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Abstract

This thesis is based on the market observable volatility smiles for swaptions. We
present different ways of handling these smiles and discuss the models as well as

their implications.

Initially, we introduce the financial theory that will be fundamental to our
thesis. Following, we move on to a brief empirical study of volatility, where we
show that volatility, contrary to the assumption made in the classical Black-Scholes
setup, is constant neither in time nor in strike price.

The first model we analyze is the the local volatility model. We discuss the
model and give a numerical example on how the model can be calibrated to fit
an observed volatility smile. Ultimately, we look into the inherent dynamics of
the local volatility model, and we find that it has the counterintuitive property of
shifting the volatility smile in the opposite direction of the price of the underlying
asset when this shifts.

Our second and main model is the SABR model. We present the model, and
examine how its parameters influence the shape of the fitted volatility smile. Fol-
lowing, we investigate the SABR model’s ability to fit a volatility smile using
different methods of estimation and parametrization. We find that the SABR
model is very capable of fitting an observed volatility smile, seemingly regardless
of choice of estimation and parametrization method. However, subsequently we
note that the A risk measure that arises from the SABR model is very much de-
pendent on the parametrization. We analyze this problem and give a correction
to the A measure, which marginalizes the effect of the choice of parametrization,
thus causing the SABR model to yield fairly similar A measures for different
parametrizations.

Finally, we show how the SABR model’s ability to inter- and extrapolate a
volatility smile can be utilized in a pricing scenario to price a constant maturity
swap. Initially, we explain the theory behind the pricing, and following we present
a detailed numerical example using market data and comparing our findings to

market prices.
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Chapter 1

Introduction

In financial terms, an option is the right but not the obligation to buy or sell a
certain asset at a certain price at a certain time. Hence, an option is a key deriva-
tive when it comes to securing a price at a certain point in time whether that price
is a selling price or a buying price. Another financial derivative commonly used
as a means of securing a certain price is a swap. A basic description of a swap
is: an exchange of a series of payments for a different series of payments. The
two derivatives can be combined into what is known as a swaption. A swaption
is the right but not the obligation to enter into a swap at a certain time. The
nature of the swap, with its series of exchanges of payments, makes it an obvious
choice for locking down the price of an asset needed on a regular basis. Examples
could be natural gas, a foreign exchange rate or an interest rate. The latter is an
especially interesting case, since hardly any business entity exists that does not
have at least some exposure to some interest rate. Numbers from the Bank for
International Settlements show that interest rate risk is indeed a major concern in
contemporary society. No less than three quarters of total amounts outstanding
on standard over-the-counter options' are linked to interest rate options (swap-

2

tions).® Therefore, we have chosen the swaption as our main derivative for this

thesis.

In the process of pricing an option, an important piece of information is some
kind of measure of the uncertainty of the price of the asset underlying the option.
For most pricing methods, some a priori assumption regarding the development
of the underlying asset is required along with an estimate of how much the price

process will fluctuate. Empirically, estimates of volatility are not easily deter-

!Divided into options on foreign exchange, interest rates, equity and commodities.
2 Actual numbers are presented in section 2.2.



mined. Estimates tend to depend heavily on the length of the (historical) time
series used for calculations. Further, in most cases when looking at asset returns
series, it becomes clear that the returns’ fluctuations are not of a constant mag-
nitude. Rather, they seem to continuously change over time. Despite that fact
that volatility might not be constant, one of the classics within the field of op-
tion pricing, the Black-Scholes model, has as a key assumption that volatility is
indeed constant. While this might not be the case in real life, the model still has
the attractive feature that it implies a one-to-one relationship between a certain
volatility level and the price of an option. This feature allows for a unique way to
quote option prices as implied volatilities—the level of volatility that, when used
in the classic Black-Scholes model, yields the observed option price.

However, when looking at implied volatility quotes, empirically these have a
tendency to change significantly with the strike level of the option. In general, the
implied volatility as a function of strike price will have the shape of a smile, thus
creating what is known as the volatility smile. The main objective of our thesis is
to show how this volatility behavior can be modeled, and subsequently how the
modeling framework can be utilized for risk management purposes, and for the
pricing of more complex derivatives. Initially, we will explore the properties of the
local volatility model of Derman and Kani (1994). Following, we work our way on
to the more contemporary SABR model of Hagan et al. (2002), which will be our

main emphasis for this thesis.

The thesis is structured in the following manner:
We start out in Chapter 2 by laying down the theoretical foundation on which the
thesis will be built. The fundamentals include definitions of interest rates, various
derivatives and some basic techniques required for calculations. Following the
fundamentals, in Chapter 3 we give an empirical motivation for the concept of non-
constant volatility, and how this can present several issues within risk management
and derivatives pricing. In Chapter 4 we introduce the local volatility model. We
explain the principles of the model and present an implementation of the model in a
discrete time setup using binomial tree pricing techniques. Finally, we explore the
dynamics implied by the local volatility model. Chapter 5 is where we introduce
the SABR model. The model and its components are explained in detail, and a
closed-form approximation of the model-implied volatility is presented. Following,
various estimation techniques for estimating the model’s parameters are discussed
and implemented using market data. As a closing section of Chapter 5, we present
the SABR model’s implications to different measures of risk, and show how these
differ from those of the Black-Scholes setup. In Chapter 6 we show how the SABR



model can be applied beyond the scope of merely modeling a volatility smile. We
introduce the concept of constant maturity swaps and show how the SABR model,
in combination with pricing frameworks established previously in the thesis, can
be used to price these more complex derivatives. Initially, we go through the
theory of the pricing, and subsequently we apply the theory (together with results

from Chapters 2 and 5) to market data and give a discussion of our findings.



Part 1

Theoretical background



Chapter 2

The fundamentals

2.1 xIBOR rates

When using the term £IBOR or xIBOR rates in this paper this will be a reference
to the x InterBank Offered Rate. The x refers to the entity that fixes the rate,
a major one being the British Bankers Association (BBA) who sets the London
InterBank Offered Rate (LIBOR) fixings. The LIBOR gives official fixings on
interest rates with maturities ranging from a single business day to 12 months and
are set each day at 11:00 GMT. In addition to the BBA, other fixing entities also
exist, such as the European Banking Federation who sets the EURIBOR fixings
and the Danish Central Bank who sets the CIBOR fixings.

The ways the various xIBOR rates are set differ, but they are all quoted using
the money market convention. This means that the interest paid on a loan is
simply calculated as N § L where N is the notional, ¢ is the coverage!' and L is the
xIBOR rate. Letting D(t,T) denote today’s (time 0) price of a zero coupon bond
purchased at ¢ and maturing at 7', and letting F'(0, 7,7 + &) denote the time 0
forward tIBOR rate between time T and T+ §, then by argument of no arbitrage

we can derive an expression for calculating the forward rate as

1
D(0,T)
_1( D(0,T)

'The coverage is the length of the interest rate accrual period of the loan expressed in years.
Hence, coverage will depend on the applied day count convention, and will as such also be a
function of 7. However, we will think of it as a constant given a day count convention and a
maturity.



2.2. INTEREST RATE SWAPS

Swaps and forward contracts (bn USD)

Foreign exchange Interest rate Equity Commodity
39,638 400,985 1,830 1,675
8.9% 90.3% 0.4% 0.4%

Options (swaptions) (bn USD)

Foreign exchange Interest rate Equity Commodity
9,558 48,808 4,762 846
14.9% 76.3% 7.4% 1.3%

Table 2.1: Amounts outstanding of OTC derivatives in bn USD (ultimo 2009).

2.2 Interest rate swaps

In this section we will look at what characterizes a plain vanilla interest rate
swap. We will look at the contract from a practitioners point of view, with a brief
introduction to how interest rate swaps are treated in real life. After that, we will

look into the pricing of the interest rate swap, still keeping a practical focus.

2.2.1 Basics of the interest rate swap

One of the most commonly used financial instruments is the plain vanilla interest
rate swap (IRS). Table 2.1 shows some over-the-counter (OTC) derivatives statis-
tics obtained from the Bank for International Settlements.? The numbers clearly
show that interest rate derivatives are by far the dominating type compared to
OTC derivatives on foreign exchange, equity and commodities—even when com-
bined. In an IRS two counterparties agree to exchange two series of payments.
In the following we will assume, that a series of fixed payments are exchanged
for a series of floating payments. These two components of the IRS are referred
to as the fized leg and the floating leg respectively. Each party’s position in the
swap is named relative to the fixed leg. Hence, the person paying the fixed rate
has entered in to a payer swap and the person paying the floating rate (and thus
receiving the fixed rate) has entered in to a receiver swap.

Focusing first on the floating leg, this is linked to a specific interest rate, e.g.
the LIBOR rate with a tenor of 6 months (LIBOR6M). The floating rate is set
in advance (before each accrual period) and paid in arrears (at the end of each
accrual period) using a suitable coverage depending on the day count convention.

The standard market conventions for plain vanilla IRSs in major currencies and

?Data available at www.bis.org/statistics/extderiv.htm.
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2.2. INTEREST RATE SWAPS

DKK are presented in Table 2.2. A brief explanation of some of the terms in Table

2.2 is given below:

Spot start is denominated in business days (B). This means, that if one enters
into a spot starting EUR IRS on a Thursday,? then “spot start” does not
mean that the IRS will actually start on that Thursday, but that it starts

two business days later on Monday.

Term indicates which interest rate curve is the standard for the given currency.
All of the listed currencies use the interest rate curves based on semi-annual
payments except for USD denominated plain vanilla IRSs that are based on
quarterly interest rate payments. As a consequence of this, the floating legs
all have semi-annual payments except for the USD IRSs that have quarterly
floating leg payments.

Day count conventions determine how the coverage () is calculated. In Table

2.2 there are two different day count conventions:

Act365: This day count convention assumes that every year has 365 days. Thus,
the coverage for a period is calculated by taking the actual number of

days in a period and dividing it by 365

Days

OAct365 = 365

30/360: In this day count convention all months are assumed to have 30 days,
resulting in a 360-day year. The expression for calculating coverage
according to the 30/360 day count convention is

Years x 360 + Months x 30 4+ min[Days, 30]
030/360 = 360

Note that for most plain vanilla IRSs the day count convention for the floating
leg differs from that of the fixed leg. Also, only GBP and JPY have the same

payment frequencies (semi-annual) for the two legs.*

2.2.2 Valuation of the interest rate swap

Having established the basic set of rules for the plain vanilla IRS, we now turn to

the valuation. Beginning with the floating leg, given a day count convention and

3 Assuming we are in a period with no holidays.
4The payment frequency on the floating leg matches the term, while the fixed leg does not
necessarily have that property.



2.2. INTEREST RATE SWAPS

Floating leg Fixed leg
Currency Spot start | Term Freq Day count | Freq Day count
EUR 2B 6M S Act360 A 30/360
USD 2B 3M Q Act360 S 30/360
GBP 0B 6M S Act365 S Act365
JPY 2B 6M S Act360 S Act365
DKK 2B 6M S Act360 A 30/360

Table 2.2: Plain vanilla IRS conventions.

knowing the start and end date of an IRS, denoted by T and T respectively, we
are able to calculate a set of coverages, 523?{3, e ,5%0“. The no-arbitrage principle
tells us that the floating interest rate for each period must be equal to the implied
forward rate that is consistent with market-observable rates. Using the already es-
tablished framework for the forward rates and zero coupon prices we can calculate

the unit value of the floating leg as the sum of discounted forward rate payments

E
pyfleat — N* gloat p(0, 7,4, T;) D(0, T;) (2.2)
1=S+1
Assuming that forward rates and zero coupon prices are obtained from the
same yield curve, we can actually simplify (2.2) further. Substituting (2.1) from

page 5 for F/(0,T;_1,T;) in (2.2) we come up with the simple expression
pviat — p(0,Ts) — D(0, Tx) (2.3)

This simplification, however, is not empirically valid since the forward rates and

5 Therefore, we will

zero coupon prices are not based on the same yield curve.
continue thinking of (2.2) as the price of the floating leg. The difference between
the yield curves is caused by the implicit risk element built into the forward rates.
This risk element “quantifies” default risk—the case when the borrower cannot
pay the loaner. Therefore, empirically, it is cheaper to fund on a 3 months rate
than a 6 months rate, meaning that the effective annual interest rate on a loan
with quarterly payments is smaller than that of a loan with semi-annual pay-
ments. Figure 2.1 shows the swap curve against EURIBOR3M together with the
swap curve against EURIBOR6M. We see that the swap curve with the 3M tenor
consistently lies under that with the 6M tenor.

Now turning to the valuation of the fixed leg of the IRS, we have already seen

in Table 2.2 that the day count convention and the payment frequency of the fixed

SFor a text on the matter of several simultaneous yield curves we refer to Fujii et al. (2010).
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2.2. INTEREST RATE SWAPS
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Figure 2.1: Swap curves per June 1st 2010. Notice how the swap curve against EURI-
BORS3M 1is consistently lower than the swap curve against EURIBORGM.

leg do not necessarily match those of the floating leg. However, we will continue
to use the notation ElE: 541 as a way of saying “summing over all i’s (periods)
between S + 1 and E”. The start and end date will not change, but for the fixed
leg we calculate a new set of coverages, 62’;1, ey (5%". Letting K denote the fixed

rate paid in the swap, the present value of the fixed leg can be obtained by

E
PV = 3" 5K D(0,T;) (2.4)
1=S+1

As shown, the price of the fixed leg is merely the discounted fixed rate payments.
We have now calculated the present values of each leg in the swap and we can
now calculate the value of the full swap by combining the prices of the two legs
correctly. Remembering that the name of the swap refers to the fized leg, we will
use the term payer swap for a swap that pays a fixed rate and receives a floating

rate. The value of the payer swap is

E E
Py = N© §lont B0, Ty, T3) D(0,T3) — Y 08K D(0, T;) (2.5)
1=S+1 1=S+1

Since the positions are simply reversed for the receiver swap, the price of the
receiver swap can found as PV'¢ = —PVP¥,
When swaps are entered into, it is customary to do so at a present value of 0.

Hence, we need to set PVt = PVHX and solve for the appropriate fixed rate.

Setting (2.5) equal to 0 we isolate the fixed rate that results in a present value of



2.2. INTEREST RATE SWAPS

0 of the IRS. This fixed rate is called the par swap rate, and we will denote it by
R(0,Ts,Tg), so

E float

1= 61 F 077—‘7;— 71—15 D 07E
(0,15, 1) = Shessr 8 FO.T0.T) DO.T)
i=s+190; D(0,T)

(2.6)

Under the theoretical assumption, that there is indeed only one yield curve from
which both forward rates and discount factors are calculated, using the expression

for the forward rate from (2.1) we can simplify (2.6) further writing

D(O, Ts) — D(O, TE)
Y4105 D(0,T;)

R(0,Ts,Tg) = (2.7)

Having defined the par swap rate, we are now able to express the present value
of the IRS in a different manner. Assume that we have entered into a payer swap
at time Ts and are thus paying the fixed rate K and receiving the floating xIBOR
rate until the IRS expires at Tr. Should we, at some time ¢, enter into a matching
receiver swap implying that we are receiving the fixed par swap rate R(t,Ts,Tg)
and paying the floating xIBOR rate, the floating rates will cancel out and leave us
with a net periodical (fixed) cash flow of R(t,Ts,Tr) — K. Defining the term A(-)
as the time ¢ sum of discounted fixed coverages, A(t, Ts, Tr) = S5 g1 85*D(t,T;),

the time ¢ present value of our initial payer swap can be written as®

PVP™ = A(t,Ts,Tg) (R(t, Ts, Tg) — K) (2.8)

This is a very convenient way of determining the value of a swap position. Assum-
ing that we are currently paying the fixed rate K, all we need to know to find the
value of our current position is A(-) and the current par swap rate R(-). If we are
paying a fixed rate that is higher than the time ¢ par swap rate, then our position
has a negative value, but if the opposite is the case, we have a positive value and
we can offset” our swap position at a gain.

Differentiating (2.8) with respect to the par swap rate we get exactly A(-) and
therefore we might think of A(-) as being the value of receiving 1 interest rate
basis point (bp) over a period of Ty — Ts, or we might think of it as being the

payer IRS’s sensitivity towards the par swap rate.® This also referred to as the

SFor t > Ts, replace Ts with ¢ (+ spot start business days according to Table 2.2).

"Instead of an actual “termination” of a swap contract it is common practice to offset it
by taking on an opposite position in yet another swap contract, thus canceling out the swap
payments. At the time of the “termination”, however, the swap contract rarely has a present
value of 0 and an up-front fee is paid or received on the swap contract used to offset the initial
swap contract—hence the gain (or loss).

8Correspondingly, the sensitivity of the receiver IRS is —A(-).
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2.3. OPTION PRICING

annuity of the swap.

2.3 Option pricing

This section will start off with a brief recapitulation of some of the theory behind
option pricing. Once the necessary steps have been taken, the option pricing
theory will be extended to cover options written on the IRSs introduced in section
2.2.

2.3.1 Building blocks

First, as a beginning to our option pricing theory, we start out by defining the
European call option as the right, but not the obligation, to buy the underlying
asset (UA) at a fixed strike price K at a specified time T'. Letting V; denote the
value of UA at time ¢, the call option will have a time T payoff of max[Vy — K, 0].
For the remainder of this paper we will use the short hand notation (Vy — K)*
for payoffs of this type. Similarly, we define the Furopean put option as the right,
but not the obligation, to sell UA at strike K at time T yielding a payoff of
(K —Vg)™. The values of these options are calculated by discounting their expected
(stochastic) time T' payoffs under the risk neutral probability measure Q.
Second, we introduce the concept of martingales. A stochastic process b; is
a martingale under the probability measure () if it holds that E?[bT] = by, Vt <
T.'0  Essentially, this implies that the process has no drift, and therefore its
expected future value must equal its present value. As an example, we observe an
asset with a price process V;. Let r; denote the process of the risk free interest
rate, then under the risk neutral probability measure ) the dynamics of V; are
dVy = r Vidt + ththQ where WtQ is a Brownian motion and oy is some volatility
parameter. Now, V; obviously is not a martingale, but the discounted value is.
We can (under the risk neutral probability measure) transform our asset process

t
rsds

V, into a martingale by using ¢; = efo as the numeraire. Mathematically

expressed we have

V; Vi V;
EtQ [T] =1 (and especially IEOQ {T} = V0>
gr gt gr

This leads us to Theorem 2.1

9Unless anything else is stated, we will assume that processes and expectations are under the
risk-neutral probability measure Q.
OLetting E? denote the time ¢ expectation under the probability measure Q.

11



2.3. OPTION PRICING

Theorem 2.1. (FIRST FUNDAMENTAL THEOREM OF ASSET PRICING)!!

Given a time horizon T, a risky asset with price process Vi and a risk-free asset
with price process g¢, a market is arbitrage-free (under the probability measure
P) if and only if there exists an equivalent probability measure @ such that the

discounted price process, (%)t, is a martingale.

This tells us, that if we indeed are in a market with no arbitrage, we calculate
prices by finding expected (discounted) values. Especially, this is useful in math-
ematical finance together with the concept of change of numeraire. Changing the
numeraire is a technique that essentially allows us to use any traded asset NV; as
our numeraire. One can show that if the discounted numeraire itself is a martin-
gale under the risk neutral measure @), then there exists an equivalent probability
measure QV such that IE?N U\/,—ﬂ = % for any asset with a price process V;.

Having established the concept of a martingale process we turn to the martin-

gale representation theorem

Theorem 2.2. (MARTINGALE REPRESENTATION THEOREM )2
Let Wy be a standard Brownian motion, and let (my) <, be a martingale process.

Then there exists a uniquely determined (possibly stochastic) process c(-) such that

t
my = my +/ c()sdWs or (equivalently) dmi = c(-)s dWs (2.9)
0

This tells us, that if we have a martingale process m;, then the uncertainty re-

garding its development arises from a Brownian motion multiplied by some process

().

2.3.2 The Black-Scholes result

The next step naturally would be to come up with a model for ¢(-). A particularly
well-known model is that of Black (1976). Black assumes c(t,m;); = 0 m; so that
(2.9) becomes

dmy = o my dWy (2.10)

This model implies that log(m;) is normally distributed with a standard deviation
of o/t (and a mean of mg). In order to take the model further we utilize the Black-
Scholes formula (Black and Scholes, 1973). The BS formula in general considers
an asset with a price process V; with lognormally distributed prices and log returns

with a standard deviation of w. Adapting this notation and letting ®(x) denote

1 Cf. Bjork (2004).
2Thbid.

12



2.4. SWAPTIONS

the cumulative standard normal distribution the BS formula says

E (Ve — K)1] = Ey[Vr] @(dy) — K ®(do) (2.11)
o Los(EiVr)/K) + ju?
1= w
dg = d1 — W

E[Vr] is the forward price—the time t expectation of a price at time T > .
Hence, by incorporating Black’s assumption regarding the standard deviation w =
o+/T —t into (2.11) and discounting to present value by a risk free rate rs we are
left with what is known as the Black 76 formula

B76 Call, = e~ TV f, ®(dy) — K ®(dy)] (2.12)
. log (%) + %Q(T—t)
' oVl —1t

dgzdlf(‘f\/T*t

Where f; denotes the the time ¢ forward price of an asset at time T' > ¢t. The
Black ’76 formula is a special case of the Black-Scholes formula for the price of
FEuropean options. The difference is that in the original Black-Scholes setting, the
spot price is used instead of the forward price.

Since the Black 76 formula uses forward prices rather than spot prices it is
especially useful in pricing bond options, caps, floors and swaptions—the latter

being a key derivative in this paper.

2.4 Swaptions

Now that we are familiar with both swaps and options we will introduce the
concept of swaptions. We will start out by explaining what constitutes a swaption
and then we will move on to the pricing of the swaption using the tools and

methods described in the previous sections.

2.4.1 Swaption basics

A swaption is the right, but not the obligation, to enter into an IRS'? starting at
Ts and maturing at T. Assuming that ¢t = 0, standard notation for a swaption of
this type is “Ts into (T — Ts) payer/receiver swaption”. For example, if we have

Ts =1Y and Ty = 6Y on an agreement in which we have the right to receive the

30r any other type of swap.
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2.4. SWAPTIONS

fixed rate K in exchange for paying some floating xIBOR rate we would be entering
into a 1Y into 5Y (1Y5Y) receiver swaption. When the swaption is entered into,
the two parties must agree on the type of settlement used. There are two types of

settlement:

1. Physical settlement which means that the swap is entered into in a normal
fashion where the actual exchanges of cash flows according to the underlying

swap take place. Unless otherwise stated a swaption has physical settlement.

2. Cash settlement where—as the name implies—the swaption is settled through
an exchange of cash corresponding to the value of the swap at the time of

exercise.

2.4.2 Swaption pricing

As described in the previous section, the swaption can be settled in two different
ways. The choice of settlement does not only cause a difference in the cash flows,
but also in the actual valuation of the swaption. For the pricing analysis we will

assume the option to be on a payer swaption.

Physical settlement In the case of physical settlement the option holder simply
has the possibility of entering into the swap on the previously established
conditions. This corresponds to (2.8) with the addition of a possibility to

opt out of the swap. Therefore we get

Payer swaption PV;P™® = A(t, Ts, Tx) [(R(t, Ts,Tg) — K)‘q (2.13)

E
where A(t,Ts,Tg) = > 6D(t,T))
i=S+1

Cash settlement For the cash settlement, the option holder receives the poten-
tial positive present value of the swap at the time of exercise, but in this
case the par swap rate is used as the discount rate. In a theoretical world
with only one yield curve this would have no effect, but, as we have seen in
Figure 2.1 on page 9, the real-life market operates with several yield curves,
which in turn leads to varying prices depending on what yield curve is used

to calculate swap rates and discount factors. We get

Payer swaption PV™" = A(t, T, T) |(R(t, Ts, Te) - K)*|  (2.14)
E 5ﬁx

where A(t, Ts, Tg) = - -
2 (T BR( T, T
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2.4. SWAPTIONS

As it turns out, the main difference between valuing a cash or physically settled
swaption is in the discounting. For ease of notation we will therefore use A(-) in
the following as a reference to both cases. Having already established the Black-
Scholes framework in (2.11) we will now use this to come up with a closed form
solution to the value of a swaption. Thinking of the par swap rate R(-) as the
underlying asset the similarity to the standard European call option on a stock
becomes apparent. The main difference in the pricing, is that while the underlying
asset in the standard Black-Scholes setting appreciates with the risk free rate ry

under the risk neutral measure
EOQ[ST] =e'f TSO

making the present value of the asset a martingale when using g, = (e"/!); as a
numeraire, the par swap rate (the underlying asset in a swaption) will need another
numeraire, namely the A(-) function.!* We will not go into the derivations, but

merely state the result

Payer swaption PV; = A(t,Ts,Tg)[R(t,Ts, Tr)® ( 1) — K ®(d2)] (2.15a)

log ( th,TE)) o? (T
oVl —t
dg = dl - U\/T - (2.15C)

dy = (2.15b)

The price of the opposite swaption—the receiver swaption—can be obtained
through a parity relationship!'® similar to the put-call-parity for standard European
plain vanille options. All contracts having the same strike rate K and the same

time dimensions'® the parity states
Swaption™® = Swaption”® 4 Forward starting swap'®® (2.16)

Rearranging (2.16) we see that a forward starting receiver swap can be replicated
by a long position in a receiver swaption and a short position in a payer swaption.
To validate this claim we will look at the payoffs. We assume that we are at time
0 and that the swaptions both have the same starting date Ts and the same end
date Tg. Further, we assume that the swaptions are struck at the same strike K.
Now, obviously there are no payoffs up until Ts. After this point the payoffs can

go two ways depending on whether the par swap rate at T is smaller or greater

1 Cf. Schrager and Pelsser (2006).
15Cf. Sundaresan (2009).
'S All entered into at t with start date Ts and end date T.
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2.4. SWAPTIONS

t="Ts K > R(Ts,1s,Tg) K < R(Ts,T5,Tk)
Long receiver swaption: K —xIBOR 0

Short payer swaption: 0 —(xIBOR — K)
Net K —xIBOR K —xIBOR

Table 2.3: FEzample of the put-call parity for swaptions. Net payoffs equal those of a
receiver swap.

than K. The payoffs are shown in Table 2.3. We see that the net payoff from
being long a receiver swaption and short a payer swaption does indeed equal that

of being long a (forward starting) receiver swap.
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Part 11

Volatility models



Chapter 3

Motivation

3.1 Constant volatility

In the standard Black-Scholes formula, the volatility of an asset’s returns is as-
sumed to be constant. The Black-Scholes formula provides a 1-to-1 relationship
between an option’s price and its volatility, and therefore prices are often quoted
by stating the implied volatility. Given an option price C* and letting C'(-) denote

the Black-Scholes price for a European plain vanilla call option

BS Call PV, = V, ®(dy) — e " T DK &(dy) (3.1a)
log(Ve/K) + (ry + 5)(T — 1)
oI —t
and dy=d; —ovVT —t (3.1c)

where dj =

(3.1b)

then the implied volatility is the op that sets C* = C(V, K,op,7f,T). The func-
tion cannot be inverted in closed form, and thus ¢ g must be solved for numerically.
However, this is a trivial problem that can easily be solved by applying for example
the Newton-Raphson method.

The idea of a single and constant volatility might seem appealing, but will
empirical studies support it? Figure 3.1 shows daily log-returns for the Carlsberg
A/S B stock over the past seven years, together with 95% confidence intervals.!
From just looking at the plot it becomes apparent, that the return volatility of
Carlsberg is not constant. Further evidence of time-varying volatility is found in
Figure 3.2 which shows the empirical distribution of the returns together with the
best fitting normal distribution. The returns seem to have a tendency to have a

higher peak and slightly fatter tails than expected under the normal distribution

!Calculated as mean(returns) + ®~1(97.5%) x StdDev(returns).
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Figure 3.1: Daily returns for Carlsberg A/S B stock between January 1st 2005 and
January 1st 2010.
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Figure 3.2: Distribution of daily returns for Carlsberg A/S B stock between January 1st
2005 and January 1st 2010. The red line represents the best fitting normal distribution.
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3.1. CONSTANT VOLATILITY

assumption. This is confirmed when looking at the skewness and kurtosis

1 n 4 1 n 3
= (s — S v (s —
= n=i=l (41 ") and Skewness = 2 i1 (2 = 1)
o

Kurtosis o3
If the returns were indeed normally distributed they should have a kurtosis ~ 3
and a skewness ~ 0. However, we find that the kurtosis is 18.03 and skewness is
—0.96. The kurtosis tells us, that the returns are indeed excessively peaked, and
the negative skewness indicates, that the left tail is “longer”, meaning that we
are more prone to see large negative returns compared to large positive returns.
According to Gatheral (2002), high peaks and the fat tails are typical traits of
mixtures of distributions with different variances, which again is an indicator that
the Black-Scholes assumption regarding constant volatility is violated.

Now that we have convinced ourselves that volatility is indeed time-varying, the
concept of implied volatilities varying with maturities of options seems reasonable.
However, as counterintuitive as it might seem, option market data suggests yet
another anomaly in the volatility structure. When inferring volatilities from a
specific option, a common pattern appears. In general, the implied volatility
is lower for at-the-money (ATM) options, and higher for in-the-money (ITM)
and out-of-the-money (OTM) options. This is known as the volatility smile. An
example of a volatility smile is presented in Figure 3.3. Hagan et al. (2002) point
out that not only is the smile present but it also seems to be moving as the price
of the underlying asset shifts. These dynamics present market participants with a
number of issues.

First, we note that the task of pricing exotic derivatives? becomes increasingly
non-trivial since a single volatility no longer suffices. Take for example barrier
options.? Imagine a call option with V = 105 and K = 110, but with the built-in
condition that it does not kick in unless the price of the underlying asset drops to
100 at some time ¢t > 0 before a maturity 17" >t

Exotic barrier call payoff; = 14y, <i00/0<t<1} (VI — 110)"

We are now faced with the question of which volatility to use. The volatility at
a strike of 1007 The volatility at a strike of 1107 A mix of the two maybe?
Furthermore, we might find ourselves in a situation where we need a quote for an
implied volatility that we cannot observe directly in the market, e.g. we might need

an implied volatility for an option that is far OTM. Therefore, we must implement

2More complicated derivatives—as opposed to plain vanilla derivatives.
30Options whose value is dependent on the price of the underlying asset hitting a certain
barrier.
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3.1. CONSTANT VOLATILITY
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Figure 3.3: Volatility smile for the SM2Y swaption against EURIBOR6M as of November
1st 2010. The dashed line represents a cubic spline interpolation.

some kind of rule for inter- and extrapolating the observed points of the volatility
smile.

Secondly, in addition to correct pricing, financial institutions must also be able
to manage the risk entailed by their positions in derivatives. Since the implied
volatility itself changes as the strike price differs and since the smile shifts as the
price of the underlying asset fluctuates, we need to come up with a way to manage
the risks implied by these dynamics. In classical terms we want to be able to
correctly identify and isolate delta (A) and vega (V) risk from one another.*

What we need is a single, self-consistent model for the implied volatility from

which we can extract volatilities for any (reasonable) strike price.

4A risk and V risk are risks associated with a change in the price of the underlying asset and
with a change in implied volatility respectively.
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Chapter 4

The local volatility model

4.1 Local volatility

Some of the first steps taken towards taming the volatility smile were taken by
Derman and Kani (1994) with their local volatility model. Using notation from

(2.9) Derman and Kani proposed a model in which ¢(-) = o1c(my¢, t) my so that
dmt = O']oc(mt, t) my th (41)

The model is best described in its discretized version, in which Derman and Kani
use the technique of binomial option pricing (Cox et al., 1979) to obtain a grid
of volatilities that causes the binomial tree’s prices to be consistent with market
data.

The standard setting for binomial pricing uses a start value for the underlying
asset, a risk-free interest rate and assumes a constant volatility. From these pa-
rameters, and given a time frame, a grid of asset prices is laid out, and this grid
is then used to price claims by calculating and discounting the expected value of
the claims using risk-neutral transition probabilities. Derman and Kani, however,
reverse the process. Instead of pricing claims based on the standard inputs, Der-
man and Kani use market quotes on option prices' together with forward prices
to come up with the local volatilities for each node in the binomial tree. Together,
these local volatilities make up the local volatility surface, and they are calculated
in a way so that the resulting binomial tree becomes consistent with what is ob-
served in the market. Hence, the procedure results in a local volatility grid, that
can be used, together with the grid describing the development of the underlying

asset, to price various more complex products in a manner that is self-consistent

Tmplied volatilities.
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4.2. EXAMPLE OF DISCRETE TIME LOCAL VOLATILITY

122.14
110.52
100 100
90.48
81.87
t=0———t=1—"""t=2
n=1——mn=2——"n=3

Figure 4.1: Development of S; under the assumption of constant volatility. Nodegroup
denoted by n and time denoted by t.

and in line with the market’s belief regarding volatilities.

4.2 Example of discrete time local volatility

To demonstrate the idea of local volatility, we will apply it to a simple two-period
binomial tree. We will let the underlying asset, S, have an initial value of Sg = 100,
the risk-free rate is set at ry = 3%, the (constant) volatility is o = 10% and the
time periods will be in years starting at year 0 and ending in year 2. In the usual
constant volatility binomial setting, the asset prices when moving up or down in

avh and

the grid are determined as u x S and d x S respectively, where u = e
d = e=°Vh_ This is done based on a belief that stock prices are lognormally
distributed and that returns are normally distributed with a standard deviation
of o+/h where h is the length of the period (McDonald, 2006). We assume period

10% — 1.105 and a down factor

lengths of 1 and therefore we get an up factor u = e
d = e 19% = 0.905. The risk-neutral probability p is calculated based on fairly
priced forwards. Letting Fis denote the forward price of S and assuming a period

length of 1, it must hold, that

pSu+(1—p)Sd=Fs=S(1+r;) &
(1+Tf)—d
u—d

For our standard binomial setup we find p = % = 0.625. The develop-
ment of Sy under these assumptions is shown in Figure 4.1. However, before we
turn to the example calculations we will explain the setup for the local volatility

binomial model and build the required set of tools.
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4.2. EXAMPLE OF DISCRETE TIME LOCAL VOLATILITY

4.2.1 Preliminaries

The first thing to note regarding the local volatility model is that what we know
is the implied volatility smile. This corresponds to us knowing European option
prices for all strikes. We also know the risk-free interest rate r; and since we are
under the risk neutral probability measure, we also know that the (1-year) forward
prices must satisfy F' = (1+r¢)S. Our objective is now to use this information to
calculate the implied risk neutral transition probabilities of moving up or down in

our tree, and to calculate the state values of these up and down states.

The setup

Before we start deriving formulae and doing actual calculations, we will go through
the setup of our model. The first thing that needs to be explained is the time
dimension. We will keep the standard notation in which the tree starts at time
t = 0, but at the same time we will introduce the concept of a “nodegroup”?
denoted by n (cf. Figure 4.1). The link between ¢ and n is simply n = ¢ + 1. This
means that the very first group of nodes—the single node at ¢ = 0—is nodegroup 1
(n = 1). This will also ease our notation since in any nodegroup n’ there is exactly
n’ nodes. The local volatility model is solved one nodegroup at the time, starting
with n = 1, n = 2, n = 3 and so on. Now that we have defined our horizontal
dimension in the grid we will move on to the vertical dimension. We will index
vertically by 4, so that for every nodegroup n’ the bottom node will have index
i = 1 and the top node will have index 7 = n’. This further allows us to easily
refer to any node in the grid by using the notation (n, 7).

We will need several parameters for our local volatility model. To help illustrate
the meaning of these parameters we refer to Figure 4.2. Below we will list the

parameters and explain their roles.

So: The spot price of the underlying asset. This price is known at ¢t = 0 and is a
key value. Sy is kept at the center of the grid, which means that whenever
there exists a center node in a nodegroup (when n is odd), this node will
have the state value Syp—illustrated by the horizontal dashed line in Figure
4.2a.

si: The small s will act as an indicator of a calculated (known) state value in
the grid. From this known state value s;, the tree can evolve either up to the

unknown S;;+1 (next item) or down to the unknown S; (two items down).

2A node is defined as the point where edges meet in the tree.
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(a) Implied grid around the center. (b) Implied grid away from the center.

Figure 4.2: Setup for the local volatility implied grid. To the left the grid around the
center (So) is illustrated (the horizontal line is merely an illustration of the center—it is
NOT a path). To the right we see the the setup for the remaining grid.

Si4+1: This is the (unknown) state value reached after an upward move from s;.
S;: This is the (unknown) state value reached after a downward move from s;.

pi: The risk neutral probability of moving from s; to S;11. Equivalently, the

probability of moving from s; to .S; is 1 — p;.
F;: The one-period forward price at the node where s; is the known spot price.

Ai: This is more of a helper on the notation than an actual piece of the model.
\i denotes the Arrow-Debreu price? of node i. Both s; and \; will be “on

the same node”.

Having defined our setup and the parameters we are now ready to derive the tools
needed to determine the unknown parameters through our knowledge of the spot
price, the interest rate (and thereby iteratively the forward price) and the volatility

smile.

The formulae

As a general reference to this section we give Derman and Kani (1994).

As mentioned, the unknowns that we are trying to calculate in this model are the
transition probabilities p;, and the future state values S;. We choose to maintain
the spot price Sy as a central node throughout the tree. A center is chosen in order
to uniquely determine the parameters. We no longer have an a priori structure for

the development of Sy as we did in the standard binomial case. Instead we must

3The sum (over all possible paths to the node) of the product (of discounted transition
probabilities). Note: since the transition probabilities change throughout the tree, the standard

binomial model formula for the Arrow-Debreu prices (14 75)"(7")p’(1 — p)"~* cannot be used.

(3
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4.2. EXAMPLE OF DISCRETE TIME LOCAL VOLATILITY

infer the market’s take on the development of Sy through the observed volatility
smile. At an arbitrary point in time n > 0 in developing the grid there are
2n + 1 parameters perfectly describing the transition to time n 4+ 1: the n+ 1 new
stock prices S; and the n transition probabilities p;.* However, at time n all the
information we have is n forward prices and n European option prices.® To sum
up we are left with the task of determining 2n + 1 parameters from 2n equations
(options and forward prices), and therefore we add the centering constraint to be
able to uniquely determine all parameters. As mentioned we choose to center the
nodes around Sy. This condition leaves us with an equal amount of parameters
and equations.

We are now set up to stepwise determine the local volatility grid corresponding

to the observed volatility smile. To do so, the first identity that must hold is
Fi=piSit1+ (1 —pi)Si (4.2)

We remind ourselves, that ¢ tells us where we are located wertically in the grid,
while n tells us where we are horizontally. F; is the known forward price while
S; denotes a downwards shift and S;4+; denotes an upwards shift. We now let
C(K,T) represent the present value of a call option with strike K and maturity
T. Using the Arrow-Debreu prices A;, the value of the call option can be written

as

C(K,n+1) = e 123" (X pj + Ajpa(1 = pjp1)) max[Sjy1 — K,0]  (4.3)
j=1

where we use the notation e "f2? to indicate a discounting all the way back to
time 0. Setting K = s; allows us to rearrange and simplify the expression using
the resulting fact that only up-moves will have a positive contribution while down-
moves will have a value of 0. Also, we know that forwards must be priced according
o (4.2). With this extra insight we rewrite (4.3) into

Clss,n+1) = e A |\ pi(Siv1 — si) + > N(F = s0) (4.4)
Jj=i+1

One can think of the first term within the brackets in (4.4) as a “maybe-value”

4At any node, the probability of a down-move pgown can be parametrized as 1 — Pup and
vice versa. Therefore, the probabilities of the total 2n possible movements from the nodes in
nodegroup n are fully described by n parameters.

5Similar to the argument for the transition probabilities, one could be led to believe that we
in fact know 2n option prices—the calls and the puts—but these are linked through the put-call
parity, and thus one can be parametrized through the other.
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4.2. EXAMPLE OF DISCRETE TIME LOCAL VOLATILITY

(with probability p;) and the second term as “sure-value” since the former only
contributes with a postive payoff in the case of an up-move, and the latter will
surely contribute with a positive payoff (with an expected value equal to the
forward price as presented in (4.2)) regardless of the direction of the move.

Since a volatility smile—and thereby an option price—is given and the forward
prices are known, we are left with an expression containing only two unknowns:
the transition probability p; and the value of the underlying asset after an upwards
move S;;1. By combining (4.2) and (4.4) one might say that we are adding an
extra unknown variable S;, but this brings us back to our choice of centering
the grid around Sy. Having done so, we are able to start at the central node
(i =n/2+ ) and work our way upwards. Solving (4.2) and (4.4) simultaneously

yields

S; {erfAtC(Si, n -+ 1) — E} — N\ SZ(FZ — Sl)

Sit1 = (4.5)
i {eTfAtC(si,n +1)— E} —N(F; = S;)
F,—5;
;= v 4.
b Siy1—5; (46)

n
where ¥ = Z i (Fj — si)
j=i+1
As mentioned, one of the key elements to this method of iteratively calculating
state values and transition probabilities is knowing the value of the central node.
So, what happens when we are in a position where there is no central node—
e.g. moving from n = 1 to n = 2?7 Obviously, when n is odd (meaning that we are
moving to an even n) there will be no central node. Derman and Kani solve this
problem by setting the mean of the natural logarithms of the two central nodes
equal to the natural logarithm of todays spot price

log(S) = log(5i+1)2+ log(5i)

Si=52/Si11 (4.7)

or equivalently

Substituting (4.7) into (4.5) and rearranging we find the following expression which
we will use to determine the state value of the first node above the center of the

grid when moving from an odd n

So [erA1C(Sp,m+1) + X So - 3
N By — e At C(Sp,n + 1) + %

SiJrl == (48)

Calculations similar to those just performed can be done using put options instead
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4.2. EXAMPLE OF DISCRETE TIME LOCAL VOLATILITY

of call options to obtain the lower half of the grid. We will, however, merely refer
to Derman and Kani (1994), and simply state the result for the formula used to
calculate the state values iteratively for the nodes below the central node. Letting
P(K,T) denote the present value of the put option struck at K and maturing at

T, the expression is

Si+1 [6rfAtP(8i, n+1)— 2] + Aisi(Fy — Sit1)

[eTfAtP(si, n+1)— E} + Xi(Fi — Siy1)
i1
where ¥ = Z Aj(s; — Fy)
j=1

7

The transition probability p; is calculated as given in (4.6).
For both the lower and the upper half of the implied grid, the implied volatility

for each node based on the possible state values and the transition probability is

o; = \/pi (1 — pi)log(Siy1/5:) (4.10)

To see how (4.10) is valid, consider a stochastic variable Y that follows a two-point
distribution, so that Pr(Y =a) = p and Pr(Y =b) = 1 — p. Now, the variance of
Y is

calculated as

Var[Y] = E[Y?] — E[Y]?
=pa®+ (1 —p)b* = (pa+ (1 -p)b)°
= p(1 —p)(a—1b)? (4.11)

Since the only thing we changed, going the Black-Scholes setup to the local volatil-
ity setup, was the nature of the volatility, we still assume the price of the underlying

asset to follow a geometric Brownian motion

ds,
—L — pudt + (S, t) dW,
St
Using results from Bjork (2004) obtained through application of 1t6’s lemma the

dynamics of X; = log(S;) can be written as

O'(St, t)2

dXt = (,U, — B > dt + O'(St,t) th

Assuming that the volatility function is deterministic, and therefore does not de-
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pend on S, the variance of X; is
t
Var[X,] = / o(s)2ds (4.12)
0

We consider the volatility for a single node at the time, and as the name of the
model implies, the volatility is assumed locally constant. Therefore we can write

(assuming a single period ¢ € [0, 1])

1
2 _ 2
o —/0 o(s)“ds
= Var[log(S1)] (4.13)

From the binomial model, we know that S; follows a two-point distribution—it

can either go to Syp or Sqown. Combining (4.11) and (4.13) we now find

o= mlog(sup/sdown)

which corresponds to (4.10).

4.2.2 Example calculations

We now move on to a numerical example of the local volatility model. Assuming
that the ATM volatility is still 10%, we define a simple volatility “smile” by let-
ting the volatility decrease by 0.5 percentage point for every 10 units the strike
increases.5

We now have what we need to go ahead and obtain the state value tree and
the transition probabilities implied by the volatility smile. We remind ourselves

of our setting

e We are looking at a two-period binomial grid (time ¢ € {0,1,2}, and corre-
sponding nodegroups n € {1, 2, 3}—see Figure 4.1 on page 23 for a graphical

explanation of the time dimension).
e The underlying asset has a spot price of Sy = 100.
e A risk-free interest rate of 3% per period is assumed for all periods.

e Our volatility smile is defined as having an ATM volatility of 10% and a

0.5 percentage point in-/decrease for every 10 unit de-/increase in the strike

5Indeed, this describes a linear, and not very “smile-like”, smile, but for our purposes this is
of no importance.
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price (starting at K = .Sp). Mathematically

Timp(K) = 10% — 0.5%(K — S5)/10 (4.14)

To clarify which node we are talking about we remind ourselves of the previously
established notation (n,7) meaning “node group n, node ¢”, i = 1 indicating the
very bottom node. For example, looking at Figure 4.1 on page 23 node (2,1) has
the value 90.48 while node (3, 3) has the value 122.14.

To begin building the implied tree, the first thing we must do is to determine
the Arrow-Debreu price for node (1,1). Since this is the spot node, the Arrow-
Debreu price is simply 1. We write A(; 1) = 1, where the subscript corresponds to
our node notation. Moving on to node (2,2) we note that we are in the special
case with no central node. Hence, we must use (4.8) to find Sy 2), but in order
to do so, this requires us to determine C(100, 1) using the volatility implied by
the smile. In this case, since the option has strike 100, we know from (4.14) to
use Oimp = 10%. In the standard binomial setting using o = oymp = 10% we find
C(100,1) = 6.38. Since there are no nodes above (2,2) the X-term is equal to 0
and by (4.8) we find

100 [63% 6.38 4+ 1 x 100 — 0}
1 x 100(1 + 3%) — 3% 6.38 4+ 0
— 110.52

S(22) =

The price in the lower node of nodegroup 2 can now be found using our centering
condition (4.7)

S(2,1y = 1007/110.52
=90.48

and by (4.6) we find the transition probability

~ 100 x 1.03 — 90.48
PO = T 17052 — 90.48
— 0.625

We now have the necessary parameters to determine the grid implied volatility at
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120.27 —
110.52 8.60%
100 < 100 9.69% < -
90.48 10.90%
79.30 —
(a) State values - sy, ;). (b) Grid implied volatilities - o, ;).
0.402
0.682 0.607
0.625 < - 1 < 0.425
0.671 0.364
— 0.116
(c) Transition probabilities - p(, ;). (d) Arrow-Debreu prices - A(,,;)

Figure 4.3: Results from binomial local volatility modeling.

node (1,1) using (4.10)

o) = \/0.625 (1 —0.625)log(110.52/90.48)
= 9.69%

p(1,1) together with 7y gives ud the Arrow-Debreu price for node (2,2), A@22) =
0.625 x 1.0371 = 0.607. All we need now to be able to use (4.5) is the value of the
call option C'(110.52, 2), which we must calculate at the implied volatility dictated

by our smile definition
Timp(110.52) = 10% — 0.5%(110.52 — 100)/10 = 9.474%

With this volatility, using the standard binomial pricing scheme we find a call
option price of C/(110.52,2) = 3.92. The forward price must be Fy9) = 110.52 x
1.03 = 113.84, and entering this information into (4.5) (recalling that we chose to
center our grid around Sp = 100, so that S35y = 100) we find 53 3) = 120.27 with
P(2,2) = 0.682 yielding a grid implied volatility of o(39) = 8.60%. The final task
of finding S(33) using (4.9), along with p(5 1y and o3 1) is now trivial, and we will
merely state the results. Figure 4.3 presents our findings from the application of

the local volatility model.
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4.3 Dynamics of the local volatility model

Having seen a numerical example of how the local volatility model can be calibrated
to a volatility smile, we will move on to examining the dynamics resulting from
this model. In order to do so, we will simplify our initial setup by removing the

time dimension from (4.1) on page 22, leaving us with
dmt = O'loc(mt) my th (415)

This particular model is the main focus in an article by Hagan and Woodward.
Hagan and Woodward (1999) give a closed form approximation for the implied
volatility to use with Black’s formula as stated in (2.12) on page 13. Letting f

denote the forward price, the approximation is

d? o1 (K
os(K, f) aloc(f;K) 1+2ﬂlwum2+m (4.16)

Especially, we note the following regarding this approximation:

1. The local volatility function and its derivatives are evaluated at the average

point of the forward price and the strike.

2. Intuitively, the first term of (4.16) (x1) dominates the second term (x ;)
for options not too far ITM or OTM.

3. The contribution of the omitted terms to the correction is usually less than
1% of that of the first term.”

As a result of the second point, we will analyze the dynamics of the implied
volatility arising from the use of the local volatility model, by focusing on the first
term.

Ignoring everything but the first term, we are left with
[+ K )

(4.17)

UB(va):Uloc( 9

Now, suppose that today we observe two things: a forward price fy and a smile of
implied volatilities which is dependent on the strike price K, takes fy as a given

and is denoted by o%(K; fo). To be in line with the observed implied volatilities

"Cf. Hagan et al. (2002).
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4.3. DYNAMICS OF THE LOCAL VOLATILITY MODEL

o%(-) and (4.17) we note that it must hold that ojoc(f) = 0% (2f — fo) since

a%%ﬂﬁmzam(ﬁ+?f‘m)zamq> (4.18)

However, if the current forward price fy shifts to another forward level f, then
(4.17) together with (4.18) imply that

75 (K. ) = ooe (155
= o} (Qf;K—fo)
= oB(K +[f — o) (1.19)

This tells us, that the local volatility model has some peculiar properties. Consider

an initial implied volatility smile 0% (K + [f — fo]) with the shape of a parabola.

Given an initial forward level fp, assume that an implied volatility of o (K, fo) =

U%(K +0) is observed. Let the forward level increase to f > fp. Now the implied

volatility is is given as o5 (K, f) = o%(K +[f — fo]). Intuitively, an increase in the
—

>0
forward price should result in a shift to the right of the volatility smile. However,
the local volatility model now predicts that the volatility smile shifts opposite the
direction of the shift in the forward price. Figure 4.4 shows a graphical rendering

of the argument.

50
|

Implied volatility (%)
30 40
|

20
|

90 95 100 105 110 115 120

Strike

Figure 4.4: Volatility smile dynamics from local volatility.
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4.4. WRAPPING UP LOCAL VOLATILITY

This inconsistency obviously has various implications. The main implication
being, that when calculating risk measures under the local volatility model, the
resulting hedging decisions might not hedge risk exposure at all.

Let C(K, f,op(K, f)) denote the value of the call option with strike K, for-
ward price on the underlying asset f and a volatility calculated from the local
volatility model op (K, f)—the interest rate and maturity are arbitrary. Now,
calculating the A risk for this option requires finding the partial derivative of
C(K, f,op(K, f)) with respect to f. Using standard rules for partial derivatives
the A risk is

aC(Kv faaB<K7f)) + 8C(K7faaB<K7 f)) 8UB(K7f>
of do g af

Correction term

Ac =

Where the first term is the standard A risk from the constant volatility Black-
Scholes setup and the correction term is a result of the volatility itself being a
function of f. As we saw in Figure 4.4 the change in volatility when the underlying
forward price shifts is exactly opposite to market dynamics and therefore our Ag
measure will be incorrect. For f > fy the local volatility model tells us that the
correction term is negative even though market observations (and our intuition)

tell us that it should be positive.

4.4 Wrapping up local volatility

Concluding on our analysis of the local volatility model we note several features—
some more attractive than others. The local volatility model assigns different
volatilities to different points in the market, and by doing so essentially creates
a deterministic volatility function. The volatility function’s values can be deter-
mined by numerical methods as shown by example in section 4.2. Using quotes
on different liquid options, the local volatility model can provide a framework for
consistent pricing of exotic and path-dependent derivatives. However, as we have
shown in section 4.3, the model is not very well suited as a risk management tool,
since the dynamics of the volatility smile implied by the model are opposite to the
market observable (and intuitive) dynamics.

Before one completely writes off local volatility as a failed attempt on a model
for volatility, due to its short-comings as a risk management tool, it should be
mentioned that some sources suggest, that the model might never actually have

been thought up for purposes of risk management.

It is unlikely that Dupire, Derman and Kani ever thought of local
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4.4. WRAPPING UP LOCAL VOLATILITY

volatility as representing a model of how volatilities actually evolve
(...) the idea is more to make a simplifying assumption that allows
practitioners to price exotic options consistently with the known prices

of vanilla options.

— Jim Gatheral, (Gatheral, 2002, page 6)
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Chapter 5

The SABR model

In our search for a volatility model that will provide both a consistent base for
pricing options at different strikes as well as a satisfying quantification of risk we

now turn our attention to the SABR model.

5.1 Specification of the SABR model

The SABR model differs from the Black-Scholes and the local volatility approach
in its assumption about the dynamics of the volatility of the underlying asset.
Where in the Black-Scholes setup and the local volatility model, the volatility is
assumed to be constant respectively locally constant, the SABR model allows the
volatility to evolve as a function of time, ¢, the strike price, K, and the current
forward price, f;. Furthermore, acknowledging the fact that volatility sometimes
behaves relatively calm but also sometimes varies a lot, the SABR model allows
for the volatility itself to be random over time. Going back to (2.9) on page
12, the SABR model assumes ¢(-) = atmtﬁ. Where the local volatility model’s
¢(-) function only depended on time and the level of the forward price itself, the
SABR model’s ¢(+) includes an extra source of randomness by also depending on
random development of «;. This extra randomness is scaled through the inclusion
of a “volatility of volatility” parameter v. Mathematically, letting f; denote the

forward price process, the SABR model is formulated as

dfy = o f dw} (5.1a)
day = v ay dW}? (5.1b)
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5.2. SOLVING THE SABR MODEL

where W} and W7 are correlated Brownian motions with correlation coefficient p
so that
dW}rdw? = padt (5.1c)

In total, the SABR model is described by the stochastic «; process, the 3 pa-
rameter and the correlation coefficient p. This is also where the model takes its
name: Stochastic Alpha Beta Rho. We note, that as a special case of the SABR
model, setting 8 = 1 and v = 0 leaves us with the original Black-Scholes setup,
since this particular combination of parameters results in a constant volatility aq
and a forward process with returns that are normally distributed with a mean of
0 and standard devaiation of agv/t.

As we will show, the SABR model as stated in (5.1) can be calibrated to
fit a given implied volatility smile very well for an asset with a single time to
maturity.! Swaptions are traded liquidly over different “standardized strikes”
(ATM + z bps, x € {£200,4+100,+50,0}). At the same time swaptions are also
traded on “standardized maturities and tenors” (6M2Y, 1Y2Y, 5Y2Y etc.). The
fact that these products are both highly liquid and are trading at a range of strikes
for single maturities makes the SABR model an obvious choice for fitting implied
volatility smiles for swaptions. Therefore, our analysis of the SABR model will be

focused on this specific type of derivatives.

5.2 Solving the SABR model

Before moving on with our analysis of the SABR model, we need a basis for
calculations. The model can be solved using Monte Carlo techniques, but this
would be quite cumbersome and time consuming for our purposes. Instead we
choose to follow in the footsteps of Hagan et al. (2002). In the article from 2002,
the following approximation to the implied volatility resulting from the SABR

model is presented

1-8)2 a? va 2—3p2
@0 {1 + {( o GR=7 T 4(prﬁ)(1—%)/2 + =7 VZ] T}
(F K)O-972 [1 4+ C 1082 (£) + Uptlog* (£)]  #(2)
where z = L(f K)(I_B)/2 log <IJ;>

a0
\/1—2pz—|—22+z—p>
1—

p

UB(va) =

and z(z) = log (

'The SABR model can also be extended to cover an entire volatility surface rather than just
a smile for a single maturity, but that is beyond the scope of this paper. Se appendix on The
Dynamic SABR Model (Hagan et al., 2002).
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5.3. ELEMENTS OF THE SABR MODEL

For the ATM case when K = f, the formula is drastically simplified as a result of
log % evaulating to 0.

a
FO=5) {1 -

The approximation is carried out by initially applying singular perturbation tech-

UB(fvf):

(1=5)? of | pBrag  2-3p° ,
24 f(2-28) * 4 f(1-5) o |t (5:3)

niques? to obtain prices of European options, and from these the implied volatilities
op(K, f) are then inferred.
Having established a closed-form approximation of the implied volatility re-

sulting from the SABR model, we can begin our analysis of the model.

5.3 Elements of the SABR model

In this section we will investigate the various parts of the SABR model. We will
take the model apart in order to examine the different parameters’s effects on the
dynamics of the model, and how changing parameter values can alter the shape
of the predicted volatility smile. As a basis for our analysis we will use (5.2) and
(5.3).

In the following sections we will use an initial smile setup with a set of more
or less randomly chosen parameters v, ag, p, 8 and f. Each parameter is then
shifted in order to assess its impact on the shape of the smile. As our basic smile

we define the smile described by (5.2) using the following parameters:
v=030 a=003 p=-030 =060 f=0025 (T'=1)

f To start out, we take a look at what happens to the volatility smile when
the forward price f shifts away from its initial state. The problem we faced
with the local volatility model was that the volatility smile shifted opposite
the shift of the forward price. Looking at Figure 5.1, we see that the SABR
model remedies this issue. Clearly, when the forward price shifts to a higher
level, we see that the volatility smile shifts to the right, in line with as well

our intuition as with market observable dynamics.

I/ The v parameter is initially set at 0.30 and is subsequently shifted by adding
0.20 causing a vpew = of 0.50. Figure 5.2 reveals that v governs the curvature

of the smile. Ceteris paribus, increasing v causes o (K) to increase for OTM

2Perturbation techniques are beyond the scope of this paper. For details on these we refer to
Hagan et al. (2002).
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Figure 5.1: Shifting f.
strikes and for reasonably far I'TM strikes. The volatility smile changes
around the ATM point resulting in a smile that is more convex than the

initial one.

8 \ —— Original smile: v=0.30
e k - Shifted smile: v=0.50

os(K)

0.15
|

Figure 5.2: Shifting v.

CYO We choose to shift the ag parameter both up and down from its initial
state 0.03. We shift it to values of 0.01 and 0.05. The oy parameter can
be interpreted as “the initial volatility” since it is from this point that the
stochastic volatility process takes its origin. With that in mind, the smiles
resulting from the shifts are not surprising. Figure 5.3 shows that by shifting
g up or down we essentially shift the entire smile up or down. Apparently,
oy does not influence (notably) on the shape of the smile, but rather on the

vertical location.

10 Initially we assign p the value of —0.30. Obviously, since p is the correlation
between the two Brownian motions governing the development of the SABR
model, it is bounded: p € [—1, 1]. However, our choice of a negative value for
the correlation coefficient is not a mere coincidence. In general, the volatility

is lower for higher (ITM) strike prices and vice versa. This inverse relation
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< —— Original smile: o =0.03
S ] --- Shifted smile: ao = 0.05
- Shifted smile: ap=0.01
o
o
<
~=
© N
o
- _|
o

T T T T T T
0.01 0.02 0.03 0.04 0.05 0.06

Figure 5.3: Shifting ayg.

is imposed on the SABR model by setting p < 0.

Figure 5.4 shows the effect of p on the shape of the volatility smile. Changing
the level of correlation seems to cause the smile to “rotate” around the
ATM point. As we would expect after having discussed the intuition behind
negative correlation, we see that decreasing p (making it more negative) to
a level of —0.80 causes a steeper smile, while increasing the correlation to
40.80 somewhat flattens the smile and gives it an opposite relation to the

forward price compared to the —0.80 case.

a1 - —— Original smile: p= -03
- - - Shifted smile: p= 08
- Shifted smile: p= -08

O'B(K)
0.10 0.15 0.20 0.25 0.30 0.35

0.01 0.02 0.03 0.04 0.05 0.06

Figure 5.4: Shifting p.

B In Figure 5.5 we shift 5. We start out with a 8 of 0.60 and then shift this
value up and down respectively by 0.20. The g parameter is not directly
constrained in the original article by Hagan et al. (2002), but we will, how-

ever, impose the constraint 8 € [0,1]. Clearly, choosing a § < 0 would
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5.3. ELEMENTS OF THE SABR MODEL

result in a case, where greater forward prices f would imply smaller rela-
tive change in the process f;. This is by no means logical, and therefore we
impose the lower bound 8 > 0. Similarly, choosing a 5 > 1 would mean
that the expected deviation from the current state of f; would be greater
than the volatility times the current forward level (times v/t) which is also

undesirable. Hence, we impose the upper bound g < 1.

The numerical manipulation of the 5 shows us, that it—like the v parameter—
influences some on the curvature of the volatility smile. However, the impact
of (8 is somewhat different from that of v. Where v seems to curve the entire
smile, 5 apparently has its greater effect on the side of the smile that is left
of ATM. The lower we set (3, the less curvature in the volatility smile, and
at the same time the entire smile is shifted in the same direction as the 5—a

property similar to that of the cg parameter.

—— Original smile: B=0.60
g - - -~ Shifted smile: B=0.80
- Shifted smile: B=0.40
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Figure 5.5: Shifting [3.

In conclusion, we note that several parameters seem to have similar properties
or a mix of properties from other parameters. The p and the 5 both seem to
govern the curvature of the smile. At the same time, 8 and ag both help shifting
the location of the smile up and down. These similarities and connections between
the parameters of the SABR model will be further dealt with in the following
section where we will address the issues of calibrating the SABR model to real-life
data.
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5.4 Estimating parameters in the SABR model

In this section we will discuss different ways of calibrating the necessary parame-
ters for a SABR single-maturity volatility smile. Further, we will investigate the
uniqueness of the parameters that we obtain from the calibrations. The data that
will be used in this section is swaption data® as of June 1st 2010 and November
1st 2010. The data is in the form of a smile of Black-Scholes implied volatilities for
a single swaption—implied volatilities are given for ATM as well as ATM +z bps,
x € {£200,£100, +50}.4

In general, what we want out of our estimation is to minimize the error between
the points we regard as “true” or “observed” implied volatilities, and the points
that are fitted by our SABR model for corresponding strikes.

To be more specific, in our case we will be minimizing the sum of squared
differences between observed and fitted volatilities. Hence, our general problem is

formulated as
min " (3; — op(v, a0, p, B; Ki, f))? (5.4a)

v,a0,08

where op(v, ag, p, B; K;, ) are the SABR implied volatilities as a function of the
SABR parameters and given the strikes K; and an ATM forward level f, and
o; are the market observed implied volatilities. In some cases different object
functions might be considered. As an example, one might choose to weight by
“traded amount”, “trade frequency” or some other liquidity measure. However,
given the relative few data points available for our estimation we will not apply
any weights, and as we will show, the SABR model is indeed capable of producing
very nice fits to our volatility smiles. We impose the following restrictions on the

optimization problem in (5.4a)

pe—1;1] (5.4b
B € [0;1] (5.4¢c
v>0 (5.4d
ap >0 (5.4e

Eventually, we are faced with the task of estimating the four SABR parameters
based on six or seven market quotes. Obviously, this is possible, but the smaller

: parameters to estimate . :
the ratio == quotes the better. Assuming that we cannot increase the

number of available market quotes, we turn to the numerator.

3Courtesy of Danske Bank.
4Note: on several occasions the ATM forward rate is below 2% bps. In these cases the quote
for ATM — 200 bps is discarded since this implies a swaption with a negative strike rate.
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5.4. ESTIMATING PARAMETERS IN THE SABR MODEL

In section 5.3 we analyzed the various parameters in the SABR model, and
we found that several had somewhat similar effects on the shape of the resulting
estimated volatility smile. In the following section we will explore the possibility
and implications of fixing or pre-estimating one of the SABR parameters prior to
the actual calibration to market data. The parameter on which we will focus is
the S.

5.4.1 Fixing the

In this section we will explore the possibilities of pre-determining the 8. As one
sees from (5.1a) on page 36, the j3 is a key determinant for the forward process of
the underlying asset under the SABR model’s assumptions. As such, the choice
of 5 might depend on an a priori belief about the forward process. We will divide

these beliefs into three common models: § € {0, %, 1}

8 =0 — the stochastic normal model

Setting S = 0 results in a forward process that looks like
dfy = oy AWy

The process describes a forward price whose increments are stochastic normally
distributed. “Stochastic” in the sense that they are normally distributed with a
mean of 0 and a stochastic standard deviation that is lognormally distributed. This
essentially will enable the forward process to be negative, and for most practical

purposes this is probably not a desirable feature.

8= % — the stochastic CIR model
This “stochastic CIR model” takes its name from the short term interest rate
process suggested by Cox, Ingersoll and Ross (Cox et al., 1985), in which the
volatility term is multiplied by the square root of the current level of the process.

In our case, this occurs as the forward process takes the form

1
dfy = oy ft2 AW = at\/ﬁth

The “\/f;”-term forces the process to stay above 0, and thereby preventing negative

forward rates.
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6 =1 — the stochastic lognormal model

Setting 5 = 1 takes us to the lognormal case. For this value, the forward proces is
dfy = oy fr dW;

which is almost similar to the standard Black-Scholes setup where the value of
the underlying asset follows a geometric Brownian motion. The difference be-
tween Black-Scholes and the stochastic lognormal model is, that in the latter case,
the volatility is a stochastic process itself, where Black and Scholes assumed the
volatility to be constant. The SABR model with a 8 of 1 implies that forward
rates are lognormally distributed and thus, the non-negativity property from the

CIR case also applies to the lognormal model.

We have now presented three different choices of 8 that all yield some prop-
erties similar to those of pre-existing modeling frameworks. However, the SABR
model does not require the user to predetermine a /3 based on a (biased) belief
regarding how the process should evolve according to some textbook example. In
the following section we will loosen the grip on the 5 and look a bit further into
its role in the SABR framework.

5.4.2 Fitting the

As we have already seen, the § parameter in the SABR model can be pre-specified
to match a certain class of process. In this section, we will look into the possi-
bility of inferring S from our data rather than fixing it. To establish methods for
estimating 5 in the SABR model setup, we will turn our attention to the forward
process.

The forward process in the SABR, framework is formulated as we have seen in
(5.1a) on page 36. This implies that the relative change in the forward price (dTJ?)

has a standard deviation of

dft] f
&Dw{ﬁ}_%ﬂ
—a; [ (5.5)

Restraining (3 to the interval [0, 1[ we see that the instantaneous standard devia-
tion has a direct inverse relation to the forward price. For the case of stock prices
Beckers (1980) presents an economic reasoning behind this phenomenon. He ar-

gues, that as the stock price of a firm falls, the market value of its equity tends
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Figure 5.6: Ezample of a backbone for 10Y10Y swaptions against EURIBOR6M for
different ATM forward levels.

to fall more rapidly than that of its debt (or at least its fixed costs, in case of no
debt). This will cause the company to become increasingly risky, and thereby in-
crease the volatility. Though this argument is not directly transferable to forward
interest rates it is still a nice bit of intuition.

Seeing how the standard deviation in (5.5) depends negatively on the current
level of f;, what does this imply? To move into the implications of this inverse
relationship, we introduce the concept of the backbone.

The backbone is the curve traced by the ATM implied volatilities over various
ATM levels of the forward process. An example of a backbone is shown in Figure
5.6. Rewriting the expression for the instantaneous standard deviation of the
forward process from (5.5) in log terms we obtain
) = togtan) + (5 - 1ogt )

log <StDev {
t

< log(oara) = log(ay) + (8 — 1) log(f:) (5.6)

Also, as we have already shown in (5.3) on page 38 the SABR ATM volatility can
be approximated by the closed form expression

(1-8)° o B 2 - 3p?
otron) = iy {1 |57 i + s+ 250 ]

This expression is fairly complicated in its present form. However, the main con-
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tribution to op comes from the first term within the curly brackets. According
to Hagan et al. (2002), omitting the last term will result in a relative error that
in extreme cases will exceed three percent. Hence, for pricing purposes the full
expression should be used, but for analytical purposes, we will keep only the first

term. By doing so, we are left with

a0
1—

O—B(fvf)% f( B)

Rearranging using log terms, we are left with an expression similar to (5.6). We
have now shown in two ways, that we can estimate the SABR 3 parameter by
performing a linear regression on sets of (log(carr), log(farasr)) for different ATM
levels. The § is estimated by the slope of the line + 1.

5.4.3 Parameterization in the SABR model

In the previous sections we have discussed different possibilities for pre-specifying
B based on an a priori belief regarding the dynamics of the process of f;, or
estimating the 8 parameter using a linear regression technique. In the following
we will assume that  has already been estimated. Hence, we are left with the
task of estimating ag, p and v in order to have a fully calibrated SABR model. We

will present two different ways of estimating these three remaining parameters.

Estimating ag, p and v

The first parametrization scheme we will present is very intuitive and simple.

Reminding ourselves of our general optimization problem from (5.4a)
min Z (5_1 - UB(V7 Qq, P Kia f7 ﬁ>)2
i

an obvious solution is to simply find the parametrization {v, ag, p} that minimizes
the sum of the square errors. This can be done using standard optimization

techniques such as the Newton-Raphson method.

Estimating p and v

For the second parametrization, we will estimate p and v, and from those we will
infer an o using the approximation for ATM volatility given by (5.3) on page 38
along with the known ATM implied volatility o arys. Knowing oapys we are able
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to invert (5.3) to solve for ap. We find

1-8)?% o3 pBvag 2—3p2y2] T}

TATM = 4(1=p) {1 T @ T apam 24

s0=Aad+Ba2+Cag—oarnfi P (5.7)

where A = [2(41;(75)_227[;)}, B = [%} and C = [1 + 2_22"2 VzT}. This cubic can
have up to three real roots. However, typically there will only be one real root.’?
Should there be more than one real root, one should seek the smallest positive
root—in cases with three real roots these will be of magnitude —1000, 1000 and
1, and we would choose the latter.6

The steps described above, can be comprised into the following optimization

algorithm:
i. Assign initial values to p and v.
ii. Solve (5.7) to obtain an estimate of ay.
iii. Minimize the sum of squared errors with regards to p and v.
iv. Repeat [ii.]
v. If the sum of squared errors exceeds a prespecified tolerance level go back to
[ii1.].

Stated mathematically, the problem is now to minimize the following expres-
sion

Hylipnz (6: — oB(v, p,a0(p, vioarn); Ki, f, )
i

This means that we now implicitly determine ag using o4 as an “extra”

input compared to the case where we directly estimate «g, p and v.

5.5 Fitting a smile

In this section we will apply the various methods of fitting the SABR model to
an actual volatility smile. For the SABR modeling we will be using the volatil-
ity smiles graphed in Figure 5.6 on page 45. The data presented is a 10Y10Y
swaption against EURIBORG6M, and can be seen in detail in Table 5.1. The table
shows seven forward levels (ATM and ATM =+ 200, 100, 50 bps) along with their

corresponding Black-Scholes implied volatilities.

5Cf. West (2005).
®Ibid.
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December 1st 2010

ops 32.15 24.80 22.22 20.40 19.23 18.67 18.87
f 1.571 2,571 3.071 3.571 4.071 4.571 5.571

September 1st 2010

ops 2697 20.16 17.63 16.11 14.80 14.66 14.99
f 2597 3.597 4.097 4.597 5.097 5.597 6.597

June 1st 2010

ops 2997 2215 19.48 17.70 16.63 16.29 16.62
f 1.947 2947 3.447 3.947 4447 4.947 5.947

Table 5.1: 10Y10Y EURIBOR6M swaption data. All numbers are in percentages. ATM
forwards and volatilities are typeset in bold.

5.5.1 Fitting a smile with a prespecified

As previously mentioned, the first task when calibrating a SABR model is that of
choosing a suitable value for the g parameter. In our first attempt of a calibration,
we will proceed as described in section 5.4.1 and simply choose a [ value. Since
we are dealing with interest rates we somewhat arbitrarily choose to fix g = %
Hence, our SABR model will be of the stochastic CIR type. Since this type of
modeling does not require any fitting of the £, we will only need to focus on one of
the three smiles presented. We choose to focus on the the newest available data:

the volatility smile per December 1st 2010.

Estimating ag, p and v

Initially, we will calibrate a SABR model to the volatility smile, by predetermining

ap= % and simply estimate the remaining parameters «q, p and v by solving
V%%{lpzi: (6; — oB(v, a0, p; Ki, f, B))?

Setting 8 = % and estimating the remaining parameters result in a parametriza-

tion {ao, p,v} = {3.574%, —24.862%, 35.950%} with a square error sum of ap-
proximately 1.22E—5. Figure 5.7 shows the Black-Scholes volatilies implied by
the market prices along with those inferred by our SABR model (for 3 = 1).
We see that the SABR model is indeed capable of producing a highly convincing

fit to market data. The observed volatilities and the SABR volatilities coincide
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Figure 5.7: SABR model fitted to 10Y10Y EURIBOR6M swaption data as per Decem-
ber 1st 2010. The [ is prespecified at % and the remaining parameters are estimated:
{ao, p, v} = {3.574%, —24.862%, 35.950%}

I3 ) p v Error
3 3.574% —24.862% 35.950% 1.22E—5
1 20.226% —47.301% 46.442% 8.45E—7

Table 5.2: SABR parameters fitted to 10Y10Y EURIBORG6M swaption data as per De-
cember 1st 2010. Depending on the set value of 5, the parameter estimates vary, but both
models fit market data very well.

almost perfectly. However, we have only shown this for our choice of g = %

We will now set 5 = 1 and recalibrate the model to see the effects of such a
change to the model—and especially the implicit change to the a priori belief
on the process of the forward rates.” Setting 8 = 1 and applying our numeri-
cal minimization of the squared error terms leaves us with a set of parameters
{ag, p,v} = {20.226%, —47.301%, 46.442%} with a square error sum of approxi-
mately 8.45E—7. We note that with 8 = 1 we are left with an even smaller error
compared to the case of § = % which we have seen in Figure 5.7 already fits market

data very accurate. The two sets of parameter estimates are shown in Table 5.2.

"We remind ourselves, that the special cases of 3 = 0, § = % and 8 = 1 imply a Vasicek,

Cox-Ingersoll-Ross and Black-Scholes model respectively.
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I} ) p v Error
3 3.564% —24.696% 36.142% 1.25E—5
1 20.239% —47.343% 46.416% 8.56E—7

Table 5.3: SABR parameters fitted to 10Y10Y EURIBORG6M swaption data as per De-
cember 1st 2010. The B’s are predetermined while o is determined based on oary, p
and v as the ofy € [0;1] that solves (5.8).

Estimating p and v

As shown in section 5.4.3, the o parameter does not necessarily need to be esti-
mated through the numerical minimization of the error terms. Instead, ag can be

expressed as a root of a cubic involving p, v and the ATM implied volatility oaras
O:Aa8+Ba3+Cao—UATMf(1_B) (5.8)

where A = [%}, B = [%] and C = {1 + %VQT].
Using this parametrization of ag, we repeat our calibration of the SABR model
with a prespecified 5 = % and with a § = 1. The results are shown in Table 5.3.
We note, that the parameter estimates change very little compared to our initial
fitting of the SABR model, where none of the three parameters (ag, p and v) were
bounded by the values of the others. Further, we see that the error term does not
change much either. The error term does increase a little bit, but that was to be
expected since we are now expressing one of the three variables through the other
two, thus removing one degree of freedom.

Based on the results in Table 5.3 we conclude that parameterizing ag by p, v
and o047y does not diminish our models ability to fit market data. Rather, based
on the belief that obtaining «g through other parameter estimates in accordance
with the model setup will lead to a more self-consistent model, we tend to prefer
this parametrization approach. Our preference is further supported by the fact
that when comparing the parameter estimates in Table 5.2 and Table 5.3 there

seems to be little deviance.

5.5.2 Fitting a smile—estimating the

We saw in section 5.5.1 that our choice of 5 has little effect on the ability of the
SABR model to fit to market data. Whether we specified a 5 of % or a § of 1, the
remaining error was very small. However, in this section we will look into fitting

the § parameter based on observed movements of the volatility smiles. To be more
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specific, we will estimate 3 based on the backbone of the volatility curves.®

In section 5.4.1 we showed, that expressed in log terms, the ATM volatility is

a linear function of the ATM forward level

log(oarn) = log(ay) + (B — 1) log(ft)

For our estimation of the the 5 we will use the data presented in Table 5.1 on
page 48. Taking logs of the three ATM levels and running a standard linear
regression yields the following ANOVA table

Estimate Std. Error t value Pr(>|t|)

(Intercept)  4.1530 0.3041  13.66  0.0465
log fi  —0.9087 0.2181 —4.17  0.1500

The first thing we note is that the slope estimate of approximately —0.91 shows
a low degree of significance with a p-value of 0.15. However, we only have three
observations and therefore—despite its insignificance—we choose to move on with
this estimate.

A slope estimate of —0.91 tells us, that the appropriate [ estimate is —0.91 +
1 = 0.09. Before we move on with this number, we note that this almost puts
in the class of normally distributed forward rates, implying that the forward rate
has a positive probability of being negative. Obviously, this is not an attractive

feature, since this would mean that one could make a profit borrowing money.’

Estimating p and v

Having obtained our 3 estimate from the linear regression technique, we will now
fit the SABR model using this 8 value. In section 5.5.1 two ways of estimating
the SABR parameters were presented: the free approach and the parametrization
approach where «aq is a function of other parameters. We took a preference to the
parametrization approach, and therefore, we will move on using this method for
estimating the SABR parameters.

Fitting the SABR model using a 8 of 0.09 yields the parameter estimates
displayed in Table 5.4. Looking at the error term it quickly becomes apparent,
that the 3 estimate of 0.09, calculated through the linear regression, actually leaves

us with the worst fitting model so far. The models previously calibrated for s

8See section 5.4.2 for an explanation of the backbone of a volatility smile.

9More accurately, since we are dealing with forward rates this implies that one can lock
in a future profit by agreeing to borrow money in the future. Either way, a negative rate—
instantaneous or forward—assigns negative value to holding money which is very rarely the case.
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153 ) p v Error
0.09 0.901% 3.916% 30.801% 5.67TE—5

Table 5.4: SABR parameters fitted to 10Y10Y EURIBORG6M swaption data as per De-
cember 1st 2010. The § = 0.09 is calculated using linear regression.
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Figure 5.8: SABR model fitted to 10Y10Y EURIBOR6M swaption data as per December
1st 2010. The B = 0.09 is calculated using the linear regression technique. The error term
is 5.67TE—5.

(semi-)arbitrarily chosen at 2 and 1 all have much smaller error terms. For 8 = 1
the error is 1.25E—5 and for 8 = 1 it is as small as 8.56E—7. Hence, we do not
gain anything estimating S using the linear regression technique—au contraire.
However, even though we see that the linear regression technique performs the
worst so far, we still note the SABR model’s ability to fit a market smile regardless
of the choice of 5. Further, we also recognize that our fits are all based on a single
point in time. Indeed the model with a 8 of 0.09 might be the better model
over time as the volatility smiles shift as a result of shifts to ATM forward price.
However, the analysis of the time-dynamic SABR model is beyond the scope of
this thesis.

Figure 5.8 shows market implied volatilities along with the SABR implied
volatilities from the model with 5 = 0.09. As we see, the model still fits very well,
despite the tendency we have seen so far, that the error term is smaller for §’s
near 1 and grows larger as 8 approaches to 0. It seems as if a conscious choice of
a 3 based on an a priori belief regarding the dynamics of the underlying asset is

plenty. Also, in our case it should be kept in mind that we only had three data
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points available for the estimation of 3, which is hardly a sufficient number of data

points for convincing results or stable conclusions.

5.6 Risk measures under the SABR assumptions

In this section we will analyse the concepts of delta (A) and vega (V) risk when
hedging in a SABR framework. Initially, we will go over these risk measures in the
standard Black-Scholes setting with a contant volatility op. Once the basics have
been presented in the Black-Scholes setup we will extend the concepts to cover the
SABR model in which volatility is no longer constant but instead is dependent on

a range of parameters op(-).

5.6.1 A and V in the Black-Scholes setting

We remind ourselves that the time 0 price of a European plain vanilla call option
on an underlying asset with a price process Sy under the Black-Scholes assumptions

is

C(So, K,ry,05,T) = Sy ®(d1) — e " TK ®(dy) (5.9)
142
where d; = log(SO/Kj;r% 2787 and do = dy — opV/T and ®(-) is the cumulative

standard normal distribution function.

The value of the option is obviously dependent on a lot of parameters. All of
which are subject to change over time. With the exception of the time to maturity
T, these changes are stochastic and as such they represent risks to the value of the
option. These are the risks option traders try to manage. The two risk measures

on which we will focus are:
A (Delta) the the risk towards a change in the value of the underlying asset f;.

V (Vega) the risk towards a change in the volatility of the returns of the un-

derlying asset.

As mentiones, the A risk is the sensitivity of the option price towards changes in

the underlying asset

oC()

—_— 1
55 (5.10)

For the Black-Scholes case presented in (5.9) the A can be expressed explicitly.

A

There are more ways to derive the A. One way is to apply the chain rule of
differentiation. This is straightforward, but it requires some tedious calculations.

Instead, we will derive the A using a neat little trick.
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First, we note that C(-) is homogenous of degree 1 in spot price of the under-

lying asset and strike price. Omitting other terms than Sy and K we write
C(M(So, K)) = A O(Sp, K)

Secondly, we use Euler’s Theorem.

Theorem 5.1. (EULER'S HOMOGENOUS FUNCTION THEOREM)!®

Let h be a continuous differentiable function of n variables with continuous partial
derivatives on an open space D such that x = (z1,22,...,2,)' € D and t > 0
means that tx = (tz1,txa,...,tx,) € D. Now h is homogenous of degree \ if
and only if, for all x € D it holds that:

n
x'Vh = ;ihj(x) = Ah(x) (5.11)

i=1
Since we have seen that C(-) is indeed homogenous of degree 1 in (Sp, K) we
now find from Theorem 5.1 that C(-) must be of the form corresponding to the
left-hand side of (5.11). This means that C(-) is written as a sum of Sy and K
weighted by their partial derivatives. Hence, the multiplication term on Sy in (5.9)

must be equal to %g) = A and we find

A = &(dy)

A tells us how much the value of the option will change given a 1 unit change
in the underlying asset. We note that A € [0;1].}1 A A near 0 is seen for far
OTM call options, since these are practically worthless, and an increase in the
underlying asset has close to no effect on the value of the option. Similarly, a far
ITM call option will have a A near 1 since the unit increase in the value of the
underlying asset will almost surely result in an extra unit payoff from the option.

The option A can also be used to create a portfolio that is neutral to changes
in the value of the underlying asset. For example, say we buy 100 identical call
options on Stock A each costing 1 EUR and each with a Ap of 0.40. This leaves
our portfolio with a total App of 100 x 0.40 = 40, implying that if the price of
Stock A increases by 1 EUR our position will be worth 140 EUR, but if the price
drops by 1 EUR it will be worth only 60 EUR. This risk can be hedged by a

position in the underlying asset with an offsetting A. The underlying asset itself

10Cf. Sydsseter (2005).

" Opposite sign of the Sy term in the Black-Scholes formula for plain vanilla European put
options means that for the put option we find Apyy = —P(—d1) = ®(di1) — 1 and therefore
Aput € [—1,0]
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has a A of 1, and therefore a simple hedge strategy is to short (sell) App = 40

units of the underlying asset leaving us with a net A = 0.

Turning to the V risk of the option this is the option’s sensitivity towards the
uncertainty in the market—the volatility. Similar to the way we defined A in
(5.10), we define V
oC(+)

v dop

(5.12)

There is no neat trick to come up with the partial derivative of C(-) with regards
to op, and instead of going through tedious calculations we will merely present

the formula

V = SoVT '(dy)

V is the same for the put and the call, and we note that V € [0; co[. This implies
that the call and the put option become more expensive when volatility rises, and

is a result of the increasing uncertainty faced by the writers of the options.

5.6.2 A and V in the SABR model

We have now seen how A and V behave in the Black-Scholes model. As men-
tioned, Black and Scholes assumed the volatility to be constant, and as discussed
in Chapter 3—and as seen in the various graphs depicting volatility smiles—this
is hardly the case. This is the reason why we introduced the SABR model, which
allows for a dynamic volatility o(-) that has an approximate closed-form solution,
and that can be used together with the well-known Black-Scholes formula.

In the SABR model, the op is not constant, but instead it is assumed to be a
function of several parameters. Among others it is a function of the current forward
level f; (roughly corresponding to Sp in (5.9)) and «; (which is the volatility term
within the SABR model). Given the complexity of the closed form solution, a
common way of calculating partial derivatives is simply to change the value of the
differentiation variable a tiny bit and see what relative change this causes

0y(x,z) ylx+ez2)—ylr—ez)

et 5 (5.13)

We note that if we replace x with = + € on the right hand side and take the limit
for € — 0 we have the definition of a partial derivative (Sydsaeter, 2005).

The method described in (5.13) is what we will be using to calculate A and V
risks in the SABR model, but first we will reconsider the definitions of these given
in (5.10) and (5.12) respectively.
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Starting out with the A risk, this is defined as the change in the option price
caused by a unit change in the value of the underlying asset. In the Black-Scholes
setup this is trivial, and can be done directly by applying the method from (5.13).
However, reminding ourselves that in the SABR model, the volatility term op(-)
itself is a function of the underlying asset (the forward rate). Omitting other
terms, we write the price of the European call option as C(f;,op(ft)). In order to
calculate the change in C(-) when the forward rate changes we need to apply the

chain rule of differentiation stated in Theorem 5.2.

Theorem 5.2. (THE CHAIN RULE OF DIFFERENTIATION)!?
If g is differentiable in xo and if h is differentiable in uy = g(xg) then h(x) =
h(g(x)) is differentiable in x¢ and

dh
dx

_dh

=20 du

. 9
dzx

uo=g(zo) T=T0

Applying the chain rule to C(f;,op(f:)) we find the SABR A as'?

oC(fr,oB(ft)) _ oC(fr,oB(ft)) i oC(fr,oB(fr)) o dop(ft)
df df dop(ft) af

We see in (5.14), that the SABR A has two terms. The first term corresponds to
the regular Black-Scholes A and the second term is the correction for movements
in op(-) caused by the shift in f;. With this representation of the SABR A risk,

our discretization scheme for numerically approximating A becomes

(5.14)

C(fi +e0p(ft +€) — C(ft,o5(ft))

€

AgaBr ~ (5.15)

Moving on to V, our point of interest is now the effects on the call option price
when the volatility of the underlying asset changes. We note that the volatility in
question when it comes to estimating the SABR V is the o and not (directly) the
op(+). We remind ourselves, that in the SABR model, the price process evolves as
dfy = o ftﬁ dW} where oy is the (stochastic) volatility process. With this in mind
and using Theorem 5.2 we are able to express the SABR V as

aC(O'B(CMt)) . 80(03(04,5)) % 80’B(Oét)

= 1
80&15 80’3(0&15) 80&15 (5 6)

12Cf. Sydsaeter (2005).

3Here, we implicitly assume that the SABR model is parametrized in its most free form form
os(v, a0, p; K;, f,8). Had we chosen to parametrize ag through p and v this should also had
been factored in since f; appears in the cubic in (5.8) solved to obtain ag, and therefore a term

aoC (- dop(- Aag (-
o x 570 5 29800 should have been added to (5.14).
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I3 « P v
1.00 20.223% —47.301% 46.442%
0.75  8.415% —36.656% 40.719%
0.50  3.574% —24.862% 35.950%
0.25 1.543%  —8.500% 32.063%

Table 5.5: SABR parameters for different 5 values.

Having now established the basics of the A and V risk measures in the SABR
model, let us examine a plot of the former. Figure 5.9 shows A for the 10Y10Y
EURIBOR6M swaption we have been working with so far. The swaption volatility
skew has been fitted!* for different levels of the B parameter. For parameter
estimates see Table 5.5. After fitting the models the corresponding A figures have
been estimated using the method described in (5.15). We see that the SABR setup
yields significantly different A risk measures depending on which £ is chosen. The
A’s obvious dependence on the value of S in conjunction with the fact, that we
do not have any means of determining a “true” § imposes a problem: which A

measure should we choose for hedging purposes?

The models have been fitted freely, meaning that ay is not parametrized through p and v.
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5.6.3 Modifying the SABR risk measures

In this section we will build on our findings from section 5.6.2. We found, that
using our derivations of the risk measures left us with risk measures dependent on
the choice of 5. Even though the SABR smiles resulting from various § estimates
fit equally well, we see that the A measure varies substantially when changing
the value of 3. In the original article,'® this issue is not adressed. However,
Bartlett (2006) proposes a correction to the risk terms which we shall look into
in this section. The main difference between the articles of Hagan et al. (2002)
and Bartlett (2006) is that while the former specify the SABR model, the latter
actually takes into account the proper dynamics of the model.

In the SABR model, the parameter p is used to indicate the level of correlation
between the forward price process f; and the volatility process a;. This correlation
is not accounted for in the A and V derivations shown earlier. Roughly speaking,
we calculated our risk measures by shifting only one parameter. This means that
for the A case the shift to f and « are

= f+df
AHagan . (517)
a— o
And for the the V case
_>
VHagan : f=1 (5.18)
a— a—+do

Obviously, having specified a model with a correlated price and volatility process,
these diagrams are erroneous. Whenever f changes, then—in the long run—a« will
change according to the correlation and vice versa.

Following Bartlett’s approach we rewrite the SABR model as a model contain-

ing two independent Brownian motions'®

df, = oy 2 dW,

doy = voy (,0 AWy +1/1 — p? dZt>

The first expression can be rearranged to yield dW; = df; (o ftﬁ )~L. Inserting this

5(Hagan et al., 2002).

16We utilize, that if W} and Z; are independent Browninan motions, then—applying the
Cholesky decomposition—W; and W2 = pWi + 1/1 — p2Z, are correlated with correlation coef-
ficient p (McDonald, 2006, page 657).
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into the second expression and rearranging leaves us with

day = P2 dfs + v a1 - p2dz, (5.19)
fi
It is now apparent that changes to oy come from one of the two terms in (5.19).
The first term is the systematic change occurring with a change in f; and the
second term is unsystematic change. Hence, we find that with a unit change in f;

the change in a3 due to a change in f; must be ;—Z. We write this as
t

pv
Ji
Where we let dra; denote “the change in a; caused by a change in f;”.
In a similar way, we derive the implication for f; when «; changes. We find—

using similar notation—the following link

8
Safr = % doy (5.21)

Using our new findings regarding the correlation movements of a; and f; stated in
(5.20) and (5.21) together with the A and V parameter change diagrams in (5.17)
and (5.18) we can now write the basic dynamics involved in estimating A and V

given Bartlett’s correlation corrections

= f+df [ = f+daf
ABartlett VBartlett : (522)
a—a+dfo a— a+da

Or stated mathematically, the new expressions for the A and V are!'”

_0C()  oC() 9op()  9C() 0Oop() pv

A = + + X 5.23
ofi " 0op() " 0fi | 0op() " oa ik 529
old A (5.14) Bartlett’s correction
9C(-) _ dop() ( aC() _ dop() acm) pff
V= X + X + 5.24
dop(+) 0oy dop(+) Ofy of: v (5.24)

old V (5.16) Bartlett’s correction

Having now “calibrated” our risk measures for the inherent correlation in the
SABR model, we once more calculate the A risk for various values of 3. The new

A’s are shown in Figure 5.10. Wee see, that by applying Bartlett’s correlation

: ]
"Note: in (Bartlett, 2006) the term dacf(t') pf‘ in the expression for V (Bartlett’s equation
(19)) is (presumably) mistakenly left out.
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Figure 5.10: A calculated and corrected cf. (Bartlett, 2006) for different values of 8. The
solid vertical line indicates the ATM forward level, and the dashed vertical lines indicate
ATM + 20%.

correction to our A measures we obtain much more consistent measures. The
A’s within ATM +20% region are now very similar regardless of our choice of 3.
Comparing to Figure 5.9 the improvement is remarkable. Further, we note that
in general, the Bartlett correction leaves us with smaller As. The reason for this
reduction lies in the formulation of the A in (5.23). The correction term has three
components.

The first component is C(-)/dop(-). In its crude form, this is the standard
Black-Scholes V measure from (5.12), which we have already seen is strictly posi-
tive.18

The second component is dop(-)/0as, which tells us how the Black-Scholes
volatility reacts to a change in the SABR volatility. Intuitively, this is also positive,
which is confirmed when investigating our expression for og(-) in (5.2) on page
37, remembering the result from Hagan et al. (2002) stated in section 5.4.2 that
the second term in the curly brackets accounts for a very small part of the final
op(+). Ignoring the second term in the curly brackets leaves us with an expression
that is clearly a strictly increasing function of .

The third and final component of the Bartlett correction is pv/ ftﬁ . Obviously,
the sign of this term is dependent on the values of p and v. However, as discussed
in section 5.3 the correlation between the underlying asset price and the volatility

will in most cases be negative, and thereby we get p < 0. The v parameter is the

'8 Assuming that the price of the underlying asset and time to maturity are both > 0.
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“volatility of volatility”, and as such it must hold that ¥ > 0. This means that
the third component in the Bartlett correction is negative.

Combining the signs of the three components, we now see why correcting the
Hagan A causes a smaller A. Roughly speaking, the Hagan A fails to include the
semi-deterministic movement in «; caused by a shift in f;, which in turn causes
an extra (opposite!®) shift in C(-). Bartlett’s method corrects this.

So, does this mean, that by following Hagan’s derivations one is not A-hedged?
Yes and no. Indeed, a portfolio with a net A of 0 calculated based on the A measure
presented in (5.14) on page 56 will not be completely A-hedged according to the
dynamics of the SABR model. However, we note that in (5.23) the correction term
is exactly the Hagan SABR V. This implies that by using the derivations of Hagan
et al. from (5.14) and (5.16) to hedge both A and V risk, one would actually—not
knowing—have managed to correctly A-hedge the portfolio. However, the V-hedge

would still need to be corrected in accordance with (5.24).

19 Assuming, that p € [—1;0].

61



Part 111

Application



Chapter 6

Applying the SABR model

6.1 SABR model for pricing

In the previous sections we have shown how the SABR model can effectively and
self-consistently be used for purposes of risk management. By applying the SABR
model, we are able to calculate A and V risk measures over different strike prices
in a consistent manner and thereby more efficiently calculate the total exposure
towards these risks of a portfolio of derivatives.

However, risk management is not the only benefit of adopting the SABR model.
In the following sections we demonstrate how the SABR model can be utilized in
a pricing scenario. We choose to base the application of the SABR model on
constant maturity swaps. We start out with an introduction to constant maturity
swaps, and after we have become familiar with the internal mechanisms of this
class of derivatives we will move on to the actual pricing, where we will show how
the problem of determining the value of a constant maturity swap can be first
split up into smaller bits, and subsequently solved by applying the SABR model
and our already established framework for pricing payer and receiver interest rate
swaptions. Finally, we apply the theory to market data and give a discussion of

our findings and their implications.

6.2 CMS products

The class of derivatives on which we will base our example of pricing using the
SABR model is the constant maturity swap or CMS swap. The CMS swap is
basically a swap contract like the ones presented in section 2.2. However, there
are some differences that cause the CMS swap to be not nearly as well behaved a

pricing problem as the plain vanilla IRS.
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EURIBORxM + ¢

A

Part A — Part B

N year swap rate

Figure 6.1: An example diagram of a CMS swap.

On a daily basis, the International Swaps and Derivatives Association (ISDA)
publishes swap rate fixings for a range of swap maturities (1Y, 2Y, 5Y etc.). These
published fixings are simply the daily par swap rates reported by swap dealers, and
are all quoted for plain vanilla interest rate swaps using standard conventions.
Because the swap rates are always quoted for the same maturities, they are referred
to as constant maturity swap firings. As the name implies, the CMS swap is a

swap contract written on such a rate.

6.3 Details of the CMS swap

The CMS swap is a contract where two parties agree on an exchange of a floating
CMS rate (e.g. the 10Y swap rate) against (for example) a floating xXIBOR rate
(e.g. EURIBORxM). The standard for EUR contracts is a quarterly exchange of
the floating EURIBOR3M plus a margin? ¢ for some floating CMS rate over a
predetermined period of time. The two floating rates are usually set in advance
and paid in arrears. The additional margin ¢ paid on the xXIBOR, leg can be either
positive or negative depending on the shape of the yield curve. On an upward
sloping yield curve the CMS spread is positive, since this curve implies that the
short rate (the xIBORxM leg) is smaller than the longer rate (the N year par swap
rate). For a downwards sloping yield curve the opposite is the case. An example
of a CMS swap flow is depicted in Figure 6.1.

The problem with the CMS swap is the fact that the fixing rates are often
accrued over non-matching periods of time. As an example, consider the EUR
10Y CMS swap on the 30Y fixing, which is the contract that specifies an exchange
of the floating EURIBOR3M rate for the 30Y swap fixing over a period of ten
years. Clearly, the 30Y fixing is mismatched since it is being paid for 10 years.
In the pricing of the CMS swaplet?, the short (floating) rate on which the xIBOR
leg is priced has a different sensitivity to movements of the underlying swap curve
compared to that of the leg paying the 30Y fixing rate. Graphically speaking, the

two legs have different shapes when plotting price against rate, and this is what

1See Table 2.2 on page 8 for conventions.
2Also known as the CMS spread.
3A swaplet is merely a swap with only one exchange of payments.
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Product Payoff at ¢,

CMS swap R,
CMS cap (R,—K)*
CMS floor (K —R,)"

Table 6.1: Payoffs for CMS swap, cap and floor.

we will refer to as the convexity correction that we need to take into account in

order to price the CMS swaplet correctly.

6.4 Pricing the CMS swap

Pricing the CMS swap will require us to go through a few preliminary steps. We
will break the pricing problem up into smaller bits and finally we will piece these
bits together to obtain a pricing expression for a CMS swap.

To start out, we will consider three products: a CMS swap, a CMS cap and a
CMS floor, all starting at ty with pay dates t1,...,t, where t,, is tg + M years.

The corresponding coverages are denoted 8¢, ..., 4! .

The CMS swap pays the N year swap rate fixed on the previous fixing date.
For example, at each t, € {t1,...,ty} the CMS swap pays out the par swap
rate fixing set at t,_1 —x business days.* For ease of notation we will define
the fixing date as 7, = t,—1 — = business days, so that the par swap rate paid

in the p’th period (paid at t,) is fixed at 7,.

The CMS cap pays out the difference between the par swap rate and some fixed
rate K, if the par swap rate is greater than K.

The CMS floor is the opposite of the CMS cap.

The three products and their payoffs are summarized in Table 6.1.°

Clearly, these three products are comprised by a series of similar payments.
Hence, to price either of the products all we need to be able to, is to calculate
the value of a single payment of either of the types presented in Table 6.1 paid
at some point in time t, € {t1,...,¢n} and add them together. These single
payment contracts are known as CMS swaplets, CMS caplets and CMS floorlets—

meaning that for example a CMS cap running from ty to t,, is equivalent to m

4See Table 2.2 on page 8 for standard conventions.

®Note: we use the payoff R, (denoting the CMS fixing rate) as time t, payoff for the CMS
swap for generality purposes (the CMS rate can be swapped against both a fixed rate or a floating
xIBOR rate).
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N(=n/q=>" 67) years

Today Tp S0 Sn
} f f f f
(tp-1) tp
M Payoff

x business days

575

P

Figure 6.2: The timeline of a CMS product.

CMS caplets running from ¢;—1 to t; where ¢ € {1,...,m}. For generality, we
adopt the notation Rs(t) for the time ¢ par swap rate for the N year swap starting
at sp and ending N years later at s,, and for ease of notation we introduce the

notation L(t) corresponding to the A(-) term presented in section 2.2.2, so

n

L(t) = A(t, s1,8n) = Z 5;D(t, s;) (6.1)

i=1
where s1, ..., s, are the pay dates for the swap that starts at sy and ends IV years
later at s, and d7,...,9; are the corresponding coverages. A general timeline of

a CMS product is presented in Figure 6.2.

Concluding on our preliminaries: t1,...,t, are the pay dates for the CMS
product (with corresponding fixing dates 71,...,7y,), while s1,..., s, are the pay
dates for what we will call the reference swap—e.g. the 10Y swap against EURI-
BORGM. The par swap rate Rs(t) is the time ¢t par swap rate for the reference
swap. When a CMS product is entered into, the time frame {to,...,t,} is laid
out and stays the same, but the time frame for the reference swap “shifts”, so that
a new time frame {so,..., sy} is established at each fixing date 7; € {71,..., 7}

In the following sections we will denote today as time 0.

6.4.1 The CMS caplet and floorlet

In order to price the CMS swaplet, we will initially focus on the CMS caplet and the
CMS floorlet. We will use ¢, as notation for the pay date for the caplet/floorlet and
7 for the fixing date.5 To price these we will need to use the change of numeraire
technique introduced in section 2.3. This tells us that for any choice of a traded

asset as our numeraire there exists a probability measure such that the value of

5As long as we are in the realm of the caplet, floorlet and swaplet we will relax our notation
using 7 rather than 7, to denote the fixing date for the interest rate involved in the payoff at
time tp, since these products all have only one payment (at time ¢,) and one fixing date.
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6.4. PRICING THE CMS SWAP

any traded asset V(t) divided by our numeraire is a martingale. Choosing L(t)—
which essentially is a sum of zero coupon bonds, and therefore obviously a traded
asset—as our numeraire we write this as
v = e’ [1] 62)
"L
For our plain vanilla European payer swaption we know that at time 7" it has the
value” V,,(T) = L(T) (R — K)*. Inserting this into (6.2) we end up with

Viu(t) = L(OEL (R - K)*] (6.3)

which is the price of our payer swaption under the Q¥ measure, and a result we

will use in the following sections.

The CMS caplet

Having established our framework for pricing swaptions we move on to the pricing
of the CMS caplet. The CMS caplet has a payoff of (Rs(7)— K)* at time t,. At the
time of the swap rate fixing 7 < ¢,, the value of the caplet is D(7,t,)(Rs(7) — K) ™.
Using this together with (6.2) we are able to write the time ¢ value of the caplet

- B L | D(1,t,)(Rs(7) — K)*t
V;:aplet (t) - L(t) EtQ L L(T)

(6.4)

The ratio D(r,t,)/L(7) is a martingale® under the Q¥ measure and therefore, its

time ¢ expectation is equal to its time 0 value
L
Eg [D(r,1,)/L(r)] = D(0, t,)/L(0) (6.5)

Using this result, we can rewrite (6.4)° and write today’s value as

~—

+D(7,tp)/L(T

Veaplet(0) = D(0,2p) EOQL D(Otp)/L(O)] (6.6)

(Rs(7) — K)

which, in turn, we can split up further writing

Veaplet (0) = D(0, 1) EG " [(Ry(7) — K)7]

_l’_

-MQME?[WAﬂ—Kﬁ<DE

"See (2.13) on page 14.
8Cf. Hagan (2003).
9Dividing by D(0,t,)/L(0) inside the [ ]’s and multiplying by D(0,t,)/L(0) outside the []’s.
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6.4. PRICING THE CMS SWAP

Comparing the first term in (6.7) to the expression in (6.3) we recognize it as being
a standard European payer swaption written on a notional of D(0,t,)/L(0). We
have already established the required framework to price contracts of this kind,
and therefore we will leave this term for now and instead we will focus on the
second term of (6.7) which is the term that yields the convexity correction.

As it is presented in (6.7), the convexity correction is a function of several

representations of the yield curve!'?

—swap rates, zero coupon prices and discount
factors.'’ As a first step on our path to evaluating the convexity correction, we
will express the entire term as a function of only one representation of the yield
curve: the par swap rate Rs(t).

First, we take a look at L(t). Originally, we defined L(¢) in (6.1) as the sum

of discounted coverages. We can rearrange this into
L(t) = D(t, s )i 5 D0, %) (6.8)
Y =D, 50) ‘

After some thought we recognize this as a discount factor times a sum of discount
factors between t and s1, . . ., s, discounted back to sg weighted by their respective
coverages—a series of forward discount factors. The time ¢ value of the stream
of discounts must be approximately equal to continuously discounting by the par
swap rate between sg and s,, Rs(t) in each period. Therefore, assuming further

that all periods are of equal length, we can approximate (6.8) by

"1 1
L~ Dlto0) 2. G5 R, @ /gy

(6.9)

where ¢ represents the number of periods in a year for the reference swap. Using

the result for the sum of a finite series

Theorem 6.1. (THE SUM OF A FINITE SERIES)!?

Let a and k be constants. Then

" , 1 — krtt
b, = b =q—
;)a o

; _1 -1 o -
Setting a = : and k = 0T R. (D7) Ve are able to eliminate the summation term

10While in the theoretical realm we will assume that there is only one yield curve even though
we have seen earlier, that indeed there are several.

"We distinguish between discount factors (D(0,T)) and zero coupon prices (D(t;, T)) since
the former are deterministic today (at time 0) and the latter are stochastic until we are in fact
at time t;.

12Cf. Fuglede et al. (1999).
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and rewrite (6.9). Note that Theorem 6.1 gives the sum from 0 to n and not the
sum from 1 to n which we need. Therefore we must subtract a k° = a which is
the term added for the case of j = 0. We find

) 1_ ( 1 >n+1 .
L(t) = D(t,50) | -~ UR@W/e)) 2 (6.10)
¢ TR L

—a
This expression is not very appealing, but it turns out that it can be simplified

_ D(t,s0) 1
Lo~ %o (1‘<1+Rs<t>/q>n> (6.11)

The task of rewriting (6.10) into (6.11) is not very complex, but it does require a

quite a bit into

few clever turns and it does take a few steps. We will not present it here, but for
the sake of completeness it is included in Appendix A.

Second, looking at the discount factor up to the time of payment ¢,, we will
approximate this quantity as the discount factor up to time sg (the start date of
the underlying swap) further discounted by the par swap rate for the remaining
time up to the time of payment ¢,. This means that we adopt the following

approximation

D(t, sp)
(1+ Rs(t)/a)
where v = (t, —s0) ¢ = (5; q represents the fraction of a (q) period between sy and
ty.

Having expressed both L(t) and D(t,t,) in terms of the swap rate R4(t) in
(6.11) and (6.12) respectively, we now define the function G(Rs(t))

D(t,t,) ~ (6.12)

Dty | R0 |
G =T~ T Ry 1= A+ B/ " (6.13)

Indeed, more complex models can be applied in order to increasingly improve the
accuracy of the replication. However, for our purposes we will settle for (6.13).
For more elaborate models we refer to Hagan (2003). With our choice of the G(-)
function, we return to the convexity correction term (the second term) of the CMS
caplet in (6.7). We rewrite the convexity correction using the G(-) function from
(6.13) to get

CC(0) = D0, 1,) E" [(RS(T) R (m _ 1)} (6.14)

In order to evaluate the expectation, we apply a general result from Carr (2005),
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stating that for any twice differentiable function h and any scalar £ > 0 the

following holds

h(S) =h(k) + h'(k) (S — k) +
A T W @) (S — @) tda + /0 "W(@) (x — S)tda (6.15)

The first line represents the tangent approximation while the second line is the
continuous correction to the tangent as one moves from the initial point x to the

end point S. As a special case of (6.15) we can write a function of Rg(t)

h(Rs(t)) = h'(K) (Rs(t) — K)™ +

/K T @) (Ro(t) — ) Pdr for Ra(t) > K (6.16)

where we choose h(z) = (x — K) (% - 1) making h(K) = 0. Substituting

h(Rs(7)) into (6.14) and rearranging leaves us with

CC(0) = D(0, t,){ W(K)ES [(Ro(r) — K)*] +
/ () S [(Ry(r) — 2)*] da } (6.17)

K

Combining the convexity correction with the first term from the original expression
for the value of the CMS caplet in (6.7) and letting C'(K) = L(0) E(?L[(RS(T) —
K)*] denote today’s value of a payer swaption with strike K we are now able to

write

Veapier (0) = 2 gz’ogp) {(1 +H(K)) C(K) + /K T W) Ca) d:c} (6.18)

Thus, at time 0 we can replicate the payoff of (and thereby price) a CMS caplet
through a portfolio of plain vanilla European payer swaptions struck on different
notionals at different strikes. This is where the SABR model comes into play.
The SABR model provides us with the exact implied volatility interpolation setup
we need in order to price swaptions at a wide range of strike prices. Further, by
applying the SABR model to the pricing of the swaptions, the A and V risks of
the resulting swaption portfolio are easily aggregated in a self-consistent manner

using the SABR risk framework presented in section 5.6.3.
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The CMS floorlet

The argumentation and derivation of the replication formula for the CMS floorlet
are similar to those of the CMS caplet. The main difference being that the floorlet
is replicated through the use of European plain vanilla receiver swaptions where
the CMS caplet is replicated through payer swaptions. The value of the CMS

floorlet is

Vioortet (0) = 2 gz;f)p) {(1 +H(K)) PK) — /K @) P() dx} (6.19)

where P(K') = L(0) E(?L [(K—Rs(7))*] is today’s value of a plain vanilla European

receiver swaption, and h(zx) is identical to that used for the caplet case.

6.4.2 The CMS swaplet

At the time of the payout ¢,, having bought a caplet and having sold a floorlet—
both struck at K—will result in a payoff of

(Rs(1) — K)" — (K — Ry(7))" = Ry(7) — K (6.20)

Thus, being long a caplet and short a floorlet yields the a payoff equivalent to that
of being long a swaplet and having sold K zero coupon bonds with maturity ¢,.

Therefore, we can value the CMS swaplet as
‘/éwaplet(o) = ‘/caplet(o) - Vﬂoorlet(o) + D(07 tp) K (621)

Using the expressions for the values of the CMS caplet and CMS floorlet, given in
(6.18) and (6.19) respectively, we can write today’s value of the CMS swaplet as

Vvswaplet (0) = Dé(zvob;p) {Ajg) ZXTM('%') C(JJ) dx +

— 00

Rs(0)
/ Wy () P() da:} + D(0,t,) Ry(0) (6.22)

where haru () = (= Ry(0)) (s — 1)1

We have now successfully derived an expression to price a CMS swaplet paying
out Rs(7) at time ¢,. The task of pricing a CMS swap leg paying out R,(7,) at

each t, € {t1,...,ty} now becomes an arbitrary matter of summing a range of

3For the complete derivation of (6.22) see Appendix B.
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CMS swaplets. However, before we move on to an actual pricing example, we
remind ourselves that rather than paying out the actual rate Rs(7) at time t,,
a CMS swaplet pays out according to the money market convention making the
actual time ¢,, payoff of the CMS swaplet 5; Rs(7), where 5; is the coverage for the
p’th period of the CMS swaplet—as opposed to the coverage of the reference swap
that has coverages 5}5,.14 However, since the coverages are merely constants, these
can simply be multiplied by the already established pricing expression in (6.22) to
obtain the prices of CMS swaplets paying off 6;, Rs(7) rather than Rg(7).

6.5 A pricing example using the SABR model

Previously in this chapter we have shown how the SABR model’s ability to inter-
and extrapolate known volatility smile points can be used in pricing CMS products.
We have established formulae to replicate the payoffs of different CMS products
using ranges of our well-known European plain vanilla payer and receiver swap-
tions. In this section we apply the theoretical pricing setup to actual market data

and finally we compare our theoretical price to the price found in the market.

6.5.1 Choice of product

For our pricing example we choose to price a 5Y CMS swap swapping the 10Y
par swap rate against a floating EURIBORS3M payment. Hence, our product is
similar to that depicted in Figure 6.1 on page 64, with the IV year swap rate being
the 10Y swap rate and EURIBORxM being EURIBOR3M. We note that the 10Y
swap rate is the swap rate against EURIBOR6M,' while the rate it is being
swapped for is floating EURIBOR3M. The CMS swap is set in advance, paid in
arrears and has quarterly payments. We price the product assuming that today
is June 1st 2010. On this date we observe the swap curves shown in Figure 6.3.
The two swap curves show the swap rate for maturities up to 30 years for swaps
against EURIBOR3M and EURIBOR6M. Further, we observe the four volatility
smiles presented in Table 6.2. Since payments in our CMS swap are quarterly,
the volatility smiles in Table 6.2 will not suffice. In order to price the individual
CMS swaplets we require a volatility smile for each payment date ¢,. In our case
we will assume that accrual periods are all of length 0.25, implying that we need
a volatility smile for each ¢, € {0.25,0.50,...,4.75,5.00} where time 0 is today
(June 1st 2010). We address this issue by applying simple linear interpolation

between the observed smiles.

14See Figure 6.2 on page 66.
5Standard for EUR swap rates.
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Figure 6.3: Swap curves per June 1st 2010.

Expiry ‘ —200 bps —100 bps —50 bps ATM +50 bps 4100 bps 4200 bps

0.25 55.71% 37.21% 31.75%  28.08%  25.51% 24.36% 24.23%
1.00 46.78% 33.60% 29.57%  26.95%  24.97% 24.05% 23.68%
5.00 32.16% 24.01% 21.20% 19.37%  18.20% 17.87% 18.30%
10.00 29.93% 22.11% 19.44%  17.66%  16.59% 16.25% 16.58%

Table 6.2: Volatility smiles for different swaption expiries per June 1st 2010. The un-
derlying swap is the 10Y swap against EURIBOR6M.

6.5.2 The pricing procedure

Having established the characteristics of our CMS product we turn to the pricing
procedure itself. We have seen the theoretical pricing setup, and now we will go
through the steps involved in an actual pricing using market data. The pricing of
the CMS swap will follow the approach presented in section 6.4.2 where we show
how to price a CMS swaplet. Once we have priced all the CMS swaplets we simply
add up their values to obtain the value of the CMS swap leg. Since the CMS swap
valuation is merely a matter of adding CMS swaplet values we will focus on the
pricing procedure of the individual CMS swaplet.

In the previous section we discussed the data at hand and how we interpolated
the observed volatility smiles to end up with a sufficient set of volatility smiles.
Therefore, in this section we will simply assume, that swap curves and volatility
smiles are given (observed in the market). From here on we will present the pricing
procedure chronologically according to our own implementation. In addition to an
explanation of each step in the proces, results will be reported for the calculation

of the CMS swaplet expiring at time 5 (the final swaplet).
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i.

ii.

iii.

iv.

V.

For every pay date t, € {0.25,0.50,...,4.75,5.00} perform the following steps

Lay out the schedule for the reference swap. We lay out the schedule for the
10Y swap against EURIBOR6M (semi-annual payments) starting at so = t,—1
and ending at s, = sg+ 10Y. As with the schedule for the CMS payments, we
assume equal coverages d, = 0* = 0.5 for all periods p in the reference swap.
Result: for the final swaplet the schedule for the reference swap is (from s
to sp)

s = {4.75,5.25,...,14.25,14.75}

Calculate the annuity for the reference swap according to (6.1) on page 66:
n
L(0) = 6°D(0,s;) (6.23)
i=1

Result: L(0) = 7.4991

Calculate the relevant (forward) par swap rate. We calculate the 10Y par

swap rate between sg and s,, as

D(O, 8()) — D(O, 820)
L(0)

R,(0) = (6.24)

where the discount factors are calculated using the swap curve against EURI-
BORG6M.
Result: Rs(0) = 3.8547%

Fit the SABR model to the volatility smile for the relevant swaption. In our
case, the relevant swaption is the 10Y swaption with expiry date!® t,—or
using our standard notation: the t,Y10Y swaption. We fit the SABR model
by fixing the 8 and then calibrating the «, p and v freely. Result: setting
5 = 0.5 we obtain

{a, p,v} = {11.37%, —41.47%, 52.50%}

Define a function I(x;-) that is the function to be integrated over in (6.22) on

6Expiry date for the option element of the swaption.
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page 71 so that

I<$;RS(O)767Q7P7 V7 TaLatype) =
Z{TM(LL‘; RS(O)) X P‘/swaption(xS RS(O),ﬁ, «, p,V, T7 L: typ@)

1,'7 z is the strike

where hapas(+) is the function from section 6.4.2 on page 7
price, Rs(0) is the par swap rate, {3, a, p, v} are SABR parameters from (iv),
T is the swaption’s expiration date,'® L is the annuity from (ii) and type is

an indicator of whether the swaption is a payer or receiver swaption.

vi. Calculate the value of the swaplet according to (6.22). However, we make a
slight adjustment to the lower bound of the second intergral setting it to 0
rather than —oo since we expect interest rates to be non-negative. This leaves

us with

Pszaplet = D(07 tp) RS(O) +

~ Rs(0)
M / I(IL’, . pay) dx + / I(.’L’, . 7’6662"1)6) dx
L(0) +(0) 0

Result: PViyaplet = 4.35%

vii. Multiply the present value from (vi) by the CMS swap coverage. Since we
assume equal coverages for each period we multiply by 6 = 0.25.
Result: 6 PViyapler = 1.09%

These seven points are repeated for each CMS swaplet in the CMS swap,
meaning that for the 5Y CMS swap with quarterly payments they are repeated
twenty times. The total value of the CMS swaplets gives us the value of the CMS
swap leg. Arbitrarily setting 8 = 0.5 yields

PVems 1eg = 17.0407% (6.25)

To compare our price with a market quote we need to get the value on the form
of a CMS margin payment.'® The standard for EUR contracts is a swap against
EURIBOR3M and hence, we need to value this leg also in order to come up with

a net present value of the entire CMS swap. Today’s value of a quarterly payment

"Using ¢ = 2 and v = 0.5 for G(-) (6.13) since our reference swap is semi-annual and our
CMS swap payments are quarterly.

'8In our notation, the swaptions used to price a CMS swaplet should expire at the payment
date of the CMS swaplet ;.

19The margin ¢ that is set today and yields a PV of 0 when the CMS leg is swapped against
some floating xIBOR rate.
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6.5. A PRICING EXAMPLE USING THE SABR MODEL

of the EURIBOR3M rate during the course of the CMS swap (from ¢ to t,, ) is

PViurisorsm = » 6" D(0,t;) F(0, ti—1, ;) (6.26)
=1

where F(0,t;_1,t;) is today’s forward rate between ¢;_1 and ¢;. Using the definition

from (2.1) on page 5 we can simplify the expression further
PVeurioram = D(0,11) — D(0,tm) (6.27)

Hence, in our case the PV of the floating EURIBOR3M leg is calculated by setting
t1 = 0.25 and t,, = 5 and calculating the discount factors on the EURIBOR3M

swap curve. Doing so yields
PVEurBor3sm = 9.2489%

This leaves us with a PV of both the CMS swap leg and the floating EURIBOR3M.

The difference between these values is the CMS swap’s net present value

Net PVewms swap = PVous 1eg — PVEURIBOR3M
= 17.0407% — 9.2489%
=7.7917%

We will now calculate the CMS swap spread ¢, that sets the net PV of the CMS
swap equal to 0. We can think of the net PV as the value of a CMS swap on a unit
notional. To determine the size of the CMS spread ¢, we must determine the PV
for a unit spread. The value of a single unit CMS spread c paid at every payment

date the sum of the spread payments is
20
> 6'D(0,t;) = 4.8056 (6.28)
i=1

Hence, every basis point paid as a CMS spread has a value of 4.8056 basis points
over the duration of the CMS swap. Subsequently, if the CMS swap has a net PV
of 7.7917% and the value of a unit CMS spread is 4.8056, then the CMS spread
that leaves the CMS swap with a net PV of 0 can be determined by

. TT9T%

= 1.6214 162.14 2
15056 6214% (or 16 bps) (6.29)
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for explanation. CurncyHP

CLOSE/VALUE

EUCM105  EUR CMS 10Y5Y ) P
HI 204.3000 ON 5/13/10
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Figure 6.4: Historical quotes for the 5Y CMS swap against the 10Y index.
Figure 6.4 shows a screen from the Bloomberg system with historical mid prices?”
for 5Y CMS swaps on the 10Y swap rate. We see that the Bloomberg system
reports a quote for the CMS swap of 175.5 bps. This puts us roughly 13.3 bps off
target—a deviation of 13.3/175.5 = 7.5%.

Our deviation from the market quote might arise for several reasons. First, we
adopt a somewhat simplified approach of handling the coverages §° and 6. We
assume these to be constant, while in the real world they are of course not con-
stant, but subject to day count conventions and the specific layout of the business
calendar for the relevant period of time. Second, the historical Bloomberg data
only offers a mid price. It does not report anything about the magnitude of a
potential bid-ask spread. While we do not have acces to historical bid-ask spreads
Figure 6.5 shows the bid-ask spread for several CMS swaps as per February 22nd
2011. We note that the 5Y CMS swap on the 10Y index has a bid-ask spread
of 10 bps with a bid of 144.50 and an ask of 154.50. Hence, mid price to bid
price can easily span (at least) 5 bps. Third, as mentioned in section 6.5.1 we are
not initially endowed with a complete volatility surface. All we have are the four
volatility smiles presented in Table 6.2 on page 73 out of which we can only use
the three up to and including expiry time 5. To get what we need we apply a

simple—and maybe over-simplifying—Ilinear interpolation between the volatility

20The mid price is the price right between the asking price and the bid price.
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20 Message

200<Go> to view in Launchpad

8:27 EUR CMS PAGE 1 / 2
Object Ask Bid Time Object Ask Bid Time
2 Year Index 10 Year Index

1 5Y Swap 66.3000 60.3000 7:00 9 5Y Swap 154.5000 144.5000 7:00

J) 10Y Swap 56.1000 50.1000 7:00 |10 10Y Swap 129.3000 119.3000 7:00

3 15Y Swap 50.0000 44.0000 7:00 |1D 15Y Swap 110.1000 100.1000 7:00

4 20Y Swap 44.9000 38.9000 7:00 |12 20Y Swap 103.3000 83.3000 7:00
5 Year Index 20 Year Index

5 5Y Swap 112.5000 103.5000 7:00 |13 5Y Swap 173.8000 153.8000 7:00

8 10Y Swap 92.9000 83.9000 7:00 |19 10Y Swap 129.1000 109.1000 7:00

7 15Y Swap 79.4000 70.4000 7:00 |19 15Y Swap 98.6000 78.6000 7:00

8 20Y Swap 69.9000 60.9000 7:00 |18 20Y Swap 87.7000 67.7000 7:00
EUR CMS quoted A/360 vs 3M Euribor

Austrolio 61 2 3777 8600 Brozil 5511 3042 4500 Europe 44 20 7320 7300 Germong 49 &% 9204 1210 Hong Kong 852 2977 &000
Jopon 81 3 3201 2200 Singopore 63 6212 1000 .1 212 318 2000 Copyright 2011 Bloombery Finonoce L.P.
SH 637401 GE12-977-0 22-Feb-2011 08:27:17

Figure 6.5: CMS broker screen as per February 22nd 2011.

SABR g ‘ 0.20 0.40 0.60 0.80 0.85
CMS spread (bps)‘161.44 161.8 162.7 167.53 176.87

Table 6.3: CMS spreads for different 5 values.

points over time. Fourth, as mentioned earlier we arbitrarily chose to set 5 = 0.5.
We have seen earlier, that the SABR model fits the points of the volatility smile
very nicely, seemingly regardless our choice of 5. Could it be, however, that while
the value of § has little to no effect on the observed smile, it does indeed have an
effect on the extrapolation of the smile? We remind ourselves that the procedure
of pricing a CMS swap through a series of swaptions require us to integrate over an
infinite range of strikes, and therefore extrapolating the volatility smile correctly
becomes an important task. Effectively, the swaption prices tend to be close to 0
at strikes &~ 15%, but this still leaves a lot of “unknown territory” between our last
observed volatility—which is ATM + 200 bps—and the point when the swaption
prices approach 0. Table 6.3 shows CMS spreads resulting from different choices
of SABR 3. We observe that while the CMS spread estimates are fairly consis-
tent when using a # < 0.60, choosing a 5 > 0.60 causes significantly higher CMS
spreads. While this inconsistency of CMS spreads might at first glance seem to

be an inconvenience, this actually allows for a way to calibrate a SABR model
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to market data using CMS quotes.?! Inverting our pricing process into a SABR-
calibrating process our CMS pricing model tells us to use a 8 € [0.82,0.86] to price
the 5Y CMS swap within the quoted mid price + 5 bps.

Concluding on our pricing example, we have shown that the SABR model,
together with our fairly simple framework for plain vanilla European interest rate
swaption pricing, can price more complicated financial derivatives. However, we
have also seen, that when expanding the volatility smile boundaries beyond what
is market-observable, the choice of § starts to have an effect on our results. We
found that in our pricing procedure a § around 0.82 would put us on the market

mid price.

21Cf. Mercurio and Pallavicini (2006).
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Chapter 7

Conclusion

We have provided evidence supporting our claim that empirically the return volatil-
ity of a financial asset is hardly constant. Rather, we have seen that volatility
seems to fluctuate over time. We have also shown that the Black-Scholes assump-
tion of constant volatility is inconsistent with the market’s pricing of European
plain vanilla options. The market clearly shows a tendency to a smile-like volatil-
ity curve when plotting volatility against strike prices. Thus, seen in the context
of the Black-Scholes setup, volatility is not only varying in time but also in strike
price. We presented two different approaches in our efforts to model the behavior

of volatility over time as well as over strike prices.

The first approach was the local volatility model. Initially, we considered the
local volatility model in the discretized case of binomial tree option pricing. We
showed that from a given volatility smile—corresponding to known European plain
vanilla option prices—we were able to reverse the usual binomial pricing scheme
and back our way into a grid (tree) of implied volatilities. Further, the reversal
of the binomial pricing yielded a tree showing how the value of the underlying
asset evolves over time (under the local volatility model) along with transition
probabilities. Hence, the method enables us to back our way into the several
grids, containing numerous pieces of information, from observable European plain
vanilla option implied volatilities. Following, these grids can be used for pricing
various more exotic derivatives in a market-consistent manner. After showing, in
the discretized case, how the local volatility model could be used to obtain the in-
formation needed to price consistent with market observables, we moved on to the
analysis of the dynamics implied by the local volatility model when the forward
price of the underlying asset shifts away from its initial state. We expected the

volatility smile to shift in the same direction as the forward price, but instead we
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saw that the model shifts the volatility smile in the opposite direction. Besides
being counterintuitive this is also inconsistent with what is observed in the mar-
ket. Finally, we discussed the implications this has in a risk management context,
and concluded that while the local volatility model might be a reasonable choice

for purposes of pricing, when it comes to risk management the model is inadequate.

As a second approach to modeling the volatility smile we presented the SABR
model of Hagan et al. (2002). We showed how the implied Black-Scholes volatility,
predicted by the SABR model, can be approximated in closed form, and how the
various parameters affect the shape of the resulting volatility smile. We saw that
some of the parameters had somewhat similar effects, which we, in turn, utilized
when estimating the SABR parameters. We presented various estimation meth-
ods, but eventually we found that the SABR model is very capable of fitting a
volatility smile regardless of the estimation method. Further, the fit of the model
also did not seem to be very dependent on the choice of 3.! However, by shifting
the 8 we saw that while the fit of the model is not significantly affected, the param-
eters of the SABR model are indeed. We demonstrated a potential problem arising
from the instability of the SABR parameters by calculating A risk for different
choices of 3, and saw that different s yielded different SABR parameters, which
eventually led to very different A risk profiles. We remedied this discrepancy by
stepping back and reconsidering the model, taking into account the correlation
between the forward price level and the instantaneous volatility that is inherent in
the SABR model and incorporating this into our risk measures. By doing so, we
showed that the SABR model does predict very similar A risk profiles regardless
of the 5 used.

As a final act, we demonstrated how the SABR model’s ability to inter- and
extrapolate a volatility smile can be applied in a pricing scenario. We used our
basic setup for pricing payer and receiver swaptions, along with the SABR model
to price constant maturity caplets and constant maturity floorlets, which then, in
turn, we combined in order to price a constant maturity swap. We compared our

results with market prices and gave a discussion of our findings.

7.1 The next step

To round off, a few comments on possible extensions of the work presented in

this thesis will be provided. A natural extension of the work done in this thesis

LCf. the presentation of the SABR model on page 36.
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would be a further investigation of ways to estimate a suitable 5. As we suggest
ultimately in section 6.5.2 on page 79, more complex derivatives might be utilized
in order to calibrate the [ estimate to that inherent in the market. Further, the
expansion of the SABR model from a single-maturity (volatility smile for varying
strike prices) to a model that is continuous in maturity as well (volatility surface
spanned by strike price and time) would also be an obvious choice for additional
research—indeed a combination of the two possible extensions mentioned here

might lead to interesting results.
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Appendix A

Derivation of (6.11)—the

approximation of L(t)

In this appendix we present the derivation of the approximation of the term

_ s 3 S'D(t?Sj)
L(t) = D(t, O)jz::l(sa D(t, s0)

On page 69 we show that we can approximate L(t) by the expression

) 1_ < 1 >n+l )
L(t) = D(t,s0) | = N (HRS(?/Q) - =
q ~ FR.®/0) q

Further, we claim that it can be simplified into

_ D(t,s0) L
o= (- e Ramr)

In the following we will verify this claim.
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A.1. THE DERIVATION

A.1 The derivation

The derivation takes a few steps and a few tricks, but it is not very complex.

Therefore, comments will be kept at a minimum.

) 1_ ( 1 >n+1 )
L(t) ~ D(t,s0) | - 1+Rs(1)/q 1

1
l—ommom ¢
11— g 1
= D(t, s0) <q RO/ g
1+Rs(t)/q
1 (1= oy Rt
— D(t,so)R ) ( = 1(%) - B
. TR0 1
D(t, s0) ( 1+ Rs(t)/q Rs(t)>
— 1+ Rs(t - B
(D) \ W= T R0 T

_ D(tv 80) _ ;
~R(t) (1 (1+ Rs(t)/q)">
Q.E.D.
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Appendix B

Derivation of the replication
formula for the CMS swaplet

To derive the formula for replicating the CMS swaplet through the use of plain

vanilla European payer and receiver swaptions the following entities are required:

The caplet

Viania0) = 242 {4 W) O) + [T W@ e} (B)

where C'(K) = L(0) E(?L[(RS(T) — K)™] is the price of a plain vanilla European
payer swaption with strike K.

The floorlet
D(0,t,)

Vioorlet (0) = L(O)

{(1 +H(K)) P(K) — /KOO W' (z) P(x) dgc} (B.2)

where P(K) = L(0) EOQL[(K — Rs(7))"] is the price of a plain vanilla European

receiver swaption with strike K.

The h(:) function

h(z) = (z — Ra(0)) (G(C;;(“%)) -1) (B.3)

_ D(ttp) Rs(t
Here G(Ry(t) = % ~ (riiyar o mmyo=

of periods in a year,! and + is the fraction of a period between the start date of

where ¢ denotes the number

the reference swap and the payout date .

'For the reference swap starting at sp and ending N years later at s, quarterly payments
would imply ¢ = 4, semiannually would imply ¢ = 2 and so on.
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B.1 The derivation

The payoff at time ¢, of being long a CMS caplet and being short a CMS floorlet
both struck at K and fixed at time 7 is

(Ro(7) = K)" = (K = Ry(7))" = Ry(7) — K (B.4)

which is equal to that of being long a CMS swaplet ( + Rs(7)) and short K zero

coupon bonds ( — K') with maturity ¢,. Therefore, we have
véwaplet(o) = ‘/caplet(o) - Vﬂoorlet(o) + D(07 tp) K (B5)

Now, using (B.1) and (B.2) we can solve for today’s price of the CMS swaplet.
We start out by subtracting the value of the floorlet from that of the caplet?

P enom earion + [ 1@ ctoyas -

Lito) R.(0)
D(O’t ) ! o 1"
L(O)P {(1 + h'(Rs(0))) P(Rs(0)) — /RS(O) W' (x) P(x) dl‘}
_ D(0,) )
=Ty (AT B(0)) (CR(0) — P(R(0))} +
i
D(0,ty) | [, RO)
L(0) {/RS(O)h () C(x) d:r-i—/_oo h'(z) P(x) dx} (B.6)

II

Focusing first on part I of (B.6), we note that h'(Rs(0)) evaluates to 0, leaving us
with

D(0,t,)
7(0) {(C(Rs(0)) — P(Rs(0))}
= Dé(z,(;;p) {L(O) E(?L[(RS(T) ~ R.(0))" — (Rs(0) — RS(T))+]}
=D(0.1;) {EF [Rs(r) ~ Ru(0)]} (B.7)

The two swaptions were struck at R4(0), and thus, following (B.5), to solve for
the value of the swaplet, we must add D(0,%,) Rs(0) to I and II from (B.6). This

2Both struck at Rs(0).
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leaves us with a final CMS swaplet value of

D(0,t,) {ES" [R(7) = Ra(0)]} +D(0, 1) Ry(0) + 11 (B.8)

I

The D(0,t,) Rs(0) terms cancel out and the par swap rate is a martingale under

the QF measure. This leaves us with our CMS swaplet replication formula

Vo) = 2 [ i) clo s

Rs(0)
[ W' (z) P() da:} + D(0,t,) Ry(0) (B.9)

[e.9]

showing us how to integrate over the second derivative of the h(-) function to find
the correct notionals for the various strike prices which then in turn will yield the
value of the CMS swaplet.
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Appendix C

Selected code

In this appendix some selected bits of code will be presented. The code is written
in the open source R software environment (R Development Core Team, 2010),
which can be downloaded free of charge from www.r-project.org. The code bits
will be organized, so that the bigger pieces are given first, and subsequently the

smaller “helping functions” will be presented.

C.1 Fitting a SABR model

In this section we present two ways of calibrating a SABR model to market data.
We show how to calibrate the model with freely varying parameters {a, p, v} and
how to calibrate the SABR model with an a determined through p, nu and ATM
volatility ({«(p, v, ATM.vol), p,v})) as shown in (5.7) on page 47.
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C.1.1 Fitting a SABR model freely

# Function that fits the SABR model based on:

# beta (b), ATM forward (fATM), observed volatilities (ObsVols)

# with corresponding strikes (strikes) and maturity of the

#  swaption (t).

# All parameters (alpha, rho and nu) are free.

FitSABRFree <- function(beta, fATM, strikes, t, ObsVols,
init.values = ¢(0.03, -0.3, 0.3),

c(0.00, -1, 0.001),

c(1, 1, 1), ...{

lower.bound

upper .bound

# Defining function to be minimized:
obj <- function(parm, beta, fATM, strikes, t, ObsVols){
alpha <- parm[1]
rho <- parm[2]
nu <- parm[3]
EstVols <- SABRVol(a=alpha, r=rho, v=nu,
b=beta, f=fATM, K=strikes, t=t)

return(sum((EstVols - ObsVols)~2))

opt <- nlminb(start=init.values,
objective = obj,
lower = lower.bound,
upper = upper.bound,

# Additional parameters for ’obj’:

beta = beta,

fATM = fATM,
strikes = strikes,
t=t,

ObsVols = ObsVols)

# Printing information regarding optimization:
cat("Error in convergence: ",opt$convergence, "\n")
cat (opt$message, "\n")

cat("Iterations: ",opt$iterations, "\n\n")

# Storing optimization results:

parms <- opt$par
names (parms) <- c("alpha", "rho", "nu")
obj <- opt$objective
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estvols <- SABRVol(a=parms[1], r=parms[2], v=parms[3],
b=beta, f=fATM, K=strikes, t=t)

# Returning results (in list form):

return(list (parms=parms, estvols=estvols, obsvols=0bsVols,
obj=obj))
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C.1.2 Fitting a SABR model with a implied by p, v and ATM
volatility

# Function that fits the SABR model based on beta (b),
# ATM forward (fATM), observed volatilities (ObsVols)
# with corresponding strikes (strikes) and the
# maturity of the swaption (t).
# (Alpha is implied through rho, nu and ATM volatility.)
FitSABRImpA <- function(beta, fATM, volATM, strikes, t, ObsVols,
init.values = ¢(-0.3, 0.3),
lower.bound = c(-1, 0.001),
upper.bound = c(1, 1), ...){
obj <- function(parm, beta, fATM, volATM, strikes, t, ObsVols){
rho <- parm[1]
nu <- parm[2]
# Determining alpha based on rho, nu and ATM vol:
alpha <- alphaO(b=beta, r=rho, v=nu, vol=volATM, f=fATM, t=t)
EstVols <- SABRVol(a=alpha, r=rho, v=nu, b=beta, f=fATM,
K=strikes, t=t)

return(sum((EstVols - ObsVols)~2))

opt <- nlminb(start=init.values,
objective = obj,
lower = lower.bound,
upper = upper.bound,
# Additional parameters for ’obj’:
beta beta,
fATM = fATM,
volATM = volATM,

strikes = strikes,

t = t,
ObsVols = ObsVols

)

cat ("Error in convergence: ", opt$convergence, "\n")

cat (opt$message, "\n")

cat("Iterations: ", opt$iterations, "\n\n")

parms <- c(alphaO(b=beta, r=opt$par[1], v=opt$par([2],
vol=volATM, f=fATM, t=t),opt$par)

names (parms) <- c("alpha", "rho", "nu")

obj <- opt$objective
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C.1. FITTING A SABR MODEL

estvols <- SABRVol(a=parms[1], r=parms[2], v=parms[3],
b=beta, f=fATM, K=strikes, t=t)

# Returning results (in list form):

return(list(parms=parms, estvols=estvols, obsvols=0bsVols, obj=obj))
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C.2 Additional helping functions

In this section we present some additional functions that occur in the fitting of
the SABR model.

C.2.1 SABR volatility [SABRVol()]

# SABR volatility (eq. 2.17a in Hagan et al. [2002])
# based on: alpha (a), rho (r), nu (v), beta (b),

# ATM forward (f), strike (K) and expiry (t).
SABRVol <- function(a, r, v, b, f, K, t){

# Defining "building blocks" for the bigger equation:
x <- function(z,r){

log((sqrt(1 - 2*r*z + z72) + z - r)/(1 - r))
X

z <= v/a * (£*K)"((1 - b)/2)*log(£/K)

Denom <- (£*K)~((1 - b)/2)*

a1+
(1 - b)"2/24xlog(£/K)"2 + # 0 if f==K
(1 - ©)74/1920 *log(£f/K)~4 # 0 if f==K
)

Term3 <- (1 + ((1 - b)"2/24*a~2/((£f¥K)~(1 - b)) +
(1/4) * (r*b*xv*a) / ((£*K)~((1 - b)/2)) +
(2 - 3%r~2)/24%v"2)*t

# If f==K then z/x(z,r) = 0/0 => set equal to 1.
# Term2 <- if (f==K){

# 1

# Jelse{
# z/x(z,r)
# )

# Rewritten to work with vectors of strikes (K’s):
Term2 <- rowSums(cbind(is.na(z/x(z,r)),
(1 - is.na(z/x(z,r)))*(z/x(z,r))), na.rm=TRUE)

# Putting the pieces together and returning the result

return( (a/Denom) * Term2 * Term3 )
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C.2.2 Determining « from p, v and ATM volatility [alphaO()]

alpha0 <- function(b, r, v, vol, f, t){
# Find root of CubPoly in [0,1]:
uniroot (CubPoly, interval=c(0,1),
# Additional parameters for ’CubPoly’:
b=b, r=r, v=v, vol=vol, fwd=f, t=t)$root

C.2.3 Setting up the cubic [CubPoly()]

CubPoly <- function(a, b, r, v, vol, fwd, t){
# Polynomial coefficients:
A <= ((1 - b)72%t)/(24*fwd™ (2 - 2%b))
B <- (r*b*vxt)/(4xfwd~(1 - b))
C <=1+ ((2 - 3%r72)/24)*v"2%t

return(A*a”3 + B*xa~2 + C*a - vol*fwd™(1 - b))
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