full rank. Hence, as seen in

Fig. 3 Panel B, the objective of minimizing pricing errors

has a continuum of solutions. In other words, recovery is

not feasible. 

7.3. A non-stationary model without Markov structure 

Lastly, we consider a model where the consumption

growth X t is not Markov. Specifically, we still consider the

binomial tree described above in Sections 7.1 and 7.2 , but

now we let the probability of transitioning up/down from

any state s at any time t depend on the path taken from

time 0 to time t . At each node at each path, we draw a

random uniformly distributed probability for an up move,

and, of course, assign one minus this probability to the

next down node. 

We now seek to recover δ and γ . As seen in Fig. 3 Panel

C, the objective function has a unique solution that again

equals the true parameters ˆ δ = 0 . 98 and ˆ γ = 4 . Hence, re-

covery can be possible even when the driving process is

nonstationary and non-Markovian, again under parametric

assumptions about the utility function (i.e., a model out-

side the scope of Ross 2015 and Borovicka et al. 2016 ). 

8. Empirical analysis 

This section describes our data, empirical methodology,

and empirical findings. 

8.1. Data and sample selection 

We use the IvyDB database from OptionMetrics to ex-

tract information on standard call and put options writ-

ten on the S&P 500 index for every last trading day of the

month from January 1996 to December 2015. We obtain

implied volatilities, strikes, and maturities, allowing us to

back out market prices. As a proxy for the risk-free rate,

we use the zero-coupon yield curve of the IvyDB database,

which is derived from LIBOR rates and settlement prices of

CME Eurodollar futures. We also obtain expected dividend

payments, calculated under the assumption of a constant

dividend yield over the lifetime of the option. We consider

options with time to maturity between 10 and 360 days

and apply standard filters, excluding contracts with zero

open interest, zero trading volume, and quotes with best

bid below $0.50, and options with implied volatility higher

than 100%. 
14 Iid. consumption growth and standard utility functions generally lead 

to a flat term structure because the price of a bond with τ periods to ma- 

turity can be written as E t (δτ u t+ τ
u t 

) = E t ( 
∏ 

s =1 , ... ,τ δ u t+ s 
u t+ s −1 

) =: ( 1 
1+ r ) 

τ , where 

the expected utility increments are the same for all s because they de- 

pend on consumption growth c t+ s 
c t+ s −1 

, which has constant expected value 

when it is iid. 
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Table 1 

Correlation matrix. This table shows the pairwise correla- 

tions between the recovered conditional expected excess 

return for different specifications of marginal utilities and 

method for estimating risk-neutral prices: (i) μt ,1 : Bates 

and polynomial; (ii) μt ,2 : Bates and piecewise linear; (iii) 

μt ,3 : Jackwerth and polynomial; and (iv) μt ,4 : Jackwerth 

and piecewise linear. We augment the table with pairwise 

correlations with the VIX t index and the lower boundary 

on the equity premium, SVIX t , due to Martin (2017) . 

μt ,1 μt ,2 μt ,3 μt ,4 VIX t SVIX t 

μt ,1 1 0.31 0.31 0.54 0.39 0.39 

μt ,2 1 0.23 0.38 0.41 0.38 

μt ,3 1 0.37 0.34 0.31 

μt ,4 1 0.32 0.29 

VIX t 1 0.93 

SVIX t 1 
8.2. Recovery methodology 

The generalized recovery theorem relies on the knowl- 

edge of Arrow–Debreu state prices from the current initial 

state to all possible future states for several future time pe- 

riods. Unfortunately, there is currently no market trading 

pure Arrow–Debreu securities. Therefore, we use options 

to back out Arrow–Debreu prices. Further, given the large 

number of states, we use the parametric kernel method 

from Section 6 . 

To study the robustness of recovery, we consider two 

different methods for backing out Arrow–Debreu prices 

and two different specifications of the pricing kernel, 

for a total of four different recovered distributions and 

preferences. 

More specifically, we apply the following two meth- 

ods of extracting Arrow–Debreu prices from options: (i) 

the parametric model of Bates (20 0 0) and (ii) the non- 

parametric method of Jackwerth (2004) . Each of the meth- 

ods yields Arrow–Debreu prices across multiple time hori- 

zons and mutliple index levels for each day t as described 

in detail in Appendix C . 

Given these observed Arrow–Debreu prices, we recover 

preferences and probabilities based on the two different 

specifications of the pricing kernel that we denote “piece- 

wise linear” and “polynomial” pricing kernels, respectively, 

as described in detail in Appendix D . 

8.3. Computing statistics of the recovered distribution 

Once we have recovered the probabilities of each state 

for each future time period, it is straightforward to com- 

pute any statistic under the physical probability distribu- 

tion. If the level of the index at time t is S t , then the state 

space consists of all integer values of the index between 

the minimum value (1 − 2 . 5 VIX t ) S t and (1 + 4 VIX t ) S t . Let

N t denote the number of states as seen from time t , and 

think of state 1 as the lowest state and N t as the highest 

state. We compute the recovered expected excess return μt 

at time t by summing over the N t possible states: 

μt = E P t [ r t ,t +1 ] − r f 
t ,t +1 

= 

N t ∑ 

ν=1 

p t+1 ,νr t+1 ,ν − r f 
t ,t +1 

(35) 

where r 
f 
t ,t +1 

is the risk-free rate, p t+1 ,ν is the recovered 

time- t conditional physical probability for the transition to 

state ν at time t + 1 , r t+1 ,ν = 

S t+1 (ν) 
S t 

− 1 is the return in 

state ν , and S t+1 (ν) is the value of the index at time t + 1 

if state ν is realized. 

We compute the contemporaneous unpredictable inno- 

vation in the conditional expected return as 

�μt+1 = μt+1 − E t [ μt+1 ] , (36) 

where we impose an AR(1) process on the innovation to 

the risk premium E t [ μt+1 ] = α0 + α1 μt based on the re- 

gression 

μt+1 = α0 + α1 μt + ε t+1 . (37) 

The estimated persistence parameter α1 depends on the 

recovery method and ranges from 0.23 to 0.68 at the 

monthly horizon. 
We compute the recovered conditional variance, 

VAR 

P 

t (r t ,t +1 ) , analogously to how we computed the ex- 

pected return and we denote the recovered volatility by 

σt = 

√ 

VAR 

P 

t (r t ,t +1 ) . 

8.4. Empirical results 

We next investigate the properties of the recovered 

probabilities based on each of our four methods. We first 

consider the recovered expected return. Table 1 shows 

the correlation matrix for the recovered expected returns 

based on each of our four methodologies as well as the VIX 

volatility index and the SVIX variable of Martin (2017) . The 

good news is that all variables are positively correlated, as 

we would expect. The less good news is that the correla- 

tions between the different recovered expected returns are 

modest in magnitude, with an average pairwise correlation 

of only 0.35. This modest correlation is concerning because 

all these recovered expected returns should be measures 

of the same thing, namely the market’s expected return at 

any given time. 

Fig. 4 shows the time series variation of the recovered 

expected return based on one of the methodologies (we 

plot just one time series since it is difficult to look at all 

four together). These recovered expected returns do not 

look unreasonable, but we next try to test their ability to 

predict actual realized returns. Specifically, we regress the 

ex post realized excess return on the ex ante recovered ex- 

pected excess return, μt and the ex post innovation in ex- 

pected return, �μt+1 : 

r t ,t +1 = β0 + β1 μt + β2 �μt+1 + εt ,t +1 , (38) 

where εt+1 is a noise term. To understand this regression, 

note that we are interested in testing whether the recov- 

ered probabilities give rise to reasonable expected returns, 

that is, time-varying risk premiums. For this, we want to 

test whether a higher ex ante expected return is associated 

with a higher ex post realized return ( β1 > 0), whether an 

increase in the risk premium is associated with a contem- 

poraneous drop in the price ( β2 < 0), and whether the in- 

tercept as zero ( β0 = 0 ). 

Table 2 reports the results of this regression for each of 

our four recovery methodologies as well as using VIX and 

SVIX as the expected return over the full sample from 1996 
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Fig. 4. Recovered conditional expected excess return. The figure plots monthly conditional expected excess market returns, recovered last trading day of 

each month from 1/1996 to 12/2015. Marginal utilities are polynomial in return and maturity and risk-neutral prices are estimated using Jackwerth (2004) . 

Table 2 

Does the recovered expected return predict the future return? The table reports results of the regression of the ex post real- 

ized excess return r t+1 on the ex ante recovered expected excess return, μt , and the ex post innovation in expected return, 

�μt+1 . In the last two columns we replace μt with the VIX or the SVIX of Martin (2017) . 

r t ,t +1 = β0 + β1 μt + β2 �μt+1 + εt ,t +1 . 

The regression uses monthly data over the full sample 1/1996–12/2015, t -statistics are reported in parentheses, and signifi- 

cance at a 10% level is indicated in bold. 

Dependent variable r t ,t +1 r t ,t +1 r t ,t +1 r t ,t +1 r t ,t +1 r t ,t +1 

Intercept 0.00 0.01 0.01 0.01 0.01 0.01 

(0.05) (2.69) (2.34) (2.64) (2.05) (1.78) 

μt 0.63 −7.05 −1.01 −0.57 −0.00 0.18 

(0.59) ( −1 . 59 ) ( −0 . 86 ) ( −1 . 52 ) ( −1.25) (0.28) 

�μt+1 −3.92 −13.75 −5.93 −1.65 −0.55 −16.11 

( −3 . 27 ) ( −2 . 90 ) ( −4.90) ( −3.20) ( −10.1) ( −16.01) 

Adj. R 2 (%) 3.6 3.6 8.8 4.3 30.0 51.7 

Method: 

Expected excess return ( μt ) Recovered Recovered Recovered Recovered VIX SVIX 

Q -prices Bates Bates Jackwerth Jackwerth 

Pricing kernel Polynomial Piecewise linear Polynomial Piecewise linear 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to 2015. First, the intercept β0 is insignificantly different

from zero using method 1 and using SVIX, but significantly

different from zero in the other specifications, providing

evidence against these models. Second, β1 is insignificantly

different from zero in all specifications, providing evidence

against the models. The coefficient β2 is highly significant

and has the desired negative sign in all models. Further, as

expected the absolute value of β2 is greater than one since

a shock to the discount rate leads to a larger shock to the

price (cf. Gordon’s growth model for the extreme example

of a permanent shock). 

Table 3 reports the result of regression (38) over

the subsample that excludes the global financial crisis

(9/20 08–7/20 09), a subsample that has been considered in

the literature (e.g., Martin 2017 ). The results here show lit-

tle improvement. Method 1 is again the most encouraging

in that β0 is insignificantly different from zero, β1 is pos-

itive albeit insignificant, and β2 is significantly negative as

expected. However, the other three methods only give the

expected negative coefficient for β2 . None of the estimates

for β1 are significant and all of the β0 coefficients are sig-

nificantly positive. 
Finally, we consider the recovered physical volatility as

plotted in Fig. 5 . This recovered volatility looks reasonable.

Further, the recovered volatilities are similar across the dif-

ferent methodologies with an average pairwise correlation

of 0.98 and an average correlation to VIX of 0.92. It is not

that surprising that volatilities can be recovered, but study-

ing volatility provides a simple and powerful reality check

of our method since the true future volatility is known

with much less error than the expected return. Hence, we

regress the ex post realized volatility on the ex ante recov-

ered conditional volatility, σ t : √ 

VAR (r t ,t +1 ) = β0 + β1 σt + εt ,t +1 , (39)

where the realized volatility 
√ 

VAR (r t ,t +1 ) is compute d us-

ing close-to-close daily data over the four weeks from t

to t + 1 by OptionMetrics. We also run the same regres-

sion where we replace the recovered volatilities by the

VIX volatility index. The theory predicts that β0 = 0 and

β1 = 1 . 

Table 4 reports the results. As seen in Table 4 , the es-

timated intercept coefficient β0 is insignificant for models

1, 3, and 4, but it is significant for model 2. However, for
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Table 3 

Does the recovered expected return predict the future return – excluding 8/20 08–7/20 09. The table reports results of the 

regression of the ex post realized excess return r t+1 on the ex ante recovered expected excess return, μt , and the ex post 

innovation in expected return, �μt+1 . In the last two columns we replace μt with the VIX or the SVIX of Martin (2017) . 

r t ,t +1 = β0 + β1 μt + β2 �μt+1 + εt ,t +1 . 

The regression uses monthly data over the full sample 1/1996–12/2015, t -statistics are reported in parentheses, and signifi- 

cance at a 10% level is indicated in bold. 

Dependent variable r t ,t +1 r t ,t +1 r t ,t +1 r t ,t +1 r t ,t +1 r t ,t +1 

Intercept 0.00 0.01 0.01 0.01 0.00 0.00 

(0.30) (2.56) (1.88) (2.52) (1.11) (0.12) 

μt 1.46 −2.80 1.06 −0.17 0.00 1.71 

(1.42) ( −0.64) (0.82) ( −0.47) ( −0.25) (1.99) 

�μt+1 −4.38 −12.74 −6.23 −2.11 −0.50 −17.69 

( −3.84) ( −2.77) ( −5.19) ( −4.37) ( −8.75) ( −15.53) 

Adj. R 2 (%) 5.9 2.6 9.8 7.1 24.6 52.5 

Method: 

Expected excess return ( μt ) Recovered Recovered Recovered Recovered VIX SVIX 

Q -prices Bates Bates Jackwerth Jackwerth 

Pricing kernel Polynomial Piecewise linear Polynomial Piecewise linear 

Fig. 5. Recovered conditional volatility of excess return. The figure plots monthly conditional market volatility, recovered last trading day of each month 

from 1/1996 to 12/2015. Marginal utilities are polynomial in return and maturity and risk-neutral prices are estimated using Jackwerth (2004) . 

Table 4 

Does the recovered volatility predict the future volatility? This table reports results of a monthly regression of 

the ex post realized volatility on the ex ante recovered return volatility, σ t . In the last column we replace σ t 

with the VIX. √ 

v ar(r t ,t +1 ) = β0 + β1 σt + εt ,t +1 . 

The regression uses monthly data over the full sample 1/1996–12/2015, t -statistics are reported in parentheses, 

and significance at a 10% level is indicated in bold. 

Dependent variable 
√ 

v ar(r t ,t +1 ) 
√ 

v ar(r t ,t +1 ) 
√ 

v ar(r t ,t +1 ) 
√ 

v ar(r t ,t +1 ) 
√ 

v ar(r t ,t +1 ) 

Intercept −0.00 −0.01 −0.01 −0.01 −0.05 

( −1.24) ( −1.95) ( −1.63) ( −1.46) ( −9.63) 

σ t 0.88 0.87 0.76 0.77 0.71 

(16.67) (16.89) (16.14) (15.78) (17.19) 

Adj. R 2 (%) 53.9 54.6 52.3 51.2 55.3 

Method: 

Volatility ( σ t ) Recovered Recovered Recovered Recovered VIX 

Q -prices Bates Bates Jackwerth Jackwerth 

Pricing kernel Polynomial Piecewise linear Polynomial Piecewise linear 
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all models, the intercept is smaller than that of VIX, sug-

gesting that the recovered volatilities are less biased than

VIX. 

The estimated slope coefficient β1 is positive and highly

significant for all models. Further, the estimated slope is

close to the predicted value of 1, in particular closer than

the estimated value for VIX. Lastly, we see that VIX has

a slightly higher R 2 , which may reflect that the recovery

method introduces some noise in the volatility measures. 

In summary, we find substantial differences across the

recovered probabilities based on different methodologies,

and the predictive power for future returns appears weak

both in the full sample and in the sample that excludes

the global financial crisis. The recovered volatilities pre-

dict well the future volatility in a way that is less bi-

ased than VIX but slightly lower R 2 . We can reject that

the recovered probabilities provide a perfect description of

the future evolution of the market based on a Berkowitz

(2001) test. 15 This rejection could be due to the details of

our implementation. For instance, while the true pricing

kernel may depend on multiple factors, we assume that

the state space is given by the level of S&P 500 since we

do not observe option prices depending simultaneously on

multiple factors. 

9. Conclusion 

We characterize when preferences and natural prob-

abilities can be recovered from observed prices using

a simple counting argument. We make no assumptions

on the physical probability distribution, thus generaliz-

ing Ross (2015) who relies on strong time-homogeneity

assumptions. 

In economies with growth, our counting argument im-

mediately shows that recovery is generally not feasible.

While this finding parallels results by Borovicka et al.

(2016) , our intuitive counting argument is fundamen-

tally different and does not rely on the assumptions of

an infinite-period time-homogeneous Markov setting but

rather is based on the general methods pioneered by

Debreu (1970) for general equilibrium. 

To pursue recovery even in economies with growth, e.g.,

classical multinomial models, we show how our method

can be used when the pricing kernel can be parameterized

by a sufficiently low-dimensional parameter vector. When

recovery is feasible, our model allows a closed-form lin-

earized solution. We implement our model empirically us-

ing several different specifications, testing the predictive

power of the recovered statistics. 
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Appendix A. Proofs 

Proof of Proposition 1. We have already provided a

proof for the statements 1 and 2 in the body of the

text. Turning to statement 3, we note that the set X of

all ( δ, h, P ) is a manifold-with-boundary of dimension

S · T − T + S. The discount rate, probabilities, and marginal

utilities map into prices, which we denote by F (δ, h, P ) =
DP H = �, where, as before, D = diag (δ, . . . , δT ) and H =
diag (1 , h 2 , . . . , h S ) ), and F is C ∞ . If S < T , the image F ( X ) has

Lebesgue measure zero in R 

T ×S by Sard’s theorem, proving

3. Indeed, this means that the prices that are generated by

the model F ( X ) have measure zero relative to all prices �. 

Turning to statement 4, we first note that P and H can

be uniquely recovered from ( δ, �) (given that � is gener-

ically full rank). Indeed, H is recovered from Eq. (17) and

P is recovered from Eq. (12) . Therefore, we can focus on

( δ, �). 

For two different choices of the discount rate ( δa , δb )

and a single set of prices �, we consider the triplet ( δa ,

δb , �). We are interested in showing that the different

discount rates cannot both be consistent with the same

prices, generically. To show this, we consider the space

M where the reverse is true, hoping to show that M is

“small.” Specifically, M is the set of triplets where � is of

full rank and both discount rates are consistent with the

prices, that is, there exists (unique) P i and H i ( i = a, b) such

that D a P a H a = D b P b H b = �. 

Given that probabilities and marginal utilities can be

uniquely recovered from prices and a discount rate (as ex-

plained above), we have a smooth map G from M to X by

mapping any triplet ( δa , δb , �) to ( δa , h a , P a ), where ( h a ,

P a ) are the recovered marginal utility and probabilities. The

image of this map consists exactly of those elements of X

for which F is not injective. The proof is complete if we can

show that this image has Lebesgue measure zero, which

follows again by Sard’s theorem if we can show that the

dimension of M is strictly smaller than ST − T + S. 

To study the dimension of M , we note that we

can think of M as the space of triplets such that

the span of � contains both the points (δa , δ2 
a , . . . , δ

T 
a ) 

′
and (δb , δ

2 
b 
, . . . , δT 

b 
) ′ . The span of � is given by V � :=

{ � · (1 , h 2 , h 3 , . . . , h S ) 
′ | h s > 0 } , which is an affine (S − 1) -

dimensional subspace of R 

T for � of full rank. The set

of all those � ∈ R 

T ×S such that V � passes through two

given points of R 

T (in general position with respect to

https://doi.org/10.13039/501100000781
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each other) form a subspace of dimension ST − 2(T − S + 

1) since each point imposes T − S + 1 equations (and say- 

ing that the points are in general position means that all 

these equations are independent). Therefore, M is a mani- 

fold of dimension ST − 2 T + 2 S since the pair ( δa , δb ) de- 

pends on two parameters, and for a given pair, there is 

a (ST − 2 T + 2 S − 2) -dimensional subspace of possible �

(any two distinct points are always in general position). 

Hence, we see that dim (M) = ST − 2 T + 2 S < ST − T + S =
dim (X ) since S < T , which implies that G ( M ) has measure 

zero in X . Further, the prices where recovery is impossi- 

ble, F ( G ( M )), have measure zero in the space of all prices 

generated by the model F ( X ) where we use the Lebesgue 

measure on X to define a measure 16 on F ( X ). �
Proof of Proposition 2. Let �̄ be an S × S transition 

matrix corresponding to an irreducible matrix (as in Ross). 

Without loss of generality we assume that the current 

state is the first state. Since prices are generated by a Ross 

economy, the observed matrix � of multiperiod prices is 

given as 

� := 

⎛ 

⎜ ⎜ ⎝ 

( �̄) 1 
( �̄2 ) 1 

. . . 

( �̄S ) 1 

⎞ 

⎟ ⎟ ⎠ 

. 

where ( ̄�) 1 denotes the first row of �̄, ( ̄�2 ) 1 is the first 

row of �̄2 , etc. We want to show that all solutions to 

the eigenvalue problem for �̄ give rise to solutions to 

our system (both the “correct solution” and the ones that, 

by the Perron–Frobenius theorem, do not generate viable 

solutions). 

Observe that if z = (z 1 , . . . , z S ) 
′ is a (right) eigenvector 

of �̄ with corresponding eigenvalue δ, then 

�z = (δz 1 , δ
2 z 2 , . . . , δ

S z S ) 
′ . 

If z is the eigenvector corresponding to the maximal eigen- 

value of �̄, then we know that it is strictly positive. Gener- 

ically, in the space of matrices �̄, the matrix is diagonal- 

izable with eigenvectors that contain no zeros and with 

distinct nonzero eigenvalues—in particular, it has full rank. 

Therefore, generically, even for the other eigenvectors, we 

have that the coordinates of z are non-zero, so we can nor- 

malize z to have first coordinate 1. Now let the Ross prob- 

ability matrix be defined (as in Ross) 

P̄ = 

1 

δ
Diag −1 (z) ̄�Diag(z) , (A.1) 

with corresponding multi-period probabilities given by 

P := 

⎛ 

⎜ ⎜ ⎝ 

( ̄P ) 1 
( ̄P 2 ) 1 

. . . 

( ̄P S ) 1 

⎞ 

⎟ ⎟ ⎠ 

. 
16 We can define a measure on F ( X ) by μ∗(A ) := μ(F −1 (A )) for any set 

A , where μ is the Lebesgue measure on X . 
Note that since the rows of P̄ sum to 1, so do rows of P .

Further, using (A.1) , 

P = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

(
1 

δ1 
Diag(z) −1 �̄1 Diag(z) 

)
1 

. . . (
1 

δS 
Diag(z) −1 �̄S Diag(z) 

)
1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

(
1 

δ1 
�̄1 Diag(z) 

)
1 

. . . (
1 

δS 
�̄S Diag(z) 

)
1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= D 

−1 �Diag(z) , 

where the second equality uses that z 1 = 1 , and that we 

only consider the first rows, and the last equation uses our 

maintained notation D = Diag(δ, . . . , δS ) . We note that this 

equation is the same as our Eq. (12) , which means that 

all solutions to Ross’s eigenvalue problem for the matrix 

�̄ also appear as solutions to our equations. The fact that 

P generated from the Ross solution P̄ is a solution to the 

generalized problem required no assumptions other than 

irreducibility, and this proves part 1 of the theorem. 

To also obtain uniqueness of our solution, note that 

generically, there are S eigenvectors for Ross’s matrix from 

which a matrix P can be generated using (A.1) . Each of 

these solutions can be used to generate a solution P to our 

problem, as shown above. The S − 1 solutions are “fake”

in the sense that they imply that some marginal utilities 

(elements in the eigenvector z above) are negative. Hence, 

these solutions are also fake in the context of the general- 

ized recovery framework. Given that Ross’s equations yield 

a total of S possible solutions to our problem, of which 

S − 1 are fake, we have a unique viable solution (by Propo- 

sition 1 ) if we can ensure that �12 has full rank. 

This follows from the generic property of �̄ as being 

diagnonalizable with distinct, nonzero eigenvalues. In fact, 

we can show the stronger statement that � has full rank: 

consider the diagonalization of Ross’s price matrix as �̄ = 

V ZV ′ , where Z = diag (z 1 , . . . , z S ) is the matrix of eigenval-

ues, and V is the matrix of eigenvectors. The k th row in the

generalized-recovery pricing matrix is the first row (still 

assuming that the starting state is 1) of �̄k = V Z k V ′ . Let-

ting v denote the first row in V , we see that the k th row of

� is v Z k V ′ = (v 1 z k 1 
, . . . , v S z k S 

) V ′ so 

� = 

⎡ 

⎣ 

1 ... 1 

. . . 
. . . 

z T −1 
1 

... z T −1 
S 

⎤ 

⎦ 

⎡ 

⎣ 

v 1 z 1 0 

. . . 

0 v S z S 

⎤ 

⎦ V 

′ . (A.2) 

Therefore, � is full rank generically because it is the prod- 

uct of three full-rank matrices. Indeed, the first matrix is 

a Vandermonde matrix, which is full rank when the z ’s 

are nonzero and different, which is true generically. The 

second matrix is clearly also full rank since the v ’s are 

also nonzero generically, and the third matrix is full rank 

by construction. Hence our set of equations can have no 

more than S solutions, and since S − 1 of these are “fake”, 
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V  
we have unique recovery of the solution corresponding to

Ross’s solution also, generically. 

To see how to derive �̄ in an economy where � arises

from a time-homogeneous Ross economy, note that the fol-

lowing equation set must hold: ⎡ 

⎣ 

(�) 2 
. . . 

(�) S 

⎤ 

⎦ 

︸ ︷︷ ︸ 
(S−1) ×S 

= 

⎡ 

⎣ 

(�) 1 
. . . 

(�) S−1 

⎤ 

⎦ 

︸ ︷︷ ︸ 
(S−1) ×S 

�̄ , (A.3)

where ( �) i is the i th row of �. Further, using the notation

from Eq. (14) for blocks of � and denoting the first row of

�̄ by �̄1 and remaining rows by �̄2 , we can rewrite this

equation as ⎡ 

⎣ 

(�) 2 
. . . 

(�) S 

⎤ 

⎦ = 

[
�11 �12 

][�̄1 

�̄2 

]
. (A.4)

Given that �̄1 is known (because the one-period state

prices from state 1 are observed), it is useful to further

rewrite this system as ⎡ 

⎣ 

(�) 2 
. . . 

(�) S 

⎤ 

⎦ − �11 �̄1 = �12 �̄2 . (A.5)

Hence, when �12 is full rank, the Ross price matrix �̄2

can be derived uniquely and explicitly by premultiplying

by (�12 ) 
−1 . We have already shown in part 2, that �12

has full rank generically. If �12 does not have full rank,

there exists a nonzero vector v ∈ R S−1 for which �12 v = 0 .

In this case, if we start from a solution for which �̄2 has

strictly positive elements, we can pick ε > 0 small enough

that adding εv to a row of �̄2 yields a perturbed matrix

�̄ε
2 

whose elements are also strictly positive. Clearly, �̄ε
2 

also satisfies (A.5) , and hence the Ross price matrix is not

unique, showing part 3. �
Proof of Proposition 3. Consider first the case S < T .

The dimension of the parameter set (transition proba-

bilities + utility parameters) generating the generalized-

recovery price matrix � is ST − T + S, which is strictly

greater than the dimension S 2 of the parameter space gen-

erating price matrices in Ross’s homogeneous case. Hence,

generically no time-homogeneous solution can generate a

generalized recovery price �. 

Our framework is also more general in the case S = T .

Recalling that p τ i denotes the probability of going from the

current state 1 to state i in τ periods, it is clear that in a

time-homogeneous setting we must have p 22 ≥ p 11 p 12 , i.e.,

the probability of going from state 1 to state 2 in two pe-

riods is (conservatively) bounded below by the probability

obtained by considering the particular path that stays in

state 1 in the first time period and then jumps to state 2

in the second. However, such a bound need not apply for

the true probabilities if the transition probabilities are not

time-homogeneous. The set of parameters that can gen-

erate � matrices that are not attainable from homoge-

neous transition probabilities is clearly of Lebesgue mea-

sure greater than zero in the S 2 -dimensional parameter

space. �
Proof of Proposition 4. Let R denote the diagonal ma-

trix whose k th diagonal element is 1 
(1+ r) k . Having a flat

term structure means that the matrix � of state prices as

seen from a particular starting state can be written as 

� = RQ , 

which defines Q as a stochastic matrix (i.e., with rows that

sum to 1). Clearly, by letting δ = 1 / (1 + r) and having risk

neutrality, i.e. H = I S (the identity matrix of dimension S ),

we obtain a solution to our recovery problem 

� = RQ = DP H = RP I S = RP , 

by setting P = Q . �
Proof of Proposition 5. The result follows from the fol-

lowing lemma. �

Lemma 1. Suppose that x ∗ ∈ R 

n is defined by f (x ∗) = 0 for

a differentiable function f : R 

n → R 

n with full rank of the Ja-

cobian df in the neighborhood of x ∗, and x is defined as the

solution to the equation, f ( ̄x ) + df ( ̄x )(x − x̄ ) = 0 , where f has

been linearized around x̄ = x ∗ + �x ε for �x ∈ R 

n and ε ∈ R .

Then x = x ∗ + o(ε ) for ε → 0 . 

Proof of Lemma 1. Since we have x = x̄ − df −1 f ( ̄x ) we

see that, as ε → 0, 

x − x ∗

ε 
= 

x̄ − x ∗

ε 
−df −1 f ( ̄x ) − f (x ∗) 

ε 
→�x −df −1 df�x = 0 . 

(A.6)

�
Proof of Proposition 6. Following the same logic as

the proof of Proposition 1 , we note that the set X of all

( δ, θ , P ) is a manifold-with-boundary of dimension S · T −
T + N + 1 . The discount rate, marginal utility parameters,

and probabilities map into prices, which we denote by

F (δ, θ, P ) = DP H = �, where as before, D = diag (δ, . . . , δT )

and H = diag (h 1 (θ ) , h 2 (θ ) , . . . , h S (θ )) ), and F is C ∞ . Since

N + 1 < T , the image F ( X ) has Lebesgue measure zero in

R 

T ×S by Sard’s theorem, proving part 1. 

Turning to part 2, we first note that P can be uniquely

recovered from ( ̄θ, �) using Eq. (12) , where θ̄ = (δ, θ ) .

Therefore, we can focus on ( ̄θ, �) , studying the solutions

to �(h −1 
1 

(θ ) , . . . , h −1 
S 

(θ )) ′ = (δ, . . . , δT ) ′ . 
For two different choices of the parameters ( ̄θa , θ̄b ) and

a single set of prices �, we consider the triplet ( ̄θa , θ̄b , �) .

We are interested in showing that the different parame-

ters cannot both be consistent with the same prices, gener-

ically. To show this, we consider the space M where the re-

verse is true, hoping to show that M is “small.” Specifically,

M is the set of triplets where � is of full rank and both

discount rates are consistent with the prices, that is, there

exists (unique) P i ( i = a, b) such that D a P a H a = D b P b H b = �.

Given that probabilities can be uniquely recovered from

prices and parameters, we have a smooth map G from M

to X by mapping any triplet ( ̄θa , θ̄b , �) to ( δa , θ a , P a ). The

image of this map consists exactly of those elements of X

for which F is not injective. The proof is complete if we can

show that this image has Lebesgue measure zero, which

again follows by Sard’s theorem if we can show that the

dimension of M is strictly smaller than S · T − T + N + 1 . 

To study the dimension of M , first consider

 � := { �(h −1 
1 

(θ ) , . . . , h −1 
S 

(θ )) ′ | θ ∈ �} , which is an
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0 ,T

.1) 

 

 

 

17 Our estimated state prices are reported on the corresponding author’s 

personal website. Arriving at these estimates requires some ad-hoc ad- 

justments, such as elimination of outliers. We do not provide a full de- 

scription of these adjustments as our focus is on the transition from state 

prices to recovered probabilities. 
18 We use data for every fourth Wednesday as a compromise between 

(i) the tradition in the asset pricing literature on return predictability of 

focusing on monthly returns and (ii) the tradition in the option literature 

of focusing on Wednesdays, where among other reasons option liquidity 

is high. 
N -dimensional submanifold of R 

T for � of full rank 

and given that h is a one-to-one embedding. We note 

that we can think of M as the space of triplets such 

that V � contains both the points (δa , δ2 
a , . . . , δ

T 
a ) 

′ and 

(δb , δ
2 
b 
, . . . , δT 

b 
) ′ , where the corresponding θ ’s are given 

uniquely from the definition of V � since � is full rank 

and h is one-to-one. The set of all those � ∈ R 

T ×S such 

that V � passes through two given points of R 

T form a 

subspace of dimension ST − 2(T − N) since each point 

imposes T − N equations. Therefore, M is a manifold of 

dimension ST − 2 T + 2 N + 2 . Hence, we see that G ( X ) has

measure zero in X and F ( G ( X )) has measure zero in F ( X ).

�

Appendix B. Details on recovery in Mehra–Prescott 

Let 

� = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

π0 ,d 
0 , 1 

π1 ,u 
0 , 1 

0 0 0 0 0 . . . 0

0 0 π0 ,d 
0 , 2 

π1 ,d 
0 , 2 

π1 ,u 
0 , 2 

π2 ,u 
0 , 2 

0 . . . 0

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . . . . 
...

0 0 0 0 0 0 0 . . . 0

where π k,u 
0 ,t 

is the state price of making a total of k “up”

moves in t periods where the last move was up, that is, the 

Arrow–Debreu price for the state s t = (y t , x t ) = (u k d t−k , u ) .

Similarly, π k,d 
0 ,t 

is the state price of making a total of k up 

moves in t periods where the last move was down. 

� has dimension T × ( 
∑ T 

t=1 2 t) . This implies that the 

h −1 (γ ) vector of inverse marginal utility ratios must be 

( 
∑ T 

t=1 2 t) -dimensional. We fix this in the following way. 

We let 

h 

−1 (γ ) = 

[
(y 0 1 ) 

γ (y 1 1 ) 
γ (y 0 2 ) 

γ (y 1 2 ) 
γ (y 1 2 ) 

γ

(y 2 2 ) 
γ . . . ( y T T ) 

γ
]′ 

, (B.2) 

where y k t = u k d t−k is the level of aggregate consumption 

when making a total of k up moves in t periods, and γ
is the risk-aversion parameter that we wish to recover. 

There is no closed-form solution to the nonlinear case 

of CRRA preferences. To obtain model estimates we sort to 

a numerical exercise, which is to minimize the objective 

function g : 

min 

γ ,δ
g(γ , δ) := norm 

⎛ 

⎜ ⎜ ⎝ 

�h 

−1 (γ ) −

⎡ 

⎢ ⎢ ⎣ 

δ
δ2 

. . . 

δT 

⎤ 

⎥ ⎥ ⎦ 

⎞ 

⎟ ⎟ ⎠ 

(B.3) 

s.t. γ ∈ R + 
δ ∈ (0 , 1] 

Based on the recovered ( γ , δ) that solve this minimiza- 

tion problem, we can recover the natural probabilities from 

Eq. (33) . 

Appendix C. Computing state prices empirically 

Before we can recover probabilities, we need to know 

the Arrow–Debreu prices or, said differently, characterize 

the risk-neutral distribution. There exist many ways to 
0 0 . . . 0 

0 0 . . . 0 

. . . 
. . . . . . 

. . . 
d 
 

π1 ,d 
0 ,T 

π1 ,u 
0 ,T 

. . . π T,u 
0 ,T 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (B

do this in practice based on observed option prices, in- 

cluding various interpolation methods. We implement two 

methods: (i) the parametric stochastic volatility model of 

Bates (20 0 0) and (ii) the non-parametric “fast and stable”

method of Jackwerth (2004) . 17 

C.1. The Bates (20 0 0) stochastic volatility model with jumps 

To ensure that we start with an arbitrage-free collection 

of Arrow–Debreu prices by strike and maturity, we use the 

model of Bates (20 0 0) to derive state prices from observed 

option prices. This parametric approach puts structure on 

the tails of the risk-neutral density, which also allows 

us to extrapolate outside the range of observable option 

quotes. While the Bates (20 0 0) model may not be the true 

specification of the economy, we simply use this frame- 

work as a standard method in the literature to compute 

state prices, and, consistent with this pragmatic view, we 

allow parameters to change over time (which also avoids 

look-ahead bias). 

In this model, the risk-neutral process for the price of 

the underlying asset, S t , and the instantaneous variance, V t , 

are assumed to be of the form 

dS t /S t = (r f − d − λk̄ ) dt + 

√ 

V t dZ t + kdq t (C.1) 

dV t = (α − βV t ) dt + σv 

√ 

V t dZ v t , (C.2) 

where Z t and Z vt are Brownian motions with correlation 

ρ , and q t is a Poisson counting process that captures the 

risk of jumps in the price. The jumps occur with inten- 

sity λ, and each jump causes the price to be multiplied 

by the factor 1 + k, which is lognormally distributed, i.e., 

ln (1 + k ) ∼ N( ln (1 + ̄k ) 1 2 δ
2 , δ2 ) . Further, r f is the risk-free

rate, and d is the dividend yield. 

We calibrate these model parameters every fourth 

Wednesday as follows. 18 On each day, given the current 

level of the market S t and the risk-free term structure 

r 
f 
t ,t + τ , we find the model parameters (α, β, λ, ̄k , σv , δ) and

state variable V t that minimize the vega-weighted squared 

pricing errors for 50 call and put options, following the 

methodology of Trolle and Schwartz (2009) . The 50 chosen 
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19 Notice again that (h τs (θ )) −1 = 

1 
h τs (θ ) 

and is not the inverse function. 
20 The lowest number of maturities with observed option prices in our 

sample is seven. Therefore, we can impose a structure on the pricing ker- 

nel with at most six parameters, and hence N can at most be five because 

of the sixth parameter δ. 
call/put options are those with the highest volumes. We al-

low the model parameters to vary over time since we sim-

ply use the model to smooth observed option prices (that

may be noisy) such that they are arbitrage-free. 

Once we have obtained model estimates, we compute

the risk-neutral density f ( τ , S τ ) for any time τ periods into

the future and state S τ given the current time state S t as:

f (τ ; S τ ) = 

1 

π

∫ ∞ 

0 

(
S τ

S t 

)−iu 

ψ(τ, u ) du , (C.3)

that is, by integrating the characteristic function ψ numer-

ically using the Gauss–Laguerre quadrature method. Know-

ing the risk-neutral density, the corresponding state price

density π ( τ ; S T ) is the density discounted by the τ -period

risk-free rate r 
f 
t ,t + τ : 

π(τ ; S τ ) = e −r f t ,t + τ f (T ; S τ ) . (C.4)

This completes the computation of state prices. Indeed, we

think of π ( τ ; S τ ) as the Arrow–Debreu prices we need as

a starting point for our recovery for each index level. For

example, π (1, 20 0 0) is the Arrow–Debreu price of receiv-

ing $1 in one year if the S&P 500 is between 20 0 0 and

2001. We consider the grid of maturities and index levels

described in Section 8.2 . 

C.2. The Jackwerth (2004) fast and stable method 

We are interested in converting a (noisy) sparse set of

implied volatilities into a full risk-neutral distribution. In

Section C.1 we imposed a parametric form on the implied

volatility surface through a stochastic volatility model with

jumps. In this section we refrain from imposing any struc-

ture on implied volatilities, that is, we fit a nonparametric

method to implied volatilities. The method we have cho-

sen is the fast and stable method of Jackwerth (2004) . This

method has a single tuning parameter, λ, which simultane-

ously controls the smoothness of the function and the fit to

observed implied volatilities. Clearly, there is a trade-off in

choosing the value of the tuning parameter, which is the

smoother the function, the worse the fit to observations.

We therefore control the smoothness of the fit by imposing

two conditions: (i) the estimated implied volatilities gives

rise to a nonnegative risk-neutral distribution, and (ii) the

risk-neutral distribution is unimodal in the range from 0.8

to 1.2 in moneyness (defined as S t / S 0 , the index level at

time t relative to the current index level). Under these con-

ditions we minimize the objective function: 

min 

σs 

1 

2(S + 1) 

S ∑ 

s =1 

(
σ

′′ 
s 

)2 + 

λ

2 I 

I ∑ 

i =1 

(σi − σ̄i ) 
2 , (C.5)

where S is the number of states. σ s is the implied volatil-

ity associated with state s . σ
′′ 
s is the second derivative of

the implied volatility function with respect to strike prices.

i = 1 , . . . , I is the index for the observed implied volatili-

ties, and σ̄i is the i th observed implied volatility. As seen

from Eq. (C.5) , if λ is high then the fit to observations

will be good compared to when λ is low. We therefore

choose the highest value of λ which satisfies our two con-

ditions described above. See Jackwerth (2004) for further

comments on the method. 
Once a smooth function for the implied volatilities is

obtained we can back out a risk-neutral distribution by

evaluating the Black and Scholes (1973) formula in the es-

timated implied volatilities and then differentiate the re-

sulting call function twice with respect to strike prices as

explained in Breeden and Litzenberger (1978) . 

The fast and stable method estimates a single option

maturity at a time. In the period from January 1996 un-

til December 2015, we have at least seven maturities on

any given last trading day of the month. In the framework

of Proposition 6 , this allows us to parameterize the pricing

kernel with up to six parameters and still obtain general-

ized recovery. 

Appendix D. Pricing kernels used in empirical analysis 

Piecewise linear. The inverse marginal utilities are piece-

wise linear over states. Given the initial state 1 at time 0

the τ -period inverse marginal utility ratio in state s is: 19 

(h 

τ
s (θ )) −1 = B s θ . (D.1)

Here θ is an N -dimensional column vector, and B s is the

s ′ th row of the known S × N “design matrix” B . In our em-

pirical implementation N is 5. 20 Interpreting the parame-

ters θ1 , . . . , θN we let the first parameter θ1 determine the

initial level of the inverse pricing kernel H 

−1 e = Bθ . The

next parameter, θ2 , determines the initial slope of the first

line segment. Similarly, θ3 is the slope of the next line seg-

ment generated by B θ . 

We impose that θ1 , . . . , θN ≥ 0 , which means that the

inverse pricing kernel is monotonically increasing or,

equivalently, that the pricing kernel is monotonically de-

creasing i.e., that marginal utility decreases at higher levels

of wealth. 

The design matrix is characterized by its break points

that separate the state space into N − 2 regions. These

regions are chosen as follows. The lowest region ranges

over states from (1 − 2 . 5 SVIX t ) S t to (1 − SVIX t ) S t , where

S t is the current (time t ) level of the S&P 500 index and

SVIX is the risk-neutral variance used by Martin (2017) .

The highest region covers states ranging from (1 + SVIX t ) S t 
to (1 + 4 VIX t ) S t . In between these extremes, we consider

N − 3 regions of equal size in the range (1 − SVIX t ) S 0 to

(1 + SVIX t ) S t . When using this specification of B and the

estimated Arrow–Debreu prices, we obtain an S × N matrix

�B with full rank for every last trading day of the month

for the period 1/1996 to 12/2015. 

With this in place we set up the following minimization

problem 

min 

θ,δ
norm 

(
D 

−1 �Bθ − 1 

)
(D.2)

s.t. θ > 0 

δ ∈ (0 , 1] 
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Given a state price matrix � and a design matrix B , we 

estimate the θ and δ that best fit the model in a squared 

error sense. Once the marginal utilities and discount rate 

have been recovered, we back out the multi-period physi- 

cal probabilities as 

P = D 

−1 � diag (Bθ ) , (D.3) 

where D is a diagonal matrix with elements D ii = δi , and 

diag( B θ ) is a diagonal matrix with elements diag (Bθ ) j j = 

B j θ, where B j is the j th row of B . We normalize P to have

row sums of one, which is necessary since θ and δ are 

found from the minimization problem in (D.2) and are not 

solved perfectly. 

Polynomial. The inverse marginal utility ratio is a polyno- 

mial in the return on the market and time horizon. Given 

the initial state 1 at time 0 the τ -period inverse marginal 

utility ratio in state s is: 

(h 

τ
s (θ )) −1 = β0 + β1 r s + β2 r 

2 
s + β3 τ r s + β4 τ r 2 s . (D.4) 

Here r s = S s /S 1 − 1 is the return on the market in state s . 

The parameters of interest are θ = (β0 , β1 , β2 , β3 , β4 ) . In 

our implementation we impose three conditions on the 

parameters: (i) β0 > 0, ensuring a positive pricing kernel 

when r = 0 ; (ii) the risk-premium is non-negative, and (iii) 

the inverse marginal utility ratios are always strictly posi- 

tive (we set a lower bound on the inverse marginal utility 

ratio at 0.01). This means that the parameters β1 , β2 , β3 , 

β4 can move freely (within the space of the conditions) 

and are all allowed to be either positive or negative. 

The polynomial specification of the inverse marginal 

utility ratios illustrates one possible way of imposing struc- 

ture on the marginal utilities, not only in the state dimen- 

sion but also in the time horizon dimension. This spec- 

ification allows marginal utilities in a given state, say s , 

to differ when considering different time horizons, that 

is, e.g. h τs (θ ) 
 = h τ+1 
s (θ ) . The polynomial specification nests 

the linear specification as a special case when β2 , β3 , and 

β4 are all zero. 

The minimization procedure for the polynomial specifi- 

cation is 

min 

θ,δ

T ∑ 

t=1 

( ( 

S ∑ 

s =1 

δ−t πts (h 

τ
s (θ )) −1 

) 

− 1 

) 2 

s.t. β0 > 0 

E P 0 (r t | θ, δ) − r f t ≥ 0 for all t ∈ (1 , . . . , T ) 

(h 

τ
s (θ )) −1 > 0 for all s ∈ (1 , . . . , S) 

and all τ ∈ (1 , . . . , T ) 

δ ∈ (0 , 1] (D.5) 

where π ts is the state price in state s with time horizon t . 

Here E P 
0 
(r t | θ, δ) − r 

f 
t is the excess return given parameter 

values θ = (β0 , β1 , β2 , β3 , β4 ) , and δ. We also impose that 

β1 > 0 and β2 < 0, these parameter restrictions help ensure 

a positive risk premium. 

Given estimates of δ, β0 , β1 , β2 , β3 , and β4 , we can 

arrive at the t period physical probabilities as 
P t = δ−t �t diag 
(
(h 

τ
s (θ )) −1 

)
, (D.6) 

where �t is the t th row of the state price matrix �, and r

is an S × 1-dimensional vector of returns over states. We 

normalize P to have row sums of one; this is necessary 

since θ and δ are found from the minimization problem 

in (D.5) and are not solved perfectly. 
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