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Abstract

Department of Economics

Copenhagen Business School

Master of Science in Advanced Economics and Finance

by Jonas Cumselius & Anton Magnusson

In this thesis, we analyze the forecasting performance of three versions of the Dynamic

Nelson-Siegel (DNS) model derived by Diebold and Li (2006), applied to LIBOR rates

during the time period between January 2003 and March 2015. Our objective is to

determine if it would be suitable to use the DNS model to forecast LIBOR rates for the

Counterparty Credit Risk (CCR) measurement.

The first version represents the standard DNS AR(1) model with a fixed decay parameter

(λ), where lambda governs the speed of decay for the other model factors. Small values

of lambda results in a better fit at longer horizons and vice versa. Our second DNS

model also has the same AR(1) factor dynamics, but with a time dependent decay

parameter, i.e., (λ) varies over time. Lastly, we have a DNS model with VAR(1) factor

dynamics. We compare the results of these estimates to those from benchmark models,

including the random walk model, simple AR(1) and VAR(1) models, AR(1) on three

principal components, and a slope regression model. Before assessing the forecasting

ability we also analyse the in-sample fit and find that the DNS models show good in-

sample results. The forecasting section involves out-of-sample forecasts, distribution

forecasts, and backtesting of the DNS model.

First, by letting lambda vary over time in the DNS model we are able to produce

slightly better out-of-sample forecasting results than the traditional DNS model with

fixed lambda. However, our overall findings indicate that none of our DNS models

are able to keep up with the forecasting performance of the random walk model or the

simple AR(1) model. Thus, we can conclude that from our analysis there is no convincing

advantage in using the more advanced and complicated Dynamic Nelson-Siegel model

over a simple AR(1) or random walk model. Finally, our backtesting results support

our findings of the overall poor forecasting ability of the DNS model, and indicate that

further studies need to be conducted to develop a forecasting model suitable to include

in CCR measurement.

http://www.cbs.dk
http://www.cbs.dk
http://www.cbs.dk
antmag@gmail.com


Acknowledgements

The following people have contributed to the final product of this masters thesis. David

Skovmand our supervisor at CBS for continuously challenging us throughout this pro-

cess. Damien Bright at Nordea, Group Counterparty Credit Risk, for helpful guidance

in the field of Counterparty Credit Risk, and providing us with a data set with endless

opportunities. Our families for all the love. Finally, of course our girlfriends for putting

up with us during, and hopefully after our time at CBS. To all of you, thank you!

ii



Contents

Acknowledgements ii

List of Figures v

List of Tables vi

1 Introduction 1

2 Literature Review 6

2.1 Why use factor models for yield curve modeling? . . . . . . . . . . . . . . 7

2.2 Term Structure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Yield Curve Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Relation to Counterparty Credit Risk measure . . . . . . . . . . . . . . . 14

3 Interest Rate Theory 19

3.1 The Money Market Account . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 The stochastic discount factor . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 The zero coupon bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Time to maturity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 The Day Count Convention and The Compounding Types . . . . . . . . . 21

3.5.1 The day count convention . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.2 Compounding Types . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Yield curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7 Forward rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7.1 Instantaneous Forward Interest Rate . . . . . . . . . . . . . . . . . 24

3.8 Arbitrage Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.9 Risk Neutral valuation Formula . . . . . . . . . . . . . . . . . . . . . . . . 32

4 The Nelson-Siegel Models 33

4.1 The Static Nelson-Siegel Model . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Dynamic Nelson-Siegel Model (DNS) . . . . . . . . . . . . . . . . . . . . . 35

4.3 Dynamic Nelson-Siegel Svensson model (DNSS) . . . . . . . . . . . . . . . 39

4.4 Constant versus time dependent lambda . . . . . . . . . . . . . . . . . . . 40

4.5 Why are the Nelson-Siegel models not arbitrage-free? . . . . . . . . . . . . 41

5 Data and Estimation 44

5.1 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iii



Contents iv

5.2 Fitting the DNS model with fixed lambda . . . . . . . . . . . . . . . . . . 49

5.3 Fitting the DNS model with time dependent lambda . . . . . . . . . . . . 51

5.4 Fitting the Dynamic Nelson-Siegel-Svensson model . . . . . . . . . . . . . 55

6 Forecasting 61

6.1 Forecasting yield curve level, slope and curvature . . . . . . . . . . . . . . 61

6.1.1 DNS model forecasting specifications . . . . . . . . . . . . . . . . . 62

6.2 Benchmark competitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2.1 Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.2 Slope regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.3 AR(1) on yield levels . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.4 VAR(1) on yield levels . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.5 Regression on 3 AR(1) principal components . . . . . . . . . . . . 65

6.3 Out-of-sample Forecasting Performance . . . . . . . . . . . . . . . . . . . 67

6.4 Discussion of Forecasting Results . . . . . . . . . . . . . . . . . . . . . . . 73

6.4.1 Possible reasons for poor forecasting performance of DNS models . 75

7 Backtesting 77

7.1 Backtesting for the CCR Measurement . . . . . . . . . . . . . . . . . . . . 77

7.1.1 Key Backtest Terminology . . . . . . . . . . . . . . . . . . . . . . . 78

7.1.2 Backtesting Methodology . . . . . . . . . . . . . . . . . . . . . . . 80

7.1.3 Backtest success criteria . . . . . . . . . . . . . . . . . . . . . . . . 82

7.1.4 Backtesting Setup: . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2 Backtesting results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8 Concluding Remarks 90

8.1 Limitations and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A Proposition AFNS-adjustment. 94

Bibliography 97



List of Figures

1.1 Historical shock decomposition, 2007Q1–2012Q4 . . . . . . . . . . . . . . 2

4.1 Factor loadings Nelson-Siegel Model . . . . . . . . . . . . . . . . . . . . . 37

5.1 Median Yield for LIBOR USD and DKK along with 25th and 75th per-
centiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Selected fitted yield curves. DNS fitted yield curves (DKK) for selected
dates, together with actual yields . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Selected fitted yield curves. DNS fitted yield curves (USD) for selected
dates, together with actual yields . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Model-based level factor vs. empirical level factor . . . . . . . . . . . . . . 54

5.5 Model-based slope factor vs. empirical slope factor . . . . . . . . . . . . . 54

5.6 Model-based curvature factor vs. empirical curvature factor . . . . . . . . 54

5.7 Selected fitted yield curves. DNSS fitted yield curves (USD) for selected
dates, together with actual yields . . . . . . . . . . . . . . . . . . . . . . . 57

5.8 Selected fitted yield curves. DNSS fitted yield curves (DKK) for selected
dates, together with actual yields . . . . . . . . . . . . . . . . . . . . . . . 58

5.9 Model-based level factor vs. empirical level factor . . . . . . . . . . . . . . 58

5.10 Model-based slope factor vs. empirical slope factor . . . . . . . . . . . . . 59

5.11 Model-based curvature factor vs. empirical curvature factor . . . . . . . . 59

5.12 Model-based curvature no2 factor vs. 10-year yield . . . . . . . . . . . . . 59

6.1 USD LIBOR 1 year . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.1 Probability Density Functions of USD LIBOR forecasts for different ma-
turities and horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2 Backtest of 3 month USD LIBOR at different forecasting horizons. . . . . 85

7.3 Backtest of 1 month LIBOR at different forecasting horizons. . . . . . . . 86

7.4 Backtest of 5 year LIBOR at different forecasting horizons. . . . . . . . . 86

7.5 Backtest of 10 year LIBOR at different forecasting horizons. . . . . . . . . 87

7.6 Forecasts confidence levels versus realized USD LIBOR 10 year, 7th July
2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.7 Forecast confidence levels versus realized USD LIBOR 10 year, 27th Novem-
ber 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.8 Forecasts confidence levels versus realized USD LIBOR 10 year, 17th
September 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

v



List of Tables

5.1 Descriptive statistics for LIBOR yield for all currencies at a maturity of
24 months . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Descriptive statistics for LIBOR yield for USD . . . . . . . . . . . . . . . 47

5.3 Descriptive statistics for LIBOR yield for DKK . . . . . . . . . . . . . . . 48

5.4 Descriptive statistics for DKK LIBOR yield curve residuals using λ =
0.0598. Jan, 2003 to March, 2015 . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 Descriptive statistics for USD LIBOR yield curve residuals using λ =
0.0598. Jan, 2003 to March, 2015 . . . . . . . . . . . . . . . . . . . . . . . 50

5.6 Descriptive statistics for DKK LIBOR yield curve residuals DNS opt λ,
Jan, 2003 to March, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.7 Descriptive statistics for USD LIBOR yield curve residuals DNS opt λ,
Jan, 2003 to March, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.8 Descriptive statistics for estimated factors . . . . . . . . . . . . . . . . . . 55

5.9 Descriptive statistics for DKK LIBOR yield curve residuals, DNSS, Jan,
2003 to March, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.10 Descriptive statistics for USD LIBOR yield curve residuals, DNSS, Jan,
2003 to March, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.11 Descriptive statistics for estimated factors . . . . . . . . . . . . . . . . . . 60

6.1 Out-of-sample 1-month-ahead forecasting for USD LIBOR yield curve . . 67

6.2 Out-of-sample 6-month-ahead forecasting for USD LIBOR yield curve . . 69

6.3 Out-of-sample 12-month-ahead forecasting for USD LIBOR yield curve . . 71

7.1 Backtesting result 3 month USD LIBOR . . . . . . . . . . . . . . . . . . . 87

7.2 Backtesting result 1 year USD LIBOR . . . . . . . . . . . . . . . . . . . . 87

7.3 Backtesting result 5 year USD LIBOR . . . . . . . . . . . . . . . . . . . . 88

7.4 Backtesting result 10 year USD LIBOR . . . . . . . . . . . . . . . . . . . 88

vi



Chapter 1

Introduction

Counterparty Credit Risk (CCR) is the credit risk related to counterparties trading over-

the-counter (OTC) derivatives. In other words, CCR is the risk that the counterparty

to a financial contract will default prior to the expiration of the contract so that credit

losses may occur. Thus, with CCR the cause of economic loss is tied to the default (i.e.,

the health) of the obligor. In addition to traditional forms of credit risk, counterparty

risk deals with the uncertainty of exposure as well as the bilateral nature of credit risk

(Zhu and Pykhtin (2008)).

Today, the LIBOR-OIS spread is considered by many economists to be a key measure of

economic health in the banking sector and an important metric for measuring CCR. It

tells us a story of both risk and liquidity in the interbank money market; an indication

of the relative health. An increase in the spread, often meaning that LIBOR is high,

indicates a decreased willingness to lend by major banks, while a tapered spread is

interpreted as an indication of higher liquidity in the market. The LIBOR rate reflects

riskiness as it measures the premium demanded by a lending bank for providing an

unsecured loan to another bank. On the other hand, the OIS is considered stable as both

counterparties only swap fixed for floating interest rate payments. Thus, the LIBOR–

OIS spread can be seen as a measure of the creditworthiness of financial institutions,

reflecting counterparty risk premiums (Sengupta and Tam (2008)).

Up until the recent financial crisis of 2007-2008, the LIBOR–OIS spread did not get

much attention. Historically, the difference between these two important interest rates

has hovered around 10 basis points. However, as seen in Figure 1.1 the spread spiked

to an all-time high level in mid 2008, and reached similar heights around 2012 at the

height of the crisis in the Eurozone. Post-crisis, the spread has gradually stabilised, but

it is still higher then the pre-crisis level. Notably, both LIBOR and OIS rates are now

considerably below the pre-crisis level.

1
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Figure 1.1: Historical shock decomposition, 2007Q1–2012Q4

Note: The figure above represent the LIBOR–OIS spread shown in percentage over the time period
between 2003 and 2015.

Studying these trends provide important insights for how we can account for CCR in

valuing derivatives. For many years, the standard practice in the industry was to value

derivatives mark-to-market without taking counterparty credit risk into account. The

LIBOR rate was traditionally used for discounting all cash flows, since it was considered

a proxy for the risk-free rate. After the turbulence around the credit crunch, this practice

has been called into question since the true market value of the derivatives must include

the possibility of losses due to counterparty default (Zhu and Pykhtin (2008)). According

to Hull and White (2013) many banks now suggest that OIS rate is more accurate as the

proxy for the risk-free rate when collateralized portfolios are valued, but still consider

LIBOR to be suitable for valuation when portfolios are non-collateralized.

There are various approaches to account for CCR when valuing derivatives. Zhu and

Pykhtin (2008) focus on two main issues in this area: pricing counterparty risk and

modeling credit exposure. They define credit value adjustment (CVA) as the price of

counterparty credit risk. The basic idea when computing CVA is to take the difference

between the risk-free portfolio value and the true portfolio value that takes into account

the possibility of counterparty default, giving the market value of counterparty credit

risk. In terms of modeling credit exposure, one approach is to visualize uncertain future

exposure through exposure profiles, where these profiles are obtained by simulation of

the underlying risk factors in order to attain a realization of future outcomes. Then, at

each simulation date, certain statistics are given for the future exposure distribution.

One of the main risk factors to consider when performing these applications is predictions

of the term structure of interest rates. The term structure of interest rates, also known
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as the yield curve, represents the relationship between interest rates and the remaining

time to maturity, the so called term. To get an understanding of the credit risk associ-

ated with the banking sector, one has to accurately model and forecast the yield curve.

In order to investigate the dynamics of the yield curve of interest rates, researchers and

practitioners have produced a wide variety of models that can be grouped into big fami-

lies. Typically, there are two common approaches to term structure modeling. First, the

no-arbitrage models that focus on perfectly fitting the term structure to eliminate arbi-

trage opportunities, important for derivatives pricing. Second, the equilibrium models

that model the dynamics of the instantaneous rate, typically using affine models, with

the goal set on deriving yields at other maturities. For discussions of these models,

see, e.g., Hull and White (1990), Heath et al. (1992a), and Dai and Singleton (2000).

Alternatively, there exist more market driven approaches, falling under the LIBOR and

Swap Market models (see, e.g., Brigo and Mercurio (2006)) and the Black-type shadow

rate models, which model interest rates as options (see, e.g., Black (1995)).

In this thesis, we depart from the aforementioned models and instead focus on the

Nelson-Siegel model group; a model group that is widely used by central banks and

industry due to the proven benefits in terms of empirical fit. This is vital since we

aim to use a model that fits well within a realistic market environment. An important

feature of the model is that it has to be able to cope with negative rates. The models of

interest are derived from the Nelson-Siegel (1987) model, and the most commonly used

is the Svensson (1995) extension, which has gained popularity thanks to its ability to

accurately capture the variability of yields. Recent innovations have brought the model

into a world where it can be both arbitrage-free and affine (see, e.g., Christensen et al.

(2009)). However, our main interest lies in forecasting the term structure and therefore

we focus foremost on the Diebold and Li (2006) model approach, a dynamic three-factor

version of the Nelson-Siegel (1987). The motivation is that the Diebold and Li (2006)

model has been shown to provide superior out-of-sample forecasting, especially for a

one-year-ahead horizon. Furthermore, Yu and Zivot (2011) conclude that the Dynamic

Nelson-Siegel model with AR(1) factor dynamics - the Diebold and Li (2006) model

- performs as well as, if not better than, other more complicated forecasting methods

for long-term horizons. We cite this convincing evidence of enhanced empirical fit and

smoothness, and the benefits of simplicity, as justification for focusing on this model.

We build on the the Diebold and Li (2006) framework in order to model and forecast

the term structure of LIBOR rates, for the period 2003–2015, using the Dynamic Nelson

Siegel model (DNS). Thus, we focus on modeling and forecasting a single risk factor,

i.e., the LIBOR rate. The common set up in the literature that employs the DNS model

is to fix the decay rate factor λ, although it might be possible to further improve the

performance of the model by dynamic optimization of this factor in the time series. Small
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values of λ reduces the speed of decay and produces a better fit for longer maturities

while a larger value for λ increases the speed of decay and better fit the curve at shorter

maturities. Thus, it is compelling to suggest that different values for λ should be used,

depending on the maturity. Previous applications fix the decay parameter mostly for

reasons of simplicity. We examine how the DNS model can be extended by dynamically

optimizing this parameter. Furthermore, we introduce the Svensson (1995) extension

through the Dynamic Nelson Siegel Svensson (DNSS) model, and compare how well

the models fit the yields for our time period. Briefly, the Svensson (1995) extension

involves adding a forth parameter to cope with even further variation throughout the

yield curve. From a counterparty risk perspective, we are interested in forecasting the

probability distribution of the interest rates, in contrast to merely predicting the value

at a particular point in time. However, we also focus on the out-of-sample forecasting

performance, compared to other natural benchmark models. To evaluate the quality

of the forecast, we calculate how likely it is that the realized values come from the

distribution predicted by the model, so called backtesting.

Most of the studies using the Nelson-Siegel models investigate the term structure of

government bond yields and simply evaluate the results in a standard fashion, with-

out further interpreting the performance of the models in an applied sense. Thus, the

main contribution of this thesis is an extension of the current literature by exploring

the interbank money market - relative to solely looking at government bond yields - and

assessing the forecasting ability of our model used to describe the dynamics of the single

risk factors. Further, instead of using the LIBOR and Swap Market models, as in similar

studies by Brigo and Mercurio (2006), we employ the well-studied Nelson-Siegel family;

motivated by the good performance. Furthermore, we contribute by providing a model-

ing and forecasting framework for building a comprehensive Counterparty Credit Risk

model which is suitable for including LIBOR rates, and for evaluating the forecasting

performance of the model.

In short we aim to answer the following questions:

1. Are we able to produce the good empirical fit that the Dynamic Nelson-Siegel

model has become known for?

2. Are we able to improve these fitted yields by using the Svensson (1995) extension,

i.e., the Dynamic Nelson-Siegel-Svensson model?

3. Are we able to improve the forecasted yields by letting lambda vary over time?

4. How does the DNS model perform compared to other natural forecasting competi-

tors?
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5. Are we able to produce a forecasting model for the LIBOR rates that could be

used in a CCR model?

The rest of the thesis is structured as follows. In Chapter 2, we summarize previous

studies in the area of term structure modeling and forecasting. Here we mainly focus

on the evolution of the Nelson-Siegel models and the connection to Counterparty Credit

Risk. In Chapter 3, we lay out the theoretical foundation of interest rate theory in

order to understand the modeling framework, as presented in Chapter 4. In Chapter

5, we proceed to an empirical analysis, describing the data, estimating the models, and

examining the empirical fit of the models. In Chapter 6, we continue by examining

the out-of-sample forecasting performance compared to the natural competitors, and in

Chapter 7 we assess the the adequacy of the model and ability to include it in Coun-

terparty Credit Risk measurement. In Chapter 8, we wrap up this paper by providing

concluding remarks.



Chapter 2

Literature Review

In order to investigate the dynamics of the yield curve researchers and practitioners have

produced an extensive literature with a wide variety of models. Also, when it comes

to the applied use of these models a vast amount of research has been conducted. Our

intention here is not to make an extensive survey covering all term structure models

and applications but rather to understand the evolution of one of the most widely used

models, namely the Nelson-Siegel (1987) model (and its extensions), and in particular

how we can connect the literature to risk factor modeling for Counterparty Credit Risk

(CCR) measurement. The relation to the CCR measure includes certain performance

requirements for the models. To be valuable for CCR measure the model, among other

criteria, has to fulfill the following: Perform well when backtesting on the historical data.

It has to forecast future distributions of zero rates at all tenors and for both short-term

and long-term horizons in a best possible way. Finally, its calibration has to be stable

for the entire framework. We will come back to these backtesting specifications after we

have examined factor analysis and yield curve models.

Diebold and Rudebusch (2012) provide a deep dive into the literature and elaborate on a

particular approach to yield curve modeling and forecasting. They guide the reader from

yield curve basics, introducing the early stages of the Nelson-Siegel model, to the most

recent innovations in the area. Their starting point is the static Nelson-Siegel model,

with a functional form suitable for fitting the cross section of yields. Moving on to the

dynamic Nelson-Siegel model, which allows for time-varying parameters. Further they

lead the reader to Arbitrage-Free Nelson-Siegel models, which, as the name suggests,

enforce the theoretically desirable property of absence of risk-less arbitrage. Finally,

they introduce the Dynamic Nelson-Siegel-Svensson model as well as the Arbitrage-Free

Generalized Nelson-Siegel model. An interesting question to be answered is of course

why one should use a model of the Nelson-Siegel family in the first place. Diebold and

6
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Rudebusch (2012) also highlight some other intriguing questions throughout their book,

e.g. ”Why use factor models for yields?” and ”Is the imposition of ”No-Arbitrage”

useful?”. These questions are central points in the literature of yield curve modeling.

Thus, the guiding answers will provide useful introduction to the area.

2.1 Why use factor models for yield curve modeling?

At any point in time a large number of yields at different maturities may be observed.

But yield curves also evolve dynamically over time. This means that we have cross-

sectional and temporal variability, hence, we have a three-dimensional playground. For

a large set of yields the high-dimensionality becomes rather complex. So, we want a

model that is able to cope with the complexity of high dimensionality. What’s more,

in order to make any sense of the data one would like to simplify as much as possible

without taking away the ability to capture the variability in the data. Instead of using,

for example, unrestricted vector autoregressions - which may be over-parametrized, and

wasteful of degrees of freedom - it has been realized that yields typically conform to a

certain type of restricted vector autoregression, built on factor structure (Diebold and

Rudebusch (2012)). The factor structure is known for its feature of being effective where

high-dimensional objects are driven by an underlying lower-dimensional set of objects,

namely the factors, providing us with a tool to understand the complex set of large

observations like bond yields or interest rates, which typically display low-dimensional

factor structure. Falsely assuming the data follows factor structure would of course yield

a misspecified model.

Factor structure is seen in a broad range of economic research, from financial markets

and financial economic theory to macroeconomic fundamentals and macroeconomic the-

ory. Particularly, the factor structure does a good job when picturing the term structure

of yields, as we are to show in this paper (and as has been shown by previous research).

Early studies tracing back to, e.g., Macaulay (1938) adopted a single-factor view of only

describing the long rate or the level of interest rates. However, having a single fac-

tor describing the term structure clearly limits the ability of capturing the underlying

dynamics. It is obvious that more than just one common factor is needed for interest-

ing analysis, and that is why modern empirical term structure models involve multiple

factors.

It is said that merely three factors, or the first three principal components, are everything

that is needed to explain most yield variation. In general, the purpose of principal com-

ponent analysis (PCA) is to compress the data into a few main components to facilitate

data analysis. Jolliffe (2002) explains the main idea as to reduce the dimensionality of a
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data set comprised of a large number of interrelated variables, while retaining as much

as possible of the variation present in the data set. A new set of uncorrelated variables,

these being the principal components (PCs), are constructed by linear combinations of

the original variables. The new factors are then ordered so that the first PC accounts

for the largest variability in the data, and each succeeding component with the highest

variance possible conditional on being orthogonal to the preceding components. Since

the components are equivalent to the eigenvectors of the symmetric covariance matrix,

the components are also orthogonal to each other.

In terms of the individual factors, Litterman and Scheinkman (1991) and many others

in the literature suggest an interpretation of the first three PCs as level, slope and

curvature, respectively. The first PC corresponding to the level is to be seen as the

general rise or fall of the yield curve, which is relatively flat. The second PC, which

is known as the slope, usually captures situations where the short end moves up while

the long end moves down, or vice versa, so that we see opposite signs at both ends of

the maturity spectrum. The third PC is often interpreted as the curvature of the yield

curve, which is due to both the short and long end of the yield curve moving in the same

direction but some region in the middle moving the opposite way. Thus, we have the

same sign at both ends of the maturity spectrum but the opposite sign somewhere in

the middle. Lord and Pelsser (2007) mathematically investigates whether the common

interpretation of the first three PCs as level, slope and curvature are fact or artefact.

They define the observed pattern by stating that if the first three factors or eigenvectors

have, in order, zero, one and two sign changes, the corresponding matrix displays level,

slope and curvature. Using generalisations of theorems from the mathematical study

of total positivity, they find sufficient conditions under which level, slope and curvature

are present.

Empirical observations by Joslin et al. (2014) tell us that in most developed countries

the cross-correlations of bond yields can be well described by a low-dimensional factor

model. They note that often three or four factors explain nearly all of the cross-sectional

variation in yields, seen for a wide range of maturities. Diebold and Rudebusch (2012)

show that close to a 100% of the variation in US government bond yields (January 1985

to December 2008) can be explained by the first three principal components. For their

data set, the first PC varies the most, but it is at the same time the most predictable of

the three, due to high persistence. Diebold and Rudebusch (2012) relate the reduction

of the first factor to the reduction of the inflation over the period, relative to the high

level in the beginning of the 80s. The second factor follows business cycle movements

and is less variable, fairly persistent and predictable, but less so than the first factor.

The third PC shows the least variability, persistence, and predictability among the

three. Furthermore, by plotting these three PC factors against standard empirical yield
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measures, they show that the PC factors respectively coincide with the standardized

measures of level, slope, and curvature (10Y yield, 10Y−6M spread, a 6M+10Y−2×5Y

”butterfly spread”, respectively), as suggested by the literature. Interesting to note that

the factor’s relation to business cycle movements and inflation rate imply that they are

likely to have specific macroeconomic determinants, an area which has not yet been

widely explored.

Diebold and Rudebusch (2012) state three key reasons for why dynamic factor models are

commonly used: First of all, the factor structure are able to give an accurate empirical

description of yield curve data. Nearly all information of the underlying dynamics can

be summarized with only three or a few factors. Thus, yield curve models are usually

structured by a small number of factors along with their associated factor loadings,

relating yields of different maturities to those factors.

Second, from a statistical point of view factor models are very appealing since they

provide valuable compression of information. By effectively reducing the dimensionality

it provides a low-dimensional modeling environment which is more manageable to work

with, allowing us to focus only on how the factors evolve through time. Consistent with

the ”parsimony principle”, using restricted simple models (with only a few parameters

or factors) often prevents a lot of data mining and helps to produce good out-of-sample

forecasts, even in the case of false restrictions that may degrade in-sample fit. A more

complex model (e.g., an unrestricted vector autoregression) might enhance the in-sample

fit, but at the cost of reducing the value the out-of-sample forecasting due to the large

number of estimated coefficients.

The final reason relates to financial economic theory and the use of factor structure.

Although thousands of financial assets are seen in the markets, the interesting part is

the risk premiums separating their expected returns, which are driven by a small number

of components, i.e., risk factors. As an example, Diebold and Rudebusch (2012) relate

to the capital asset pricing model (CAPM), a single-factor model frequently used in the

equity sphere. Even extensions of the model, e.g. Fama and French (1992) that adds a

few factors, seldom exceed five factors due to dimensional reasons. Yield curve factor

models are thus said to be the bond market counterpart.

2.2 Term Structure Models

The original Nelson-Siegel model was first introduced by Nelson and Siegel in 1987 and

belongs to the group of exponential affine three-factor term structure models. These

type of models focus more on empirical fit than theoretical rigorousness. Typically,
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there are two common approaches to term structure modeling. The no-arbitrage models

that focus on fitting the term structure in order to rule out any existence of arbitrage

possibilities, an important characteristic for derivatives pricing. And the equilibrium

models trying to model the dynamics of the instantaneous rate, typically using affine

models. Under various assumption of the risk premia, the instantaneous rate is then

used to derive yields at other maturities (Diebold and Li, 2006). For papers contributing

to the affine equilibrium models see, e.g., Vasicek (1977), Cox et al. (1985), and Duffie

and Kan (1996). And for papers contributing to the no-arbitrage models see, e.g., Hull

and White (1990), and Heath et al. (1992a).

Some appealing features of the Nelson-Siegel model have made it very popular for curve

fitting in practice, especially among financial market practitioners and central banks

(Diebold and Rudebusch, 2012). The first desirable feature is that the model enforces

some basic constraints from financial theory, e.g. the zero-coupon Nelson-Siegel curve

satisfies

lim
τ→0

y (τ) = f (0) = r,

the instantaneous short rate, and limτ→∞y (τ) = β1, a constant. Second, the Nelson-

Siegel form provides a parsimonious, yet flexible approximation. Parsimony in this sense

means the use of few parameters, which promotes smoothness (yields tend to be smooth

functions of maturity), protecting the model against in-sample overfitting, a valuable

feature for good forecasting. Also, it promotes estimations that are empirically tractable

and trustworthy. Since the yield curve take on a variety of shapes at different times a

flexible approximation is desirable. The shape of the curve depends on the values of four

parameters only. Third, from a mathematical perspective the model form takes on the

approximation-friendly Laguerre structure: the yield curve is a constant plus a Laguerre

function. Laguerre functions or Laguerre polynomials are polynomials multiplied by

exponential decay terms. They are solutions to Laguerre’s differential equation:

xy
′′

+ (1− x)y
′
+ λy = 0,

which is a second-order linear differential equation. These Laguerre polynomials are

conventional approximating functions on the domain zero to infinity, which is suitable

for approximations of the term structure.1

Theoretically, the Nelson-Siegel model does not rule out arbitrage opportunities, but in

practice it has shown robust performance. Coroneo et al. (2011) use a non-parametric

re-sampling technique on zero-coupon yield data from the US market to show that

the Nelson-Siegel model is arbitrage free in a statistical sense. They find that, at a

1For deeper knowledge of Laguerre functions, see Abramowitz and Stegun (1964).
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95 percent confidence level, there is no statistical difference between the Nelson-Siegel

parameters and the no-arbitrage parameters. Still, the model does not have an arbitrage-

free foundation. Some might argue that it is not good enough since we work in deep and

well-organized markets, which are approximately arbitrage-free, and thus need models

that impose this restriction. Diebold and Rudebusch (2012) argue that the imposition

of no-arbitrage would have little effect if the model provides an almost exact description

of an arbitrage-free reality. Then, the model would be approximately arbitrage-free,

without explicitly imposing the condition of being so.

Further, Diebold and Li (2006) established a dynamic formulation of the classic Nelson-

Siegel model, the Dynamic Nelson-Siegel (DNS). It has proven to be favourable, espe-

cially when it comes to out-of-sample forecasting. The dynamic structure allows for

time-varying parameters. The authors show that their model produce encouraging re-

sults when forecasting term structure, especially for long horizons. The 12-month-ahead

forecast shows superior results, while the 1-month-ahead forecast perform almost the

same result as the random walk and other leading forecasting competitors. Also, the

dynamic factor structure of the model made it possible to interpret the three factor load-

ings as level, slope and curvature; long-term, short-term, and medium-term respectively.

The characteristics of each factor is further explained in Chapter 4. The Diebold and

Li (2006) specification of the model is not arbitrage-free. Instead they focus on good

forecasting abilities and easier interpretation. Although it is not obvious how extensions

to an arbitrage-free framework would affect forecasting performance, Diebold (2008)

suggest that parsimonious models are often better for out-of-sample forecasting. Duffee

(2002) argue that the no-arbitrage characteristic alone may not provide for good fore-

casting abilities, and that a well specified model is also an important factor. For further

elaboration of the trade-off between forecasting performance and freedom of arbitrage

see, e.g., Dai and Singleton (2002).

Extensions of the three factor Nelson-Siegel model have been made in order to improve

the empirical fit of yield curves. The Svensson (1995) extension is widely used by

both industry and central banks. By adding a second curvature factor it allows for

a better fit even at longer maturities, which is useful for a more accurate fit of the

whole maturity spectrum of yields. This is also discussed in, e.g., Svensson (1995),

BIS (2005), Gürkaynak et al. (2007), and Nyholm (2008). However, not even this

popular extension enforce a consistent arbitrage-free environment over time. Therefore,

recent innovations in this space have attacked this problem. Christensen et al. (2007)

first introduce the affine arbitrage-free class of the Nelson-Siegel term structure models,

without incorporating the Svensson extension. In order to obtain an arbitrage-free

approximation of the Svensson extended Neslon-Siegel model, Christensen et al. (2009)

add an additional slope factor to pair with the the second curvature factor. Thus,
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they provide a five-factor arbitrage-free generalized Nelson-Siegel (AFGNS) model. The

authors show that the AFGNS model displays theoretical consistency and good in-

sample fit. However, it does not provide us with any forecasting improvements. This

comes back to the trade-off between the theoretical rigorous no-arbitrage consistency

and forecasting performance.

2.3 Yield Curve Forecasting

As discussed by Diebold and Li (2006), little attention has been paid to the key practical

problems of yield curve forecasting, although there has recently been powerful theoretical

advances in yield curve modeling. The no-arbitrage model literature is mainly concerned

with fitting the term structure at a point in time and thus gives us limited information

about the dynamics of the yield curve or forecasting. The affine equilibrium model

literature on the other hand is mainly concerned with the dynamics driven by the short

rate, which could be linked to forecasting. However, most focus only on historical in-

sample fit as opposed to out of-sample forecasting. Moreover, as noted by Duffee (2002),

those who actually do focus on out-of-sample forecasting achieve poor results.

Diebold and Li (2006) provide relatively short-term out-of-sample forecasts (longest hori-

zon being 12-month-ahead forecasts) compared to a more recent paper by Yu and Zivot

(2011), that focus on long-term (as far as 60-month-ahead) forecasts of Treasury bonds

and corporate yields. Yu and Zivot (2011) compare different forecasting approaches and

their findings suggest that the one-step approach (i.e. state space approach) state is

not necessarily better than the simple two-step dynamic Nelson-Siegel with the AR(1)

model, which is the main model in Diebold and Rudebusch (2012).

As reported by Diebold and Li (2006) their DNS out-of-sample forecasting results im-

prove considerably as the forecast horizon lengthens. Going from 1-month-ahead to

6-month-ahead improves the results moderately, but stretching out to 12-month-ahead

retrieves results that outperform those of all the compared methods for all maturities

included. When compared to the random walk or ”no change” forecast explicitly, it

does not come as a big surprise that random walk is not outperformed by DNS for the

shortest forecast horizon Diebold and Rudebusch (2012). For the 1-month-ahead horizon

the yield factor mean reversion captured by DNS may not have sufficient time to oper-

ate, whilst the random walk fails to capture the mean reversion in yield factors for the

longer horizons. According to Diebold and Rudebusch (2012) the relative performance

of DNS is often optimized at 6- to 12-month horizons. However, it might be interesting

to examine how the model performs when further lengthen the forecast horizon to 18-

to 26-month horizons.
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In addition to versions of the Nelson-Siegel model, and often as a comparison, principal

component analysis (PCA) is frequently used to depict yield curve behavior and decom-

position. Litterman and Scheinkman (1991) apply PCA in order to explain US treasury

bond returns in terms of the three factors; level, slope and curvature, similar to the

factorization by Diebold and Li (2006). Knez, Litterman, and Scheinkman (1994) ex-

tend the three-factor model and provide a four-factor model by observing money market

returns. They argue that the additional factor is related to private issuer credit spread.

Further, Duffie and Singleton (1997) argue that the no-arbitrage and equilibrium term

structure models are not applicable to the swap market since the swap contracts include

default risk. Instead they propose a multi-factor model for interest rate swaps incor-

poration both credit ant liquidity risk. Furthermore, Blaskowitz and Herwartz (2009)

provide a term structure decomposition of the EURIBOR swap by PCA and AR models

for adaptive forecasting. They find that these models produce superior results in terms

of directional accuracy and forecast value when compared to the benchmark models.

Diebold and Li (2006) report that although their approach may have a close relation

to direct principal components regression, yet the approach and especially the results

are not identical. Moreover, they state that there is reason to prefer the Diebold and

Li (2006) approach both from an empirical and a theoretical perspective. Empirically,

the results indicate that the forecasting performance on the specific sample of yields is

superior. And theoretically, they argue that methods including regression on principal

components regression often have the following unappealing features:

• cannot be used to produce yields at maturities other than those in the sample,

• do not guarantee a smooth yield curve and forward curve,

• do not guarantee positive forward rates at all horizons,

• do not guarantee that the discount function starts at 1 and approaches 0 as ma-

turity approaches infinity.

Predictive ability of interest rate term structure models is a fundamental concern in

economics. There are three main types of interest rate forecasting: point, interval and

density forecasting. Diebold and Lopez (1996) reveal that during the last decades most

attention has been paid to evaluating point forecasts, crucial for bond portfolio man-

agement. While little attention has been given to the evaluation of density forecasts,

important for both derivatives pricing and financial risk management. Density forecast-

ing provides an estimate of the probability distribution of future values of the variable of

interest. Thus, it provides a detailed description of the uncertainty associated with the

predicted values. As opposed to point forecasting, which by itself gives only a specific
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value at a future point in time (Tay and Wallis (2000)). According to Diebold et al.

(1998) density forecasting is increasingly more important for evaluating future scenarios.

The authors develop a simple and operational framework for density forecast evaluation.

They illustrate the framework with a detailed application to density forecasting of asset

returns in environments with time-varying volatility. Historically, analysis of density

forecasts has required restrictive assumptions and computationally intensive techniques.

However, improvements in computer technology and an increasing demand for density

forecasting have brought attention to the area and made it possible to conduct improved

density forecasts.

Tay and Wallis (2000) explains density forecasting as being implicit in the standard

construction and interpretation of a symmetric prediction interval around the point

forecast. Usually the interval is constructed with one or two standard errors, and the

corresponding probability of 68% or 95% respectively rests on the distributional assump-

tion: normal or Gaussian. In some cases the Student’s t-distribution is also used. Bear

in mind that in those cases the forecast errors have to be estimated, usually computed

with models resting on normality assumptions. Therefore it is suggested to test for

normality. Such tests typically rely on third and fourth moments, rejecting the null hy-

pothesis of normality if there is significant skewness and/or excess kurtosis. As noted by

Tay and Wallis (2000) many empirical studies have found non-normal higher moments

in the (unconditional) distributions of stock returns, interest rates, and other financial

data series.

2.4 Relation to Counterparty Credit Risk measure

Applications of density forecasting is seen both in macroeconomics and microeconomics,

especially within the field of finance. According to Tay and Wallis (2000) density fore-

casting in finance derives from the literature that aims to model and forecast volatility,

e.g. ARCH and GARCH models. Since we are dealing with uncertainty around the

predicted values it is closely related to volatility measures. There are several reasons for

an interest in more a complete and accurate probability statement, particularly within

the financial sector, and more so in the area of risk management. In the wake of the

recent financial crisis risk management has developed into an industry, where density

forecasts are regularly being issued. This allows for generating density forecasts of the

change in the value of a particular portfolio over a specified holding period. The special

interest here is usually the nth percentile of the distribution, related to the commonly

known risk measure, Value-at-Risk (VaR), predicting that the portfolio is going to lose

a value greater or equal to its VaR over the holding period with the probability n/100.
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Departures from normality in the portfolio returns will distort the usefulness of VaR

estimates if the assumption of normality is used inappropriately when generating the

forecast (Tay and Wallis (2000)). Important to note here is that VaR is a measure of

market risk as opposed to Counterparty Credit Risk. VAR typically uses 1 day and 10

day forecast horizons whereas CCR risk uses much longer horizons, as long as up until

portfolio maturity.

According to Gregory (2010) the basic strategy for financial institutions in managing

counterparty risk should be based on the following key elements: credit exposure, default

probability, expected loss given default (or equivalently recovery rate). These compo-

nents may be assessed in different ways by separate divisions within an organisation but

at some point they all need to be collected and combined, usually done by a specific

counterparty risk group. When considering the individual weights of the components;

a counterparty with large default probability and small exposure may be considered

preferable to a situation with larger exposure and smaller underlying default proba-

bility. Furthermore, a high level of collateralization and thus a reduced amount of loss

given default may be considered preferable to a less risky counterparty with more limited

arrangements.

Of these elements we are foremost concerned with credit exposure in this paper, and

more specifically with single risk factors, e.g. interest rates, LIBOR rates in our case.

When examining CCR exposure one looks closely at expected positive exposure (EPE),

which is the expected average credit exposure on a future date conditional on positive

market values, as well as potential future exposure (PFE), usually at the 95th confidence

interval. The EE forecast affects the capital requirements (related to IMM model ap-

proval and reported capital numbers such as default risk charge and CVA risk charge ie

as of CRD IV regulations) and the PFE is generally used for trading limits management

(i.e. affects ability of traders to book trades against a counterparty).

Zhu and Pykhtin (2008) offer a framework for modeling credit exposure and pricing coun-

terparty risk. In their article they provide a guide to modeling counterparty credit risk

by highlighting and answering the questions – What are the steps involved in calculating

credit exposure? What are the differences between counterparty and contract-level ex-

posure? How can margin agreements be used to reduce counterparty credit risk? What

is credit value adjustment and how can it be measured? – For modeling credit exposure

they lay our a three-step procedure consisting of Scenario Generation, Instrument Val-

uation, and Portfolio Aggregation. We limit ourselves to a sort of Scenario Generation,

where future market scenarios are simulated for a fixed set of simulation dates using

evolution models of the risk factors. By using term structure models one is able to

forecast future distributions of the yield curve.
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Nowadays, most larger banks and financial institutions have permission to use internal

model methods (IMM) to calculate regulatory capital for their CCR exposure. With

this permission comes a requirement to carry out ongoing validation of CCR exposure

models in order to demonstrate that the models are appropriate. The Basel Committee

on Banking Supervision specify in their guidance paper: ”Sound practices for backtesting

counterparty credit risk models” that the ongoing validation is expected to be able to

identify issues with the models, and also meant to reaffirm that the model assumptions

are not violated, as well as that known limitations are kept appropriate. Backtesting

Counterparty Credit Risk models is becoming increasingly important in the financial

industry. However, there are no clear guidelines by regulators as to how to perform

this backtesting, as opposed to for Market Risk models, for which the Basel Committee

has set a strict set of rules from 1996, that are widely followed. The importance of

backtesting arises from the recent financial crisis, and since then, both the CCR capital

charge and CVA management have become more central to banks.

Backtesting is a vital part of the model validation process and the recent financial crisis

has revealed that additional guidance in this area is required. Furthermore, The Basel

Committee state that implementation of these sound practices most likely will improve

the backtesting of internal models and, as a result, will enhance the elasticity of both

individual banks and the financial system (BIS (2010)). The Basel Committee define

backtesting as:

”Backtesting is part of the quantitative validation of a model that is based on the compar-

ison of forecasts against realized values. Validation is a broader term that encompasses

backtesting, but can be any process by which model performance is assessed.”

As brought up by Ruiz (2012), there are two major areas where backtesting applies.

The first is in the calculation of the Value at Risk (VaR), which later feeds into the

Market Risk capital charge. The second is in the calculation of EPE profiles, that feed

into the Counterparty Credit Risk (CCR) and CVA-VaR charge. As mentioned earlier,

The Basel Committee has stated clear rules as how to perform the VaR backtest, as well

as being clear about the consequences of a negative backtest for financial institutions.

However, since there are only guidelines on how to perform backtesting for CCR models,

financial institutions face a mixture of requirements from different national regulators.

As a consequence this causes some confusion across financial institutions, and as Ruiz

(2012) states, the global financial system is thus exposed to regulatory ”arbitrage” in

this area.

In an attempt to reduce this ”arbitrage” situation Ruiz (2012) propose a methodology in

the context of counterparty risk that can be related to the strict backtesting framework

which is in place for market risk, with the criteria of being: scientifically sound, practical
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and easily used by management. According to Ruiz (2012) the general practice of CCR

model backtest refers to the backtest of the models generating EPE profiles. We can

decompose these models into a number of sub-models: Risk Factor Evolution (RFE)

models for the stress-testing of the underlying factors (e.g., yield curves, FX rates),

pricing models for each derivative, collateral models for secured portfolios, and netting

and aggregation models.

Of these sub-models we focus on RFE models, where we want to stress-test the un-

derlying factors, i.e. yield curves. Furthermore, the RFE models tend to be the most

important driver of the EPE profile, since a 5% change in volatility of a risk factor tends

to have a significant impact of the EPE profile, compared to a limited impact for a 5%

inaccuracy in pricing.

Ruiz (2012) describes the backtesting of a RFE model as comparing the distribution

of the risk factor given by the model over time with the distribution actually seen in

the market. In other words, we want to check how the RFE measure and the observed

”real” measure compare to each other. We are going to expand on this more technically

later on. And in order to assess the performance of the backtest certain criteria must

be set up.

Determining the backtesting performance criteria of IMM models is of major concern

for the banks, since these criteria are a key factor of the backtesting process and should

be re-considered over time. The criteria are necessary in order to determine whether

or not the observed performance is appropriate. However, the Committee itself has

some guidelines on how the criteria are set up and what they must fulfill. For example,

the Committee requires that the forecasting system is reliable BIS (2010). The Basel

Committee define a reliable forecasting system as:

”A reliable forecasting system is one for which events forecast occur with an observed

relative frequency that is consistent with the forecasted values. 2

In other words, backtesting of a risk factor model is reliable if the pth percentile and

the qth percentile of the forecast distribution capture the actual values with the forecast

probability of (q − p). Furthermore, the model must not be calibrated to the observed

performance of the model, instead it should be constructed objectively.

As observed in Kenyon and Stamm (2012) the choice of calibration of the risk factor

model (market implied or historical) influence the assessment of the forecasting ability

of the model used to describe the dynamics of the single risk factors. On the one

hand, market implied calibration should be used for CVA computation, where prices

2BIS (2010) p.8
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are central. On the other hand, forecasts of interest rates which hinge on real world

environment are best suited with historical calibration.



Chapter 3

Interest Rate Theory

Before we dive deeper into the specific models that we will use in the thesis, we want to

introduce the reader to some interest rate theory that we believe is necessary background

knowledge in order to fully understand the methods and terminologies in the proceeding

chapters. This theory overview will if not otherwise stated be based on Kani (2007).

3.1 The Money Market Account

A money market account is a risk-less account which profits accruing continuously at

the risk free rate prevailing in the market at any instant.

Following Kani (2007) we define B(t) to be the value the continuously compounded bank

account at time t ≥ 0. Further assume that B(0) = 1 and that the account follows:

dB(t) = rtB(t)dt , B(0) = 1 (3.1)

Where rt is a positive (can be stochastic) real valued process. Which means that we can

write:

B(t) = exp

 t∫
0

rsds

 (3.2)

By these definitions we know that investing in a unit of currency at time 0 yields at

time t the value given in 3.2 and that rt is the instantaneous rate at which the account

accrues. For a small interval [t, t+ ∆t] we have:

B(t+ ∆t)−B(t)

B(t)
= r(t)∆t (3.3)

19
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Which tells us that the bank account grows at the rate r(t). By this we further know

that the value of a unit of currency payable at time τ is given by B(t)
B(τ) and if r is a

stochastic process then this is called the stochastic discount factor.

3.2 The stochastic discount factor

The stochastic discount factor D(t, τ) is used to relate amounts of money across time.

So the stochastic discount factor is the price of one unit of currency at time t that is

equivalent to one unit of currency at time τ . The stochastic discount factor is given by:

D(t, τ) =
B(t)

B(τ)
= exp

 τ∫
t

rsds

 (3.4)

The stochastic discount factor leads us into the simplest form of bonds, namely the

zero-coupon bond.

3.3 The zero coupon bond

A zero coupon bond is the simplest form of bond since it has no ”coupon” or periodic

interest payment i.e. the investor in a zero coupon bond only receives one payment, at

maturity. This payment is equal to the principal plus the interest earned at a stated yield.

Zero coupon bonds are in practice however not directly observed in the markets. Long

maturities zero coupon bonds are not traded at all, but can be obtained by bootstrapping

coupon bonds. A zero coupon bond with maturity τ is defined as in Kani (2007):

Definition 3.1. A τ maturity zero coupon bond is a contract that guarantees its holder

the payment of one unit of currency at time τ , with no intermediate payments. The

contract value i.e. the price of a zero coupon bond at time t < τ is denoted by P (t, τ)

and P (τ, τ) = 1 ∀ τ and is equal to the present value of the nominal amount:

If we know that the zero-coupon bond is a contract in time t that gives us the present

value of one unit of currency to be paid at time τ and if r is deterministic then D is

deterministic since it only depends on r and hence D(t, τ) = P (t, τ) ∀[t, τ ] and we have

the price of the zero coupon bond. However if r is not deterministic but stochastic then

D(t, τ) will depend on the path of r between t and τ we still however need to know

P (t, τ), therefore we say that P (t, τ) is the market expectation of D(t, τ) under the risk

neutral measure.
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3.4 Time to maturity

The time to maturity τ − t is the amount of time (in years) from the present time t to

the maturity τ > t. In order to have a consistent (or fair) measure of this distance we

need to define the distance between them in terms of days (or years). This definition is

not unique and is called the day count convention.

3.5 The Day Count Convention and The Compounding

Types

3.5.1 The day count convention

The day count convention is an agreed upon system to determine the number of days

between two dates e.g. t and τ and we define it as d(t, τ). This time difference is

usually defined in the fraction of a year. Different bond markets have different day

count conversions for example 30 days in a month and 360 in a year. For the LIBOR

market (which we are looking at in this thesis) the day count convention is Actual/360

except for the GBP where it is Actual/365 Fixed. This means that each month is treated

normally (i.e. 28,29,30 or 31 days) but the year is fixed at 360 or 365 regardless if it is

a leap year or not. The day count convention is important to define since it defines how

much interest that has been accrued between two payments.

3.5.2 Compounding Types

The compounding can be classified into four different groups:

1. Continuously compounding

2. Simply compounding

3. k-times per year compounding

4. Annually compounding

All these can be expressed as both spot rates and as forward rates. LIBOR rates are

of type two i.e the simply compounding type. We choose to, due to space limitations

only discuss the continuously and simply compounded rates here. For the other types

see Kani (2007).
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1. Continuously compounded rates:

The continuously compounded rate is the rate that yields one unit of amount of currency

at the time of maturity (τ) for an investment of P (t, τ) at time t.

The Continuously Compounded Spot Rate:

If the contracting date is equal to the start of the interval i.e. [T = t, τ ] then we have

the continuously compounded spot rate which we define as R(t, τ). We have that the

continuously compounded rate for the period [t, τ ] is defined as:

R(t; t, τ) = − lnP (t, τ)

d(t, τ)
(3.5)

From this we can derive the price of a zero coupon bond (P (t, τ)) as:

R(t, τ)d(t, τ) = −lnP (t, τ) ⇒

P(t,τ)=exp

(
-R(t,τ)d(t, τ)

)
(3.6)

2. The Simply-Compounded Rate: When the accruing occurs proportionally to

the time of investment then we have a simply compounded rate L(t, τ). It is the rate

that yields one unit of amount of currency at the time of maturity (τ) for an investment

of P (t, τ) at time t, when accruing is proportional to the investment time.

The Simply-Compounded Spot Rate:

L(t, τ) =
1− P (t, τ)

d(t, τ)P (t, τ)
(3.7)

The market LIBOR rates that we will be using in this thesis are simply-compounded

rates and are linked to the zero-coupon bond prices by the day count convention for

computing d(t, τ).

Zero coupon bond prices in terms of L(t, τ):

P (t, τ) =
1

1 + d(t, τ)L(t, τ)
(3.8)

3.6 Yield curve

The yield curve, is the graph of the function that maps maturities into rates for different

t. The yield curve can be thought of as the curve that describes the relationship of the
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returns on bonds with the same credit risk but with different maturities.

Define the Yield Curve as:

Definition 3.2. The yield curve at t is the graph of the function: τ → R(t, τ), Where τ >

t

3.7 Forward rates

Forward rates have three time periods to consider, the time today (t), the expiry time

T and the maturity τ , where we have that t < T < τ . Thus a forward rate are interest

rates that are agreed upon today for an investment in a future time period and are

set consistently with the current yield of discount factors. In practice the holder of a

forward contract has the obligation to buy or sell a product at a future date at a given

price. We define the forward rate by following Senghore (2013):

Definition 3.3. Given three fixed time points t < T < τ , a contract at time t which

allows an investment of a unit amount of currency at time T and gives a risk less

deterministic rate of interest over the future interval [T, τ ] is called the forward rate

Also note that if t = T then the forward rate is just the spot rate. We can also define the

forward rates in terms of the Forward Rate Agreement (FRA), following Kani (2007):

In order to lead us into the simply compounded forward interest rates, we say that the

FRA is a contract that gives the holder an interest rates payment for the period [T, τ ]

based on the spot rate L(T, τ) resetting in T with maturity τ . The seller of the contract

gets a fixed payment based on the rate K. To be specific:

If we have a nominal value of the contract at N and assume the same day count conven-

tion then at time T one receives: Nd(T, τ)K units of currency and pays: Nd(T, τ)L(T, τ).

So the value of the contract at T is:

Nd(T, τ)K −Nd(T, τ)L(T, τ) ⇒

Nd(T, τ)(K − L(T, τ)) (3.9)

Using 3.7 we can rewrite it to be:

N

[
d(T, τ)K − 1

P (T, τ)
+ 1

]
(3.10)
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In order to find the fair value of this contract at time t we first need to find the present

value of the expression above. Note that P (t, τ) = P (t, T )P (T, τ) and that d(T, τ)K+ 1

at time τ is worth P (t, τ)[d(T, τ)K + 1] at time t. First we rewrite:

P (t, τ) = P (t, T )P (T, τ) ⇒ P (T, τ) =
P (t, τ)

P (t, T )
(3.11)

Plug this into 3.7:

N

d(T, τ)K − 1
P (t,τ)
P (t,T )

+ 1

 ⇒
N

[
d(T, τ)K − P (t, T )

P (t, τ)
+ 1

]
(3.12)

Take the present value of 3.12 and we have the value for the FRA at time t:

FRA(t, T, τ, d(T, τ), N,K) = P (t, τ)N

[
d(T, τ)K + 1− P (t, T )

P (t, τ)

]
⇒

FRA(t, T, τ, d(T, τ), N,K) = N [P (t, τ)d(T, τ)K − P (t, T ) + P (t, τ) (3.13)

We want to find the fair value of this contract i.e. solve for the rate K that sets the

value of this contract to 0 at time t. It turns out that there is only one solution for this

and that the resulting rate K is our definition for the simply compounded forward rate

prevailing at time t for expiry T > t and maturity τ > T :

F (t;T, τ) =
1

d(T, τ)

[
P (t, T )

P (t, τ)
− 1

]
(3.14)

So in summary the simply compounded forward rate is the rate that gives a fair value

to the FRA contract at time t.

3.7.1 Instantaneous Forward Interest Rate

The instantaneous forward interest rate (f(t, τ)) at time t for maturity τ > t is defined

as the forward rate when T → τ :

f(t, τ) = lim
T→τ

1

τ − T

[
P (t, T )

P (t, τ)
− 1

]
⇒

f(t, τ) = lim
T→τ

1

P (t, τ)

[
P (t, T )− P (t, τ)

τ − T

]
= − 1

P (t, τ)

∂P (t, T )

∂τ
⇒

f(t, τ) = −∂ lnP (t, T )

∂τ
(3.15)
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We can solve for P (t, τ) in 3.15 which gives us:

P (t, τ) = exp

− τ∫
t

f(t, u)du

 (3.16)

We need one assumption in order for this to work, namely; smoothness of the zero

coupon price function T → P (t, τ). We will come back to the instantaneous forward

rate in the section about arbitrage theory.

3.8 Arbitrage Theory

An arbitrage opportunity is a trading strategy or portfolio satisfying one of either: (A)

its price now is zero and it has a strictly positive payoff in the future, or (B) its price

is strictly negative now and it may payout in a future state. Less formally, the absence

of arbitrage requires that: (A) a portfolio cannot cost nothing and payoff later, or (B)

it cannot give a payoff today without any obligations in the future. This means that

the law of one price must hold i.e. the same commodity must hold the same price if

no arbitrage opportunity should exist in the market. We will in this section provide an

understanding of the interpretations of having an arbitrage free financial market which

will lead us into the martingale approach of pricing financial derivatives. This summary

is if not otherwise stated based on Lando and Poulsen (2006), Björk (2009) and Senghore

(2013). First we need some assumptions (and/or definitions):

• We have the following probability space: (Ω,F ,P)

– Ω is the sample space i.e the set of possible outcomes (events), ω ∈ Ω.

– P is the observed probabilities.

– F is the full information space. It represents the set of possible events (ω)

where an event is a subset of Ω.

• We also have the ”filtration” at time t: Ft which is the information available from

the past up until time t.

This means that if we know at time t that an event ω has occurred or not then ω ∈ Ft.

• We need to define the: Ft measurable: {ω : X(ω) ≤ x} belongs to F for all real x.
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This condition means that if the outcomes of the random variable X are always in F
then we can always find a probability for the event X ≤ x. The simplest example being

if we assume X to be a constant, then we will have one outcome of X and we can assign

a probability that it is less or equal to x. For a stochastic random variable we have

multiple outcomes and all of these need to be in F for it to be Ft measurable.1

• We say that a process X = (Xt) t ≥ 0 is adapted to F iff the random variable Xt

is Ft measurable for all t ≥ 0.

So by using the definition of Ft measurable, adapted means that at time t when the

information in Ft is known then we also know the value of Xt since all the possible

outcomes are in F and we can assign a probability to them.

Now consider a stochastic process Xt ,t∈{0,1,2} that we say is adaptive to the filtration

Ft ,t∈{0,1,2}. This means that the information generated by the stochastic process (X) is

contained in the full information set i.e Ft ∈ F .

• We also need the definition of a Martingale. An adapted stochastic process X with

E(|Xt|) <∞ for all t > 0 is:

– a submartingale if ∀ t, s with t > s we have E(Xt|Fs) ≥ Xs

– a supermartingale if ∀ t, s with t > s we have E(Xt|Fs) ≤ Xs

– a martingale if ∀ t, s with t > s we have E(Xt|Fs) = Xs

So to be clear a martingale is when the value in expectation (or the best possible predic-

tion) at time t is the previous value, this means that you cannot make any predictions

at time s of the value in time t.

A familiar example of a martingale is the symmetric random walk (the random walk

without a trend) i.e at time s the next step in the process is completely unknown.

• A semi-martingale is the sum of a completely unpredictable path (a martingale)

and a predictable component.

Now that we have an overview of the basic notation, assume a market on the probability

space (Ω,Ft,F ,P), where time τ > 0 and with n + 1 dividend paying assets S(t) =

1Note that {ω : X(ω) ≤ x} is the definition of a Cumulative Distribution Function (CDF) i.e it
defines the probability space.
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S0(t)...Sn(t), where S(t) are traded continuously from time 0 to time τ and S(t) can be

described by the following stochastic processes:

dSt = rtStdt (3.17)

Under the adaption of Ft we say that: S0(t) = 1 and rt is the instantaneous short rate

(i.e. r(t) = f(t, t) and tied to the instantaneous forward rate as discussed earlier:f(t, τ)).

We see that the return of S is:
dS(t)

S(t)dt
= rt (3.18)

So in time t we completely know the return of S by just observing the prevailing short

rate in the market and S is thus risk free at time t (locally risk-free). In addition we

assume that S0(t) > 0 ∀t > 0. We say that S0(t) is the risk free asset and thus the

discounting factor D(t, τ) is given by 1
S0(t) . A portfolio or trading strategy equivalently

is defined as2:

Definition 3.4. A portfolio contains a range of underlying assets in the financial market,

denoted by h(t) = [h0(t), ..., hn(t)], where the components hi(t) for i = 0, ..., n are

locally bounded and predictable. These components hi(t) represents the number of the

underlying asset held at time t of asset i.

Here we have that the portfolio weights can be both positive (long position) or negative

(short position) and not constants i.e. they can change as time goes by. The value

created by the portfolio h(t) at any given time t is defined in the value process:

Definition 3.5. The value process Vt≥0 associated with portfolio h(t) is defined as:

V h(t) =
n∑
i=0

hi(t)Si(t) = hi(t)Si(t) for 0 < t < τ

So the value created by the portfolio are the weight times the asset summed over all

assets/weights. And the gain process is

Definition 3.6. The gain process Gt associated with portfolio h(t) is given by

Gh(t) =

t∫
0

hi(u)dSi(u) =
n∑
i=0

intt0hi(u)dSi(u)

A trading strategy (portfolio) is said to be self-financing if no additional value has to

be added after the initial value V h(0) was supplied to the portfolio. So the changes in

2In the following definitions we follow Senghore (2013)
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portfolio value only comes from changes in the assets already hold in the portfolio. We

can define a self-financing portfolio in three ways:

Definition 3.7. A portfolio is self-financing if its value changes only due to changes in

the prices of the underlying assets, expressed as:

dV h(t) =

n∑
i=0

hi(t)dSi(t) = hi(t)dSi(t) for 0 < t < τ

Meaning that the change in portfolio value is only due to the change in S and h. Alter-

natively we can define the self-financing portfolio in terms of the gain process:

Definition 3.8. A portfolio h(t) is self-financing if the value process V (t) ≥ 0 follow:

V h(t) = V h(0) +Gh(t) for 0 < t < τ

Note that we can scale (discount) Definition 3.8 with the discount factor defined earlier

and still define it as a self-financing portfolio:

Definition 3.9. The portfolio h(t) is self-financing iff:

D(0, t)V h(t) = V h(0) +

t∫
0

hud(D(0, t)Su)

Previously we have stated the portfolio (h(t)) as a weighted sum of all the underlying

assets Si(t), but we can state it as the relative weights i.e we scale each asset (multiplied

by the weight) with the total value of the portfolio. We continue to follow Senghore

(2013) and define it as:

Definition 3.10. For a given trading strategy, the relative portfolio weights ui, which

in general can be both ui ≤ 0 and ui ≥ 0, is given by the fraction of the total value from

asset i. This can be expressed as:

ui(t) =
hi(t)Si(t)

V h(t)
, Where i = 0, ..., n and

n∑
i=0

ui(t) = 1

We can also rewrite the self-financing portfolio that we defined earlier using the relative

weights:
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dV h(t) =
n∑
i=0

hi(t)dSi(t)

=
n∑
i=0

hi(t)Si(t)

V h(t)

dSi(t)

Si(t)

Remember that we said that an arbitrage was a trading strategy (portfolio) that satisfied

either: (A) its price is zero now and it has a strictly positive payoff in the future, or (B)

its price is strictly negative now and it may payout in a future state. Now we can define

this in terms of the self-financing portfolio and the value process:

Definition 3.11. A self-financing portfolio is an arbitrage possibility such that for every

t > 0 it follows:

V h(0) = 0

P (V h(t) ≥ 0) = 1

P (V h(t) ≥ 0) > 0

If there exists arbitrage opportunities in the market we have an inefficient market. Nor-

mally, we assume frictionless, efficient financial markets. In order to satisfy efficiency

we need that the value process of the dynamics of a portfolio to be locally risk-free and

that the return with 100% certainty (probability = 1) equals the return on the bank

account. This means that in a financial market that is free of arbitrage there can be

only one short rate of interest.

Definition 3.12. For a locally risk-free self-financed portfolio h(t) formulated as:

dV h(t) = k(t)V h(t)dt,

where k(t) is any Ft-adapted process

it must hold that the probability that the adapted process k(t) is equal to the risk-free

interest rate r(t), is equal to one, formulated as:

P (k(t) = r(t)) = 1

which need to be true in order to attain an efficient financial market.

Furthermore, efficiency in the market can be stated by the relation between absence

of arbitrage and the existence of a risk neutral probability measure, Q, known as the
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equivalent martingale measure (EMM). This relation tells us that a market is arbitrage-

free if, and only if, there exists at least one risk neutral probability measure Q that

is equivalent to the original probability measure, P. This is referred to as the: First

Fundamental Theorem of Asset Pricing. We proceed by defining an EMM below

Definition 3.13. An EMM is a probability measure, Q, on the space (Ω,F) such that:

1. The probability measure P and Q are equivalent, if and only if:

P(A) = 0 and

Q(A) = 0, for all A ∈ F

2. The discounted price process Si
S0

are Q-martingales, for all i ∈ (0, . . . , n) shown as:

EQ [D(o, t)Si(t)|Fu] = D(o, u)Si(u)

for all i ∈ (0, . . . , n) and all 0 ≤ u ≤ t ≤ T,
where EQ denotes the expectation under Q

3. The Randon–Nikodym derivative dQ
dP is quadratically integrable with respect to P

The Randon-Nikodym derivative, referred to as the likelihood ratio (L) between

the equivalent measure Q and the probablity measure P, is generally used to en-

able movement to and from these two measures. That L = dQ
dP is quadratically

integrable implies that the following integral is finite:∫ ∞
−∞

LdP

The Second Fundamental Theorem of Asset Pricing tells us that, if and only

if, there exists a unique risk-neutral measure (an EMM, Q) that is equivalent to the

probability measure P we also have a complete market.

Now we have defined the fundamentals of an arbitrage free market, so we continue by

considering the financial derivatives or contingent claims, which are the traded assets

in that market. The objective here is to price these assets. A contingent claim can be

seen as a contract where the holder of the contract receives a deterministic payoff, at a

pre-specified date in the future, the exercise date. Note that the payoff can be positive,

negative or zero. Contingent claims are completely defined in terms of their underlying

assets, in our case the interest rates but they can also be written on other underlying

assets, e.g. stocks, bonds, or other financial assets.

Lets assume we have a financial market as defined above with the vector price process:

S = [S0, . . . , Sn]T
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where T is the exercise date of a contingent claim, any stochastic variable X such that

X ∈ FTS . This expression means that it is possible to derive the price of X at time T .

In other words we can price the contingent claim at the exercise date.

T-claim is just another word for a contingent claim, or a simple claim if it is of the below

form (with Φ being the contract function):

X = Φ(S(T ))

. If there exists a self-financing portfolio h with a value at the maturity T that is equal

to a contingent claim X , we say that it is attainable:

V h(T ) = X .

Another word for these attainable claims is hedgeable claims. If we have an attainable

claim and there is a self-financing portfolio h, it implies that this claim can be traded

in the financial markets. If all claims X in the market are attainable it is said that the

market is complete. As mentioned earlier market completeness means that there exist

a unique equivalent measure.

If we assume an efficient market, the contingent claim at time t, Π(t,X can be determined

by either: demand consistency of the price of the underlying asset and the price of the

contingent claim – or recognize that the value process at time t, generated by the self-

financing portfolio, must be equal to the price of the contingent claim at time t. So if

we have an efficient market, then:

Π(t,X ) = V h(t) for 0 < t < T

Determining the price of a contingent claim by demanding consistency of the price of the

claim with that of the underlying implies the existence of a martingale measure Q for the

extended market Π(;X ), S0, . . . , Sn). This guides us into the martingale approach for

derivatives pricing, an effective method for pricing financial instruments. By applying

the definition of a martingale measure under the Q we are able to obtain the general

pricing formula for Q, where the general arbitrage free pricing formula is defined as:

Π(t,X ) = S0(t)EQ
[
X

S0(T )
|Ft
]

Note that, Q, the martingale measure for the market S0, . . . , Sn, with S0 as the nu-

meraire, is not unique, as different choices of Q generate different price processes.
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If we assume that S0(t) above is the risk less money account, we can re-write it as:

S0(t) = S0(0)× exp
∫ t
0 r(s)ds

where r represents the short rate.

Given the above assumption we end up with the Risk Neutral valuation Formula RNVF,

which is a martingale approach to derivative pricing..

3.9 Risk Neutral valuation Formula

Using this martingale approach we can price a contingent claim by taking the expecta-

tion, under the Q-martingale measure, of the discounted claim with the money account

as a numeraire, given an adapted filtration. This gives us the following:

Π(t,X ) = EQ
[
XB(t)

B(T )
|Ft
]

= EQ[exp
∫ t
0 r(s)ds×X|Ft

]
.

The result yielded above implies that the discounted price process is a Q-martingale

measure and the existence of a Q-martingale measure implies absence of arbitrage in the

market. Once again this is evidence that the martingale property can be interpreted as

being the same as the existence of a self-financing portfolio.

For stochastic underlying assets though, the bank account is no longer a suitable dis-

counting factor. The joint distribution (B(T ),Φ(S)), needed in order to solve for the

expectation under the Q-measure of the RNVF is difficult to compute, because it involves

solving of a double integral. Therefore, it is necessary to change the numeraire.
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The Nelson-Siegel Models

4.1 The Static Nelson-Siegel Model

Nelson and Siegel (1987) introduced a three-factor yield curve model for fitting to static

yield curves. The Nelson-Siegel model originates from a constant and the solution to

a second order differential equation with constant coefficients, when the roots of the

polynomial are real and equal. When this is true we can write the instantaneous forward

rate as:

f(t, τ) = β1 + β2e
−λτ + β3λe

−λτ (4.1)

To find the relationship between the instantaneous forward rate and the continuous rate

with maturity τ consider the growing factor [τ, τ + δτ ]:

P (0, τ)

P (0, τ + ∆τ)
,∆τ > 0 (4.2)

Where P (t, τ) is the price at time t of one (1) amount of money that will be paid at

time τ . In the case ∆τ → 0 we have that:

1 + f(τ)∆τ ≈ P (0, τ)

P (0, τ + ∆τ)
⇒ f(τ) = lim

∆τ→0

P (0, τ)− P (0, τ + ∆τ)

∆τP (0, τ + ∆τ)

f(τ) = lim
∆τ→0

−
(
P (0, τ + ∆τ)− P (0, τ)

∆τ

)
1

P (0, τ + ∆τ)

f(τ) = −δP (0, τ)

δτ

1

P (0, τ)
(4.3)

33
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We know that for continuous compounding with unit amount is A(0, t) = e−tR(t) and

using this we have:

P (0, τ) = e−τF (τ) ⇒ δP (0, τ)

δτ
= −e−τF (τ)F ′(τ)τ

Plug this into 4.3 and we end up with:

f(τ) = F ′(τ)τe−τF (τ) 1

e−τF (τ)

f(τ) = F ′(τ)τ

F ′(τ) =
1

τ
f(τ) (4.4)

Aggregate this and and set F (τ) = y(τ) we have:

y(τ) =
1

τ

τ∫
0

f(x)dx (4.5)

This implies that the zero-coupon yield is just a weighted average of the forward rates.

Plug in the original Nelson and Siegel equation (from equation 4.1) and we have:

y(τ) =
1

τ

τ∫
0

β1 + β2e
−λτ + β3λe

−λτdτ (4.6)

Make the following substitutions, x = λτ, dτ = 1
λdx and we get.

y(τ) = β1 +
β2

λτ

λτ∫
0

e−xdx+
β3

λτ

λτ∫
0

xe−xdx

y(τ) = β1 +
β2

λτ

[
−e−x

]λτ
0

+
β3

λτ

[
−xe−x − e−x

]λτ
0

y(τ) = β1 +
β2

λτ

(
1− e−λτ

)
+
β3

λτ

(
1− λτe−λτ − e−λτ

)

y(τ) = β1 + β2

(
1− e−λτ

λτ

)
+ β3

(
1− e−λτ

λτ
− e−λτ

)
(4.7)
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4.2 Dynamic Nelson-Siegel Model (DNS)

In a dynamic setting we let β vary over time by adding subscript time factor t on both

the rate process and the factors. Thus, we get the final Dynamic Nelson-Siegel three

factor model represented as in Diebold and Li (2006):

yt(τ) = β1t + β2t

(
1− e−λτ

λτ

)
+ β3t

(
1− e−λτ

λτ
− e−λτ

)
(4.8)

Note that this simple model is linear in the parameters βit, when keeping λ constant.

Below we, also present the equation for when the model uses a time dependent λt. The

only difference in the equation being the subscript t on lambda, referring to a time

varying decay parameter.

yt(τ) = β1t + β2t

(
1− e−λtτ

λtτ

)
+ β3t

(
1− e−λtτ

λtτ
− e−λtτ

)
(4.9)

The DNS model has one dependent variable yt(τ) and four independent variables (β1t, β2t,

β3t, λt). The majority of the literature does however support the use of λ as a constant,

and therefore fit the model by solving the three β:s keeping λ fixed, which allows for

linear regression analysis. We are running the model both with fixed λ and with lambda

calibrated for each regression. Thus, we can investigate the difference in performance.

Of course, there is a trade-off between keeping it simple and reaching for the results, as

we will discuss subsequently.

In order to have a successful model for the yield curve it is necessary for it to represent

the characteristics and facts of the historical yield curve behavior as well as being able

to adapt to sudden shocks to the yield curve, without being over complicated. Nelson-

Siegel provides an elegant and easily interpreted solution to the dynamics of the yield

curve.

Diebold and Li (2006) specifically mention that a good model for the yield curve should

be able to reproduce the historical stylized facts about (among others):

1. The average shape of the yield curve.

2. The variety of shapes assumed at different times.

3. The strong persistence of yields and weak persistence of spreads.

Below we will go through the dynamics of the DNS model. First, the model is fitted

for a given t where we observe multiple rates with different maturity τ . These rates are
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captured in yt(τ). In the model framework the rates will be more present at the shorter

end and not as much at longer time frames. This is a behavior which is also observed

in the markets, where most trading are done in shorter maturities.

Further, the model should also be able to reproduce the average historical yield curve,

which is increasing and concave. Meaning that short term money is cheaper than long

term money. The average yield curve in the Nelson-Siegel model is determined by the

average of the parameters β1t, β2t, β3t, which allow for a shape of that sort. However,

under some circumstances the yield curve may be of a different shape, it could even flip

i.e short term money is more expensive than long term money. This can occur for some

shocks to the market expectations of the mid-term rates in the economy and the model

need to be able to represent such shapes as well. Since the Nelson-Siegel model comes

from a second order differential equation, such a variety of shapes are certainly possible.

Persistent yield dynamics should according to Diebold and Li (2006) be represented by

a strong persistence of β1t and a weaker persistence of β2t.

In the literature the three factors of the model (corresponding to β1t, β2t, β3t) has been

described as representing the level, slope and curvature of the yield curve. Moving to

a state-space representation and changing the notation to highlight the interpretation

of the DNS factors, we follow Diebold et al. (2006), and depict the DNS measurement

equation in matrix form:


yt (τ1)

yt (τ2)
...

yt (τN )

 =


1 1−e−λτ1

λτ1

1−e−λτ1
λτ1

− e−λτ1

1 1−e−λτ2
λτ2

1−e−λτ2
λτ2

− e−λτ2
...

...
...

1 1−e−λτN
λτN

1−e−λτN
λτN

− e−λτN



Lt

St

Ct

+


ετ (τ1)

ετ (τ2)
...

ετ (τN )

 (4.10)

where the measurement errors ετ (τi) are assumed to be independently and identically

distributed (i.i.d.) white noise. When collapsing to matrix notation we get the equation:

Yt
N×1

= Zt
N×3


Lt

St

Ct


3×1

+ et
N×3

(4.11)

Examining the matrix notation, the N dimensions of Zt change over time depending on

number of market contracts observed (for different maturities) at time t. Changes in Lt

are constant across all maturities and the loading on Lt determines the level of the curve.

The loading on St determines the overall shape. More specifically, the factor loading

for β1t is 1 and is therefore said to represent the long term behavior (more specific,
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y(∞) = β1t) and referred to as the level. The second term β2t is associated with 1−e−λτ
λτ

which starts at 1 for τ = 0 and decays to 0 as τ increases, hence it is a short term

factor or slope as Diebold and Li (2006) frame it. Finally the last term β3t is associated

with 1−e−λτ
λτ − e−λτ which starts at 0 and then increases before decaying for the longest

maturities, reflecting the medium term behaviour.

The term λ is called the decay parameter and determines the speed of the decay of the

loadings for β2t and β3t. Small values of λ will reduce the speed of decay and produce

a better fit for longer maturities while a larger value for λ will increase the speed of

decay and better fit the curve at shorter maturities. In addition λ also governs where

the factor loadings for β3t achieves its maximum. To illustrate this Figure 4.1 shows the

factor loadings of the model using different values of λ.

Figure 4.1: Factor loadings Nelson-Siegel Model

As seen in Figure 4.1 variations of λ cause large variations in the factor loadings con-

nected to the three factors. It is therefor important to carefully specify an optimal value

for λ. Diebold and Li (2006) argue that, since λ governs where the mid-term factor or

curvature has its maximum and that the consensus for this is around the 2-3 year point.

Diebold and Li (2006) therefore picks the average in this span i.e. τ = 30 months and
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solve for λ.

Recall that the curvature factor is specified as:

Fβ3 =
1− e−λτ

λτ
− e−λτ

Take the first derivative with respect to λ:

∂Fβ3
∂λ

=
e−λτ (1 + λτ)− 1

λ2τ
+ τe−λτ (4.12)

Plug in τ = 30 and put to zero:

0 =
e−30λ (1 + 30λ)− 1

30λ2
+ 30e−30λ (4.13)

Which we then solve for using Matlab’s solve function and get λ ≈ 0.0598. The resulting

λ does not match Diebold and Li (2006) result of λ ≈ 0.0609. However, if we plug in

0.0609 and 0.0598 in 4.13 we get:

e−30∗0.0609 (1 + 30 ∗ 0.0609)

30 ∗ 0.06092
+ 30e−30∗0.0609 = −0.07271402

e−30∗0.0598 (1 + 30 ∗ 0.0598)

30 ∗ 0.05982
+ 30e−30∗0.0598 = −0.001584571

Which support our result. In any case the use of 0.0609 or 0.0598 will have minimal

impact on the result. We will proceed with λ = 0.0598 and later come back to the choice

of a constant value versus a time dependent value of lambda.

Further, as previously mentioned the model will, for very long maturities reduce to β1t

and thus we can proxy the level by the ten year rate. To illustrate that β2t is attached

to the yield curve slope we follow Diebold and Li (2006) and proxy the slope factor by

considering the difference between the yield of the ten year rate and that of the three

month rate yt(120) − yt(3) = −0.78β2t + 0.06β3t where we have set λ = 0.0598. Note

that the slope depends heavily on the value for β2t.

The last factor to be discussed is the one we call the curvature factor, which is associated

to β3t. By adding a curvature factor to the model we can allow for significant yield curve

variation. We can for example allow for a hump in the curve at medium term rates,

which would be the case if the medium term rates are significantly higher than the short

and long term rates. We can again proxy for this medium term factor (or curvature)

by finding a similar representation for the curvature as we did for the slope. Yet again

following Diebold and Li (2006) we define it as twice the two-year yield minus the sum of

the ten-year and three-month yields i.e. 2yt(24)− yt(3)− yt(120) = 0.007β2t + 0.368β3t.
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4.3 Dynamic Nelson-Siegel Svensson model (DNSS)

The Nelson-Siegel Svensson model is an extended version of the original three factor

Nelson-Siegel model, by adding a second curvature term, making it a four-factor model.

This additional curvature term allows for more flexibility and often better in-sample

fit at long maturities as compared to the three-factor Nelson-Siegel model (Diebold

and Rudebusch (2012). The additional gain in flexibility is one of the reasons for the

popularity of the Svensson extended model amongst Central Banks when it comes to

modeling, estimating and forecasting the term structure of interest rates (BIS (2005)).

Letting y(τ) be the zero rate for maturity τ , we have the following representation:

yt(τ) = β1t + β2t

(
1− e−λ1τ

λ1τ

)
+ β3t

(
1− e−λ1τ

λ1τ
− e−λ1τ

)
+ β4t

(
1− e−λ2τ

λ2τ
− e−λ2τ

)
,

(4.14)

where β1, β2, β3, and β4 are the model factors and λ1 governs the rate of exponential

decay of β2 and β3, while λ2 governs the exponential growth and decay rate of the second

curvature term β4. This is easy to see when stating the equation in matrix form:


yt (τ1)

yt (τ2)
...

yt (τN )

 =


1 1−e−λ1τ1

λ1τ1

1−e−λ1τ1
λ1τ1

− e−λ1τ1 1−e−λ2τ1
λ2τ1

− e−λ2τ1

1 1−e−λ1τ2
λ1τ2

1−e−λτ2
λτ2

− e−λ1τ2 1−e−λ2τ1
λ2τ1

− e−λ2τ1
...

...
...

...

1 1−e−λ1τN
λ1τN

1−e−λ1τN
λ1τN

− e−λ1τN 1−e−λ2τ1
λ2τ1

− e−λ2τ1




Lt

St

C1
t

C2
t

+


ετ (τ1)

ετ (τ2)
...

ετ (τN )


(4.15)

where the measurement errors ετ (τi) are assumed to be (i.i.d.) white noise.

As seen in Christensen et al. (2009) the two curvature factors take on very different

roles in fitting the yield curve. In their paper λ1 is estimated at 0.838, implying that the

factor loading of the first curvature factor peaks around the 2-year maturity. The factor

loading of the second curvature factor peaks around the 19-year maturity, since λ2 is

estimated at a much smaller value, 0.097. Thus, two curvature factors make it possible

to fit yields with more than one local minimum/maximum along various maturities.

Furthermore, Christensen et al. (2009) note that adding the second curvature factor only

affects the level factor in the model. They explain it as, without the second curvature

factor, corresponding to the three factor DNS model, only the level factor is able to fit

yields for long-term maturities. However, when including the second curvature factor,

which is able to fit yields with maturities in the range of 10 to 30 years, the level factor

is now allowed to fit other areas of the yield curve.
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Since the DNSS model has two decay parameters, λ1 and λ2, the model is non-linear.

This non-linearity is highlighted by a high degree of multi-collinearity between factors,

especially when λ1 takes on a similar value as λ2, thereby making it impossible to

separately identify the curvature factors, β3 and β4. Thus the difficulty in the estimation

of model parameters.

4.4 Constant versus time dependent lambda

The literature, and especially Diebold and Li (2006), argue for keeping lambda constant.

This in order to retain simplicity in the estimation technique used to fit and forecast

yields, by allowing for linear regression analysis. They also provide some supporting

evidence for doing so. As mentioned earlier, the decay parameter, lambda, determines

the speed of the decay of the loadings for β2t and β3t. Figure 4.1 shows that small

values of λ will reduce the speed of decay and produce a better fit for longer maturities

while a larger value of λ will increase the speed of decay and better fit the curve at

shorter maturities. In addition λ also governs where the factor loadings for β3t achieves

its maximum. So, there are a collection of areas affected by the size of lambda.

Diebold and Li (2006) found that letting lambda be time dependent causes some varia-

tion over time in the estimated value of lambda. However, they claim that the variation

is small relative to the standard error. Nelson and Siegel (1987) also state that the

sum-of squares function is not very sensitive to variations in lambda. Diebold and Li

(2006) state that these findings together suggest that fixing lambda would have little, to

no, drawback. However, they admit that allowing lambda to vary over time can improve

the fit significantly when the short end of the yield curve is steep, which tend to happen

from time to time.

According to Koopman et al. (2010) most empirical studies assume lambda to be fixed

at some constant known value or estimated as constant through time. However, when

investigating the matter Koopman et al. (2010) found that when estimating lambda the

data can be highly informative about the shape of the factor loadings, and by applying a

simple step function and a spline function they show considerable evidence that lambda

in fact is a time-varying parameter. Further, they suggest that if possible, one should

also treat lambda that way. Especially, since keeping lambda fixed over the entire sample

period may be too restrictive as the characteristic of the yield curve may change over a

longer time period and lambda have a great impact of the shape of the yield curve.

Diebold and Li (2006) state that even though a time varying lambda might result in

a slightly better in-sample fit, it does not necessarily produce a better out-of-sample
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forecasting. In fact little attention has been paid the forecasting effects of a time-varying

decay parameter. Koopman et al. (2010) show that forecasting results are affected by

these modifications of the baseline model, however, they provide ambiguous results.

Some forecasting results are improved and some are not, but to what extent is not clear.

In the next two chapters we test and compare both the in-sample fit and the out-of-

sample forecasting performance for when lambda is pre-specified and when lambda is

allowed to vary over time. These are also compared with other benchmark competitors.

4.5 Why are the Nelson-Siegel models not arbitrage-free?

Despite its proven empirical performance and ease of use the Nelson-Siegel model fails

on one important theoretical dimension. It does not theoretically enforce absence of

arbitrage. The reason for this is the same as for affine term structure family of models,

i.e. the estimated yield curve does not match the actual yield curve. Heath et al.

(1992b) indicate that most of the affine term structure models price zero-coupon bonds

according to the parameters obtained from the endogenously derived yield curve, which

results in that it could differ from the actual market curve. Consequently, the resulting

bond prices could be different than the actual market prices, and thus leaving space for

arbitrage opportunities.The technical details of this matter is shown in e.g. Björk and

Christensen (1999).

However, according to Diebold and Rudebusch (2012) the Dynamic Nelson-Siegel model,

illustrated in Equation 4.8, is almost arbitrage-free as it only requires an additional term

that accounts for Jensen’s inequality to make it entirely arbitrage-free. So, in order to

answer the question why the Nelson-Siegel class models are not arbitrage-free, we provide

what is required in the model specification and how it is possible to actually make it

arbitrage-free. Although, we do not include the no-arbitrage version of the Nelson-

Siegel model in our forecasting performance evaluation, we emphasize this section for

completeness and understanding of empirical yield curve fitting.

The deterministic foundation of the Nelson-Siegel model leads to the breakdown of

arbitrage-freeness, since it does not account for the convexity arising from Jensen’s

inequality effects when having stochastic yield factors. In other words, the Nelson-Siegel

models cannot theoretically enforce no-arbitrage because there is a missing link between

the parameters of the state equation and the parameters of the measurement equation,

meaning that the parameters that determine the dynamic evolution of the yield curve

factors are not linked to the parameters that determine the shape and location of the

yield curve. Therefore it does not ensure consistency between the dynamic evolution of

yields over time, and the shape of the yield curve at a given point in time (Diebold and
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Rudebusch (2012)). This crucial piece needed is a time-invariant yield-adjustment term,

which only depends on maturity, and takes the form:

C(t, T )

T − t

This term connects the state equations to the measurements equations, which assures

that discounted bond prices are semi-martingales and hence arbitrage-free.

As shown in Christensen et al. (2009) it is possible to derive an Arbitrage Free Nelson–

Siegel (AFNS) model that corresponds to the DNS model specification, using Proposition

2.1. (See Appendix A for more details.) The AFNS model is formulated in continuous

time and the relationship between the real-world dynamics represented by the P -measure

and the risk-neutral dynamics represented by the Q-measure is given by the measure

change:

dWQ
t = dWP

t + Γtdt (4.16)

where Γt represent specification of the risk premium. In order to preserve affine dynamics

under the P -measure we follow Christensen et al. (2009), and limit the focus to essentially

affine risk premium specification a la Duffee (2002). Therefore, Γt is formulated as:

Γt =


γ0

1

γ0
2

γ0
3

+


γ1

11 γ1
12 γ1

13

γ1
21 γ1

22 γ1
23

γ1
31 γ1

32 γ1
33



X1
t

X2
t

X3
t

 .

Using this specification of the risk premium, the stochastic differential equation (SDE)

for the state variables under the P -measure remains affine, as follows from equation,

dXt = KP
[
θP −Xt

]
dt+ ΣdWP

t . (4.17)

As a result of the flexible specification of Γt, one can choose any mean vector θP and

mean-reversion matrix KP under the P -measure, still keeping the required risk-neutral

structure, as described in Proposition 2.1 (Appendix A). Assuming all three factors are

independent under the P -measure the following AFNS model corresponds to the DNS

model introduced in section 4.3:
dX1

t

dX2
t

dX3
t

 =


KP

11 0 0

0 KP
22 0

0 0 KP
33




θP1

θP2

θP3

−

X1
t

X2
t

X3
t


 dt+


σ1 0 0

0 σ2 0

0 0 σ3



dW 1,P

t

dW 2,P
t

dW 3,P
t

 .
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Under these specifications the measurement equation for the AFNS model takes the

form:
yt (τ1)

yt (τ2)
...

yt (τN )

 =


1 1−e−λτ1

λτ1

1−e−λτ1
λτ1

− e−λτ1

1 1−e−λτ2
λτ2

1−e−λτ2
λτ2

− e−λτ2
...

...
...

1 1−e−λτN
λτN

1−e−λτN
λτN

− e−λτN



X1
t

X2
t

X3
t

−


C(τ1)
τ1

C(τ2)
τ2

...
C(τN )
τN

+


ετ (τ1)

ετ (τ2)
...

ετ (τN )

 ,

(4.18)

where the measurement errors εt(τi) are assumed to be i.i.d. white noise.

Now, comparing the specification of the measurement equation for the AFNS model

above, to the DNS model (Equation 4.8 and 4.9) it is evident that the only difference

is the yield-adjustment term. Given this additional term we get a model that not only

in practice, but also in theory enforce the no-arbitrage condition. Note, that referring

to the Nelson-Siegel model as arbitrage free in practice refers to studies conducted by

Coroneo et al. (2011) and Diebold and Rudebusch (2012).
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Data and Estimation

5.1 The Data

In our paper we use daily quotes of LIBOR rates with maturities of 1, 2, 3, 6, 9, 12, 24,

36, 48, 60, 72 and 120 months, provided by Nordea. For longer maturities the swap rate

has been used, but throughout the thesis we will refer to all the rates as LIBOR rates.

The data ranges from January 1, 2003 through March 3, 2015, resulting in approximately

36 000 observations, depending on, which of the 37 different currencies to employ. Table

5.1 presents descriptive statistics for the yields of the different LIBOR rates for each

currency at 24 months maturity. In order to proceed, we will due to space and time

constraint provide a deeper analysis of two currencies, and for forecasting purpose we

proceed with only one. A natural first choice being the local currency of Danish Krone

(DKK) and the second falling on US Dollars for the purpose of being a large reference

currency. Both of the above mentioned having data for the full period. The reference

currency is chosen to fully test the liability and quality of our models. Notable in Table

5.1 is that the more stable group of currencies has a mean of around 2-3% and a standard

deviation of around 1-2 %. The Japanese Yen (JPY) with a mean of only 0.462 and a

standard deviation of 0.319 really stands out from the rest and could be seen as the most

stable currency because of the low volatility, bear in mind though that fixing JPY was a

major part of the LIBOR scandal, which in turn could have influenced the low standard

deviation. USD has a mean of 2.173% and a standard deviation of 1.696%. Observing

the less stable currencies the Argentine Peso stands out with a standard deviation of

5.536% and also among the highest mean of 11.346%. Comparing DKK and USD makes

them seem fairly similar, however note that DKK has got minimum values of below zero,

which is another way of testing the model specification on how it handles negative rates.

The DKK LIBOR rate shows a steadily declining curve since the peak in late 2008. In

44
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our data set the 1-month DKK LIBOR rate displays a minimum of −0.7 in February

2015.
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Table 5.1: Descriptive statistics for LIBOR yield for all currencies at a maturity of
24 months

Currency Mean Standard deviation Minimum Maximum

AED 2.639 1.506 0.774 5.831

ARS 11.346 5.536 0.051 14.929

AUD 4.842 1.424 2.125 8.161

BRL 10.671 1.647 7.165 16.545

CAD 2.474 1.198 0.759 4.995

CHF 1.085 0.978 -1.006 3.496

CNY 2.147 1.390 -1.788 4.657

COP 9.539 0.007 9.529 9.562

CZK 2.226 1.100 0.283 4.742

DKK 2.395 1.350 -0.146 5.737

EUR 2.159 1.326 0.095 5.351

GBP 3.070 1.884 0.557 6.412

HKD 1.936 1.459 0.368 5.032

HUF 6.582 1.982 1.785 11.365

IDR 7.736 1.837 4.055 14.446

ILS 10.239 0.823 6.335 10.470

INR 6.989 3.861 2.506 16.770

ISK 8.491 3.043 4.949 14.521

JPY 0.462 0.319 0.087 1.418

KWD 2.526 1.738 0.703 9.177

LTL 3.365 2.423 0.403 11.513

LVL 4.559 4.129 0.422 17.690

MXN 6.179 1.820 0.000 10.969

MYR 3.255 0.430 1.985 4.769

NOK 3.324 1.238 0.933 6.659

NZD 5.152 1.821 2.362 8.594

PHP 2.760 1.560 0.161 7.459

PLN 4.663 1.188 1.527 7.650

RON 4.956 4.967 -0.135 100.862

RUB 7.718 2.536 5.064 16.647

SAR 2.397 1.763 -0.097 5.696

SEK 2.523 1.205 -0.015 5.559

SGD 1.581 1.012 0.318 3.815

THB 3.246 1.183 1.634 6.308

TRY 11.830 3.779 5.560 19.728

USD 2.173 1.696 0.342 5.640

ZAR 7.536 1.671 4.852 12.409
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In Table 5.2 we present some descriptive statistics for the yield curves of the USD LIBOR

for different maturities. Some results are worth mentioning. We see that the curve is

upward sloping, that the long rates are less volatile and more persistent compared to

the short rates, that the level (defined as the yield curve for τ = 120 months) is highly

persistent but varies the least in relationship to its mean. Further we note that the slope

factor is less persistent than the level but that the curvature factor is the least persistent

among the factors. We also note that the pairwise correlations between the level,slope

are not high, the highest being ≈ 0.5.

Table 5.2: Descriptive statistics for LIBOR yield for USD

Maturity Mean Std Minimum Maximum ρ̂(1) ρ̂(12) ρ̂(30)

1 1.699 1.896 0.143 5.867 0.979 0.510 -0.229

2 1.766 1.887 0.185 5.795 0.980 0.525 -0.234

3 1.814 1.875 0.219 5.754 0.981 0.529 -0.235

6 1.848 1.859 0.224 5.616 0.986 0.544 -0.222

9 1.883 1.837 0.233 5.655 0.986 0.558 -0.208

12 1.926 1.810 0.249 5.667 0.986 0.574 -0.192

24 2.173 1.696 0.342 5.640 0.983 0.636 -0.117

36 2.468 1.598 0.424 5.636 0.978 0.676 -0.064

48 2.747 1.505 0.554 5.651 0.972 0.689 -0.026

60 2.998 1.418 0.737 5.672 0.965 0.686 0.004

72 3.400 1.277 1.144 5.707 0.953 0.661 0.051

120 (Level) 3.799 1.156 1.570 5.801 0.940 0.614 0.099

Slope 1.985 1.220 -0.755 4.176 0.932 0.154 -0.482

Curvature -1.265 0.753 -3.316 0.310 0.880 0.194 -0.126

In Table 5.3 we present descriptive statistics for DKK yield for all maturities along with

slope and curvature factors. Similar to the USD yields see that the curve is upward

sloping, that the long rates are less volatile and more persistent compared to the short

rates and the same tendency regarding level. Here the short rates is less persistent and

also more volatile compared to the long rates. The level (defined as the yield curve

for τ = 120 months) is still highly persistent among the factors and and varies only

moderately relative to its mean, while the slope factor varies the most relative to its

mean. Highest pairwise correlation being 0.32. Note that we see negative minimum

rates for all maturities up to 36 months. The lowest rate of −0.7 was noted on February

12, 2015 for the shortest one month rate.
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Table 5.3: Descriptive statistics for LIBOR yield for DKK

Maturity Mean Std Minimum Maximum ρ̂(1) ρ̂(12) ρ̂(30)

1 1.985 1.552 -0.700 6.133 0.973 0.488 -0.076

2 2.067 1.552 -0.627 6.302 0.974 0.477 -0.091

3 2.128 1.536 -0.581 6.169 0.974 0.468 -0.102

6 2.224 1.432 -0.393 5.804 0.975 0.458 -0.101

9 2.238 1.413 -0.342 5.655 0.974 0.474 -0.097

12 2.259 1.398 -0.291 5.717 0.972 0.489 -0.092

24 2.395 1.350 -0.146 5.737 0.965 0.529 -0.053

36 2.578 1.322 -0.035 5.641 0.962 0.555 -0.038

48 2.737 1.275 0.080 5.493 0.958 0.554 -0.016

60 2.887 1.226 0.197 5.361 0.954 0.547 0.000

72 3.152 1.144 0.430 5.219 0.948 0.530 0.022

120 (Level) 3.456 1.060 0.710 5.133 0.941 0.510 0.036

Slope 1.328 0.877 -2.294 2.538 0.947 0.123 -0.303

Curvature -0.794 0.553 -2.564 1.218 0.834 0.071 -0.164

Figure 5.1: Median Yield for LIBOR USD and DKK along with 25th and 75th
percentiles

In Figure 5.1 we have plotted the median yield together with the 25th and 75th percentile

for both USD and DKK. We can see the upward-sloping and concave curve (to the left)

that we mentioned in Chapter 4, as well as the long rates being less volatile than the

short rates mentioned earlier. One can also see that the distribution of yields around the

median is slightly asymmetric, with a longer right tail for the LIBOR USD whereas we
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see a longer left tail for DKK. The tables above in combination with Figure 5.1 displays

evidence of a normal yield curves.

5.2 Fitting the DNS model with fixed lambda

As discussed in Chapter 4 we fit the yield curve using the Dynamic Nelson-Siegel model

shown in Equation 4.8,

yt(τ) = β1t + β2t

(
1− e−λτ

λτ

)
+ β3t

(
1− e−λτ

λτ
− e−λτ

)
.

By fixing λ = 0.0598, as computed in Chapter 4, we are able to compute the two

factor loadings and use ordinary least squares to estimate the beta factors β1t, β2t and

β3t, for each t. This enhances simplicity and computational trustworthiness. Still, the

question of the optimal or appropriate value of λ arises. Therefore, we follow up with

another estimation methodology further on. As mentioned in Chapter 4, λ determines

the maturity where the loading of β3t, the curvature, and mid-term, factor reaches its

maximum. Bear in mind that the maturities are not equally spaced. Thus, we implicitly

put more weight on the most active region of the yield curve, that being the region

where we have smaller distance, when fitting the model.

There are many ways to go in order to evaluate the fit of the model. For our other

models, in subsequent sections, we also present some important aspects through tables

and additional figures. However, since the forecasting performance is our primary focus,

for fitting DNS yields with fixed λ we only include the two tables below 5.4 and 5.5 that

show some descriptive statistics of the yield curve residuals. The last three columns

contain residual sample autocorrelation at 1, 12, and 30 months displacements. These

indicate that the yield curve residuals are persistent.

In the next section we compare the in-sample performance of this DNS model with fixed

lambda and its counterpart with time dependent lambda.
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Table 5.4: Descriptive statistics for DKK LIBOR yield curve residuals using λ =
0.0598. Jan, 2003 to March, 2015

Maturity Mean Std Min Max MAE RMSE ρ̂(1) ρ̂(12) ρ̂(30)

1 0.049 0.066 -0.086 0.341 0.064 0.082 0.920 0.493 0.043

2 0.018 0.039 -0.110 0.152 0.035 0.043 0.892 0.323 -0.016

3 -0.006 0.023 -0.126 0.067 0.017 0.024 0.706 -0.180 -0.009

6 -0.042 0.054 -0.218 0.041 0.048 0.069 0.945 0.579 0.022

9 -0.028 0.048 -0.214 0.099 0.045 0.056 0.927 0.425 -0.012

12 -0.016 0.044 -0.209 0.128 0.040 0.047 0.877 0.215 -0.013

24 0.008 0.029 -0.109 0.114 0.023 0.030 0.746 -0.103 0.049

36 0.012 0.022 -0.040 0.069 0.019 0.025 0.874 0.403 0.002

48 0.014 0.019 -0.031 0.079 0.018 0.024 0.938 0.483 -0.068

60 0.014 0.020 -0.053 0.120 0.020 0.024 0.835 0.162 0.111

72 -0.024 0.028 -0.086 0.048 0.031 0.037 0.791 0.153 -0.019

120 0.002 0.012 -0.058 0.044 0.010 0.012 0.755 -0.074 0.050

Table 5.5: Descriptive statistics for USD LIBOR yield curve residuals using λ =
0.0598. Jan, 2003 to March, 2015

Maturity Mean Std Min Max MAE RMSE ρ̂(1) ρ̂(12) ρ̂(30)

1 0.011 0.060 -0.123 0.337 0.043 0.061 0.780 -0.170 0.197

2 -0.013 0.030 -0.164 0.068 0.026 0.033 0.569 -0.107 -0.159

3 -0.027 0.031 -0.222 0.031 0.031 0.041 0.664 0.236 -0.023

6 -0.009 0.026 -0.119 0.094 0.021 0.027 0.717 0.062 0.048

9 0.006 0.035 -0.095 0.171 0.029 0.036 0.716 -0.094 -0.057

12 0.016 0.041 -0.088 0.199 0.035 0.044 0.733 -0.127 -0.056

24 0.023 0.043 -0.087 0.153 0.039 0.049 0.820 0.043 -0.053

36 0.014 0.033 -0.055 0.104 0.027 0.036 0.887 0.248 -0.148

48 0.007 0.017 -0.049 0.054 0.014 0.019 0.848 0.034 -0.142

60 0.004 0.020 -0.079 0.067 0.017 0.021 0.754 -0.245 -0.127

72 -0.046 0.053 -0.179 0.052 0.053 0.070 0.891 0.355 -0.069

120 0.013 0.020 -0.035 0.064 0.019 0.024 0.829 0.140 -0.039
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5.3 Fitting the DNS model with time dependent lambda

As in the previous section, we fit the yield curves using the three factor Dynamic Nelson-

Siegel model. However, now we let λ be estimated as shown in Equation 4.9,

yt(τ) = β1t + β2t

(
1− e−λtτ

λtτ

)
+ β3t

(
1− e−λtτ

λtτ
− e−λtτ

)

Now we estimate all the four parameters β1t, β2t, β3t and λt using non-linear least squares,

for each t. So, instead of fixing λ = 0.0598, we estimate λt for every separate regression,

using the fminsearch function in Matlab. Note that for USD LIBOR the λt in-sample

mean is 0.8876, which is substantially larger than the previously fixed lambda value of

0.0598. In Table 5.7 and Table 5.6 we present statistics describing the yield curve resid-

uals, the in-sample fit of the DNS model, of DKK LIBOR and USD LIBOR respectively.

When comparing these tables to the in-sample performance of the DNS model with

fixed lambda, presented in the previous section, we see that the DNS model with time

dependent lambda produce RMSE that is slightly lower than that of the model with

fixed lambda, for all maturities except for the ten-year yield of DKK. Even though these

results show some minor advancement they might not be strong enough to support the

claim of improved in-sample fit by letting lambda vary over time.

Table 5.6: Descriptive statistics for DKK LIBOR yield curve residuals DNS opt λ,
Jan, 2003 to March, 2015

Maturity Mean Std Min Max MAE RMSE ρ̂(1) ρ̂(12) ρ̂(30)

1 0.049 0.054 -0.011 0.221 0.050 0.073 0.937 0.535 0.061

2 0.018 0.027 -0.040 0.073 0.022 0.033 0.925 0.552 -0.063

3 -0.007 0.016 -0.084 0.045 0.011 0.018 0.535 -0.015 -0.053

6 -0.044 0.053 -0.187 0.011 0.045 0.069 0.951 0.617 0.017

9 -0.031 0.039 -0.126 0.019 0.033 0.050 0.953 0.584 -0.018

12 -0.019 0.027 -0.093 0.028 0.023 0.033 0.915 0.500 -0.048

24 0.009 0.015 -0.071 0.121 0.013 0.017 0.783 0.485 0.013

36 0.017 0.025 -0.028 0.147 0.022 0.030 0.927 0.517 -0.069

48 0.020 0.021 -0.014 0.114 0.021 0.029 0.922 0.522 -0.064

60 0.018 0.015 -0.012 0.065 0.018 0.023 0.873 0.375 -0.027

72 -0.024 0.020 -0.085 0.015 0.025 0.031 0.915 0.565 -0.124

120 -0.007 0.015 -0.198 0.022 0.012 0.017 0.641 -0.054 -0.064
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Table 5.7: Descriptive statistics for USD LIBOR yield curve residuals DNS opt λ,
Jan, 2003 to March, 2015

Maturity Mean Std Min Max MAE RMSE ρ̂(1) ρ̂(12) ρ̂(30)

1 0.034 0.042 -0.031 0.290 0.035 0.054 0.803 0.089 0.129

2 0.002 0.017 -0.103 0.053 0.009 0.017 0.438 0.073 -0.190

3 -0.020 0.027 -0.227 0.017 0.020 0.033 0.659 0.058 0.108

6 -0.018 0.019 -0.110 0.020 0.019 0.026 0.748 0.257 0.046

9 -0.012 0.018 -0.092 0.045 0.014 0.021 0.774 0.199 -0.096

12 -0.005 0.016 -0.080 0.044 0.012 0.017 0.778 0.069 -0.188

24 0.011 0.016 -0.017 0.074 0.014 0.020 0.802 0.091 -0.016

36 0.015 0.019 -0.018 0.078 0.016 0.024 0.846 0.315 -0.100

48 0.013 0.013 -0.011 0.060 0.014 0.019 0.857 0.179 -0.218

60 0.010 0.008 -0.014 0.039 0.011 0.013 0.771 -0.015 -0.270

72 -0.044 0.033 -0.123 -0.000 0.044 0.055 0.958 0.642 -0.060

120 0.012 0.017 -0.053 0.051 0.018 0.021 0.870 0.368 0.085

In Figure 5.3 and Figure 5.2 below we plot the raw yield curve, represented as dots and

the DNS fitted yield curve in solid line, for four selected dates. We use the same dates

for both DKK and USD for DNS, as well as for DNSS, in order to be able to compare the

ability to fit the yields. From these figures it is evident that the three-factor DNS model

is capable of replicating some different yield curve shapes: upward-sloping, downward-

sloping, humped and inverted humped.

However, we see that the DNS model has a hard time fitting the whole yield curve when

the data points are too non-linear as displayed in the top right corner of Table 5.2 at

date 09/03/2009. Since the DNS model only has on curvature factor, it cannot handle

situations where the yield curve display a double hump, as for this date. Bear this in

mind for the coming section where we display the fit for the DNSS model.
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Figure 5.2: Selected fitted yield curves. DNS fitted yield curves (DKK) for selected
dates, together with actual yields

Figure 5.3: Selected fitted yield curves. DNS fitted yield curves (USD) for selected
dates, together with actual yields
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In the three figures below Figure 5.4, Figure 5.5 and Figure 5.6 we plot the estimated

factors, β1t, β2t, β3t, representing the level, slope and curvature factors in grey, along

with the the empirical level, slope and curvature in black, defined in Chapter 4. These

figures validates that the three factors in our DNS model actually correspond to level

slope and curvature, which supports the findings from Diebold and Li (2006). As shown

numerically in Chapter 4, we now also graphically show in Figure 5.5 that the model-

based slope factor, −β̂2t, coincide with the empirical slope factor, and in 5.6 that the

model-based curvature factor, 0.3β̂3t, coincide with the empirical curvature factor.

Figure 5.4: Model-based level factor vs. empirical level factor

Figure 5.5: Model-based slope factor vs. empirical slope factor

Figure 5.6: Model-based curvature factor vs. empirical curvature factor

In Table 5.8 we present descriptive statistics for the estimated factors. The last column

(to the right) contains augmented Dickey-Fuller (ADF) unit root test statistics, which
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suggest that the factors may have unit roots. The three columns to the left of the ADF

test statistics show sample autocorrelation at different displacements. The autocorrela-

tions of the factors show that the first factor is the most persistent, and that the second

factor is more persistent than the third one.

Table 5.8: Descriptive statistics for estimated factors

Factor Mean Std Min Max ρ̂(1) ρ̂(12) ρ̂(30) ADF

β̂1t 4.245 1.170 1.659 6.470 0.907 0.473 0.111 -1.078

β̂2t -2.374 1.533 -5.278 0.947 0.933 0.134 -0.501 -1.179

β̂3t -3.443 2.195 -8.421 1.061 0.898 0.153 -0.207 -1.470

5.4 Fitting the Dynamic Nelson-Siegel-Svensson model

We proceed by fitting the yield curve using the Dynamic Nelson-Siegel-Svensson model

shown in Equation 4.14,

yt(τ) = β1t + β2t

(
1− e−λ1τ

λ1τ

)
+ β3t

(
1− e−λ1τ

λ1τ
− e−λ1τ

)
+ β4t

(
1− e−λ2τ

λ2τ
− e−λ2τ

)
,

In this equation we actually have five parameters, β1t, β2t, β3t, λ1 and λ2 ,to be estimated

by non-linear least squares, for each t. Again, λ, and this time, both of them are

optimized for each t, using the fminsearch function in Matlab. In Table 5.9 and Table

5.10 we present some descriptive statistics for the yield curve residuals that describe the

in-sample fit. Comparing these tables to the DNS counterpart, Table 5.6 and Table 5.6

we see that the DNSS model has an advantage over both of the DNS models when it

comes to fitting the yield curves, for all maturities. The DNSS fitted yields follow the

observed data points very closely, which is to be seen in the subsequent figures as well.
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Table 5.9: Descriptive statistics for DKK LIBOR yield curve residuals, DNSS, Jan,
2003 to March, 2015

Maturity Mean Std Min Max MAE RMSE ρ̂(1) ρ̂(12) ρ̂(30)

1 -0.002 0.008 -0.030 0.065 0.005 0.008 0.432 0.135 -0.065

2 0.003 0.008 -0.031 0.026 0.006 0.009 0.366 0.164 -0.050

3 0.002 0.009 -0.070 0.043 0.006 0.009 0.464 0.199 -0.035

6 -0.008 0.013 -0.061 0.021 0.011 0.015 0.858 0.564 0.015

9 0.003 0.004 -0.011 0.019 0.004 0.005 0.772 0.456 -0.041

12 0.004 0.007 -0.015 0.030 0.006 0.009 0.731 0.443 -0.035

24 -0.005 0.009 -0.051 0.045 0.008 0.010 0.799 0.302 -0.229

36 -0.003 0.006 -0.029 0.027 0.004 0.006 0.704 -0.053 -0.165

48 0.008 0.007 -0.008 0.037 0.008 0.010 0.870 0.461 -0.168

60 0.014 0.009 -0.008 0.050 0.015 0.017 0.877 0.427 -0.042

72 -0.021 0.016 -0.058 0.015 0.022 0.026 0.941 0.567 -0.180

120 0.004 0.006 -0.026 0.022 0.006 0.007 0.678 0.363 -0.230

Table 5.10: Descriptive statistics for USD LIBOR yield curve residuals, DNSS, Jan,
2003 to March, 2015

Maturity Mean Std Min Max MAE RMSE ρ̂(1) ρ̂(12) ρ̂(30)

1 0.003 0.007 -0.020 0.036 0.005 0.008 0.410 0.073 0.003

2 -0.000 0.007 -0.048 0.033 0.004 0.007 -0.086 0.002 -0.004

3 -0.007 0.012 -0.045 0.035 0.009 0.014 0.527 0.125 -0.023

6 0.004 0.009 -0.022 0.049 0.006 0.010 0.557 0.125 0.082

9 0.002 0.005 -0.020 0.020 0.004 0.006 0.589 0.166 -0.168

12 -0.001 0.008 -0.037 0.022 0.005 0.008 0.543 0.077 0.005

24 -0.007 0.009 -0.038 0.032 0.008 0.011 0.774 0.237 -0.237

36 0.002 0.007 -0.020 0.031 0.005 0.007 0.592 0.190 -0.024

48 0.012 0.010 -0.005 0.045 0.012 0.015 0.914 0.517 -0.166

60 0.016 0.011 -0.008 0.044 0.016 0.020 0.894 0.577 -0.122

72 -0.035 0.025 -0.091 0.001 0.035 0.043 0.942 0.605 -0.101

120 0.010 0.009 -0.020 0.035 0.010 0.014 0.802 0.431 -0.011

As for DNS we plot the raw yield curve, represented as dots, and the DNSS fitted yield

curve in solid lines for the same selected dates. This is presented in Figure 5.7 and Figure

5.8. It is evident that the four-factor DNSS model is very much capable of replicating

some different yield curve shapes: upward-sloping, downward-sloping, humped and in-

verted humped. Moreover, it does a great job in capturing the non-linearity displayed

in the top right corner of Figure 5.8, representing date 09/03/2009.
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As we can see, it is able to fit a curve with more than one hump. If we remember the

outsmoothed fit by DNS we now instead see a close fit to the raw yield curve in all areas

of the yield curve. So, in terms of in-sample fit DNSS performs way better than the

DNS for both rates respectively. This is evident also in Table 5.10 and Table 5.9. As

mentioned earlier, both of the tables present significantly lower RMSE than the DNS

counterpart.

Figure 5.7: Selected fitted yield curves. DNSS fitted yield curves (USD) for selected
dates, together with actual yields
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Figure 5.8: Selected fitted yield curves. DNSS fitted yield curves (DKK) for selected
dates, together with actual yields

In Figure 5.9, Figure 5.10 and Figure 5.11 below, we compare the estimated level, slope

and first curvature factor from the DNSS model (in grey) to the corresponding empirical

factors (in black). Surprisingly, none of the three factors change notably, when intro-

ducing the second curvature factor. We would expect the level factor to change to some

extent, since the second curvature factor can fit yields with maturities in the long end

of the yield curve, and thus allowing the level factor to fit other areas of the yield curve.

But in this case the level factor still follows the 10-year yield quite closely, correlation

coefficient only drops from 0.9531 to 0.9466.

Figure 5.9: Model-based level factor vs. empirical level factor
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Figure 5.10: Model-based slope factor vs. empirical slope factor

Figure 5.11: Model-based curvature factor vs. empirical curvature factor

Figure 5.12 shows the estimated path of the second curvature factor from the DNSS

model (in grey), along with the 120 month (10-year yield) (in black). As brought up

in Chapter 4 and mentioned above, the purpose of the second curvature factor is to

improve the fit of long-term yields for the DNSS model. We include the 10-year yield for

comparison in order to see how well the second curvature factor does just that, fit the

long-term yields. The curvature no2 factor does strongly move with the ten-year yield,

however, in the opposite direction, with a correlation coefficient of −0.7021.

Figure 5.12: Model-based curvature no2 factor vs. 10-year yield

In Table 5.11 we present descriptive statistics for the estimated factors. The last column

(to the right) contains augmented Dickey-Fuller (ADF) unit root test statistics, which
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suggest that the factors may have unit roots. The three columns to the left of the

ADF test statistics show sample autocorrelation at different displacements, 1, 12 and 30

months. The autocorrelations of the factors show that the level factor is still the most

most persistent. The first curvature factor is more persistent than the second curvature

factor.

Table 5.11: Descriptive statistics for estimated factors

Factor Mean Std Min Max ρ̂(1) ρ̂(12) ρ̂(30) ADF

β̂1t 4.463 1.085 1.983 6.593 0.901 0.428 0.118 -1.072

β̂2t -2.928 1.589 -5.518 0.740 0.939 0.196 -0.484 -1.081

β̂3t -4.786 2.545 -9.296 0.343 0.928 0.284 -0.178 -1.275

β̂4t 2.002 1.146 -1.981 4.566 0.836 0.417 -0.085 -1.753



Chapter 6

Forecasting

6.1 Forecasting yield curve level, slope and curvature

Accurate prediction of yields is of crucial matter in this thesis. Both short-term and

long-term decision making is often based on forecasts. Thus, it is of utmost importance

that the yield curve models perform well both in-sample and out-of-sample. A model

performing well in-sample does not necessarily provide good out-of sample results, which

may be due to over-parametrization.

In order to focus more in depth on the forecasting performance of our models, hereafter

we exclusively work with USD LIBOR. However, the modeling framework is applicable

for any other LIBOR currency. Moreover, we leave the DNSS model behind and continue

by solely forecasting yields for the DNS model versions with fixed and time dependent

lambda. The reason for not including the DNSS model in our forecasting analysis is that

to any possible extent avoid or even eliminate the optimization problematics associated

with forecasting the DNSS model.

Forecasting the DNS model yield curve is equivalent to forecasting the underlying factors,

β̂1t, β̂2t, β̂3t, since the yield curve only depends on just those factors. When performing

our forecasting exercise we use end of month data, in order to be comparable to forecast

exercises made by others as well as limit the computational time for our model with

time dependent lambda.

Following Diebold and Li (2006) we estimate recursively, using the data we have from

the beginning of our time period starting in January, 2003, to the start of the forecasting

period, July, 2010, and extending through March, 2015, which is the end date of our time

period. Consequently, the sample period is divided into a training period, representing
2
3 of the available data, and a test period, representing the last 1

3 of the sample period.

61
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As the wording reveals, the training period is used to practise the model to discover

potentially predictive relationships, while the test period is used to assess the strength

and utility of that predictive relationship.

As mentioned above, we only have to forecast the factors in order to get a forecasted DNS

yield curve. We forecast the DNS factors as univariate first order autoregressive AR(1)

processes as well as we produce yield forecasts based on an underlying multivariate

VAR(1) specification. These two forecasting specifications make out our baseline model.

For further performance evaluation of the model, we forecast yields based on natural

competitors described in the next section. But first we specify how the DNS model

forecasts are generated.

6.1.1 DNS model forecasting specifications

The univariate AR(1) factor forecast is specified as:

ŷt+h/t(τ) = β̂1,t+h/t + β̂2,t+h/t

(
1− e−λτ

λτ

)
+ β̂3,t+h/t

(
1− e−λτ

λτ
− e−λτ

)
, (6.1)

where

β̂1,t+h/t = ĉi + γ̂iβ̂it, i = 1, 2, 3,

and ĉi and γ̂i are obtained by regressing β̂it on an intercept and β̂i,t−h.

AR-processes are basic time series regressions, where the output variable depends lin-

early on its own past values. The generalized representation is a AR(p) process, where p

determines the number of lagged previous values. For forecasting yield curves the most

commonly used AR-process is the AR(1). An AR(1) process is given by:

rt = φ0 + φ1rt−1 + at,

where at is assumed to be white noise, mean zero and variance σ2
a. An AR(1) model

implies that, conditional on its own previous value rt−1, we have:

E(rt|rt−1) = φ0 + φ1rt−1, V ar(rt|rt−1) = V ar(at) = σ2
a

That is, given its past value rt−1, the current value centers around φ0 + φ1rt−1 with

standard deviation σa. This satisfies the Markov property that conditional on rt−1, rt

is uncorrelated with rt−i for i > 1 (for an AR(1)).
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The multivariate VAR(1) factor forecast specifications are:

ŷt+h/t(τ) = β̂1,t+h/t + β̂2,t+h/t

(
1− e−λτ

λτ

)
+ β̂3,t+h/t

(
1− e−λτ

λτ
− e−λτ

)
, (6.2)

where

β̂1,t+h/t = ĉ+ Γ̂β̂t. (6.3)

A VAR-process is basically an extension of the AR process, by allowing for more than one

evolving variable, we now have a vector of AR-processes. Formally, a VAR(1) process is

defined as:

rt = φ0 + Φrt−1 + at,

where φ0 is a n-dimensional vector, Φ is a n×n matrix, and at is a sequence of serially

uncorrelated random vectors, mean zero and covariance matrix Σ. When used in appli-

cation, the covariance matrix is required to be positive definite; otherwise, the dimension

of rt can be reduced. In the literature, it is often assumed that at is multivariate normal.

Note, that the VAR process sometimes is too restrictive to properly picture the main

characteristics of the data. Therefore, additional deterministic terms (such as linear

trends) and/or external variables might be needed to represent the data. In this case

the extended VAR process may look like:

rt = φ0 + Φrt−1 + ΠDt +GY t + at,

where Dt is an (l×1) deterministic matrix, Y t represents the (m×1) matrix of external

variables and Π and G are parameter matrices.

For both these forecasting specifications the forecast errors at time t+ h are defined as

yt+h/t(τ)− ŷt+h/t(τ). (6.4)

6.2 Benchmark competitors

In order to evaluate the forecasting performance of our models we also include the

best practice competitors. Below we describe these in terms of how their forecasts are

generated:
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6.2.1 Random Walk

Random Walk (RW) hereafter, is a process commonly used when modeling unit-root

non-stationary times series, e.g. interest rates or exchange rates. The RW process can

be described by the following formula:

yt = yt−1 + εt

where yt and yt−1 represent two consecutive values of a process and εt is a white noise

series, symmetrically distributed around zero. Since εt follows that last criteria, there

is a 50/50 probability of yt to go either up or down in relation to yt−1. Thus, for any

forecast horizon, h > 0, the RW forecast follows:

ŷt+h/t(τ) = yt(τ) (6.5)

The above relationship states that the RW forecast is always ”no change”, meaning that

for any forecast horizon, h > 0, the predicted yield value is always equal to the value at

the forecast origin. Consequently, the RW process fails to pick up the mean reversion of

the yields. The literature promotes the RW forecast for short forecasting horizons.

6.2.2 Slope regression

The slope regression forecast is specified according to the following equation:

ŷt+h/t(τ)− yt(τ) = ĉ(τ) + γ̂(τ)(yt(τ)− yt(3)) (6.6)

This forecast is obtained from a regression of historical yield changes on yield curve

slopes. The changes is of the yields is given by, ŷt+h/t(τ)− yt(τ), and we estimate ĉ(τ)

and γ̂(τ) by OLS.

6.2.3 AR(1) on yield levels

This simple first order autoregressive forecasting model can be employed to predict the

yields, given that the yield time series show a high lag-1 autocorrelation. The process

is described as:

yt = c+ γyt−1 + εt
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where yt and yt−1 are two consecutive yields, and c and γ being constants, and εt is

white noise, with mean zero and variance σ2
ε . In order to predict the yields with a h step

ahead forecast, given maturity τ , we regress ŷt+h/t(τ) on itself, with the h step ahead

difference, where each time series regression can be expressed as follows:

ŷt+h/t(τ) = ĉ(τ) + γ̂(τ)(yt(τ) (6.7)

6.2.4 VAR(1) on yield levels

In short, the VAR(1) forecast model is like simultaneously running all time series equa-

tions in a system, instead of each at a time, as for the AR(1) forecast. Consequently,

for a n-dimensional time series the system of equations can be expressed as follows:

yt = c+ Γyt + εt

where yt is a multivariate time series, c is a n-dimensional vector of constants, Σ is a

n×n matrix of parameters and εt is a sequence of k-dimensional, randomly and serially

uncorrelated vectors with mean zero and positive definite covariance matrix. The vector

of constants ,c, along with the matrix of parameters, Σ respectively are estimated by least

squares. The resulting h-step ahead forecast is represented by the following formula:

ŷt+h/t = ĉ+ Γ̂ŷt (6.8)

6.2.5 Regression on 3 AR(1) principal components

As described in Chapter 2, principal component analysis (PCA), is a factor model struc-

ture used in order to reduce the dimensionality of a large data set, while retaining as

much as possible of the variation present in the data set. From a higher dimensional set

of variables, we project the data onto a lower dimensional linear space.

First, we perform principal components analysis on the full set of twelve yields yt, one

for each maturity. This procedure effectively decomposes the yield covariance matrix as

QΛQT , where the diagonal elements of Λ are the eigenvalues and the columns of Ω are

the associated eigenvectors. The three largest eigenvalues are denoted by λ1, λ2 and λ3

respectively, and the three associated eigenvectors by q1, q2 and q3. Then, the first three

principal components xt = [x1t, x2t, x3t] are defined by xit = q′i, i = 1, 2, 3. In order to

produce h-step ahead forecasts of the three principal components we use a AR(1) model,

represented as the following:

x̂i,t+h/t = ĉi + γ̂ixi, i = 1, 2, 3, (6.9)
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and then we produce forecasts for the yields:

yt ≡ [yt(3), yt(6), yt(12), yt(24), yt(36), yt(60), yt(120)]′

by using the forecast principal components and the eigenvectors as:

ŷt+h/t(τ) = q1(τ)x̂1,t+h/t + q2(τ)x̂2,t+h/t + q3(τ)x̂3,t+h/t (6.10)

where qi(τ) is the element in the eigenvector qi that corresponds to given maturity τ .

For all these reference models the forecast errors at time t+ h are defined as

yt+h/t(τ)− ŷt+h/t(τ). (6.11)

Important to note here is that the forecast object in these cases are future yields,

yt+h/t(τ), and not future Nelson Siegel fitted yields, as for our baseline DNS models.

To examine the forecasting performance we will in the next section present one table

for each forecast horizon (1-,6-,12-months) containing our DNS models along with the

benchmark competitors. Since we have eight models all together to consider each table

span over two pages, where we have four models on each page. In all tables we display

some descriptive statistics, including mean, standard deviation, root mean squared error

(RMSE) and autocorrelations using various displacements, depending on the forecast

horizon.
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6.3 Out-of-sample Forecasting Performance

Table 6.1: Out-of-sample 1-month-ahead forecasting for USD LIBOR yield curve

Maturity Mean Std RMSE ρ̂(1) ρ̂(6)

DNS with AR(1) and fixed λ

3 -0.060 0.061 0.085 0.870 -0.123

6 -0.086 0.054 0.101 0.851 -0.176

12 -0.128 0.054 0.139 0.736 -0.143

24 -0.157 0.080 0.176 0.606 -0.011

36 -0.139 0.101 0.171 0.579 0.122

60 -0.084 0.087 0.120 0.338 0.166

120 -0.093 0.071 0.116 -0.004 0.005

DNS with AR(1) and opt λ

3 0.019 0.057 0.060 0.337 -0.053

6 0.056 0.070 0.089 0.266 -0.056

12 0.139 0.088 0.165 0.139 0.016

24 0.256 0.160 0.301 0.662 0.152

36 0.306 0.219 0.375 0.828 0.193

60 0.304 0.237 0.384 0.881 0.200

120 0.238 0.189 0.303 0.843 0.202

Random Walk

3 -0.001 0.021 0.020 0.674 -0.201

6 -0.001 0.023 0.023 0.403 -0.133

12 0.001 0.033 0.033 0.083 -0.018

24 -0.000 0.053 0.052 -0.118 0.327

36 -0.002 0.071 0.070 -0.070 0.413

60 -0.005 0.078 0.078 0.015 0.301

120 -0.009 0.072 0.071 -0.003 0.014

Slope regression

3 0.010 0.020 0.023 0.687 -0.198

6 -0.000 0.024 0.024 0.406 -0.127

12 0.003 0.034 0.034 0.062 -0.002

24 0.005 0.053 0.053 -0.119 0.330

36 0.003 0.071 0.070 -0.070 0.412

60 -0.001 0.078 0.077 0.014 0.301

120 -0.008 0.072 0.071 -0.002 0.014
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Maturity Mean Std RMSE ρ̂(1) ρ̂(6)

DNS with VAR(1) factor dynamics

3 0.161 0.062 0.172 0.859 -0.118

6 0.121 0.070 0.139 0.831 -0.044

12 0.053 0.079 0.094 0.750 -0.070

24 -0.021 0.068 0.070 0.271 -0.022

36 -0.041 0.075 0.085 0.112 0.296

60 -0.039 0.079 0.087 0.107 0.252

120 -0.080 0.067 0.104 -0.019 -0.002

AR(1) on yield levels

3 0.003 0.021 0.021 0.675 -0.200

6 0.005 0.023 0.023 0.403 -0.133

12 0.006 0.033 0.033 0.083 -0.018

24 0.003 0.053 0.052 -0.119 0.327

36 -0.005 0.070 0.069 -0.074 0.414

60 -0.022 0.077 0.079 0.004 0.307

120 -0.041 0.069 0.079 -0.005 0.006

VAR(1) on yield levels

3 -0.179 0.333 0.374 0.173 -0.367

6 -0.221 0.359 0.418 0.183 -0.374

12 -0.243 0.366 0.435 0.207 -0.383

24 -0.235 0.296 0.375 0.182 -0.333

36 -0.220 0.230 0.316 0.070 -0.258

60 -0.206 0.152 0.255 -0.160 -0.194

120 -0.176 0.113 0.208 -0.184 -0.246

Regression on 3 AR(1) principal components

3 0.183 0.019 0.184 0.649 -0.335

6 0.212 0.030 0.214 0.544 -0.298

12 0.081 0.039 0.090 0.295 -0.027

24 -0.240 0.060 0.247 0.111 0.108

36 -0.285 0.079 0.296 0.193 0.271

60 -0.058 0.083 0.101 0.287 0.163

120 0.333 0.078 0.341 0.388 -0.196
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Table 6.2: Out-of-sample 6-month-ahead forecasting for USD LIBOR yield curve

Maturity Mean Std RMSE ρ̂(6) ρ̂(18)

DNS with AR(1) and fixed λ

3 -0.461 0.224 0.511 0.227 -0.464

6 -0.483 0.219 0.529 0.229 -0.432

12 -0.515 0.206 0.554 0.240 -0.397

24 -0.529 0.190 0.561 0.322 -0.369

36 -0.495 0.192 0.530 0.435 -0.345

60 -0.401 0.171 0.435 0.458 -0.337

120 -0.317 0.121 0.338 0.288 -0.249

DNS with AR(1) and opt λ

3 0.121 0.179 0.214 0.135 0.062

6 0.172 0.173 0.243 0.103 0.038

12 0.269 0.146 0.306 0.013 0.028

24 0.387 0.137 0.410 0.162 -0.210

36 0.426 0.185 0.464 0.370 -0.297

60 0.398 0.210 0.449 0.442 -0.322

120 0.297 0.179 0.346 0.412 -0.266

Random walk

3 -0.004 0.083 0.082 0.011 -0.125

6 -0.007 0.076 0.075 0.005 -0.087

12 -0.004 0.076 0.075 -0.082 -0.055

24 -0.000 0.102 0.101 -0.043 -0.246

36 -0.004 0.156 0.154 0.037 -0.339

60 -0.021 0.200 0.199 0.105 -0.415

120 -0.043 0.189 0.192 0.146 -0.436

Slope regression

3 0.089 0.067 0.111 0.300 -0.255

6 0.026 0.077 0.080 0.001 -0.086

12 0.018 0.082 0.083 -0.090 -0.043

24 0.032 0.104 0.108 -0.057 -0.251

36 0.032 0.155 0.156 0.042 -0.338

60 0.015 0.197 0.195 0.111 -0.412

120 -0.016 0.188 0.186 0.147 -0.435
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Maturity Mean Std RMSE ρ̂(6) ρ̂(18)

DNS with VAR(1) factor dynamics

3 0.603 0.220 0.641 0.157 -0.441

6 0.509 0.200 0.546 0.153 -0.451

12 0.343 0.168 0.381 0.061 -0.430

24 0.097 0.127 0.159 -0.220 -0.295

36 -0.058 0.145 0.154 0.076 -0.295

60 -0.221 0.163 0.273 0.307 -0.378

120 -0.220 0.136 0.258 0.238 -0.373

AR(1) on yield levels

3 -0.028 0.081 0.084 0.029 -0.123

6 -0.032 0.074 0.080 0.021 -0.084

12 -0.022 0.074 0.076 -0.080 -0.053

24 0.003 0.100 0.099 -0.042 -0.245

36 0.006 0.154 0.152 0.042 -0.337

60 -0.044 0.192 0.194 0.116 -0.409

120 -0.135 0.162 0.210 0.169 -0.419

VAR(1) on yield levels

3 -0.179 0.333 0.374 0.173 -0.367

6 -0.221 0.359 0.418 0.183 -0.374

12 -0.243 0.366 0.435 0.207 -0.383

24 -0.235 0.296 0.375 0.182 -0.333

36 -0.220 0.230 0.316 0.070 -0.258

60 -0.206 0.152 0.255 -0.160 -0.194

120 -0.176 0.113 0.208 -0.184 -0.246

Regression on 3 AR(1) principal components

3 0.398 0.057 0.402 -0.113 0.060

6 0.280 0.055 0.286 -0.145 0.140

12 -0.026 0.060 0.065 -0.222 0.093

24 -0.459 0.097 0.469 0.159 -0.241

36 -0.491 0.147 0.512 0.399 -0.340

60 -0.288 0.168 0.332 0.429 -0.396

120 0.028 0.134 0.135 0.303 -0.371
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Table 6.3: Out-of-sample 12-month-ahead forecasting for USD LIBOR yield curve

Maturity Mean Std RMSE ρ̂(12) ρ̂(24)

DNS with AR(1) and fixed λ

3 -0.933 0.269 0.970 -0.133 -0.047

6 -0.952 0.259 0.985 -0.116 -0.049

12 -0.969 0.245 0.998 -0.108 -0.028

24 -0.939 0.218 0.963 -0.111 0.045

36 -0.866 0.203 0.889 -0.026 -0.004

60 -0.714 0.180 0.735 0.011 -0.082

120 -0.496 0.138 0.514 -0.279 0.056

DNS with AR(1) and opt λ

3 0.368 0.300 0.473 0.080 -0.091

6 0.421 0.278 0.503 0.087 -0.079

12 0.516 0.242 0.569 0.075 -0.025

24 0.613 0.195 0.643 0.052 0.068

36 0.621 0.193 0.649 0.113 -0.085

60 0.536 0.182 0.565 0.078 -0.274

120 0.370 0.143 0.396 -0.099 -0.213

Random walk

3 -0.036 0.104 0.109 -0.368 0.031

6 -0.044 0.093 0.101 -0.322 -0.004

12 -0.040 0.090 0.097 -0.231 -0.053

24 -0.004 0.132 0.130 -0.029 -0.306

36 0.021 0.211 0.209 -0.093 -0.304

60 0.013 0.290 0.285 -0.304 -0.132

120 -0.021 0.277 0.274 -0.456 0.022

Slope regression

3 0.057 0.092 0.107 -0.334 -0.001

6 -0.041 0.138 0.142 -0.394 0.042

12 -0.032 0.133 0.135 -0.274 -0.072

24 0.042 0.157 0.160 -0.009 -0.302

36 0.068 0.229 0.235 -0.101 -0.281

60 0.050 0.298 0.298 -0.307 -0.124

120 0.008 0.280 0.276 -0.456 0.023
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Maturity Mean Std RMSE ρ̂(12) ρ̂(24)

DNS with VAR(1) factor dynamics

3 1.135 0.488 1.232 -0.229 0.039

6 1.005 0.462 1.103 -0.242 0.042

12 0.779 0.407 0.876 -0.253 0.041

24 0.442 0.333 0.550 -0.233 -0.038

36 0.212 0.315 0.375 -0.243 -0.121

60 -0.071 0.277 0.282 -0.320 -0.122

120 -0.130 0.204 0.239 -0.436 -0.020

AR(1) on yield levels

3 -0.257 0.087 0.271 -0.310 -0.037

6 -0.262 0.078 0.273 -0.264 -0.061

12 -0.235 0.076 0.246 -0.203 -0.056

24 -0.125 0.119 0.171 -0.038 -0.303

36 -0.045 0.197 0.199 -0.090 -0.319

60 -0.033 0.270 0.268 -0.298 -0.146

120 -0.126 0.232 0.261 -0.460 0.012

VAR(1) on yield levels

3 -0.106 0.330 0.341 -0.101 -0.053

6 -0.159 0.349 0.379 -0.129 -0.050

12 -0.189 0.357 0.399 -0.175 -0.043

24 -0.192 0.301 0.353 -0.196 -0.026

36 -0.203 0.254 0.322 -0.146 -0.068

60 -0.186 0.219 0.284 -0.171 -0.097

120 -0.092 0.199 0.216 -0.351 0.042

Regression on 3 AR(1) principal components

3 0.205 0.048 0.210 -0.163 -0.169

6 0.064 0.045 0.078 -0.113 -0.248

12 -0.235 0.045 0.239 -0.051 -0.129

24 -0.600 0.100 0.608 -0.081 -0.217

36 -0.587 0.156 0.607 -0.067 -0.289

60 -0.381 0.183 0.421 -0.141 -0.236

120 -0.082 0.141 0.161 -0.334 -0.047
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6.4 Discussion of Forecasting Results

From an overall perspective we can conclude that the benchmark forecasting models

included in this analysis outperform our versions of the Dynamic Nelson–Siegel (DNS)

models, including DNS AR(1) with fixed lambda (DNS fixed), DNS AR(1) with time

dependent lambda (DNS opt), and DNS VAR(1). For all forecast horizons and maturities

the DNS models falls behind its competitors at the RMSE measurement. Whats more,

the difference in performance is quite substantial. We will get back to possible reasons

to this outcome. During the discussion below we see the DNS models as one group

of forecasting models fighting a battle against their main competitors (Random Walk,

slope regression, AR(1) on yields, VAR(1) on yields and PCA). Therefore, we compare

the results across and within groups.

For the shortest forecast horizon of 1-month presented in Table 6.1, Random Walk

(RW) comes across as the clear favourite amongst the different models, producing the

lowest RMSE for both short and long maturities. Notably, slope regression provides an

almost identical results as RW, just slightly behind in performance. When it comes to

the DNS models our DNS opt model performs better than both DNS fixed and DNS

VAR(1) for the short maturities. But in the long end of the curve DNS VAR(1) produce

better results than the two other DNS models, where also DNS fixed passes DNS opt

in performance. PCA provides very unstable results, but nevertheless beats the DNS

family for the 12 months maturity.

Moving on to forecast horizon of 6-months presented in Table 6.2 it is possible to make

out a similar pattern as the one just described. RW together with AR(1) on yields

(AR(1)) hereafter, is still in favor of the DNS group. PCA is still a wobbly competitor,

but interestingly enough beats the others for not only 12 month maturity but also for

the 120 month maturity. Comparing our baseline models, once again, DNS opt performs

better than the other two for the shorter maturities, but approaching the long end of the

curve DNS VAR(1) outperforms both DNS fixed and DNS opt. DNS fixed falls behind

DNS opt throughout all maturities on the 6 month-ahead forecast, except the very long

end.

In Table 6.3 we present the forecast results for 12-month-ahead horizon. The previous

picture has not changed very much. We still see that RW and AR(1) have an advantage

for all maturities except for 6 and 120 months, where PCA again manage to place itself

on top of the others. The DNS opt keeps the trend and produce stable results and

outweigh the other two DNS models for shorter maturities. From providing bad results

for the short end of the curve, DNS VAR(1) picks up and outperform DNS opt after 24

months maturity and longer. Now, the DNS opt model, with time dependent lambda
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performs better than the DNS AR(1) model with fixed lambda for for all maturities. It

is interesting that now for 12 month ahead forecast PCA really catches up and passes

the DNS group. It provides strong results for all maturities, especially for the short and

the long end of the curve.

When we examine the two DNS AR(1) models1 head-to-head it is possible to make out

a clear trend, where our DNS opt model slowly but surely outperforms the DNS fixed

model as the forecast horizon lengthens. Initially, for the shortest forecast horizon of 1

month-ahead DNS opt only produce lower RMSE than the DNS fixed for the two shortest

maturities. As we stretch the forecast horizon to 6 month-ahead DNS opt advance to be

the winner for five maturities, leaving the two longest maturities for DNS fixed to take

home. It is not until we reach the 12 month-ahead forecast that the DNS opt model

really proves its strength and produce a better out-of-sample result than DNS fixed for

all maturities.

Consequently, we see that in 14 out of 21 possible cases included in this analysis the

DNS opt model performs better than the DNS fixed counterpart. These results provide

some evidence that in contrast to what Diebold and Li (2006) suggest, it is possible to

not only improve the in-sample fit, but also the out-of-sample performance by letting the

decay parameter, lambda, vary over time as together with the other factors (β1t, β2t, β3t)

along with using a more sophisticated non-linear estimation technique. However, it is

important to bear in mind that this is only true for the specific time period included

in our sample, and that the results might not be convincing enough to justify the com-

plexity of including a more advanced non-linear estimation technique instead of using

the standard OLS estimation, which is both faster and less computational intensive to

work with.

Furthermore, our results indicate that there is no advantage in using the more advanced

Dynamic Nelson-Siegel model over a simple AR(1) or random walk model, even for

longer horizons, where we initially would think that the DNS model could have some

advantage. So why are the random walk model superior to the DNS model? We suspect

that it is a combination of our sampling technique and the time series. To illustrate this

we take the first difference of the 1 year USD LIBOR and as can be seen in figure 6.1 it

looks like an i.i.d sequence in each of the 10% sampling/calibration windows. This means

that it is equally likely that the rate will move up and down after the sample period

and hence the latest value will correspond to the mean of the realized value. When the

time series have this property the random walk model will perform well against a mean

1DNS opt = DNS AR(1) with time dependent lambda,
DNS fixed = DNS AR(1) with fixed lambda



Chapter 6. Forecasting 75

model since it is always re-anchored at the latest value whilst the mean model uses the

full time series to estimate the mean.

Figure 6.1: USD LIBOR 1 year

Adding to this, the more standard factor analysis, i.e. PCA, also performs better than

the DNS models for longer horizons. In total, our results suggest that one might be better

off using one of the natural competitors for the purpose of forecasting LIBOR yields. In

the next section we will further investigate the performance of the DNS model through

backtesting forecasting distributions at various horizons and initialization points.

6.4.1 Possible reasons for poor forecasting performance of DNS models

Below we have tried to find an explanation for the poor relative performance we see in

the forecasting results for the DNS models.

The first reason we can suspect is the we simply have a bad model for this purpose and

studying the literature we do see that other authors come up with the same conclusion

i.e. that the DNS models are not good when it comes to forecasting the yield curve.

The second reason for the bad forecasting results could be that we have made a bad

model construction. It is of course possible that we have made a manual error when

coding up the models in Matlab. We have however used the same code as we used in

the in-sample tests, where it produced really good results but it is of course still possible

that the forecasting code contains manual errors.

Furthermore another reason for the results could be the choice of calibration period.

Our sample consists of time periods where the yields has been at extreme levels e.g.

during the 2008 financial crisis and it could therefore be possible that the forecasting

model cannot cope with this specific sample data. We have tried to minimize this by
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using many different initialization points and a long sample size and we do not think

this is a valid conclusion of the bad performance (and in any way the model should be

able to pick up rates at all values to be considered a good model). Finally a reason

could simply be that the LIBOR rates are frankly just unpredictable using this model,

and consequently that other models should be considered.



Chapter 7

Backtesting

7.1 Backtesting for the CCR Measurement

As mentioned earlier, our focus within the Counterparty Credit Risk measure drills

down to Risk Factor Evolution models, which is a subset of models generating the

Expected Positive Exposure profiles. In this case the Risk Factor Evolution model is

our interest rate model, namely the Dynamic Nelson-Siegel model. In this section we

focus on assessing the performance of the forecasting model, through backtesting. In a

backtest, forecasts at some confidence level are compared with what actually happened

in the market. Backtests are used to test whether the forecasting model and its setup is

appropriate to use or not. Within the Basel regulatory capital framework backtesting

is defined as the quantitative comparison of the IMM model’s forecasts against realized

values.

In the previous chapter we used a number of different versions of the Dynamic Nelson-

Siegel model to forecast yields for a whole range of maturities, making up the term

structure of LIBOR rates. In this section we solely focus on forecasts generated by the

DNS model using AR(1) factor dynamics, and we use the setup where we fix the decay

parameter lambda, λ = 0.0598, in order to keep the model as simple as possible, and

decrease computational complexity. Furthermore, we have chosen to limit the backtest-

ing section to test for four tenors, that is evenly spread, representing vital part of the

yield curve.

In order to test how good our model is, it is best to focus on reliability: i.e. the aim

of our backtest analysis is to test that forecasts have correct confidence levels (i.e. the

reliability). For some historic date there will be one rate for a particular tenor (multiple

tenors in what we call the term structure) quoted in the market. In our case we have 12

77
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different tenors, leading to 12 actual rates per historic date. The question then becomes

whether the frequency of exceptions, i.e exceeds, is consistent with the frequency of

expected exceptions. We will define success criteria of the model later on in this section.

We will not study how close the forecasts levels are to the true outcome (the tightness

of prediction intervals).

In order to get a better understanding of how backtesting for CCR measurement usually

is performed we start by formulating some general backtest terminology and basic steps

included in the backtesting methodology.

7.1.1 Key Backtest Terminology

In our backtesting analysis we are forecasting the whole distribution of the yields. All

forecasts are initialised at a particular point in time, the initialization date. From

that date on we are looking into the future.

How far into the future are we looking? The time between initialization and the real-

ization of the forecast, is called the time horizon. If the initialization date is on 1st

of January and the realized date of the forecast is on 31st of January we have a 30

day time horizon. Forecasts with different time horizons can of course have the same

initialization date, i.e. two week and one month forecasts that is realized on 15th and

31st of January respectively would both have been initialized on the same date, 1st of

January. The time between two initialization dates is referred to as the time step.

The meaning and importance of the backtesting result is highly dependent on the amount

and quality of the data used in the sample. The more data and the better data we have

access to, the more trustworthy results do we get. Not necessarily better, but more

significant. A backtesting data set consists of a set of forecasts and the corresponding

realizations of those forecasts, i.e. the true values related to the forecasts. This data set

forms the statistical sample and can be constructed in a number of ways. A backtesting

data set might consist of e.g. a) exposure forecasts and the corresponding realizations

of exposure, or as in our case b) the forecasts of a risk factor and the corresponding

realizations of that risk factor. In order to increase the amount of data one can use

a number of risk factors to aggregate over, or aggregate the data across a number of

dimensions, e.g. time, trades, or risk factors and counterparties.

The time period from the start date, i.e the first initialization date and the end date,

i.e. the last realization date of the backtest, is referred to as the observation window.

Backtests using very short observation window may not produce meaningful results,

which mean that we might not be able say anything about the quality of the model
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we are assessing. Furhtermore, using a short observation window, would mean that the

results are highly dependent on the specific initialization dates on which the data are

collected. In those cases one have to make sure that good initialization dates do not

mask bad behavior elsewhere during the period, or vice versa.

There are a variety of methods for generating a backtesting data set over a given observa-

tion window. Usually we are talking about non-overlapping (independent) or overlapping

(non-independent) data sets. An example of a non-overlapping data set is if we have

a time step of one week and a time horizon of the forecast of one week as well. Then

we are simultaneously moving the initialization date and the realization date one week

ahead, resulting in a non-overlapping data set. For this methodology it is important to

note that as the time horizon increases the observation window must also increase in

order to maintain the same number of data points and produce statistically significant

results. Since non-overlapping windows generate data that can be considered indepen-

dent, it gives the advantage that one can use standard statistical tests to determine the

performance.

It is common to use exceptions as the basis for the backtesting assessment. When the

realized quantity of the risk factor exceeds a predetermined risk measure generated by

the model, we say that an exception has occurred. The gathered exceptions are then used

as the basis for assessing model performance. It is basically a pass or fail assessment.

Alternatively, backtesting can be carried out through determining the probability of

observing an exposure that is greater than the realized exposure.

When using exposure profiles generated from simulations of market risk factors one

have to recognize that these exposure profiles are dependent on the definition and cal-

ibration of the stochastic processes driving the underlying risk factor dynamics. It is

recommended by the Basel Committee to backtest short and long time horizon both

on exposure profiles and on the risk factor model output. The predicted risk factor

distributions are then compared to the realized risk factor values at different time hori-

zons. This way we are able to assess whether or not the assumptions of the modelled

risk factor dynamics remain valid. In order to challenge the assumptions of the model

it is important to include time horizons that are typical margin periods of risk, also

known as the liquidation period. This is defined as the time period from the most recent

exchange of collateral covering a netting set of financial instruments with a defaulting

counterparty until the financial instruments are closed out and the resulting market risk

is re-hedged (BIS (2010)).
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7.1.2 Backtesting Methodology

In a more detailed way Ruiz (2012) suggest that CCR backtesting should be done by

testing the realized path of our risk factor, i.e. the time series of yields. This realized

path is given by a collection of yield rates for different time points, which get the value

xti. We choose a point in time within the time series where the backtest starts, tstart,

and a corresponding end time, tend. The resulting backtest time window T is then

T = tend − tstart. We define the time horizon over which we want to test our model as

∆, and proceed as follows:

1. The first time point of measurement is t1 = tstart. At t1, we calculate the risk

factor distribution at a point t1 +∆ subject to the realization of xt1. We then take

the realized value xt1+∆ of the time series at t1 + ∆ and observe where that value

falls in the risk factor cumulative distribution calculated previously. This results

in a value F1, where Fi ∈ (0, 1)∀i.

2. We then jump to t2 = t1 + δ, and calculate the risk factor distribution at t2 + ∆

subject to the realization of xt2, and proceed as above: we take xt2+∆ in the model

distribution and from that obtain F2.

3. Repeat step 1. and 2. continuously until ti + ∆ = tend

This procedure results in a collection of {Fi}Ni=1, where N is the number of steps taken.

The desired outcome from this procedure is that the empirical distribution from the

time series is the same as the predicted distribution from the model. In that case we

have a ”perfect” model, and then {Fi}Ni=1 is uniformly distributed. Now, we can define a

metric of the difference between the empirical and model distribution, where D represent

a distance in the set. If D = 0, meaning that we have the same distribution empirically

as the one obtain from the model, i.e. a ”perfect” model.

There are various typical metrics for D, of which we mention three common ones below.

Let F denote the theoretical cumulative distribution function given by the model and

Fe denote the empirical cumulative distribution function obtained from the outcome of

the previous exercise, {Fi}Ni=1. We can then use one of the metrics below:

Anderson–Darling metric:

DAD =

∫ −∞
∞

(Fe(x)− F (x))2w(F (x))dF, (7.1)

where w(F ) = 1
F (1−F ) .
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Cramer–von Mises metric:

DCM =

∫ −∞
∞

(Fe(x)− F (x))2w(F (x))dF (7.2)

where w(F ) = 1.

Kolmogorov–Smirnov metric:

DKS = sup
x
|Fe(x)− F (x)| (7.3)

The three metrics described above will generate a different measurement of the distance

D. What metric to choose depends on the application of the model assessed. Anderson–

Darling is suitable for risk management, where the quality of the models in the tails of

the distribution is of interest. Cramer–von Mises is useful in capital calculations, since

we then care about the whole distribution function. Kolmogorov–Smirnov is appropriate

in situations where small general deviations can be accepted, but large deviations would

be unacceptable. In the CCR framework, the goal is to produce a forecast distribution,

that is accurate in the whole distribution. So there is no particular interest in either the

tail or the middle of the distribution. Therefore, it is suggested to use the Cramer–von

Mises metric for CCR backtesting.

After choosing a suitable metric for the model, the next step is to compute D̃, which is

the measure of the quality of the model. The question is now; how small does D̃ need

to be to reflect a good model, or equivalently, how large must D̃ be to be considered a

bad model? Also, since N is a finite number, D̃ will never be exactly zero although we

have a perfect model, so how can the validity of D̃ be assessed?

To cope with these questions Ruiz (2012) constructs an artificial time series using the

examined model, and applying the earlier mentioned procedure, which yields a value

D. Despite the fact that the artificial time series, by definition, follows the model

perfectly, D will still not be exactly zero. By repeating this exercise M number of

times, constructing M number of artificial time series, where each of them correspond

to a perfect model, resulting in a collection of {Dk}Mk=1, that will follow a probability

distribution ψ(D). Finally, by making M sufficiently large {Dk}Mk=1 will approximate

ψ(D), which allows us to assess the validity of D̃. If D̃ is in a range with high probability

in ψ(D), this corresponds to a high probability of an accurate model.
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7.1.3 Backtest success criteria

In order to easily score any model, Ruiz (2012) define three colored bands, where the

color of the band determines the performance of the model. When letting Dy and Dr be

defined as the 95th and 99.99th percentile respectively, the resulting bands are defined

as follows:

• Green band if D̃ ∈ [0, Dy)

• Yellow band if D̃ ∈ [Dy, Dr)

• Red band if D̃ ∈ [Dr,∞)

In words this means that a model in the green band has a 95% probability of being

correct, the yellow band means that probability is 4.99% and a model in the red band

means that that probability that the model is correct is only 0.01%. This exercise is a

sophisticated way of performing reliability and precision tests.

The setup of colored bands comes from the Basel Committees Traffic Light Coverage

Test. In the 1996 Amendment the Basel Committee imposed a capital charge on banks

for market risk, and therefore specified a methodology for backtesting proprietary VaR

measures. The Green light represented a zone where the VaR measures were fine and

raised no particular concern to the Committee. On the other hand, measures falling

in the yellow zone required monitoring. VaR measures falling in the red zone were

presumed flawed and had to be improved. Essentially, the traffic light represents the

performance of the VaR measures. For CCR backtesting the traffic light symbolizes the

goodness of the model, in terms of probability of being correct, as described above.

However, for simplicity reasons we take a slightly different approach. Reliability tests can

also be summarized as a counting exercise, where the the observed number of exceptions

are compared with the theoretical level for the percentiles and horizons considered. This

is going to be the main focus in our backtesting analysis. We get confidence intervals

reaching from 90% to 99% for each forecast horizon and tenors considered. Then in

order to evaluate the model we test whether the frequency of exceptions, i.e. exceeds is

consistent with the frequency of expected exceptions for different quantiles. Precision

tests aim to reveal the sizes and distributions of the exceptions. The results of the

corresponding reliability test should be related to these distributions.

7.1.4 Backtesting Setup:

• Time period: start date: 03/03/2008, end date: 03/03/2015
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• Time step: 1 week/2 weeks/1 month

• Time Horizons: 1 week, 2 weeks, 1 months, 3 months, 6 months

• Re-calibration frequency: monthly

• Sampling used: Dependent / Independent

• Tenors included in backtest: 3 months, 1 years, 5 years, 10 years

• Currencies in backtest: USD

• Data source: Nordea, Group Counterparty Credit Risk

In our backtesting analysis we use the above stated setup. The historic start date is 3rd

March, 2008 and the end date is 3rd March, 2015. For our shorter time horizons of 1

week and 2 weeks, we use a time step of 1 week and 2 weeks respectively, yielding non-

overlapping (independent) data. For forecasting time horizons of 1 month and above

we use a monthly time step, which results in non-overlapping data for the 1 month

horizon, but overlapping (dependent) data for the longer time horizons. We have chosen

to include 4 different maturities for each horizon, in order to test our model for different

points of the yield curve.

7.2 Backtesting results

Since we have 37 different LIBOR curves we have decided to use the USD LIBOR as

an example in the backtesting section. Our code can of course easily be applied to any

currency in the data set.

First, we forecasted the LIBOR rates at maturities of three months, one year, five years

and ten years using an AR model. We used a 1 week, 2 weeks, 1 month and 3 months

forecasting horizons starting from the 3 March 2008. To get the forecasting distribution

we assumed a normal errors and used the mean and variance from the predictions at

a given horizon to get a Monte Carlo simulation to estimate the yields. In Figure 7.1

below we present the probability density functions of the USD LIBOR forecasts. The

forecast are mapped to a probability density for each horizon. It answers the question

”How likely was the realized outcome according to our model?” We also added a line as

representing the realized value of the rate. As seen, the results vary quite a lot, but the

overall performance is rather poor, especially for longer maturities and longer forecasting

horizons. Two exceptions though are the 1 week and 2 week horizon forecast for the 10

year maturity. These results does however not tell us anything about the overall model
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performance since we have only forecasted it starting from one initialization point. In

order to evaluate the model performance in more detail we proceed with a more thorough

analysis below using boostrapping and multiple initialization points.

Figure 7.1: Probability Density Functions of USD LIBOR forecasts for different ma-
turities and horizons

Next we tried to improve our results by bootstrapping, we used boostrapping since it is

a simple way to get the a simulation of the yield distribution. However, the performance

is not good. The methodology we applied was to estimate the parameters using our

AR(1) model and then bootstrapping the model using the in sample residuals. We

used 10 percent of the sample as our calibration window and let this window vary over

multiple initialing points. At each initialization point we calibrated our model (however

kept lambda fixed) and forecasted the parameters to get the yield curve h step into

the future. To get a more realistic performance we also scaled the variance to match

the observed time series better. However, the results we obtained still suggest that our

model does not perform well.

The graphs on the following pages illustrate the performance of our backtest. The bars

illustrates the share of times the actual yield was outside our specified percentile and the

horizontal line show the sought after percentile. So in a perfect model the share of times

the actual yield was greater than e.g. the 95th percentile would be 0.05 and the hence
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the height of the bars should be level with the horizontal line. The results in Figure

7.2 to 7.5 show that the model does not perform well and that the actual occurrence

of LIBOR rates outside the specified percentiles are more common than what we would

like for it to be a ”good” model performance. In general the model seems to be better

at the shorter end of the curve and for a shorter forecasting period. Also for the 5

year LIBOR curve we see that all actual rates are within even the 90th percentile which

would suggest that the model performs well. However we see that the variance in the

AR parameters are much higher for this part of the curve making the sample really wide

and hence letting all actual rates be within the specified percentiles. So the conclusion

of the back testing results must be that our model does not perform well for all horizons

and all parts of the curve. We are not very surprised by this result since it is consistent

with the result we got in the forecasting section and the result is also consistent with

what other authors find. We got similar results for other currencies (than the USD). To

improve our backtest a model for the variance could be applied to give us a better fit.

Figure 7.2: Backtest of 3 month USD LIBOR at different forecasting horizons.
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Figure 7.3: Backtest of 1 month LIBOR at different forecasting horizons.

Figure 7.4: Backtest of 5 year LIBOR at different forecasting horizons.
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Figure 7.5: Backtest of 10 year LIBOR at different forecasting horizons.

To further illustrate our backtesting results and give numbers to the figures above we

present in the following tables the number and share of exceptions (i.e. the number

(share) of times the actual yield was outside the specified percentile) for each USD

LIBOR rate maturity and forecasting horizon.

Table 7.1: Backtesting result 3 month USD LIBOR

Horizon 1w forecast 2w forecast 1m forecast 3m forecast 6m forecast

Percentile Nr % Nr % Nr % Nr % Nr %

99th 99 25.19% 33 16.84% 32 35.16% 32 35.96% 33 38.37%

95th 102 25.95% 35 17.86% 33 36.26% 32 35.96% 33 38.37%

90th 106 26.97% 38 19.39% 33 36.26% 33 37.08% 33 38.37%

Table 7.2: Backtesting result 1 year USD LIBOR

Horizon 1w forecast 2w forecast 1m forecast 3m forecast 6m forecast

Percentile Nr % Nr % Nr % Nr % Nr %

99th 96 24.43% 21 10.71% 31 34.07% 29 32.58% 53 61.63%

95th 101 25.70% 27 13.78% 31 34.07% 30 33.71% 60 69.77%

90th 103 26.21% 30 15.31% 31 34.07% 31 34.83% 65 75.58%
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Table 7.3: Backtesting result 5 year USD LIBOR

Horizon 1w forecast 2w forecast 1m forecast 3m forecast 6m forecast

Percentile Nr % Nr % Nr % Nr % Nr %

99th 62 15.78% 0 0.00% 53 58.24% 48 53.93% 55 63.95%

95th 72 18.32% 0 0.00% 54 59.34% 53 59.55% 58 67.44%

90th 89 22.65% 0 0.00% 54 59.34% 54 60.67% 61 70.93%

Table 7.4: Backtesting result 10 year USD LIBOR

Horizon 1w forecast 2w forecast 1m forecast 3m forecast 6m forecast

Percentile Nr % Nr % Nr % Nr % Nr %

99th 69 17.56% 3 1.53% 38 41.76% 40 44.94% 44 51.16%

95th 75 19.08% 6 3.06% 41 45.05% 41 46.07% 46 53.49%

90th 84 21.37% 14 7.14% 43 47.25% 41 46.07% 47 54.65%

In order to provide more insights from our results Figure 7.6 to 7.8 below display plots

showing forecasts at different confidence levels versus the realized 10 year USD LIBOR

rate. In each figure the forecasting has been computed for all horizons up to 3 months

for a specific initialization point. The forecast curves are computed using market data

and calibration data available at the initialization point, meaning that the forecasts done

at each initialization point are computed using different market data. The confidence

levels seen in the figures are the 90th (green), 95th (yellow) and 99th (red) boostrapped

confidence intervals. As illustrated below we can see that the intervals are wide and the

actual rate is often outside the confidence levels, which indicates a poor model fit:

Figure 7.6: Forecasts confidence levels versus realized USD LIBOR 10 year, 7th July
2012
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Figure 7.7: Forecast confidence levels versus realized USD LIBOR 10 year, 27th
November 2012

Figure 7.8: Forecasts confidence levels versus realized USD LIBOR 10 year, 17th
September 2013

In conclusion we believe that the bad performance of the models in the backtest follows

the same reasons as stated in chapter 6 i.e. bad model, incorrect coding or unpredictable

yields using this model. Here we should also add that one could probably improve the

backtesting performance by having a better model for the variance in the Monte Carlo

and bootstrapping techniques. Also we could potentially improve our backtesting results

by not keeping lambda fixed, this would however of course increase the complexity in the

calibration and introduce a non-linear optimization problem which would increase the

computing time substantially. As seen in the out-of-sample forecasting the DNS model

with time dependent lambda provided slightly better results than that of the DNS model

with fixed lambda.
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Concluding Remarks

In this thesis we have analyzed the forecasting performance of three versions of the

Dynamic Nelson-Siegel (DNS) model applied to LIBOR rates during the time period

January 2003 to March 2015. The first version represents the standard DNS AR(1)

model with a fixed decay parameter (λ). This version is widely studied by researchers

and also widely used by central banks. Our second DNS model also has the same AR(1)

factor dynamics, but it has a time dependent decay parameter, i.e., (λ) varies over time.

Lastly, for completeness we analysed a DNS model with VAR(1) factor dynamics, to

fully test our DNS models. For comparison, we also employed a random walk model,

simple AR(1) and VAR(1) models, AR(1) on three principal components, and a slope

regression model.

First, we find that all our models demonstrate convincing in-sample performance. Start-

ing with the DNS model with fixed lambda, the model shows good empirical fit to both

the USD and DKK LIBOR yield curves, as shown in the graphs and tables in Chapter 5.

We then provide results suggesting that the DNS model with time dependent lambda is

superior, yielding a closer fit to actual rates than when lambda is time-invariant. Intro-

ducing the Dynamic Nelson-Siegel-Svensson model allows us to even further improve the

closeness of fitted yields to the raw yield curve, by adding the second curvature factor to

this model. We demonstrate these points graphically and in tables of results. The tables

include the in-sample RMSE measure; our principal measure of goodness-of-fit. Thus,

the Dynamic Nelson-Siegel-Svensson model is shown to be superior because it provides

the smallest RMSE and hence the best model fit.

These results are consistent with the findings of e.g. Diebold and Rudebusch (2012) and

Christensen et al. (2009). Relating this evidence back to the research questions in the

introduction, the results obtained for the in-sample analysis allow us to provide positive

answers to the first two questions:

90
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1. Are we able to produce the good empirical fit that the Dynamic Nelson-Siegel

model has become known for?

2. Are we able to improve the fitted yields by using the Svensson (1995) extension,

the Dynamic Nelson-Siegel-Svensson model?

Second, our results indicate that it is not only possible to improve the in-sample per-

formance, but also the out-of-sample forecasting performance by extending the DNS

model to include a time-varying decay parameter, i.e., by letting lambda vary over time.

Relative to Koopman et al. (2010) we find similar results in this context, that it might

be possible to improve the forecasting results using this model setting. As argued by

Diebold and Li (2006) it does enforce some further complexity in the estimation pro-

cedure, however our results indicate that it might be worth the while. In 14 out of 21

possible cases included in the out-of-sample forecasting analysis, the DNS model with

time dependent lambda performs better than the DNS fixed-lambda counterpart. This

enables us to provide a positive answer to the third question stated in the introduction:

3. Are we able to improve the forecasted yields by letting lambda vary over time?

However, when it comes to the fourth question:

4. How does the DNS model perform compared to other natural forecasting competi-

tors?

we can conclude that the DNS models does not yield superior results relative to both

the Random Walk model and the simple AR(1) on yields model. This indicates that the

DNS type models are not good when it comes to forecasting the yield curve. For any

maturity and horizon included in our analysis, the DNS models have poorer performance

than the benchmark models. Thus, in contrast to Diebold and Li (2006), who find that

the DNS model are able to better predict government bond yields than the Random

Walk model for longer horizons, we argue that there is no convincing advantage in using

the more complicated Dynamic Nelson-Siegel model over a simple AR(1) or random walk

model, even for longer horizons in our context. As illustrated in Figure 6.1 it might be

that for some periods it is equally likely that the rate will move up and down after the

sample period, and in those cases the random walk model will perform well against a

model like the DNS model.

Our fifth research question was meant to determine if we had a model that could be

used to forecast yield curves in a way which could then be inserted as a risk factor into

a CCR model:
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5. Are we able to produce a forecasting model for the LIBOR rates that could be

used in a CCR model?

The answer to this last question goes hand in hand with the results pertaining to the

fourth question: our backtesting results show that the model does not forecast well

and more development needs to be done before it can be inserted as a risk factor in a

comprehensive CCR model. As it stands, we believe that it does not add any value to

include the forecasted DNS model yields in a CCR model, since it would only create

more uncertainties than it solves because of the poor performance.

Further studies need to be conducted to develop a forecasting model suitable to include

in CCR measurement. It seems like the model either is not sophisticated enough or

not simple enough for this matter, related to the rather famous ”KISS principle” in

forecasting, developed by Zellner (1992) – ”Keep it sophisticatedly simple”.

Despite the poor results in this section we would still like to enhance the fact that

we add some value and insights about the predictive ability to forecast LIBOR rates

using the DNS model, an area that is not yet as explored as investigating the DNS

model performance applied to Government Bonds. Our recommendation is to conduct a

similar study using the State-Space Model approach, in order to provide a better suited

model for including in a CCR measurement.

8.1 Limitations and Extensions

In our thesis we used the two-step estimation procedure for estimating the latent factors

and parameters of the Dynamic Nelson-Siegel specifications, as proposed by Diebold and

Li (2006). Another approach is to use the State-Space Model (SSM) and Kalman filter

to estimate and forecast the Dynamic Nelson-Siegel model parameters via maximum

likelihood. Using this approach, one could possibly obtain a better suited model for

forecasting future yields of LIBOR rates. We did not include this in our thesis due to

space limitations, but this would be a natural extension for future research.

Furthermore, we believe that the backtesting section could be improved by introducing

a dynamic decay factor (λ), as done in the out-of-sample forecasting analysis. We also

envisage possible improvements from using a better model for computing the variance.

Furthermore, if space had permitted, it would have been interesting to further extend

the backtesting section by including multiple risk factors (e.g., foreign exchange rates, or

multiple interest rates) and providing an application towards specific CCR measurement.
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Another possible extension would also be to follow Diebold and Rudebusch (2012) and

make the DNS model consistent with the absence of arbitrage. However, as pointed out

by Diebold and Li (2006), the use of no-arbitrage models does not necessarily increase

the forecasting ability, although this is to be determined in further studies.
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Proposition AFNS-adjustment.

PROPOSITION 2.1. Assume that the instantaneous risk-free rate is defined as

rt = X1
t +X2

t .

Also, assume that the state variables Xt = (X1
t , X

2
t , X

3
t ) are described by the following

system of stochastic differential equations (SDEs) under the risk-neutral Q-measure:
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Then, zero-coupon bond prices are given by
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where B1(t, T ), B2(t, T ), B3(t, T ), and C(t, T ) are the unique solutions to the following

system of ordinary differential equations (ODEs):
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with boundary conditions B1(T, T ) = B2(T, T ) = B3(T, T ) = C(T, T ) = 0. The unique

solution for this system of ODEs is:

B1(t, T ) = −(T − t),

B2(t, T ) = −1− e−λ(T−t)

λ
,

B3(t, T ) = (T − t)e−λ(T−t) − 1− e−λ(T−t)

λ
,

and

C(t, T ) =(KQθQ)2

∫ T

t
B2(s, T )ds+ (KQθQ)3

∫ T

t
B3(s, T )ds

+
1

2

3∑
j=1

∫ T

t
(Σ′B(s, T )B(s, T )′Σ)j,jds

Finally, zero-coupon bond yields are given by

y(t, T ) = X1
t +

1− e−λ(T−t)

λ(T − t)
X2
t +

[
1− e−λ(T−t)

λ(T − t)
− e−λ(T−t)

]
X3
t −

C(t, T )

T − t
.

The proof for Proposition 2.1 is given in Christensen et al. (2007). Proposition 2.1

defines the class of AFNS models. The factor loadings in the AFNS models exactly

match the ones for Nelson-Siegel models, except for the last additional term in the yield

function, namely, −C(t,T )
T−t c, which depends only on maturity. This additional term is the

”yield-adjustment” term, and is the crucial difference between AFNS and DNS models,

bringing the DNS models into the arbitrage free setting. The yield-adjustment term has

the following form:

−C(t, T )

T − t
= −1

2

1

T − t

3∑
j=1

∫ T

t
(Σ′B(s, T )B(s, T )′Σ)j,jds

Given a general volatility matrix

Σ =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 ,

the yield-adjustment term can be derived in analytical form as
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where

Ā = σ2
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Ē = σ2
11σ

2
31 + σ2

12σ
2
32 + σ2

13σ
2
33,

F̄ = σ2
21σ

2
21 + σ2

22σ
2
22 + σ2

23σ
2
23.

According to Christensen et al. (2009) this result has two implications. First, empirical

implementation of AFNS models are greatly facilitated since zero-coupon bond yields

in the AFNS models are given by an analytical formula. Second, only six of the nine

underlying volatility parameters can be identified, Ā, B̄, C̄, C̄, D̄, Ē and F̄ . Hence, com-

pared to a general volatility matrix we are missing three volatility parameters, resulting

in the most flexible identifiable specification of the AFNS model is given by the following

triangular matrix (upper or lower triangular being irrelevant for model fit):

Σ =


σ11 0 0

σ21 σ22 0

σ31 σ32 σ33

 .
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