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Abstract

The thesis uses the Blanchard-Yaari model to examine the macroeconomic
implications of increased longevity. The model analysis demonstrates sev-
eral economic implications of increased longevity and the capacity of fiscal
policy to respond to these economic implications. Optimal retirement age
is determined under conditions of age-dependent productivity.
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Chapter 1

Introduction

A long and prosperous life is desired by most. This has been made possible
by a paradigm shift in advancement of medical sciences and a great diversity
of other science and technology disciplines. During the last decades it has
been fueled by increased public and private funding of research and devel-
opment of life sciences. The public sector has considered health care as one
of the pillars of public policy and the private sector has seen opportunities
for growth and prosperity in product developments.

This evolution will continue resulting in increased longevity of the global
population. The consequences will, however, be more complicated and need
to be approached in a more holistic manner, as longevity will create social
and economic side-effects that may be difficult to foresee and resolve. This
raises the question of the carrying capacity of nations and regions which in
the past has repeatedly created political turmoil and caused serious con-
flicts and social disasters. This complex issue has caught my interest and
motivated me to study the subject further.

Life expectancy has steadily been on the rise during the last decades.
Figure 1.1 shows the average life expectancy at birth in Denmark for the
past 160 years. An upwards slope follows the growth of economic and social
prosperity. In 1840 the average life expectancy was 45 years for women and
43 years for men. In 2012 life expectancy at birth had nearly doubled and
was 82 years for women and 78 years for men. This statistic is not completely
descriptive since infant mortality was considerably higher in 1840 than now.

Life expectancy will continue to rise. In a 2004 UN report on the global
demographic projections until the year 2300 life expectancy at birth was
forecast. According to the report life expectancy in northern Europe will
continue to rise at an even pace. By the year 2050 life expectancy will be
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Figure 1.1: Life expectancy in Denmark 1840-2010

about 83 years, which is an improvement from the slightly less than 80 years
observed presently in Denmark. Life expectancy will be at 90 years around
the year 2125 and by 2300 the expected length of the lifetime of a newborn is
projected to be above 100 years. The implications of this constant increase
in life expectancy, both observed in the past and forecast into the future are
the main motivations behind the thesis.

Increased longevity means that higher percentage of the population will
be healthy, and active when they reach retirement age. This is especially
relevant in developed countries, where the working population will not be
able to sustain the rapidly increasing number of retired senior citizens and
where the social security system is not able to maintain the present level of
benefits to the needy. This problem is still further aggravated by high youth
unemployment and the inability of the education system to attract qualified
students to fields that are locomotives in cutting edge technologies and eco-
nomic growth. Without a paramount change in the social security system
and retirement policy this might lead to severe economic inefficiencies.

One fiscal response is to increase the retirement age considerably. With
improved health and social support for the older citizens it should be possible
to allow those that can and so wish to work until the age of 70. This has
been a common practice in Iceland many years. Allowing for this flexibility
would have a threefold effect. It would create higher incomes for individuals
and families which results in higher turnover and economic growth. It would
increase government income through taxes and mitigate social disadvantages
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resulting from unemployed seniors. It would as well be a tremendous relief
on the pension funds that in most cases are totally incapable to sustain its
present role and responsibilities.

A fiscal response could be based in coercive mandates or voluntary pro-
grams. For example, a forced retirement age might not suit some individuals
and lead to economic inefficiencies. Ultimately the individual is most com-
petent to make his own economic decisions. When designing a fiscal policy
the pros and con have to be evaluated based on how can the government
can positively influence the decision of individuals without coercion.

The present and foreseeable demographic changes are of significant im-
portance both at the national and international level. Different cultures
could respond differently. In the developed countries the implications of in-
creased longevity would fall on the social security system and incentivizes
the government to take appropriate action. However in impoverished coun-
tries with underdeveloped infrastructure the strain of increased longevity
would fall mainly on family members.

An example of a response to demographic change comes from China.
Facing unsustainable population growth China adopted the one-child policy
as a response to the increased longevity of its population. This policy has
had a socioeconomic impact on the country. Culturally male offspring are
expected to take care of their parents. Therefore male babies were preferred
leading to infanticide of female babies. This example demonstrates that the
implications of the government’s response to longevity can be substantial
and unforeseen.

Increased longevity is also important at a political level. It calls for
changes in government spending which could have different implications for
different generations, causing intergenerational tensions. An example of this
is a wave of protest in 2010 in France as a response to an increase in the
retirement age. Furthermore the increased longevity will increase the age
of the median voter which could affect the outcomes of the demographic
process.

Fairy tales of the future often foster interesting questions without any
real deliverance. It sparks the imagination about what the future will bring.
Could there be a maximum life expectancy that humans can achieve, or are
there no such upper bounds? Could the present generations be among the
last to face their death with certainty within a number of decades? Will
the individuals of the future plan their lives centuries into the future? Will
the death rate become more predictable and uniform as diseases become
increasingly preventable? These questions cannot be answered, but they
have inspired, the author of this thesis, and created a keen academic interest
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about the abundant and complex effects of longevity.
The thesis sets up the Blanchard-Yaari macroeconomic model to ana-

lyze the economic effects of increased longevity, implications to the optimal
retirement age and the fiscal response to these changes. A special focus will
be set on the individual’s decisions regarding retirement and the ability of
fiscal policy to achieve desirable outcomes in face of increased longevity.
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Chapter 2

The Yaari Model

In this section a model examining the economic decisions of individuals
facing uncertainty about time of death will be set up. The model was
developed by Yaari in his 1965 paper Uncertain Lifetime, Life Insurance,
and the Theory of the Consumer. Yaari introduces the effects of uncertain
lifetime length on the consumption choices of the agent along with presenting
the effects of the availability of actuarial notes which act as an insurance
policy against longevity risk.

In the next chapter we will examine Blanchard’s additions to Yaari’s
model as proposed in his 1985 paper Debt, Deficits and Finite Horizons,
accompanied with further extensions to the Blanchard-Yaari model to fa-
cilitate the research topic. Blanchard transforms the Yaari’s findings into a
model that can be manipulated in order to examine a specific fiscal policy.
Importantly, Blanchard’s extensions of the Yaari model allow for aggregation
of values which allows for identification of macroeconomic effects.

In Yaari’s model time of death, denoted by T , is stochastic and by im-
plication lifetime consumption maximization is also treated as stochastic.
Yaari also introduces actuarial notes, which can be treated as life insurance,
and realizes their effect on the consumption choice of the consumer. These
actuarial notes dampen the consumption loss associated with the lifetime
uncertainty. Yaari specifies several cases in his article, firstly whether ac-
tuarial notes are available or not and secondly which utility function will
be used, the Fisher utility function with wealth constraint or the Marshall
utility function without wealth constraint. In this section the focus will be
on the Fisher utility case. Yaari’s model is a invaluable building block in
researching the effects of longevity on a sustainable fiscal policy.
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2.1 Consumption and Random Horizons

As specified above we begin with the reasonable assumption that T , the
time of death, is a random variable that can take any value in the interval
[0, T̄ ]. The density function (DF) for T is denoted by f(T ) and satisfies:

f(T ) ≥ 0, ∀ T ≥ 0,

∫ T̄

0
f(T )dT = 1

The time of death lies between zero and T̄ with certainty. Yaari assumes
further that f(T ) is actually positive for all T in the interval [0, T̄ ]. This
is resonates with reality since death can strike at any time. The agent’s
lifetime utility under certainty is defined by:

Λ(T ) ≡
∫ T

0
U [C(τ)]e−ρτdτ (2.1)

The instantaneous utility function is defined by U [C(τ)] where C(τ) is con-
sumption at time τ and ρ is the agent’s rate of time preference. The agent
does not make consumption-leisure decisions. Since the time of death is as-
sumed to be stochastic, and therefore lifetime length is also stochastic, it’s an
impossible task for the agent to maximize lifetime utility, denoted by Λ(T ).
Therefore the agent selects a consumption path that makes the expected
value of Λ(T ) the greatest. E[Λ(T )] denotes expected lifetime utility.

E[Λ(T )] ≡
∫ T̄

0
f(T )Λ(T )dT

=

∫ T̄

0

[ ∫ T̄

τ
f(T )dT

]
U [C(τ)]e−ρτdτ

=

∫ T̄

0
[1− F (τ)]U [C(τ)]e−ρτdτ

(2.2)

Where F (τ) is the cumulative distribution function (CDF) of T and 1−F (τ)
denotes the probability that the agent is alive at time τ . The optimal
consumption path must satisfy a budget identity, which is defined as:

Ȧ(τ) = r(τ)A(τ) +W (τ)− C(τ) (2.3)

Where r(τ) is the interest rate at time τ and W (τ) is the agent’s non-
interest income which can be interpreted as wages. A(τ) is the wealth of the
agent at time τ and Ȧ(τ) ≡ dA(τ)/dτ . The change in assets over time is
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Figure 2.1: CDF and DF visualization

dependent on the interest income on existing assets, the non financial income
and consumption on each time. To account for the stochasticity of the time
of death the non-negative real asset constraint is introduced. Real assets
at time of death must be non-negative, i.e., Prob[A(T ) ≥ 0] = 1. Which
is the same as saying A(τ) ≥ 0,∀τ ∈ [0, T̄ ] because death can happen at
any moment. This eliminates the possibility for agent to have substantial
negative assets, which could’ve been used to facilitate increased consumption
in previous periods, and die before they can balance their budget.

Since agents will maximize their consumption they choose to hold no
assets at time T̄ , that is A(T̄ ) = 0, because they have used all the assets
to facilitate consumption and they know with certainty that they will not
survive past time T̄ , even though they do not know their time of death with
certainty. The non-negative assets constraint is summarized by stating:

A(T̄ ) = 0 and Ȧ(τ) ≥ 0⇔ C(τ) ≤W (τ) if A(τ) = 0

The agent maximizes the expected lifetime utility function, subject to
the budget identity and the non-negative real asset constraint. Initial wealth
is defined as A(0) = A0 and consumption is constrained by C(τ) ≥ 0. The
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maximization problem becomes:

max
{C(τ)}

E[Λ(T )] =

∫ T̄

0
[1− F (τ)]U [C(τ)]e−ρτdτ

s.t. (i) Ȧ(τ) = r(τ)A(τ) +W (τ)− C(τ)

(ii) C(τ) ≥ 0, ∀τ ∈ [0, T̄ ]

(iii) C(τ) ≤W (τ) if A(τ) = 0

(iv) A(0) = A0 (predetermined)

(v) A(T̄ ) = 0

(2.4)

Note that it is assumed that the agents have no bequest motive and
only receive utility from their own consumption. Furthermore, the solution
of this problem is composed of three segments. Consumption in the first
segment is bound by constraint (ii) and set to C(τ) = 0. Consumption in
the second segment is bound by constraint (iii) and set to C(τ) = W (τ).
In the third segment the “interior solution” for consumption is found by
solving the current value Hamiltonian:

HC = [1− F (τ)]U [C(τ)] + λ(τ)[r(τ)A(τ) +W (τ)− C(τ)− Ȧ(τ)]

+ µ(τ)[A(T̄ )]
(2.5)

Furthermore we get.

∂HC
∂C(τ)

= 0⇔ λ(τ) = [1− F (τ)]U ′[C(τ)] (2.6)

λ̇(τ) = − ∂HC
∂A(τ)

+ ρλ(τ) = −λ(τ)r(τ) + ρλ⇔ λ̇(τ)

λ(τ)
= ρ− r(τ) (2.7)

By combining equations (2.6) and (2.7) the agent’s consumption Euler
equation is obtained. The Euler equation denotes the proportional change
in consumption over time.

Ċ(τ)

C(τ)
= σ[C(τ)][r(τ)− ρ− β(τ)] (2.8)

Where σ[C(τ)] ≡ −U ′[C(τ)]/[C(τ)U ′′[C(τ)]] > 0 is the elasticity of in-
tertemporal substitution, which is defined as one over the relative risk aver-
sion. This measures the responsiveness to a change in the interest rate on
the agent’s growth rate of consumption. β(τ) ≡ f(τ)/[1− F (τ)] > 0 is the

10



instantaneous probability of death or hazard rate at time τ . The hazard rate
will be manipulated in later chapters to simulate longevity, since a lower
hazard rate implies that agents live longer. These results can be compared
to results in a model with non-random time of death by substituting F (τ)
with 0, because then it’s certain that the agent is alive for every τ ∈ [0, T̄ [
and every agent will die at time T̄ . The Euler equation under certainty
about time of death is:

Ċ(τ)

C(τ)
= σ[C(τ)][r(τ)− ρ] (2.9)

We see that the Euler equations (2.8) and (2.9) differ only by the in-
clusion of β(τ) in the former. The uncertainty of survival leads agents to
discount the future more heavily than when time of death is deterministic,
this makes intuitive sense since there is a positive probability that the agent
will not live long enough to enjoy the planned consumption path.

By assuming that an increase in longevity will homogeneously effect
society its increase would have a direct effect of lowering the hazard rate for
all τ ∈ [0, T̄ ]. This would in turn would lead agents to drift from equation
(2.8) towards (2.9) raising the optimal consumption path as the future is
discounted less.

2.2 Actuarial Notes

Up until this point no insurance possibilities have been introduced. The
absence of insurance possibilities forces agents to hold assets in all periods
to act as a buffer in the case of immediate death so that the non-negative
wealth constraint holds. This forces agent to allocate less of their wealth
towards consumption which in turn leads to lesser lifetime utility. The
presence of some sort of insurance against lifetime uncertainty is a realistic
assumption.

To address this Yaari suggests the existence of actuarial notes which
agents can buy and sell. The purchaser of an actuarial note gets a constant
stream of payment until his death. The notes are in a sense a annuity which
at the time of the purchaser’s death leave the seller (most likely an insurance
company) free of any obligations. The rate of actuarial notes is denoted by
rA(τ) and we expect that rA(τ) > r(τ) where r(τ) is the rate on regular
notes.

If an agent wishes to take out a life insurance policy he can simultane-
ously sell actuarial notes and purchase regular notes by the same amount.
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The difference between the rate on the regular notes and the actuarial notes
is the insurance premium. To simplify things the actuarial notes are assumed
to be issued at a fair rate.

If a actuarial note is bought at time τ then two scenarios are possible,
either the buyer will die before the time τ + dτ and the note is canceled or
the buyer survives until τ + dτ and interest is received. Therefore actuarial
fairness implies:

[1 + rA(τ)dτ ]

(
1− F (τ + dτ)

1− F (τ)

)
= 1 + r(τ)dτ (2.10)

The term in round brackets corrects for the possibility of the purchaser
passing away in between τ and dτ . Rearranging (2.10) yields:

rA(τ) =

(
1− F (τ)

1− F (τ + dτ)

)
r(τ) +

[F (τ + dτ)− F (τ)]/dτ

1− F (τ + dτ)
(2.11)

By letting dτ → 0 the term ([1− F (τ)]/[1− F (τ + dτ)]) converges to 1
and the second term [(F (τ + dτ) − F (τ))/dτ ]/[1 − F (τ + dτ)] approaches
the hazard rate β(τ). From this the following relation is obtained.

rA(τ) = r(τ) + β(τ) (2.12)

The assumption of actuarial fairness is not necessarily a realistic one. Ac-
tuarial fairness can be broken by factors such as the operating costs of the
issuer of the notes. It can also be broken because of adverse selection which
is the result of the information gap between the purchaser and the issuer of
the actuarial note. Adverse selection can result in only people that know
they will live long, maybe because of good health, buying notes and only
people with shorter life expectancy issuing the notes. In the next chapter
the hazard rate is assumed to be constant for all individuals and therefore
the adverse selection effect is neutralized.

The agent chooses to hold only actuarial notes, this is caused by three
factors. Firstly, the agent has no bequest motive so holding excess wealth
at death does not enter into consideration. Secondly, the agent is restrained
to have non-negative wealth upon his death with certainty, if the agent were
to hold any outstanding negative assets this constraint would be violated.
Lastly, the actuarial notes provide greater return than regular notes, since
the hazard rate is always positive. Therefore the budget identity from equa-
tion (2.3) can be modified:
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Ȧ(τ) = rA(τ)A(τ) +W (τ)− C(τ) (2.13)

Under these assumptions an agent could “beat the system” and engage in
unlimited consumption. He could sell as many actuarial notes as he pleases,
because any debt to the buyer of the notes (the insurance company) will
be canceled upon the agent’s death. This would result in a “Ponzi scheme”
situation as the agent pays of the current actuarial payment by taking out
new actuarial notes.

To address this problem a “global constraint” on borrowing is introduced.
The insurance company will refuse to buy actuarial notes from an agent after
he reaches the age T̄ −∆ where T̄ > ∆ > 0. A(τ) is defined as the agent’s
stock of actuarial notes at time τ . This assumption is possible because the
agent holds only actuarial notes. Here t is a previous time which the agent
has made consumption saving decisions leading him to save or dissave by
the amount W (t)− C(t). Accumulated assets at time τ are therefore:∫ τ

0
e
∫ τ
t r

A(s)ds[W (t)− C(t)]dt (2.14)

This integral is defined for all τ ∈ [0, T̄ ]. Since T̄ − ∆ is within these
boundaries the constraint can be rewritten for A(T̄ −∆):∫ T̄−∆

0
e
∫ T̄−∆
τ rA(s)ds[W (τ)− C(τ)]dτ ≥ 0 (2.15)

By factoring out out the quantity e
∫ T̄−∆
0 rA(s)ds the following constraint is

obtained: ∫ T̄−∆

0
e−

∫ τ
0 rA(s)ds[W (τ)− C(τ)]dτ = 0 (2.16)

Where the inequality has been replaced by an equality. By approximating
for small ∆ and introducing the agent’s initial wealth the solvency condition
becomes.

A(τ) = A(0) +

∫ T̄

0
e−

∫ τ
0 rA(s)ds[W (τ)− C(τ)]dτ = 0 (2.17)

This constraint states that the present value of the consumption path must
be equal to the present value of the initial wealth, A(0), and present value of
the current and future non-interest income stream, discounted by the rate of
the actuarial notes. Using this condition and maximizing the consumption
path for the agents the following Euler equation is obtained.
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Ċ(τ)

C(τ)
= σ[C(τ)][rA(τ)− ρ− β(τ)] = σ[C(τ)][r(τ)− ρ] (2.18)

This result is remarkable since the introduction of the actuarial notes makes
the Euler equation above identical to the Euler equation with determinis-
tic lifetime length (2.9). Even though the Euler equations are identical the
same lifetime consumption is not obtainable in both cases because the con-
sumption possibility frontier will differ. There are considerable differences
in the effect of longevity on the consumption path of agents depending on
whether actuarial notes are present or not.
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Chapter 3

The Blanchard-Yaari Model

This chapter introduces a macroeconomic model which will be used to un-
derstand the effects of longevity on the economy and specifically its fiscal
policy implications.

Blanchard’s extensions of Yaari’s model facilitate macroeconomic anal-
ysis. In his 1985 paper Debt, Deficits and Finite Horizons he provided a
model in which the horizon of the agents, dependent on the hazard rate,
can be manipulated arbitrarily. In the model the steady state of the econ-
omy and the effects of fiscal policy can vary with the horizon of individuals.
Furthermore Blanchard provides the effects of saving for retirement by as-
suming that labor productivity declines with the agent’s age. Blanchard’s
model brings us one step closer to understand the thesis topic.

So far only the economics decisions of individuals have been examined
and not of the aggregate values for the economy as a whole. To obtain these
aggregate values representative consumer has to be obtained. There are two
problems with finding a representative consumer in the model presented by
Yaari. Agents in the model differ in two respects, they have different ages
and different horizons. This leads the agents to have different wealth levels
and consumption choices which makes aggregation a cumbersome task.

3.1 Individual Households

Blanchard addresses the problem of aggregation by assuming that all agents
have identical hazard rates, β, which leads to all agents having expected
lifetime of 1/β at all times. However the agents are not all identical be-
cause they might have differing levels of wealth depending on their age and
therefore have a different propensity to consume. This assumption allows
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for aggregate values to be obtained even though agents are heterogeneous
by age.

Here, contrary to the Yaari model in the previous subsection, the agent
can hypothetically live until infinity even though the probability of that is
minuscule, this is directly caused by the identical hazard rate. This seems
far removed from reality. However by thinking of the agents as families and
β as the probability of that family ending by leaving no descendants the
assumption of a constant hazard rate seems more reasonable.

A large population is assumed, therefore generalization about each co-
hort can be made and eventually the aggregate values for the economy can
be found. A cohort born at time 0 has the size βe−βτ at time τ , since a
proportion of the cohort has died in the time elapsed since birth. The size
of the whole population at time τ is denoted as P (τ) and is normalized to 1
for all time periods. This results in

∫ τ
−∞ βe

−β(τ−v)dv = 1 where v represents
the time of birth. This implies that the population is static and a cohort of
size β is born at the same time as a equal number of agents die. The den-
sity function for agent’s time of death, f(T ), is the exponential probability
density function:

f(T ) =

{
βe−βT for T ≥ 0

0 for T < 0
(3.1)

The probability that an agent will be alive at time τ is given by [1 −
F (τ)] =

∫∞
τ f(T )dT = e−βτ = f(τ)/β. The agent maximizes expected

utility just as in the previous section and instantaneous utility is logarithmic.
The agent maximizes:

E[Λ(v, t)] =

∫ ∞
t

[1− F (τ − t)]log(C(v, τ))eρ(t−τ)dτ (3.2)

Where v is time of the agent’s birth, t is the present time and τ is a future
moment for which the agent is planing consumption. In the exponential
distribution [1− F (τ − t)] = eβ(t−τ). Since the instantaneous probability of
death, β, is constant across all agents and the only source of stochasticity is
the time of death the expected utility function becomes:

E[Λ(v, t)] =

∫ ∞
t

log(C(v, τ))e(ρ+β)(t−τ)dτ (3.3)

The agent’s budget identity assumes the existence of fair actuarial notes
and lump-sum taxes levied by the government. Taxes at time τ are denoted
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as T (τ). The agents budget identity is:

Ȧ(v, τ) = [r(τ) + β]A(v, τ) +W (τ)− T (τ)− C(v, τ) (3.4)

The agent holds all of his assets in actuarial notes. Note that this is
quite similar to the condition found in the previous chapter in equation
(2.13), the only difference is that now the lump sum taxation levied by
the government is included. To avoid Ponzi-scheme behavior as described
in the previous section a solvency condition is introduced. To obtain the
solvency condition the budget identity is premultiplied by e−R

A(t,τ) where
RA(t, τ) ≡

∫ τ
t r

A(s)ds =
∫ τ
t [r(s) +β]ds and rearranged to get the following.

[Ȧ(v, τ)−[r(τ)+β]A(v, τ)]e−R
A(t,τ) = [W (τ)−T (τ)−C(v, τ)]e−R

A(t,τ) (3.5)

RA is differentiated by applying Leibniz rule:

d

dτ

(∫ τ

t
[r(s) + β]ds

)
=

∫ τ

t
0ds+ (r(τ) + β) ∗ 1− (r(τ) + β) ∗ 0 (3.6)

By using the fact that dRA(t, τ)/dτ = r(τ)+β the following can be obtained:

d

dτ
[A(v, τ)e−R

A(t,τ)] = [W (τ)− T (τ)− C(v, τ)]e−R
A(t,τ) (3.7)

Integration on both sides yields:∫ ∞
t

dA(v, τ)e−R
A(t,τ) =

∫ ∞
t

[W (τ)− T (τ)− C(v, τ)]e−R
A(t,τ)dτ (3.8)

Solving the integrals, realizing that e−R
A(t,t) = 1 we get the following rela-

tion.

lim
τ→∞

e−R
A(t,τ)A(v, τ)−A(v, t) = H(τ)−

∫ ∞
t

C(v, τ)e−R
A(t,τ)dτ (3.9)

From this we get the solvency condition below. It states that if the agent
is alive at time τ then the present value, discounted by the annuity rate,
of assets is equal to zero as τ approaches infinity. This is an extension of
Yaari’s global constraint on borrowing assuming that A(0)=0 and there is
no upper bound on lifetime length.

lim
τ→∞

e−R
A(t,τ)A(v, τ) = 0 (3.10)

The lifetime budget restriction is depicted in equation (3.11). On the left
hand side is the accumulated wealth for an agent born at time v in addition
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to human wealth at time t. On the right hand side is the current value of
the agent’s consumption plan. Human wealth is defined in equation (3.12).

A(v, t) +H(t) =

∫ ∞
t

C(v, τ)e−R
A(t,τ)dτ (3.11)

Human wealth, H(t) is defined as the present value of future lifetime income.
Note that even though agents have different ages and therefore different
level of non-human wealth, A(v, t), the human wealth will be identical for
all agents because of the identical life expectancy.

H(t) ≡
∫ ∞
t

[W (τ)− T (τ)]e−R
A(t,τ)dτ (3.12)

The utility maximization problem for the agent is:

max
{C(v,τ)}

E[Λ(v, t)] =

∫ ∞
t

log(C(v, τ))e(ρ+β)(t−τ)dτ

s.t. A(v, t) +H(t) =

∫ ∞
t

C(v, τ)e−R
A(t,τ)dτ

(3.13)

To find a solution to this maximization problem the following Lagrangian is
set up and solved.

L = log(C(v, τ))e(ρ+β)(t−τ) + λ(t)

[ ∫ ∞
t

C(v, τ)e−R
A(t,τ)dτ −A(v, t)−H(t)

]
(3.14)

The first order condition associated with the lifetime utility maximization
is:

dL
dC(v, τ)

=

(
1

C(v, τ)

)
e(ρ+β)(t−τ) = λ(t)e−R

A(t,τ), τ ∈ [t,∞] (3.15)

Where λ(t) is the Lagrange multiplier associated with the lifetime budget
restriction and represents the marginal expected lifetime utility of wealth.
Realizing this, the first order condition implies that the agent plans his
lifetime consumption such that the discounted marginal utility of consump-
tion is equated with the discounted marginal utility of wealth. This makes
intuitive sense. Here the agent’s Euler equation is found by differentiating.

Ċ(v, τ)

C(v, τ)
= r(τ)− ρ (3.16)

Assuming that τ = t then C(t, v) = 1/λ(t). Having realizing this and by
using the budget restriction in the utility maximizing problem along with
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the first order conditions a relation between consumption and total wealth
can be obtained.∫ ∞

t
C(v, t)e(ρ+β)(t−τ)dτ =

∫ ∞
t

C(v, τ)e−R
A(t,τ)dτ(

C(v, t)

ρ+ β

)[
− e(ρ+β)(t−τ)

]∞
t

= A(v, t) +H(t)⇔

C(v, t) = (ρ+ β)[A(v, t) +H(t)]

(3.17)

The agent’s consumption in each period is dependent on the sum of
accumulated wealth, A(v, t) and human wealth, H(t). Furthermore, the
propensity of consumption depends on the effective rate of time preference,
ρ+ β.

3.2 Aggregate Values

As noted before a proportion of the population is assumed to die in each
period and a equal size cohort of new agents is born in each period. This
fraction of newly born agents is constant across all periods and therefore
the population size is also constant, P (t) = 1, ∀t ∈] −∞ : ∞[. It was also
assumed that there is no bequest motive so that for all agents the financial
wealth at birth is equal to zero. Since cohorts are big the size of each cohort
can be traced across time even though the lifetime of an individual agent is
stochastic.

As seen before a cohort born at time v will be of size βeβ(v−t) at time t
where t > v. Since the size of each cohort can be estimated and by assuming
agents in each cohort maximize according to the maximization problem in
equation (3.13) aggregate values can be formulated. The relation between
a non-specific aggregate value, X(t), and its individual counterpart is:

X(t) ≡ β
∫ t

−∞
eβ(v−t)X(v, t)dv (3.18)

This is intuitive since within each cohort the value X(v, t) should be identical
for all agents. X(t) in equation (3.18) represents the value for X(v, t) for all
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agents within all cohorts. Ẋ(t) can be found by applying the Leibniz rule:

Ẋ(t) =
d

dt

(
β

∫ t

−∞
eβ(v−t)X(v, t)dv

)
= β

∫ t

−∞
Ẋ(v, t)eβ(v−t) − βX(v, t)eβ(v−t)dv + βX(t, t)eβ(t−t) − 0

= βX(t, t)− βX(t) + β

∫ t

−∞
Ẋ(v, t)eβ(v−t)dv

(3.19)

The fact that the hazard rate is constant for all agents, indifferent of time
of birth is a necessary condition for the relation above. The aggregate con-
sumption in each period is:

C(t) ≡ β
∫ t

−∞
eβ(v−t)C(v, t)dv (3.20)

The time of birth, v, has been dropped from the aggregate consumption
notation, because it doesn’t refer to a specific cohort but rather all cohorts
already born. Equation (3.20) is not of much use, however by applying
equation (3.17) a meaningful relation can be found:

C(t) ≡ β
∫ t

−∞
eβ(v−t)(ρ+ β)[A(v, t) +H(t)]dv

= (ρ+ β)

[
β

∫ t

−∞
eβ(v−t)A(v, t)dv + β

∫ t

−∞
eβ(v−t)H(t)dv

]
= (ρ+ β)[A(t) +H(t)]

(3.21)

The consumption function is a linear function of aggregate human and fi-
nancial wealth. Now a closer look will be taken at the aggregate value for
wealth accumulation, Ȧ(t). By plugging in values from equation (3.4) into
equation (3.19) and applying the Leibniz rule the following can be obtained:

Ȧ(t) ≡ βA(t, t)− βA(t) + β

∫ t

−∞
Ȧ(v, t)eβ(v−t)dv

= −βA(t) + β

∫ t

−∞
eβ(v−t)[(r(t) + β)A(v, t) +W (v, t)− T (v, t, )− C(v, t)]dv

= −βA(t) + (r(t) + β)A(t) +W (t)− T (t)− C(t)

= r(t)A(t) +W (t)− T (t)− C(t)

(3.22)
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Where A(t, t) = 0 since newborns have no financial assets, they do however
have a positive amount of human wealth at birth, H(t, t) = H(t). The
term βA(t) represents the wealth of those who die, βA(t) cancels out in the
second line of equation (2.40) which represent the transfer to the insurance
company. The time differentiation of aggregate consumption is:

Ċ(t) = βC(t, t)− βC(t) + β

∫ t

−∞
Ċ(v, t)eβ(t−v) (3.23)

Newborns consume a fraction of their human wealth at birth i.e., C(t, t) =
(ρ+ β)H(t) 6= 0. From equation (3.21) and equation (3.16) the Euler equa-
tion is obtained.

Ċ(t)

C(t)
= r(t)− ρ− β(ρ+ β)

(
A(t)

C(t)

)
=
Ċ(v, t)

C(v, t)
− β

(
C(t)− C(t, t)

C(t)

)
(3.24)

Which is the same as the Euler equation for individual agents except for

the final term β

(
C(t)−C(t,t)

C(t)

)
which represents a distribution effect of gen-

erational turnover. Every generation has identical optimal consumption
growth, this is because all generations face the same interest rate. However
older generations have accumulated more wealth and have a higher level of
consumption compared to younger generations.

Now firms are introduced into the model. The aggregate production
function that satisfies the Inada conditions.

Y (t) = F (K(t), L(t)) (3.25)

Where Y (t) is output, F (·) is the production function, the factor imputs are
capital, K(t), and labor, L(t). Since this is a closed economy case the factor
inputs are rented from households, in the open economy case the capital
could be supplied by a foreign source. Perfect markets are assumed so wages
are equal to marginal productivity of labor and the marginal productivity
of capital is the sum of interest and depreciation. Depreciation is denoted
as δ and is assumed to be constant over time. To summarize, the marginal
productivity of these factors are equal to the producer’s cost of applying
them.

W (t) = FL(K(t), L(t))

r(t) + δ = FK(K(t), L(t))
(3.26)

The firm seeks to maximize it’s value. The stockmarket’s valuation of the
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firm is:

V (t) =

∫ ∞
t

[Y (τ)−W (τ)L(τ)− I(τ)]e−R(t,τ)dτ

where R(t, τ) ≡
∫ τ

t
r(s)ds

(3.27)

Note that only the agents discount with the annuity rate, neither the gov-
ernment nor firms face the hazard rate that agents face and therefore they
discount with the regular rate. The firm is subject to a capital accumulation
constraint:

K̇(t) = I(t)− δK(t) (3.28)

Where I(t) denotes gross investment and δK(t) is gross depreciated capital.
Government expenditure is denoted by G(t) and is funded by the lump

sum taxes, T (t), and possibly government debt, B(t). The government dept
is subject to the interest rate r(t), therefore interest on outstanding debt
is r(t)B(t). Just like private agent the government is subject to a solvency
condition, specifically:

lim
τ→∞

e−R(t,τ)B(t) = 0 (3.29)

From these realizations the government’s budget restriction is obtained.

B(t) =

∫ ∞
t

(T (τ)−G(τ))e−R(t,τ)dτ (3.30)

Which implies that any existing government debt on the left hand side,
must be equal to a discounted future budget surplus on the right hand side.
Since outside income streams are impossible it’s concluded that A(t) =
K(t) + B(t). Furthermore flexible wages are assumed which ensures that
labor supply equals labor demand by firms and there is always full employ-
ment in the economy, L(t) = 1, and goods markets always clear. The gross
output of the closed economy is Y (t) = C(t) + I(t) +G(t). Table 3.1 sum-
marizes these results.
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Table 3.1

Ċ(t) = (r(t)− ρ)C(t)− β(ρ+ β)[K(t) +B(t)] (T1)

K̇(t) = F (K(t), L(t))− C(t)−G(t)− δK(t) (T2)

Ḃ(t) = r(t)B(t) +B(t)− T (t) (T3)

r(t) + δ = FK(K(t), L(t)) (T4)

W (t) = FL(K(t), L(t)) (T5)

L(t) = 1 (T6)

Where equation (T1) in the table above is found by isolating Ċ(t) in
equation (3.24) and applying A(t) = K(t) + B(t). Equation (T2) is found
by applying Y (t) = C(t) + I(t) +G(t) and (3.25) to equation (3.28).

3.3 Phase Diagrams

The dynamic response of consumption and capital stock to changes in macroe-
conomic factors is analyzed using a phase diagram.

The phase diagram we analyze has consumption on the vertical axis and
capital on the horizontal axis, it has two functions plotted, each of which
represents a path in which either consumption or capital does not change,
these functions are called loci. On the intersection of these functions there
is a steady state equilibrium, at which point neither consumption or capital
changes. For a shock either function could shift, depending on the shock,
and a new equilibrium might form. To transition from the old equilibrium
to the new one, following the shock, the economy moves on to a saddle path.

In this section insights from the Blanchard-Yaari model are applied to
produce the phase diagram in the closed economy and the open economy.
For simplicity it’s assumed that there is no government intervention, i.e.,
T (t) = G(t) = B(t) = 0. By assuming that K̇(t) = 0 in equation (T2) in
table 3.1 and isolating C(t) the K̇(t) = 0 locus is produced.

K̇(t) = 0⇔ C(t) = F (K(t), 1)− δK(t) (3.31)

Aggregate consumption is equal of the aggregate output less deprecia-
tion. The golden rule level of capital, which maximizes consumption growth,
is achieved when the K̇(t) locus reaches its maximum.
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Figure 3.1: The K̇(t) = 0 locus

dC(t)

dK(t)

∣∣∣∣
K̇(t)=0

= 0⇔ FK(KG(t), 1) = δ (3.32)

Where KGR represents the golden rule amount of capital. The produc-
tion function F (·) fulfills the Inada conditions and therefore it’s vertical at
K(t) = 0. The maximum value K(t) can take is where all income goes to-
wards replacement investment to counter the depreciation of captial and by
extension consumption is equal to zero, C(t) = 0:

F (Kmax, 1)

Kmax
= δ (3.33)

From equation (T2) it can be seen that for points above the K̇(t) = 0 line
consumption is too high to maintain the level of capital and net investment
becomes negative and leads to a fall in capital. Below the K̇(t) = 0 line the
opposite effect occurs. This is represented by the horizontal arrows in figure
3.1. By assuming that Ċ(t) = 0 in equation (T1) in table 2.1 we get the
Ċ(t) = 0 locus:

Ċ(t) = 0⇔ C(t) =
β(ρ+ β)

r(t)− ρ
K(t) (3.34)
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Figure 3.2: The Ċ(t) = 0 locus

The slope and shape of the Ċ(t) line is dependent on the interplay be-
tween β, ρ and r(t). The fraction in equation (3.34) approaches infinity
as r(t) approaches ρ. There is a negative relation between the amount of
capital and the interest rate, that is, an increase in capital K(t) leads to a
fall in interest rate r(t). The point for K(t) where r(t) = ρ is represented as
KKR and the interest rate associated with it is represented by rKR. That
is rKR = FK(KKR, 1)− δ ≡ ρ.

The Ċ(t) = 0 is upwards sloping from its origin and has a vertical asymp-
tote at KKR. The slope of the locus is steeper for higher amounts of capital
stock. This due to the fact that K(t) influences the denominator in equa-
tion (3.34) as described above. From equation (T1) it can be seen that an
increase in K(t) will cause Ċ(t) to decrease, the opposite effect is true for a
decrease in K(t). This effect is represented by the vertical arrows in figure
3.2.

By combining figures 3.1 and 3.2 we get the phase diagram in figure 3.3.
The equilibrium for the steady state where Ċ(t) = K̇(t) = 0 is unique and
saddle point stable. Equilibrium is represented at point E in the intersection
of the two loci. Given arbitrary starting values for C(t) and K(t) we will
arrive at a negative level for C(t) or K(t) if the saddle path, marked by S
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Figure 3.3: The Blanchard-Yaari Standard Phase Diagram

in figure 3.3, is not chosen. The saddle path is therefore the only acceptable
choice for consumption-saving decision of the agents.

Open economy case

Let’s now look at a simple open economy case, in a single-product world
with perfectly mobile financial capital. In the open economy the interest
rate is set at the exogenous world level, rw, at which agent’s in the economy
can lend and borrow freely from the rest of the world. Parameter values
distinguishes whether a nation is a creditor nation, inhabited by relatively
patient agents, or a debtor nation, inhabited by relatively impatient agents.
In this simple case all agent’s wealth is held in foreign assets, denoted by
Af (t). The production function is given by:

Y (t) = Z(t)L(t) (3.35)

Z(t) is exogenous but potentially time varying and represents an index of
technological change. Since perfect competition is assumed equation (3.35)
implies that wages are exogenous and determined by W (t) = Z(t). Like
before L(t) ≡ 1 so Z(t) determines the output of the economy. The equations
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of motion that characterize the economy become:

Ċ(t) = (rw − ρ)C(t)− β(ρ+ β)Af (t) (3.36)

Ȧf (t) = rwAf (t) + Z(t)− C(t) (3.37)

The loci for Ċ(t) = 0 and Ȧf (t) = 0 are respectively:

Ċ(t) = 0⇔ C(t) =
β(ρ+ β)

rw − ρ
Af (t) (3.38)

Ȧf (t) = 0⇔ C(t) = rwAf (t) + Z(t) (3.39)

The Ȧf (t) = 0 locus is a straight line that intersects the vertical C(t)
axis at point Z(t). Its slope is the exogenous world interest rate rw. For any
level of consumption above the Ȧf (t) = 0 locus foreign assets will deteriorate
since the stock can not facilitate the consumption expenditure, the opposite
will occur for consumption choice below the locus. This is represented by the
horizontal arrows in figure 3.4. This effect can also be seen from equation
(3.37) because of the negative relationship between C(t) and Ȧf (t)

The Ċ(t) = 0 locus has subtly changed, now it is linear because Af (t)
does not effect rw which causes the slope of the locus to be independent
of the stock of foreign assets, this is different from the open economy case.
The Ċ(t) = locus intersects the vertical C(t) axis at zero. From equation
(3.36) we see that an increase in the stock of foreign assets, ceteris paribus,
will lead to a drop in consumption. This effect is represented by the vertical
arrows in figure 3.4. To determine the slope of the Ċ(t) = 0 we need to look
at a few cases.

In the case of a relatively patient creditor nation the world interest rate
exceeds the time preference of inhabitants, rw > ρ. In this case a restriction
must be imposed to ensure the stability of the model. In order for the loci
to intersect the slope of the Ċ(t) = 0 locus needs to be greater than the
slope of the Ȧf (t), that is rw < β(ρ+ β)/(rw − ρ). Assuming that the loci
intersect we have a steady-state equilibrium at point E in panel A of Figure
3.4 and the country holds net positive foreign assets. The opposite is true
if the nation is a relatively impatient debtor nation where rw < ρ. In this
case there will be a negative amount of foreign assets held and the economy,
this case is represented in panel B of figure 3.4.

In the case where rw = ρ equation (3.36) becomes Ċ(t) = −β(ρ+β)Af (t)
and the Ċ(t) = 0 locus coincides with the vertical axis and the stock of
foreign assets is equal to zero. There is no saving or dissaving by agents in
which case the model will still be saddle point stable.
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Figure 3.4: Open Economy Phase Diagram

In both cases there is a unique steady state equilibrium, at point E.
The saddle path is depicted as the line S in figure 3.4. Similar to the closed
economy case if we assume a arbitrary starting level of foreign assets we will
arrive at infinite or negative values for C(t) or Af (t) if the saddle path is
not chosen.

Assuming that the only difference between two nations is their time
preference where one nation has rw > ρ and the other one has rw < ρ it can
be seen from figure 3.4 that the impatient nation will always have a lower
level of steady state consumption than the patient nation.

An increase in rw would result in a increase in holding of foreign assets
through changes in the savings rate. To clarify this let’s take a look at the
case where rw > ρ. In this case an increase in rw would increase the slope
of the Ȧf (t) = 0 locus and decrease the slope of the Ċ(t) = 0 locus. This
would push the equilibrium at the intersection of the two loci towards a
greater value of foreign assets held. Because both loci have a positive slope
this would increase consumption as well. Initially the economy would move
towards the new saddle path and with time reach the new equilibrium.

An alternative way of looking at aggregate behavior is by giving aggre-
gate consumption as a function of wealth which allows for a derivation of a
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savings function. Aggregate consumption becomes.

C(t) = (β + ρ)

(
Z(t)

rw + β +Af (t)

)
(3.40)

The sum of financial and non-financial income is Z(t) + rwAf (t). Savings,
represented as S(t), is total income less consumption.

S(t) ≡ rw − ρ
rw + β

Z(t) + (rw − β − ρ)Af (t) (3.41)

Assuming that rw < β+ ρ savings becomes a decreasing function of wealth.
The effect of an increase in Z(t) depends on whether the nation is a debtor
or a creditor.

In the following chapter a closer look at a fiscal policy in the open econ-
omy. In chapter 5 the effects of a decrease in the hazard rate on the open
economy equilibrium will be examined.
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Chapter 4

Fiscal Policy

Within the context of the Blanchard-Yaari model a fiscal policy is the se-
quence of current and anticipated taxes, government spending and govern-
ment debt. In this chapter tax timing, increase in government spending and
debt will be examined. This framework will be instrumental in examining
the fiscal policy implications of increased longevity.

4.1 Fiscal Policy Under No Debt Constraint in the
Closed Economy

The fiscal analysis begins with examining a policy constrained by a strictly
balanced budget government. An increase in government spending G(t) will
be directly accommodated by an equal increase in lump sum taxes in the
same period, T (t), and government debt will be zero at all points in time
that is, G(t) = T (t), Ḃ(t) = B(t) = 0. Furthermore economy is initially in
a steady state at point E0. The equations of motion are as follows.

Ċ(t) = (r(t)− ρ)C(t)− β(ρ+ β)K(t) (4.1)

K̇(t) = F (K(t), 1)− δK(t)− C(t)−G(t) (4.2)

The beginning time is equalized at time t = 0 where G(t) = 0 and an
increase in government spending will shift K̇(t) = 0 locust downwards by
the amount dG(t) at time t = 1. This effect is represented in figure 4.1.
This shift in the K̇(t) = 0 locust will in turn cause the present consumption
to jump downwards towards point A which is positioned on the new saddle
path. This is due to the fact that the capital stock has not changed in the
economy but there is only an increase in government spending that shifts
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Figure 4.1: Increase in government expenditure

the K̇ = 0 locust downwards. Over time the economy will travel along the
saddle path and reach the new equilibrium.

Initially the crowding out effect of private consumption caused by the
increase in government spending is less than one to one, since (E0 − A) <
dG(t). However in the long run, as the new equilibrium E1 is reached the
crowding out effect is greater than one to one, this can be seen from the slope
of the K̇ = 0 and Ċ = 0 loci. The increase in lump sum taxes decreases
the agent’s human capital which leads to a instantaneous downwards shift
in consumption, but this effect does not shift the Ċ(t) = 0 locus.

Agents discount their human capital by the annuity rate RA which is
higher than the rate on bonds. This leads agents to discount the future
more heavily, because of the hazard rate and has the effect to dampen the
response of the lump-sum tax increase.

The insufficient cut in consumption leads to a gradual drop in capital
stock. Because of the structure of the production function this drop in
capital leads to a less efficient workforce as the marginal productivity of
labor, FL(K(t), 1), drops. This leads to a downwards pressure on wages and
lower human capital for present and future generations. These effects are
represented as the saddle path transition from A to E1 in figure 4.1.
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4.2 Time Reallocation of Taxes

To examine the effects of reallocating taxes through time a closer look is
taken at two equations from before. Namely the equation for human wealth
and the government’s budget constraint.

H(t) =

∫ ∞
t

[W (τ)− T (τ)]e−
∫ τ
t [r(s)+β]dsdτ (4.3)

B(t) =

∫ ∞
t

(T (τ)−G(τ))e−
∫ τ
t r(s)dsdτ (4.4)

The exponential discounting in equations (4.3) and (4.4) have been writ-
ten with the integral notation for clarity. Let’s assume a fiscal policy of
lowering taxes at time t and then increasing them back again at the later
time t + τ , without changing the path of government expenditure. The
changes in taxes at times t and t+ τ are represented as dT (t) and dT (t+ τ)
respectively. From the government’s budget constraint (4.4) it can be seen
that the change in the taxation given a level of debt will be dependent on
the following relation to hold.

dT (t+ τ) = −e
∫ t+τ
t r(s)dsdT (t) (4.5)

From the human wealth equation above the impact of the taxation strategy
on the consumer is determined.

−dT (t)− dT (t+ τ)e−
∫ t+τ
t [r(s)+β]ds (4.6)

By substituting (4.5) into (4.6) the effect of this particular taxation strategy
on human capital is obtained.

−dT (t)(1− e−βτ ) (4.7)

dT (t) is a negative value, because there is a drop in taxation at time t. This
implies that human capital increases with tax reallocation, assuming that
β > 0. The increase in human capital is proportional to the length of the
tax reallocation time. This is due to the probability that the agent will die
before time t+ τ and will therefore not be effected by the tax hike, and to
a lesser extent due to the difference in the discount rate by the individuals
and government. This leads to the taxation being partially shifted from
the current generation towards a future generation. According to equation
(4.8) the tax strategy will increase aggregate consumption through human
wealth.

C(t) = (ρ+ β)[K(t) +B(t) +H(t)] (4.8)
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4.3 Fiscal Policy and Debt in the Closed Economy

To understand the steady state effects of fiscal policy and government debt
accumulation a specific policy experiment is produced. The government is-
sues debt at time t = 0 and covers the increased debt payments by increasing
future taxes. If interest rates change the government will adjust taxes to
meet the interest payments. The tax increase satisfies r(K(0))dB(0) =
dT (0) and the new debt level is constant to eternity. The equations of
motion are:

Ċ(t) = (r(K(t))− ρ)C(t)− β(β + ρ)(B(t) +K(t)) (4.9)

K̇(t) = F (K(t), 1)− C(t)−G(t)− δK(t) (4.10)

Ḃ = r(K(t))B(t) +G(t)− T (t) (4.11)

And the accompanying loci for the phase diagram are:

Ċ(t) = 0⇔ C(t) =
β(β + ρ)

r(K(t))− ρ
[B(t) +K(t)] (4.12)

K̇(t) = 0⇔ C(t) = F (K(t), 1)−G(t)− δK(t) (4.13)

Figure 4.2 summarizes the effects of the fiscal policy on the steady state of
the economy. Since the interest rates will vary after t = 0 the taxes will also
vary to cover the interest payments as a new steady state is reached. The
K̇(t) = 0 locus will not be effected by the fiscal policy since we have assumed
that there is no change in government spending, in the phase diagram in
figure 4.2 locus is drawn for G(t) = 0 for simplicity.

For a positive value of government spending there could be two or even
zero equilibriums as the K̇ = 0 locus is shifted downwards providing two
intersections of the loci and if shifted far enough the loci will not intersect
at all. The increase in government debt will shift the Ċ(t) = 0 locus, this
can be seen from equation (4.12). To determine shape of the Ċ(t) = 0 locus
a few cases have to be distinguished.

Firstly if B(t) > −KKR the Ċ(t) = 0 locus goes through its origin, slopes
upwards and approaches KKR from the left. If B(t) > 0 then the locus will
shift to the left while still going through its origin since r(K(t)) approaches
infinity as K(t) approaches zero, this results in a decrease in capital and
consumption in the saddle point equilibrium. If −K(t) < B(t) < 0 the
Ċ(t) = 0 locus shifts to the right and intersects the K̇(t) = 0 locus at an
equilibrium where the steady state level of both consumption and capital
have increased. This case is interesting as the Ċ(t) = 0 locus has negative
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Figure 4.2: Debt Accumulation in the Closed Economy

values for consumption where [B(t) +K(t)] < 0 but as capital increases the
curve become positive and reaches KKR asymptotically form the left. If
B(t) < −KKR then the Ċ(t) = 0 locus reaches the KKR asymptote from
the right and is downwards sloping. These effects can be seen in figure 3.2.

In any of these cases the change in government debt will lead agents
to shift their consumption-saving choices to the appropriate saddle path.
With time they will approach the new stable saddle point equilibrium at
the intersection of the new Ċ(t) = 0 locus and the K̇(t) = 0 locus.

4.4 Fiscal Policy and Debt in the Open Economy

The same fiscal policy as described above will be analyzed in the open econ-
omy case. The government issues debt at time t = 0 and covers the increased
debt payments by increasing future taxes. Debt remains at a constant new
level for eternity. We have:

C(t) = (β + ρ)

(
Z(t)− T (t)

rw + β
+B(t) +Af (t)

)
(4.14)

Ȧf (t) = rwAf (t) + Z(t)− C(t)−G(t) (4.15)
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Ḃ = rwB(t) +G(t)− T (t) (4.16)

The policy has constant levels of G(t), T (t) and B(t) at all points in time
except for time t = 0 where a permanent change occurs. Since the debt is
issued at the exogenous world interest rate and future debt payments are
covered by future taxes the change in policy satisfies rwdB(0) = dT (0).
The steady state level of consumption and foreign assets can be determined
by plugging equation (4.14) into equation (4.15) and allowing the level of
taxation to be determined by the government’s budget constraint in equation
(4.16). In the steady state the stock of foreign assets and consumption is.

ASSf (t) =
(rw − ρ)(Z(t)−G(t))− (β + ρ)βB(t)

(β + ρ− rw)(rw + β)
(4.17)

CSS(t) = Z(t)−G(t) + rwASSf (4.18)

The steady state level foreign assets is a decreasing function of government
debt. Consumption is a positive function of Af (t) and therefore also a
decreasing function of government debt.

dASSf (t)

dB(t)
=

−(β + ρ)β

(β + ρ− rw)(rw + β)
(4.19)

More specifically the effect of government debt on the stock of foreign assets
depend on the world interest rate.

dASSf (t)

dB(t)

{> −1 for rw > 0

= −1 for rw = 0

< −1 for rw < 0

(4.20)

This is the result of government’s replacement of foreign assets with debt
in the agent’s portfolio. If rw = ρ then this displacement is one-for-one and
ASSf (t) = −B(t). This effect is however more pronounced for cases where
rw > ρ. By manipulating the debt level the government can choose any
level of steady state consumption deemed desirable. The effects of this debt
policy can be seen in the agent’s savings function below.

S(t) =

(
rw − ρ
rw + β

)
(Z(t)−G(t))+(rw−β−ρ)M(t)−β

(
β + ρ

rw + β

)
B(t) (4.21)

Where S(t) is savings by the agent at time t. The effects of the fiscal
policy implemented at time t = 0 is a decrease in savings by the amount
−β(β+ρ)/(rw+β). The increase in debt does not affect the income of agents
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but rather makes them feel wealthier by the amount [β/(rw+β)]dB(0). This
incentivizes agents to increase consumption and decrease saving until a new
steady amount of foreign assets is reached. In the new steady state both
consumption and the level of foreign assets will be lower.
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Chapter 5

Increased Longevity

In this chapter the model developed in the previous section will be used to es-
timate the effect of increased longevity on the economy. Increased longevity
can be analyzed in the Blanchard-Yaari model by manipulating the hazard
rate, β. Change in the hazard rate will however both influence the death
rate and the birth rate. This might cause a problem, since the economic
results in the model is caused by a combination of increased longevity and
lowered birth rate. The Buiter model, introduced in section 5.1, allows for
lowering of the death rate while keeping the birth rate constant.

5.1 Manipulation of the Hazard Rate

Increased longevity can be simulated by lowering β resulting in expected
lifetime length, 1/β, to increase. The analysis begins by focusing on the
closed economy without government then moving on to an open economy. In
both cases an anticipated change in β is examined as well as an unanticipated
change. In the real world the hazard rate would not change in shocks but
rather continuously over time. However exogenous shock such as war or
famine could result in an unanticipated shock to the hazard rate.

5.1.1 Closed Economy Case

To identify the impact of a change in the hazard rate, β, on the steady state
values of consumption and capital stock the phase diagram is used. The
equations for the Ċ(t) = 0 and K̇(t) = 0 loci in the phase diagram were,
respectively:

K(t) =
r(t)− ρ
β(ρ+ β)

C(t) (5.1)
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C(t) = F (K(t), 1)− δK(t) (5.2)

β enters into equation (5.1) and has no effect of (5.2). Equation (5.1)
implies that a decrease in β would lead to a decrease in the level of con-
sumption associated with a given value of capital. This leads to a shift in
the Ċ(t) = 0 locus to the right with a more pronounced effect as capital in-
creases. This increase in effect is caused by the fact that as K(t) approaches
KKR the numerator in equation (5.1) approaches zero.

The Ċ(t) = 0 locus originates still at the intersection of the axis. This
shift of the curve leads to a new steady state equilibrium at the intersec-
tion of the two loci, if the economy is dynamically efficient the increased life
expectancy leads to both increased steady state consumption and greater
capital stock. Increased capital stock implies a fall in the steady state in-
terest rate. The Ċ(t) = 0 locus asymptotically approaches KKR which was
derived from the relationship:

rKR = FK(KKR, 1)− δ ≡ ρ (5.3)

This level of capital, KKR is not effected by a change in β. Therefore
the new steady state equilibrium amount of capital stock does not exceed
KKR. This result is summarized in figure 5.1.

An unanticipated shock, at time t1, would cause a drop in consumption
at t1 as the economy moves to the new saddle path. With time the new
equilibrium would be reached as the economy travels along the saddle path.

An anticipated shock results in a slightly different transition to the new
steady state equilibirum. At time t0 the information that the hazard rate
will drop at time t1 is known to all agents in the economy. At time t0 the
economy slightly moves out of the equilibrium by decreasing consumption,
at time t1 the economy is at the new saddle path as the Ċ(t) = 0 locus shifts.
This leads to an more efficient transition than if the shock is unanticipated.
The levels of consumption and capital associated with these transitional
paths are illustrated in figure 5.2. An anticipated and continuous decrease
in the hazard rate most accurately describes the real world.

5.1.2 Open Economy Case

The open economy case is similar to the closed economy case to the ex-
tent that the β change does not effect the capital accumulation locus but
rather only the Ċ(t) = 0 locus. The loci for Ċ(t) = 0 and Ȧf (t) = 0 are
respectively:
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Figure 5.1: Shift in β in the closed economy

Figure 5.2: β drop, anticipated and unanticipated response
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Figure 5.3: Shift in β in the open economy

C(t) =
β(ρ+ β)

rw − ρ
Af (t) (5.4)

C(t) = rwM(t) +W (t) (5.5)

Increased longevity has opposite steady-state effects depending on whether
rw is greater or less than ρ. A decrease in β increases the levels of foreign
assets if rw > ρ and decreases them if rw < ρ, this effect is caused by a
change in the slope of the Ċ(t) = 0 locus which results in a new steady state
equilibrium. These results are illustrated in figure 5.3. Like before, panel A
depicts the case where rw > ρ and panel B depicts the case where rw < ρ.

Like before, the transition to the new steady state equilibrium depends
on whether the shock in β is anticipated or not. Like in the closed economy
case, if the shock is anticipated the economy moves away from the equilib-
rium when the news of the change in the hazard rate become public. In
the rw > ρ case the consumption drops by a marginal amount, disrupting
the previous equilibrium causing the stock of foreign assets to accumulate.
When the change in β occurs the economy is at the new saddle path asso-
ciated with the new equilibrium.

If the change in β is unanticipated the economy moves straight to the
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new saddle path at the time of the change. The differing results from an
unanticipated and anticipated drop in β in the open economy case where
rw > ρ is similar to the open economy case, therefore figure 5.2. can be also
used in this case to depict the results comparatively without much loss of
precision.

In both the open economy (where rw > ρ) and the closed economy
case the increased longevity causes an increase in the capital stock through
increased savings. People who expect to live longer are more inclined towards
saving, this relation is true at an aggregate and individual level.

5.2 Differing Birth and Death Rates

In the model above the hazard rate, β, both describes the instantaneous
death probability and the birth rate. This is leads to a constant population.
When manipulating the hazard rate the both effects of increased longevity
and a lower birth rate are represented in the model results. In 1988 Buiter
published the article Death, Birth, Productivity Growth and Debt Neutrality
which generalized the Blanchard-Yaari model by distinguishing the birth
rate and the mortality rate. This allows for an isolation of the longevity
effect from the birth effect on the steady state. The derivation of the Buiter
model will not be traced in detail. The main building blocks of the model
relative to the thesis topic will be discussed below.

The model defines the birth rate parameter as β and the death rate
parameter as µ. The population grows an the rate nL ≡ β − µ Consump-
tion, c(t), capital, k(t), and output, y(t), are measured in per capita terms,
therefore the model allows for population growth if β > µ. Like before ρ
is the time preference of agents and δ is the depreciation rate of capital.
Furthermore the model assumes a Cobb-Douglas production function. In
the absence of government the model can be summarized to the following
form:
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Table 5.1

ċ(t)
c(t) = r(t)− ρ− β(ρ+ µ)k(t)

c(t) (B1)

k̇(t) = y(t)− c(t)− (δ + β − µ)k(t) (B2)

r(t) + δ = ε y(t)
k(t) (B3)

w(t) = (1− ε)y(t) (B4)

y(t) = Z0k(t)ε, 0 < ε < 1. (B5)

From table 5.1 the ċ(t) = 0 and the k̇(t) = 0 loci can be determined. The
k̇(t) = 0 locus is:

c(t) = Z0k(t)ε − (δ + β − µ)k(t) (5.6)

And the ċ(t) = 0 locus is:

c(t) =
β(ρ+ µ)k(t)

εZ0k(t)ε−1 − (δ + ρ)
(5.7)

The c(t) locus is upward sloping and has vertical asymptote at k̄, where:

k̄ ≡
(
εZ0

δ + ρ

)1/(1−ε)
(5.8)

The phase diagram is depicted in figure 5.4. In the Buiter model a change in
either birth rate or death rate affects both loci while in the Blanchard-Yaari
model a change in the hazard rate only affected the Ċ(t) = 0 locus.

To determine the effect of increased longevity the death rate, µ is de-
creased while keeping the birth rate β constant. We see that in the ċ(t) = 0
loci a decrease in µ leads to a shift to the right which is more pronounced
at higher levels of k(t). This effect of increased longevity on the ċ(t) = 0
curve is similar to the shift associated with a decreased hazard rate in the
standard Blanchard-Yaari model. The ċ(t) = 0 still has the same vertical
asymptote k̄. The decreased death rate also has an effect on the k̇(t) locus.
The locus shifts downwards and with a more pronounced downward shit at
higher levels of k(t). These results are illustrated in figure 5.5.

The economy moves from the initial equilibrium at point E1 and goes
to the equilibrium in E2. The effect on long term steady state consumption
is ambiguous since the shift in each curve has opposite effects. However the
decreased death probability leads to a higher level of capital stock.
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Figure 5.4: The Phase Diagram in the Buiter model

Figure 5.5: Decreased death rate
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Chapter 6

Savings and Retirement

6.1 Age Dependent Productivity

To simulate the effects of saving for retirement Blanchard introduced de-
clining productivity with age. Since there are perfect markets agents’ wages
will be directly dependent on the marginal productivity of their labor. This
would lead to agents saving for those years where their wages will drop fol-
lowing a decrease in their productivity. Therefore the declining productivity
will lead to a consumption smoothing behavior by agents who will save more
in early parts of life to maintain a high level of consumption even though
their non-interest income has dropped.

Increased longevity implies that agents are active and being able to par-
ticipate in the labor market for a longer period of their lives. This implies
that with increased longevity productivity declines at a slower rate with age.
This extension of the Blanchard-Yaari model puts us one step closer to the
thesis topic as agent’s behavior portrays foresight regarding latter part of
life.

To incorporate this age dependent productivity into the model all work-
ers are assumed to supply one unit of raw labor over their lifetime, but the
efficiency of this raw labor declines with age. N(v, τ) denotes agent’s unit
of effective labor, L(v, τ) is the units of raw labor supplied at time τ by a
worker born at time v. Lastly E(τ −v) is defined as the efficiency of L(v, τ).
Aggregate value of effective labor is as follows.

N(τ) =

∫ τ

−∞
N(v, τ)dv =

∫ τ

−∞
L(v, τ)E(τ − v)dv (6.1)
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The aggregate production function becomes.

Y (τ) = F (K(τ), N(τ)) (6.2)

Since the hazard rate is constant and all cohorts die at the rate β the follow-
ing realization about raw labor units supplied by each cohort can be made.
As before, βe−β(v−t) is the size at time t of the cohort born at time v.

L(v, τ) = e−β(τ−v)L(v, v) = βe−β(τ−v) (6.3)

That is, the labor supply at time τ of cohort born at time v is equal to its
size since the raw labor units have been neutralized to one, because of full
employment. Efficiency falls exponentially over lifetime and is defined as:

E(τ − v) ≡
(
α+ β

β

)
e−α(τ−v) (6.4)

Where the term in the brackets on the right hand side is a normalization
made for convenience. Aggregate effective labor is:

N(τ) =

∫ τ

−∞

(
α+ β

β

)
e−α(τ−v)βe−β(τ−v)dv

= (α+ β)

∫ τ

−∞
e−(α+β)(τ−v)dv

= (α+ β)

[
1

α+ β
e−(α+β)(τ−v)

]τ
−∞

= 1

(6.5)

Aggregate effective labor is equal to one, this is due to the constant birth-
death rate and large cohorts. The representative firm maximizes share-
holder’s profits and consequently also the stockmarket’s valuation, which
is:

V (t) =

∫ ∞
t

(
F (K(τ), N(τ))−

∫ τ

−∞
W (v, τ)L(v, τ)dv − I(τ)

)
e−R(t,τ)dτ

(6.6)
Note the difference between this notation and the one presented in equation
(3.27) is only in the production function, which is depended now on effective
labor, and the wages which are now also payed by effective labor rather than
by raw labor. This is due to the fact that firms potentially hire agents from
all cohorts but pay them wages according to their productivity. Furthermore
we get the cost of production inputs:

r(τ) + δ = FK(K(τ), N(τ)) (6.7)

45



W (v, τ) = E(τ − v)FN (K(τ), N(τ)) (6.8)

The relation in equation (6.7) is approximately the same as (T.4) in the
unchanged Blanchard-Yaari model in chapter 3. However the wage relation
has changed from (T.5) and now includes the efficiency factor. In a steady
state the wages of agents will decline over their lifetime and incentivize
agents to increase savings in early stages of life to counteract this wage drop
in the latter part of life, this simulates saving for retirement. We assume
that there is no other change in the utility function of the agent and they are
bound by the same budget identity from the constant lifetime productivity
case. Assuming that there are no taxes and government spending we get
the agent’s consumption.

C(v, t) = (ρ+ β)[A(v, t) +H(v, t)] (6.9)

Before human wealth was identical for all agents, independent of age, be-
cause of identical hazard rates. Now however this it not the case.

H(v, t) ≡
∫ ∞
t

W (v, τ)e−R
A(t,τ)dτ

=

∫ ∞
t

(
α+ β

β

)
eα(v−τ)W (τ)e−R

A(t,τ)dτ

= eα(v−τ)H(t, t)

(6.10)

The first line is self explanatory as it is similar to the human capital rela-
tion seen before. The transition between the first two lines is due to the
predictable productivity of the workforce when age is accounted for. That

is, W (v, τ) =

(
α+β
β

)
eα(v−τ)W (τ). Transition to the last line utilizes that

human wealth of newborns, H(t, t) is as follows.

H(t, t) =
α+ β

β

∫ ∞
t

W (τ)e−
∫ τ
t (r(s)+α+β)dsdτ (6.11)

Note that for this relation to hold β needs to be strictly positive. Aggregate
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human wealth in the economy is.

H(t) ≡ β
∫ t

−∞
eβ(v−t)H(v, t)dv

= H(t, t)

∫ t

−∞
e(α+β)(v−t)dv

=

(
β

α+ β

)
H(t, t)

=

∫ ∞
t

W (τ)e−
∫ τ
t (r(s)+α+β)dsdτ

(6.12)

The first line in the equation above is a application of equation (3.18). Going
form the first to second line in (6.12) we simply apply equation (6.10).
By comparing the last line of (6.12) to (3.12) the change in effective labor
leads agents to discount their future aggregate wage more heavily. The
heavier discounting is caused by th fact that agents have a positive death
probability, as before, and with age their non-interest income will dwindle.
Now aggregate consumption can be determined.

C(t) = (ρ+ β)[A(t) +H(t)] (6.13)

Ȧ(t) is found similarly as in the previous section and Ḣ(t) can be found by
differentiating (6.12) w.r.t. time.

Ȧ(t) = r(t)A(t) +W (t)− C(t) (6.14)

Ḣ(t) = (r(t) + α+ β)H(t)−W (t) (6.15)

The Euler equation becomes:

Ċ(t)

C(t)
= (r(t) + α− ρ)− (α+ β)(ρ+ β)

A(t)

C(t)
(6.16)

When assuming α = 0 the Euler equation is identical to the one in the
standard Blanchard-Yaari model. The equations of motion can be found by
applying equation (6.7) to the Euler equation and noting that A(t) = K(t)
since there B(t) = 0.

Ċ(t) = [FK(K(t), 1) + α− (ρ+ δ)]C(t)− (α+ β)(ρ+ β)K(t) (6.17)

K̇(t) = F (K(t), 1)− C(t)− δK(t) (6.18)

Equation (6.18) is the equation of motion from (T2) while taking into ac-
count that G(t) = 0. We see that there is no change in the K̇(t) = 0 locus
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Figure 6.1: The Phase Diagram with Age Dependent Productivity

from the standard no-government case previously examined. However there
is a change in the Ċ(t) = 0 locus, let’s take a closer look at the locus.

C(t) =
(α+ β)(β + ρ)

r(t) + α− ρ
K(t) (6.19)

Now the C(t) function is upwards sloping and asymptotically reaching KKR

where rKR = FK(KKR, 1) − δ = ρ − α. There is a negative relationship
between r(t) and K(t). Since ρ − α < ρ if α > 0 the position of the KKR

asymptote on the K(t) axis is dependent on the size of α. in figure 6.1 two
different KKR asymptotes are illustrated. One associated with a drop in
productivity with age, denoted by α > 0, and the other associated with no
drop. As α increases the KKR moves along the K(t) axis increasing the
steady state capital. This is portrayed in figure 6.1.

The phase diagram is similar as in the constant productivity case except
for the asymptote for the Ċ(t) = 0 locus. An increase in α leads agent’s non-
interest income to accrue at an early age, leading to more early age savings
to maintain a smooth consumption over their expected lifespan. This in
turn leads to more capital accumulation as a larger portion of non-interest
income is shifted towards savings. This can however lead to sub optimal
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levels of over-savings if α is large enough to shift the Ċ(t) locus across the
KGR point This is portrayed in figure 6.1 with the Ċ(t) = 0 locus labeled as
α > 0. The equilibrium associated with the α > 0, Ċ(t) = 0 locus is saddle
point stable but has over-accumulation of capital.

Increased longevity would lead to productivity to decline at a slower
rate than before. This leads to the α in this model extension to follow
β to a certain extent. This hypothesized correlation between α and β is
not perfect since agents could expect a longer retirement with increased
longevity. The fiscal policy described in chapter 4 where the permanent
debt level is increased could shift the Ċ(t) = 0 locus towards the golden rule
amount of capital.

6.2 Endogenous Labor Supply and Retirement Age

When determining the fiscal implication of increased longevity one must
look at the labor decisions of households. In this section the endogenous
labor decisions of households will be analyzed. Determinants of the optimal
retirement age will be examined.

6.2.1 Life-cycle Labor Supply

By introducing leisure the expected lifetime utility function becomes:

E(Λ(v, t)) ≡
∫ ∞
t

ln(C(v, τ)εC [1− L(v, τ)]1−εC )e(ρ+β)(t−τ)dτ (6.20)

Where 0 < εC ≤ 1. This allows for consumption-leisure decisions by the
individual. Utility is derived from both consumption, C(v, τ) and leisure
[1−L(v, τ)]. Leisure is, by definition, the time the individual spends outside
of work. The agent’s time endowment has be neutralized to 1 and L(v, τ) is
time spent working. The original expected lifetime utility function can be
obtained by setting εC = 1 and the agent chooses full employment since a
positive amount of leisure results in less utility through a drop in income.
Including leisure into the agent’s utility function allows for the introduction
various taxes, such as income tax. The agent’s budget identity becomes:

Ȧ(v, τ) = [r(τ) + β]A(v, τ) +W (τ)(1− tL) + TR(τ)−X(v, τ) (6.21)

Where TR(τ) are age independent transfers from government. WhereX(v, τ)
represents full consumption and is the sum of spending on consumption and
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leisure, that is:

X(v, τ) ≡ (1 + tC)C(v, τ) +W (τ)(1− tL)[1− L(v, τ)] (6.22)

Where tL and tC represent proportional taxes on labor income and consump-
tion respectively. The solvency conditions are the same as before, namely:

lim
t→∞

e−R
A(t,τ)A(v, τ) = 0, RA ≡

∫ τ

t
[r(s) + β]ds (6.23)

The optimization problem is solved using two-stage budgeting. This method
is valid if the utility function is intertemporally separable. In the first stage
the optimal allocation of consumption and leisure is determined by the agent,
conditional on a given level of full consumption, X(v, τ). The maximization
problem for the first stage is:

max
C(v,τ),L(v,τ)

ln
[
C(v, τ)εC [1− L(v, τ)]1−εC

]
s.t. X(v, τ) ≡ (1 + tC)C(v, τ) +W (τ)(1− tL)[1− L(v, τ)]

(6.24)

The Lagrangian is:

L =ln
[
C(v, τ)εC [1− L(v, τ)]1−εC

]
+ λ((1 + tC)C(v, τ) +W (τ)(1− tL)[1− L(v, τ)]−X(v, τ))

(6.25)

Solving the Lagrangian yields

dL
dC(v, τ)

= 0⇔ εC
C(v, τ)

+ λ(1 + tC) = 0

dL
dL(v, τ)

= 0⇔ λ(L(v, τ)− 1)(tL − 1)W (τ)− εC + 1

L(v, τ)− 1
= 0

dL
dλ

= 0⇔ X(v, τ) = (1 + tC)C(v, τ) +W (τ)(1− tL)[1− L(v, τ)]

(6.26)

By isolating λ in the the first two lines of equation (6.26) the following
relation is obtained.

1−εC
1−L(v,τ)

εC
C(v,τ

= W (τ)
1− tL
1 + tC

(6.27)

Substituting equation (6.27) into equation (6.22) optimal consumption and
leisure is found given a certain level of full consumption. The relationship
is expressed by:

(1 + tC)C(v, τ) = εCX(v, τ) (6.28)
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W (τ)(1− tL)[1− L(v, τ)] = (1− εC)X(v, τ) (6.29)

Equation (6.29) implies that it is optimal for agents in a steady state to
spend a positive age-independent fraction of full consumption on leisure.
This realization depends on εC < 1. To determine the leisure decisions of
the agent the path of full consumption over the lifetime must be examined,
this will be determined in the second stage of the agent’s maximization.
Before proceeding to the second stage of the agent’s utility maximization
the true cost of living index, PΩ(τ), is introduced:

PΩ(τ) =

(
1 + tC
εC

)εC(W (τ)(1− tL)

1− εC

)1−εC
(6.30)

This index incorporates the true costs of consumption an leisure. Utility is
the logarithm of the true cost of living index subtracted from the logarithm
of full consumption. Now for the second stage the maximization problem
becomes:

max
X(v,τ)

E(Λ(v, t)) ≡
∫ ∞
t

[ln(X(v, τ))− ln(PΩ(τ))]e(ρ+β)(t−τ)dτ

s.t. Ȧ(v, τ) = [r(τ) + β]A(v, τ) +W (τ)(1− tL) + TR(τ)−X(v, τ),

lim
t→∞

e−R
A(t,τ)A(v, τ) = 0

(6.31)

Here the agent solves the lifetime utility function w.r.t. full consumption
subject to equation (6.21) and (6.23). Solving this maximization problem
yields similar results as presented previously:

X(v, t) = (ρ+ β)[A(v, t) +H(t)] (6.32)

Ẋ(v, τ)

X(v, τ)
= r(τ)− ρ, (for τ ≥ t) (6.33)

H(t) ≡
∫ ∞
t

(W (τ)(1− tL) + TR(τ))eR
A(t,τ)dτ (6.34)

Now the path of full consumption over the lifetime has been identified and
by extention how labor supply develops over the lifetime. Equation (6.32)
tells us that steady state full consumption is proportional to total wealth.
Equation (6.33) implies that steady state growth in full consumption is
determined on the difference between the interest rate and the agent’s time
preference. The relation for human wealth differs from the relation obtained
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Figure 6.2: Life-cycle labor supply

in the previous chapter only by the inclusion of labor taxes and the lump
sum transfers by the government.

Since r(τ) − ρ > 0 equation (6.33) implies that full consumption is in-
creasing exponentially over time. However in equation (6.28) we saw that
leisure is a fixed proportion of full consumption. Since full consumption is
increasing with age leisure must also increase with age, i.e., as agents age
they work less.

In figure 6.2 the life-cycle labor supply of agents is demonstrated graph-
ically. At point A the agent is in his working life, he equates the marginal
rate of substitution between consumption and leisure to the wage rate,
this is choice is represented as the tangent between the budget line, BE0,
and the indifference curve U0. The slope of the budget line is given by
C(u) + W (u)[1 − L(u)] = X(u) and the slope of the indifference curve is
−U1−L/UC .

As the agent gets older full consumption increases, given a constant wage
the agent shifts upwards along the dashed line. When the agent reaches point
B the whole time endowment goes towards leisure. Here a non-negative
labor supply constraint has not been introduced. This allows for agents
to move to point C in figure 6.2. and becoming demanding labor from
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others. This ignores retirement from the labor market altogether. In the
next section a more concise representation of retirement decisions of agents
will be developed.

6.2.2 Productivity and Retirement

Let’s assume a small open economy where agents can lend and borrow at
will at the exogenous interest rate rw. Furthermore the analysis will be
confined to the case where rw > ρ. Agent’s productivity is hump shaped
over the agents life, it rises until a certain point and then decreases. There
are perfect markets and productivity is dependent on age which implies age
dependent wages W (u). The agent’s age is u = t−v, where t is the planning
period and v is period of birth. Further assumption about the wage curve
are as follows, W ′(u) > 0 for 0 ≤ u < ū and W ′(u) < 0 for u ≥ ū and that
W (u) > 0 ∀ u. The agent chooses consumption and leisure to maximize
expected lifetime utility, given by:

E(Λ(u)) ≡
∫ ∞
u

[εC ln(C(s)) + (1− εC)ln(1− L(s))]e(ρ+β)(u−s)ds (6.35)

The choices of consumption and leisure to maximize the expected utility of
the agent is subject to the budget identity:

Ȧ(s) = (rw + β)A(s) +W (s)L(s)− C(s)− T (6.36)

The budget identity is similar to before. Age independent lump sum
taxes T have been included. To exclude Ponzi behavior the following con-
dition is included:

lim
s→∞

A(s)e−(r+β)s = 0 (6.37)

Initial assets in the planing period are A(u) and time spent working is non
negative L(u) ≥ 0. The maximization problem for the planning period s ≥ u
is:

max
C(s),L(s)

E(Λ(u)) =

∫ ∞
u

[εC ln(C(s)) + (1− εC)ln(1− L(s))]e(ρ+β)(u−s)ds

s.t. Ȧ(s) = (rw + β)A(s) +W (s)L(s)− C(s)− T,
L(u) ≥ 0

(6.38)
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The current value Lagrangian becomes.

LC ≡ εC ln(C(s)) + (1− εC)ln(1− L(s))

+ η(s)[(rw + β)A(s) +W (s)L(s)− C(s)− T ] + ζ(s)L(s)
(6.39)

Where η(s) and ζ(s) are continuous Lagrangian multipliers. Differentiation
of the current value Lagrangian yields:

dLC
dC(s)

= 0⇔ εC
C(s)

= η(s)

dLC
dL(s)

= 0⇔ 1− εC
1− L(s)

= η(s)W (s) + ζ(s)

η̇(s)

η(s)
= ρ− rw

L(s) ≥ 0, ζ(s) ≥ 0, ζ(s)L(s) = 0

(6.40)

From the first and the third line in equation (6.40) the Euler equation can
be derived.

Ċ(s)

C(s)
= rw − ρ (6.41)

The change in consumption is determined by the difference between the
world interest rate and the agent’s time preference. The lifetime budget
constraint becomes.

A(u) +

∫ ∞
u

[W (s)L(s)− T ]e(r+β)(u−s)ds =
C(u)

ρ+ β
(6.42)

The right hand side consists of assets at the beginning of the planning period
plus a present value of after tax wages. Now optimal labor planning can be
determined. There are two distinguishing between two scenarios, whether
the agent is retired in the planing period or not.

Let’s first take a closer look at the scenario where the agent is working.
If the agent is working L(u) > 0 which implies ζ(s) = 0 because of (6.40).
By plugging the first line of (6.40) into the second and isolating 1−L(s) the
following relation determining labor supply is obtained.

1− L(u) =
1− εC
εC

C(u)

W (u)
(6.43)

The optimal amount of leisure is dependent on the age of the agent, because
both consumption and wages are age dependent. If the agent has reached
the downward slope in productivity the wages drop which will lead the
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individual to choose a higher level of leisure. To further understand this
relationship between the agent’s age and leisure decisions equation (6.43) is
differentiated w.r.t. age:

L̇(u) =
1− εC
εC

W (u)Ċ(u)− C(u)Ẇ (u)

W (u)2
(6.44)

From equations (6.44) and (6.43) and by applying the Euler equation in
(6.41) the following relation is obtained.

L̇(u)

1− L(u)
=
Ẇ (u)

W (u)
− Ċ(u)

C(u)
= π(u) + ρ− rw (6.45)

Where π(u) = Ẇ (u)/W (u) is the proportional change in wages with age.
The proportional change in leisure over the agent’s lifetime is dependent
on the time preference, world interest rate and the proportional growth in
wages. During youth the wages grow with increased productivity but when
the agent gets older the wages start to drop. The proportional change in
leisure depends on whether π(u)+ρ is greater or less than the world interest
rate rw, that is:

π(u) + ρ

{
> rw for 0 ≤ u < ū

< rw for u ≥ ū
(6.46)

Time spent working is increasing while wages increase (in youth) and
starts to drop as wages drop (later in life).

Now we can take a look at the retired agent. The assumptions about
the productivity of agents imply that once an individual is retired he does
not start working again, assuming that no significant unanticipated loss in
financial wealth occurs after retirement. This is do to the fact that once the
productivity starts declining it never inclines again. If ζ(u) > 0 it follows
from equation (6.40) that L(u) = 0 which implies that the agent is retired.
From equation (6.40):

1− εC = η(s)W (s) + ζ(s), (for u ≥ u∗) (6.47)

Here u∗ is the retirement age. Before retirement labor supply is positive
and at retirement it drops to zero. Therefore it follows, from the fact that
the Lagrangian multiplier ζ(s) is continuous, that ζ(u∗) = 0. Now we can
differentiate w.r.t. u and plug in from equations (6.40) and (6.41) to get the
following.

ζ̇(u) = η(u)W (u)[rw − (π(u) + ρ)] > 0, (for u ≥ u∗) (6.48)
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The sign follows from equation (6.46), since the agent is retired π(u) +
ρ < rw. These results can be interpreted in figure 6.2. the non-negativity
constraint on labor supply becomes binding at point E where the U1−L/UC =
W (u∗) < W and L(u∗) = 0. As the agent ages (u > u∗) the optimal
consumption continues to grow and leisure remains at 1. This is represented
in figure 6.2 as a movement along the vertical line from point E towards
points B and D. Since labor supply cannot be negative the agent cannot
reach point C.

6.2.3 Optimal Retirement Age

Now the consumption and leisure decisions of agents with non-constant pro-
ductivity over lifetime have been examined. In this section the optimal
retirement age of an agent facing a hump shaped productivity will be de-
termined. This will shed light on the retirement decisions of agents and the
possible effects a fiscal policy might have on those decisions.

For a retired agent L(u∗) = 0 and equation (6.43) becomes:

C(u∗) =
εC

1− εC
W (u∗) (6.49)

This implies that retired agents will consume a fixed fraction of wealth at
retirement. Furthermore we know that a agent will work until the retirement
age u∗ after which they will never work again. The lifetime budget constraint
is:

C(u)

ρ+ β
= A(u)− T

∫ ∞
u

e(rw+β)(u−s)ds+

∫ u∗

u
W (s)L(s)e(rw+β)(u−s)ds

= A(u)− T

rw + β
+

∫ u∗

u

(
W (s)− 1− εC

εC
C(s)

)
e(rw+β)(u−s)ds

(6.50)

The first line of equation (6.50) splits the integral in equation (6.42). The
second line is obtained by isolating work in equation (6.43) and plugging
in for L(s). Using the fact that C(s) = C(u))e(rw−ρ)(s−u) the optimal re-
tirement age and consumption to the age-dependent path of wages can be
related.

A(u)− T

rw + β
+

∫ u∗

u
W (s)e(rw+β)(u−s)ds =

C(u)

εC(ρ+ β)
(1−(1−εC)e(rw+β)(u−u∗))

(6.51)
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Using equation (6.49) and the fact that C(u∗) = C(u))e(rw−ρ)(u∗−u) we get:

C(u) =
εC

1− εC
W (u∗)e(rw−ρ)(u−u∗) (6.52)

By applying equation (6.52) into (6.51) a relation that determines the agent’s
optimal retirement age is obtained. The agent is time consistent and his
choice of retirement age does not depend on his current age. Therefore it
is possible to write the optimal retirement age from the perspective of a
newborn without a loss of generality. However external economic factors
could alter the agent’s decisions for a optimal retirement age. The optimal
retirement age at birth is determined by the following.∫ u∗

0
W (s)e−(rw+β)sds =

T

rw + β
+
e−(rw−ρ)u∗

1− εC
W (u∗)

ρ+ β
(1− (1− εC)e−(ρ+β)u∗)

(6.53)
To further determine the agent’s optimal retirement age, we summarize the
realtion above into the two terms below. The left hand side of equation
(6.53) is defined as Ξ(u) and the right hand side as Ψ(u). The optimal
retirement age, u∗ is where Ξ(u∗) = Ψ(u∗)

Ξ(u) ≡
∫ u

0
W (s)e−(rw+β)sds (6.54)

Ψ(u) ≡ T

ρ+ β
+

W (u)

(1− εC)(ρ+ β)
(e−(rw−ρ)u − (1− εC)e−(rw+β)u) (6.55)

From equation (6.54) following is determined.

Ξ(0) = 0, Ξ(u) > 0 (for u > 0)

Ξ′(u) ≡W (u)e−(rw+β)u > 0

Ξ′′(u) ≡ −W (u)e−(rw+β)u[r + β − π(u)]

(6.56)

Ξ(u) is a positive and increasing function of u and concave when u > ū.
Similarly as for Ξ(u) we get for Ψ(u).

Ψ(0) =
T

rw + β
+

εCW (0)

(1− εC)(ρ+ β)
> 0. Ψ(∞) =

T

rw + β
> 0

Ψ′(u) ≡
W (u)

[
π(u)− (rw − ρ))e−(rw−ρ)u − (1− εC)[π(u)− (rw + β)]e−(rw+β)u

]
(1− εC)(ρ+ β)

(6.57)
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Figure 6.3: Ψ(u) and Ξ(u) over the working life

At birth Ψ(0) > Ξ(0). Ψ(u) and stays positive and approaches the value
T/(rw+β) as age approaches infinity. Furthermore Ψ′(u) > 0 for any values
of 0 ≤ u < û and Ψ′(u) < 0 for u > û. Where û is the solution to:

û =
1

ρ+ β
ln

[
(1− εC)[rw + β − π(û)]

rw − (ρ+ π(û))

]
(6.58)

Equation (6.58) determines at which age the Ψ′(u) is equal to zero. From
equation (6.57) we see that rw > ρ+ π(û) which implies that û > ū. There-
fore Ψ(u) peaks later in the working life than labor supply does. Ξ(u) starts
out below the Ψ(u) curve and is increasing. Therefore Ξ(u) crosses Ψ(u)
from below which implies that the slope of Ξ(u) is steeper than Ψ(u) at
their intersection, Ξ′(u∗) > Ψ′(u∗).

Introduction, or an increase, of lump sum taxes, T , would shift the Ψ(u)
curve and increase the optimal retirement age, i.e. du∗/dT > 0. This is
important to the thesis topic, as it demonstrates a way the fiscal policy
can alter the optimal retirement age of agents without mandating the age
itself. The increase in lump sum taxes was discussed within the context
of increased government debt in chapter 4. In figure 6.3 possible Ξ(u) and
Ψ(u) are illustrated graphically over the agent’s working life.
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Analysis of lowering the hazard rate to simulate increased longevity is
relevant this extension. Equation (6.54) demonstrates that a drop in β would
shift the Ξ(u) curve upwards as wages are discounted less intensely. However
a drop in β would shift the Ψ(u) curve upwards as well, this can be seen in
equation (6.55). The drop in the hazard rate would increase value of Ψ(u)
in the limit where age approaches infinity, this effect can be seen in the fist
line of equation (6.57). This leads does not lead to a clear effect of increased
longevity on the retirement age. A more precise relation between the hazard
rate an optimal retirement age can be found by assuming a precise path for
wages.

Considering a special case where wages are age-independent and zero
lump sum taxes we get that π(u) = 0 and that wage itself does not effect
the retirement decision. This is represented in figure 6.2 as an agent who
ascends along the dashed line as he ages. In this special case the only thing
that affects retirement decisions are the agent’s initial position on the dashed
line and the speed at which the agent moves along the dashed line towards
point B.

In the book Foundations of Modern Macroeconomics, 2nd edition, by
Ben J. Heijdra (2009) a calibration of this model was undertaken, based on
data obtained about the Finnish labor market. u = 0 corresponded to an
individual aged 21 as it was assumed that individuals enter the workforce
at that age. Values for specific parameters were chosen as follows, rw =
0.06, ρ = 0.045, β = 1/62, εC = 0.25. The value for β implies a life
expectancy at birth of 83 years.

From the Finnish data it was observed that the optimal labor supply
over the lifetime follows a hump shaped path, similar to the hump shaped
wage path. Labor supply reaches its peak at û = 15.5 or at the biological
age of 36.5 years. As the wage grows sharply during youth the labor supply
grows as well. The labor supply reaches its peak at an higher age than the
wage rate does. The optimal retirement age, as found by the intersection
of the Ξ(u) and Ψ(u) curves was found to be at the biological age of 66.6
years.

Over the lifetime the agent consumption grows at an exponential rate.
At the time of retirement an agent meets his expenditure with existing
wealth.The consumption is lower if the non-negativity labor supply con-
straint is relaxed because the agent then demands labor (buys leisure) in
retirement. The young agent who anticipates higher wages in future bor-
rows financial assets which he pays back at a later date when wages are
higher.
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Chapter 7

Concluding Remarks

The analysis presented in the thesis investigates the implications of increased
longevity on an open and closed economy. It is based on the Blanchard-Yaari
macroeconomic model with selected extensions. The model is not a perfect
representation of reality as it does not incorporate all relevant factors of
reality into the analysis. However it can be used as an important tool in
obtaining a fairly clear view on the main elements of the subject

The analysis commenced by studying individuals. Individuals naturally
face an uncertainty about their time of death and accordingly are forced
to hold a portfolio of buffer assets to ensure positive wealth at death. The
necessity of holding such buffer assets hinders optimal wealth allocation. By
introducing life-insurance, in the form of actuarial notes, an individual can
allocate assets optimally. The rate of the actuarial notes depends on the
instantaneous death probability, or hazard rate, of the individual. Increased
longevity implies that the death probability decreases, which in turn im-
plies that the rate on the actuarial notes decreases. Furthermore, increased
longevity would increase consumption growth because the higher probability
of being able to enjoy the benefits from increased saving.

Blanchard’s additions to the model assumed a homogeneous population
where each individual faces the same instantaneous probability of death.
This assumption allows for aggregation and analysis at the macroeconomic
level. The analysis is performed by the help of a phase diagram which
illustrates dynamic changes in consumption and capital stock. Two main
cases where examined, an open economy case and a closed economy case.1

1The main difference between an open and closed economy is that in a closed economy
the amount of capital stock affects the interest rate. The interest rate in turn affects
the consumption path chosen by individuals. In an open economy the interest rate is
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The conclusion of the fiscal policy analysis is that through an increase
in government spending, financed by contemporaneous taxation, both con-
sumption and capital stock would diminish. Furthermore, a permanent in-
crease in government debt would further influence the capital stock and
consumption. This is caused by a change in the savings rate of individu-
als. The effectiveness of such a policy is dependent on the hazard rate and
time preference of the homogeneous population. A fiscal policy can affect
the capital stock and consumption composition in a variety of ways. This
implies that if inefficiency arises as a result of increased longevity a specific
fiscal policy could influence the economy in beneficial ways.

Increased longevity is simulated in the model by lowering the hazard
rate. This results in individuals being less likely to die at any point in
time, which makes savings more attractive. In a closed economy increased
longevity results in an increase in capital stock and consumption. In an
open economy the effect of increased longevity is dependent on whether
or not the population is relatively patient or not. In a relatively patient
population the increased longevity leads to similar results as in the closed
economy case. For a relatively impatient population the increased longevity,
however, causes a drop in consumption and the stock of assets.

A change in life expectancy is generally gradual. In most cases it follows
the country’s development. This implies that the results from anticipated
gradual changes in hazard rate are most representative of the real world.
However, an unanticipated negative shock to life expectancy of agents can
be realistic in specific isolated cases, such as war, famine or natural disasters.
Even a positive shock to life expectancy can be representative of the real
world. An example of this is an unanticipated scientific breakthrough in
medicine.

Within the context of the Blanchard-Yaari model birth and death rates
are both determined by the hazard rate. To isolate the effects of increased
longevity from the effects of decreased birth rate an extension of the model
was made. A decreased death rate resulted in an increase in the capital
stock but the effects on consumption were ambiguous. A correlation be-
tween death- and birth rates can be argued on the grounds that if parents
expect more children to reach adulthood they are less inclined to have many
children. The model ignores any relationship between parents and offspring.

To simulate saving for retirement individuals were assumed to have age
dependent productivity. As individuals get older their productivity and
wages would drop. To smooth out lifetime consumption individuals in-

exogenous and is not affected by the amount of domestic capital stock.
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creased savings while young. This resulted in increased consumption and
capital stock at the macroeconomic level. However if the drop in productiv-
ity was rapid enough inefficient amounts of consumption and capital could
be obtained. At any rate, an appropriate fiscal policy could correct ineffi-
ciencies obtained by diminishing productivity.

To understand the effects of leisure and life-cycle labor supply another
extension was made to the Blanchard-Yaari model. Leisure was introduced
into the lifetime utility function. Individuals were found to increase their
recreational activities steadily with age until they reach retirement. To fur-
ther the analysis individuals were characterized as having increasing produc-
tivity while young and decreasing productivity in latter part of their working
life. Based on this an optimal retirement age was determined. Importantly
an increase in lump sum taxes would result in increased retirement age.
This provides the government with yet another tool to react to increased
longevity.

Future research could futher examine the fiscal policy implications of
increased longevity. Implications of a higher retirement age, provided that
the working population is active, can be examined with special focus on the
returns from education. Pension reforms could also be researched and the
sustainability of pay-as-you-go pensions schemes in face of changing demo-
graphic structures. Future research could also analyze the effects increased
longevity has on the median voter and democratic results in general.
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